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Abstract

The goal of this study is the reduction of the lubrication equation, modelling
thin film dynamics, onto an approximate invariant manifold. The reduction is de-
rived for the physical situation of the late phase evolution of a dewetting thin
liquid film, where arrays of droplets connected by an ultrathin film of thickness ε

undergo a slow-time coarsening dynamics. With this situation in mind, we con-
struct an asymptotic approximation of the corresponding invariant manifold, that
is parametrized by a family of droplet pressures and positions, in the limit when
ε → 0.

The approach is inspired by the paper by Mielke and Zelik [Mem. Amer. Math.
Soc., Vol. 198, 2009], where the center manifold reduction was carried out for a
class of semilinear systems. In this study this approach is considered for quasi-
linear degenerate parabolic PDE’s such as lubrication equations.

While it has previously been shown by Glasner and Witelski [Phys. Rev. E, Vol.
67, 2003], that the system of ODEs governing the coarsening dynamics, can be
obtained via formal asymptotic methods, the center manifold reduction approach
presented here, pursues the rigorous justification of this asymptotic limit.

1 Introduction

For many processes in nature and technology the development of complicated or even
chaotic patterns of spatially localized structures can be observed during their long-
time evolution. Examples range from applications in biology, such as morphogenesis,
which can be described by reaction-diffusion systems such as the Gierer-Meinhardt
model, to applications in the material sciences such as Ostwald ripening of phase
separated patterns in binary alloys, which is governed by the Cahn-Hillard equation.
To better understand the evolving patterns, one focus of research is concerned with
the possibility to develop so-called reduced models, that capture this long-time spatial
behaviour, Out of the already large body of literature we mention just a few examples
such as [1, 2] or [3, 4].

Much less common though, are studies on the rigorous justification of the correspond-
ing reduced models. However, recently in the work by [5] a center manifold reduction
theorem for a class of semilinear parabolic equations, describing a variety of dissipa-
tive processes that possess so-called multi-pulse solutions, was proved.

Here, we focus on a, from mathematical point of view, more complicated PDE’s of
quasilinear degenerate parabolic type, such as the lubrication equation that governs
the dynamics of thin film flow and is initiated by the recent research on dewetting thin
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liquid films. These studies show that spatially localized (we will call here) multi-droplet
structures exist and undergo a slow-time dynamics of coarsening, that has also been
observed experimentally in [6, 7]. The driving forces of the dewetting process are
the intermolecular potentials between the liquid film and the solid substrate, typically
consisting of a long-range attractive van der Waals and short-range Born repulsive po-
tential [8]. The combined potential reduces the unstable film to an ultra-thin layer, that
connects the evolving patterns and is given by the minimum ε of the intermolecular
potential, i.e. the film settles into an energetically more favorable state, see [9].

The last stage of this dewetting process, namely the long-time coarsening process
originates in the breaking up of the evolving thin film patterns. The evolution of this
process is commonly described by lubrication models, such as

∂th = −∂x

(

h3∂x (∂xxh− Πε(h))
)

, (1.1)

which we will consider in this study. It describes the evolution of the height profile
h(x, t) for the free surface of the two-dimensional film, see e.g. [10] for a review. The
high order is a result of the contribution from surface tension at the free boundary,
reflected by the linearized curvature term ∂xxh. A further contribution to the pressure
is denoted by Πε(h) and represents one from the intermolecular forces. A commonly
used expression is given by

Πε(h) =
ε2

h3
− ε3

h4
, (1.2)

It can be written as a derivative of the potential function Uε(h),

Uε(h) = − ε2

2 h2
+

ε3

3 h3
, (1.3)

where parameter 0 < ε ≪ 1 is the global minimum of the latter function and gives to
the leading order thickness of the ultra-thin layer (see Figure 1).

Figure 1: Plots of intermolecular pressure Πε(h) and potential function Uε(h) for ε = 0.1

In this study we consider (1.1) on a bounded interval (−L, L) with boundary condi-
tions

∂xxxh = 0, and ∂xh = 0 at x = ±L, (1.4)
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which incorporate zero flux at the boundary and as a consequence imply the conser-
vation of mass law

hc =
1

2L

∫ L

−L

h(x, t) dx ≡ const, ∀t > 0. (1.5)

It has been shown in [9] that the model (1.1) with boundary conditions (1.4) and initial
data h0(x) has a unique strong positive solution, provided that h0(x) ∈ H1(−L,L),
positive for all x ∈ (−L, L) and

∫ L

−L

1

2
|∂xh0(x)|2 + Uε(h0(x)) dx <∞.

Additionally stationary solutions to (1.1) were described in [9]. There, it was shown
that (1.1), considered on the whole real line R for a fixed ε > 0 possess a family of
positive nonconstant steady state solutions ĥε(x−ξ, P ) parametrized by two constants
ξ and P > 0. Asymptotically ĥε(x − ξ, P ) looks like a droplet (see the plot on the
right in Figure 3) which has core region where it is well approximated by a parabolic
profile and an outer region where to the leading order it is given by ε. In this case ξ
is the position of the droplet center and P corresponds to the constant hydrodynamic
pressure inside it.

Within the context of thin liquid films one of the first studies of the coarsening dynamics
can be found in [11] and [12]. There the authors argued that during the coarsening
process each droplet stays very close to a stationary solution ĥε(x − ξ(t), P (t)) with
corresponding position and pressure evolving slowly in time. Therefore, the whole
array of coarsening droplets can be considered as a metastable system and well
characterized by evolution of droplet pressures and positions (see Figure 2).

Figure 2: Geometric sketch for an array of several droplets

Using asymptotic methods they then formally derived a reduced ODE model of (1.1)
with (1.4) for an array of N + 1 droplets on a bounded interval [−L, L], where the
coarsening process is governed by the evolution of pressures Pj(t) and positions
ξj(t) of the droplets given by

dPj

dt
= CP,j(Jj,j+1 − Jj−1,j),

dξj
dt

= −Cξ,j(Jj,j+1 + Jj−1,j), j = 0, ...N. (1.6)
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At each time t the right-hand side of (1.6) is a function of the stationary solution
ĥε(x− ξ(t), P (t)) with a so called pressure CP,j and mobility coefficients Cξ,j defined
for j = 1, ..., N − 1 as

CP,j = −
(

∫ ξj+L̃

ξj−L̃

∂ĥε(x− ξj, Pj)

∂P
dx

)−1

, Cξ,j =

∫ ξj+L̃

ξj−L̃

ĥε(x− ξj, Pj) − ĥ−ε (Pj)

ĥε(x− ξj, Pj)3
dx

2

∫ ξj+L̃

ξj−L̃

(

ĥε(x− ξj, Pj) − ĥ−ε (Pj)
)2

ĥε(x− ξj, Pj)3
dx

,

(1.7a)

and for j = 0, N as

CP,0 = −
(

2

∫ −L+L̃

−L

∂ĥε(x+ L, P0)

∂P
dx

)−1

, CP,N = −
(

2

∫ L

L−L̃

∂ĥε(x− L, PN)

∂P
dx

)−1

,(1.7b)

where
ĥ−ε (P ) = min

x∈R

ĥε(x− ξ, P ) (1.8)

and L̃ was defined as a characteristic length of the support of one droplet. The right-
hand side of (1.6) depends also on the fluxes Jj+1, j between neighboring j + 1 and j
droplets. In [11] the leading order asymptotic approximation for it was found to be

Jj,j+1 = − V (ĥ−ε (Pj+1)) − V (ĥ−ε (Pj))

[ξj+1 − A/Pj+1] − [ξj + A/Pj]
, j = 0, ..., N − 1 (1.9)

where A = 1/
√

3 denotes the constant contact angle and

V (h) = −3ε2 log(h) − 4ε3

h
.

Due to the boundary conditions (1.4) the positions of the first and the last droplet in
the array are fixed for all t at the points x = −L and x = L, respectively. Therefore, in
order to complete the description of (1.6) one defines

J−1, 0 = −J0, 1, JN, N+1 = −JN−1, N .

In [11] the reduced ODE system of 2N−1 equations (1.6) with (1.7a)–(1.9) was solved
numerically and showed good agreement of the evolution of the droplet pressures Pj

and positions ξj with those obtained by the direct numerical solution of the lubrication
model (1.1) with boundary conditions (1.4). Recently, in [13] the derivation of reduced
ODE models was extended the two-dimensional lubrication equations, further exten-
sions for other lubrication type models were developed in [14]. In parallel, in [15]
an alternative derivation of reduced ODE models for both one-dimensional and two
dimensional cases based on the gradient flow type structure of equation (1.1) was de-
veloped. Nevertheless, the full rigorous justification of reduced ODE models retains
still an open challenging problem.
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Inspired by [5] we pursue a new approach for the derivation of the reduced ODE
model corresponding to above no-slip lubrication equation (1.1) considered with bound-
ary conditions (1.4) as an alternative to the one first derived by [11] and by that, make
an additional step towards the rigorous justification of the limiting reduced model. It
was shown both numerically and asymptotically [13, 16] that the solutions to (1.1)–
(1.4) in long time regime are in some sense very close for all times to combinations
of finite or even infinite number of stationary solutions (so called pulses) parameter-
ized by a discrete set of parameters. In the case of the lubrication equation one can
interpret the stationary solution ĥε(x, P ) on R as such a pulse.

Our approach proceeds with the following steps. In section 2 we first summarize some
results of [9, 11] about positive nonconstant stationary solutions to (1.1) and prove
some new results concerning their asymptotics as ε → 0. In section 3 we construct
an ’approximate invariant’ manifold Pm parameterized by a set of positions and pres-
sures in a droplet array. We show that when ε > 0 is sufficiently small every point
m of it is ’almost stationary’ with respect to the evolution governed by the lubrication
equation and define a special projection operator Pm on Pε . In section 4 we prove
that in a neighborhood of the ’approximate invariant’ manifold every solution h(·, t)
of (1.1) can be decomposed into the sum of some point m (t) on the manifold and
a remainder function v(t), which is ’orthogonal’ to the manifold, i.e Pm v(t) = 0 for
t > 0. Next, we decompose (1.1) into a system of two equations: an ODE which de-
scribes an evolution on the ’approximate invariant’ manifold for m (t) and a quasilinear
equation for the remainder v(t). Up to this moment we proceed rigorously. Further, in
section 5 we make a formal assumption on the smallness of remainder function v(t)
and obtain by this a leading order equation for m (t) on Pε , which can be written in
the form of the reduced ODE model. Finally, in the conclusion section we compare it
with the one derived by [11] and find a good agreement between them.

The invariant manifold based approach applied to the lubrication equation (1.1) is
quite different to both approaches of [11, 13] and [15] and provides a nice geo-
metric interpretation for the reduced dynamics. However, a rigorous justification of a
center-manifold reduction in the case of the lubrication equation is a more complicated
problem than those described by [5], because (1.1) is a quasilinear equation, which
additionally degenerates as h → 0. Therefore, in the conclusion section we discuss
the main nontrivial open questions arising in our approach that need to be solved.

2 Asymptotics of the stationary solutions

Let us rewrite equation (1.1) in the form

∂th+ Fε (h) = 0 (2.1)

and define the corresponding quasilinear elliptic operator as

Fε (h) = ∂x

(

h3∂x (∂xxh− Πε(h))
)

. (2.2)
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As before, we consider (1.1) on the interval (−L, L) with boundary conditions (1.4).
The following theorem summarizes results by Bertozzi et al. [9] and Glasner and Wi-
telski [12] on the properties of a stationary solution ĥε(x, P ) of (2.1) on R .

Theorem 2.1. Equation (1.1) considered on the whole real line R has a family of
positive nonconstant steady state solutions ĥε(x, P ) parameterized by a constant (a
so called pressure) P ∈ (0, Pmax(ε)), where

Pmax(ε) =
27

256ε
, (2.3)

which satisfy

∂xxĥε(x, P ) = Πε(ĥε(x, P )) − P, (2.4a)

ĥε(x, P ) = ĥε(−x, P ), (2.4b)

∂xĥε(0, P ) = 0 and ∂xĥε(x, P ) < 0 for x > 0. (2.4c)

For any numbers P ∗ > P∗ > 0 the following asymptotics holds for all P ∈ (P∗, P
∗) as

ε→ 0:

ĥ−ε (P ) = min
x∈R

ĥε(x, P ) = ǫ+ ǫ2P +O(ǫ3). (2.5a)

ĥ+
ε (P ) = max

x∈R

ĥε(x, P ) =
1

6P
+O(ǫ). (2.5b)

Proof: For each ε > 0 it is simple to deduce that any solution to equation

h′′ = Πε (h) − P, (2.6)

with P being a number, gives a stationary solution to (1.1) on R . The rest of the proof
can be done via a phase plane analysis for equation (2.6) as described in [9].(see
also Figure 3).

Figure 3: Phase plane portrait for the equation (2.6) (left) and plot of stationary solution
ĥε(x, P ) (right).
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It shows that for any fixed P ∈ (0, Pmax(ε)) there exists a homoclinic loop ĥε(x, P )
for equation (2.6). The value (2.3) for Pmax(ε) is given by the global maximum of
Πε(h), which is attained at hmax = 4/3ε. Moreover, there exists a phase shift such
that ĥε(x, P ) satisfy also (2.4b)–(2.4c). The asymptotics (2.5a)–(2.5b) were derived
in [12]. The smallest real root of the algebraic equation Πε(h) = P is a saddle-point
to equation (2.6) and gives us ĥ−ε (P ). Expanding the identity Πε(ĥ

−
ε (P )) = P in ε one

obtains (2.5a). An elliptic center point ĥc
ε(P ) of equation (2.6) is the other real root of

Πε(h) = P and has asymptotics

ĥc
ε(P ) = ǫ(ǫP + o(ǫ))−1/3. (2.7)

Once ĥ−ε (P ) is determined, the first integral to equation (2.4a) can be written as

1

2

(

∂xĥε(x, P )
)2

+ Uε(ĥε(x, P ), P ) = 0, (2.8)

where
Uε(h, P ) = −Uε(h) + Uε(ĥ

−
ε (P )) + P (h− ĥ−ε (P )) . (2.9)

By (2.4b)–(2.4c) ĥε(x, P ) attains its maximum at x = 0, and therefore ĥ+
ε (P ) is deter-

mined by the condition Uε

(

ĥ+
ε (P ), P

)

= 0. Again, after expansion of the last identity

in ε one obtains (2.5b). �

Note that the shifted function ĥε(x−ξ, P ) is also a solution to (2.1) on R for every ξ ∈
R . Now, using Theorem 2.1 we can prove the following estimates for the stationary
solutions:

Proposition 2.2. For any numbers P ∗ > P∗ > 0 there exist positive constants
d, Ck, k = 0, 1 and ε0 such that for all |x| > d, P ∈ (P∗, P

∗) and ǫ ∈ (0, ǫ0) one
has

∣

∣

∣
ĥε(x, P ) − ĥ−ε (P )

∣

∣

∣
≤ C0 exp

(

d− x√
2ε

)

, (2.10a)
∣

∣

∣

∣

∣

∂kĥε(x, P )

∂xk

∣

∣

∣

∣

∣

≤ C0

εk
exp

(

d− x√
2ε

)

for k = 1, 2, 3, 4, (2.10b)

∂ĥε(x, P )

∂P
≤ C1 ε (x− d). (2.10c)

Proof: Let us define a function

F (v) = −Uε(v + ĥ−ε (P ), P ),

where Uε(h, P ) is defined by (2.9). From the proof of Theorem 2.1 it follows that
Π(ĥ−ε (P )) − P = 0. Using this and (2.9) one obtains

F (0) = −Uε(ĥ
−
ε (P ), P ) = 0,

F ′(0) = 0,

F ′′(v) = Π′
ε(v + ĥ−ε (P )). (2.11)
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Therefore, applying Newton-Leibniz formula to F (v) and integrating once by parts one
gets

F (v) =

∫ 1

0

(1 − t)Π′
ε(t(v + ĥ−ε (P )) dt v2

Substituting in the last expression vε(x, P ) = ĥε(x, P )−ĥ−ε (P ) and using (2.8), (2.4c)
one obtains that

∂xvε(x, P )

vε(x, P )
= −

√

2

(
∫ 1

0

(1 − t)Π′
ε

(

tĥε(x, P )
)

dt

)

for x > 0. (2.12)

By (1.2) and (2.5a) the function Π′
ε(h) decays monotonically to zero on [ĥ−ε (P ), 4/3 ε]

and
Π′

ε(ĥ
−
ε (P )) ∼ 1/ε2. (2.13)

Using this and (2.4c) let us define a unique νε(P ) > 0 such that

Π′
ε

(

ĥε(νε(P ), P )
)

=
1

2 ε2
. (2.14)

Next, we fix some positive numbers P ∗ > P∗ > 0 and show using a contradiction
argument, that there exists a number d > 0 such that d > νε(P ) for all sufficiently
small ε > 0 and P ∈ (P∗, P

∗). Suppose on the contrary, that there exist sequences
{Pn}, {εn} with Pn ∈ (P∗, P

∗) for all n ∈ N and εn → 0 such that νεn
(Pn) → +∞

as n → +∞. Then using the asymptotics (2.5a), (2.7) and (2.4c) one concludes that
there exists a positive number ε̃ such that

ĥε(x, P ) − ĥ−ε (P ) → 0 as x→ ∞ uniformly in ε ∈ (0, ε̃) and P ∈ (P∗, P
∗),

and hence using (2.13) one concludes

Π′
ε

(

ĥεn
(νεn

(Pn), Pn)
)

1/ε2
n

→ 1 as n→ ∞.

But the last expression gives a contradiction to definition (2.14). Therefore, the con-
stant d > 0 with above properties exists.

Let us now fix x > d. Using monotonicity of Π′
ε(h), (2.4c), (2.5a) and the definition of

d one obtains

1

2ε2
< Π′

ε(ĥε(d, P )) ≤ Π′
ε(ĥε(x, P )) < Π′

ε(ĥ
−
ε ) ≤ 1

ε2
(2.15)

for sufficiently small ε > 0 and P ∈ (P∗, P
∗). Integrating (2.12) on (νε(P ), x) and

using (2.15) one estimates

vε(x, P )

vε(νε(P ), P )
= exp



−
∫ x

νε(P )

√

2

∫ 1

0

(1 − t)Π′
ε(t ĥε(x, P )) dt dx





≤ exp

[

d− x√
2ε

]

. (2.16)
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From (2.14) and definition of vε(x, P ) it follows that

vε(νε(P ), P ) ≤ ĥε(νε(P ), P ) ≤ C0,

where constant C0 does not depend on ε and P , and therefore
∣

∣

∣
ĥε(x, P ) − ĥ−ε (P )

∣

∣

∣
≤ C0 exp

[

d− x√
2ε

]

. (2.17)

Next, by (2.12) and (2.15) one obtains
∣

∣

∣
∂xĥε(x, P )

∣

∣

∣
≤ 1

ε

∣

∣

∣
ĥε(x, P ) − ĥ−ε (P )

∣

∣

∣
≤ C0

ε
exp

[

d− x√
2ε

]

. (2.18)

For the second derivative using (2.4c) and Peano formula one obtains
∣

∣

∣
∂xxĥε(x, P )

∣

∣

∣
=
∣

∣

∣
Πε(ĥε(x, P )) − P

∣

∣

∣
≤
∣

∣

∣
Π′

ε (θε(P )) (ĥε(x) − ĥ−ε (P ))
∣

∣

∣
,

where θε(P ) is a point in interval
(

ĥ−ε , ĥε(x, P )
)

. Therefore, using again (2.15) one

arrives at

|∂xxĥε(x, P )| ≤ C0

ε2
exp

[

d− x√
2ε

]

.

Analogously, one can derive estimates for |∂k
xĥε(x, P )| with k = 3, 4. This together

with (2.17)–(2.18) implies (2.10a)–(2.10b) in the case x > d.

Next, integrating the first integral (2.8) on a interval (η, x) with 0 < η < x one obtains

x− η =

∫ ĥε(η, P )

ĥε(x, P )

dh
√

−2Uε(h, P )
.

Differentiation of the last expression with respect to P , using (2.8) and subsequently
taking η = xc

ε(P ), where a point xc
ε(P ) is defined by

ĥε(x
c
ε(P ), P ) := ĥc

ε(P ),

yields

∂P ĥε(x, P ) =
∂P ĥε(x

c
ε(P ), P )

∂xĥε(xc
ε(P ), P )

∂xĥε(x, P ) + ∂xĥε(x, P )

∫ ĥc
ε(P )

ĥε(x, P )

(h− ĥ−ε (P )) dh
√

(−2Uε(h, P ))3
.

(2.19)
Using that Uε(h, P ) decreases for fixed ε, P on (ĥ−ε (P ), ĥc

ε(P )) and again (2.15) one
estimates

∣

∣

∣
∂xĥε(x, P )

∫ ĥc
ε(P )

ĥε(x, P )

(h− ĥ−ε (P )) dh
√

(−2Uε(h, P ))3

∣

∣

∣
=

∫ ĥc
ε(P )

ĥε(x, P )

(h− ĥ−ε (P ))

−2Uε(h, P )

√

Uε(ĥε(x, P ), P )

Uε(h, P )
dh

≤
∫ ĥc

ε(P )

ĥε(x, P )

dh

2Π′
ε (θε(P ))

(

h− ĥ−ε (P )
) ≤ ε2 ln

(

ĥc
ε(P ) − ĥ−ε (P )

ĥε(x, P ) − ĥ−ε (P )

)

≤ −ε2 ln
(

ĥε(x, P ) − ĥ−ε (P )
)

≤ C2 ε(x− d), (2.20)
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where the constant C2 does not depend on ε and P . In the last expression we also
used the asymptotic representations (2.5a), (2.7) and the estimate (2.17). Next, using
Πε(ĥ

c
ε(P )) − P = 0 one obtains

∣

∣

∣

∂P ĥε(x
c
ε(P ), P )

∂xĥε(xc
ε(P ), P )

∣

∣

∣
≤ C3

where constant C3 does not depend on ε and P . Therefore, using (2.18) one obtains

∣

∣

∣

∂P ĥε(x
c
ε(P ), P )

∂xĥε(xc
ε(P ), P )

∂xĥε(x, P )
∣

∣

∣
≤ C3C0

ε
exp

[

d− x√
2ε

]

.

The last three estimate imply (2.10c) in the case x > d. The case x < −d for (2.10a)–
(2.10c) can be shown analogously using that ĥε(x, P ) and ∂P ĥε(x, P ) are odd func-
tions in x. �

3 The approximating manifold: Definitions, estimates
and properties

3.1 The multi-droplet structure

Let us define a set Bε ⊂ R 2N as

Bε =
{

s = (P0, P1, ..., PN , ξ1, ξ2..., ξN−1) ∈ R
2N : Pj ∈ (P∗, P

∗), j = 0, ..., N ;

−L < ξ1 < ... < ξN−1 < L; ξi − ξi−1 − 4 d > 2
√
ε, i = 1, ..., N

}

, (3.1)

where we assume ξ0 = −L and ξN = L.

Figure 4: Plot of function χj(s )(x).

Throughout the whole section we fix positive numbers ε1 and L so that for all ε ∈
(0, ε1) the set Bε is not empty. The boundary of the open set Bε in R 2N topology is
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given by

∂Bε =
{

s ∈ R
2N : ∃j ∈ {0, ..., N} : Pj = P∗

}

∪
{

s ∈ R
2N : ∃j ∈ {0, ..., N} : Pj = P ∗}

∪
{

s ∈ R
2N : ∃i ∈ {1, ..., N}, ξi − ξi−1 − 4 d = 2

√
ε
}

. (3.2)

Let us define for each s ∈ Bε and j ∈ {1, ..., N} the points

Mj =
ξj + ξj−1

2
(3.3)

and functions χ, χj(s ) ∈ C∞(R ) (see Figure 4 ) as

χ(x) =















0, x ≤ −√
ε

1

2

(

1 + tanh

(

tan

(

π

2
√
ε
x

)))

, −√
ε < x <

√
ε

1, x ≥ √
ε

; (3.4)

for j = 1, ..., N − 1

χj(s )(x) = χj(ξj−1, ξj, ξj+1, Pj−1, Pj , Pj+1, x)

=







χ(x−Mj), x < Mj +
√
ε

1, Mj +
√
ε ≤ x ≤Mj+1 −

√
ε

1 − χ(x−Mj+1), x > Mj+1 −
√
ε

;

and for j = 0, N

χ0(s )(x) = χ0(ξ1, P0, P1, x) =

{

1, 0 ≤ x ≤M1 −
√
ε

1 − χ(x−M1), x > M1 −
√
ε

,

χN(s )(x) = χ0(ξN−1, PN−1, PN , x) =

{

χ(x−MN ), x ≤MN +
√
ε

1, x > MN +
√
ε
. (3.5)

One can see that for all x ∈ [0, L] and s ∈ Bε it holds that
∑N

j=0 χj(s )(x) ≡ 1.

Define next a mapping m ε : Bε → L∞(−L, L), which maps a point s ∈ Bε to a
function m ε(s ) ∈ C∞(−L, L) satisfying boundary conditions (1.4) as follows:

∀s ∈ Bε m ε(s )(x) =

N
∑

j=0

χj(s )(x)ĥε(x− ξj , Pj), (3.6)

where again ξ0 = −L, ξN = L. The image of m ε defines a smooth 2N -dimensional
submanifold in L∞, which we denote as Pε . Like in [5] we define a boundary of Pε as
∂Pε = m ε(∂Bε ). From (3.6) it follows that every point m (s ) ∈ Pε is a composition
of N + 1 stationary solutions to the lubrication equation (2.1). Following to [5] we call
such a composition as a multi-droplet or a multi-pulse structure (see the example in
Figure 5). We note, that the mapping m ε is a diffeomorphism between Bε and Pε

and therefore, below in this section, we associate with each m ∈ Pε a unique s ∈ Bε

such that m ε(s ) := m .

11



Figure 5: Example of a multi-droplet structure, four truncated pulses χj(s )(x)ĥε(x −
ξj, Pj), j = 0, 1, 2, 3 (left) and their sum m ε(s )(x) (right).

The tangent space TmPε of manifold Pε at a point m ∈ Pε is given by span of func-
tions {φ0(s ), φ1(s ), ..., φ2N−1(s )}, where φj(s ) ∈ C∞

c (−L, L) are defined as follows:

φj(s ) =
∂m ε(s )

∂Pj
for j = 0, ..., N, (3.7a)

φN+j(s ) =
∂m ε(s )

∂ξj
for j = 1, ..., N − 1. (3.7b)

Using definitions (3.3)–(3.6) one can see that for j ∈ {1, ..., N−1} functions φj(s )(x)
and φN+j(s )(x) have a compact support on an interval

Ij = (Mj −
√
ε, Mj+1 +

√
ε) (3.8)

and can be represented as:

φj(s )(x) =























































∂ĥε(x− ξj, Pj)

∂P
χ(x−Mj) , x < Mj +

√
ε

∂ĥε(x− ξj, Pj)

∂P
, x ∈ [Mj +

√
ε, Mj+1 −

√
ε] ,

∂ĥε(x− ξj, Pj)

∂P
(1 − χ(x−Mj+1)) , x > Mj+1 −

√
ε

(3.9)
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φN+j(s )(x) =















































































1
2
χ′(x−Mj)

(

ĥε(x− ξj−1, Pj−1) − ĥε(x− ξj, Pj)
)

−∂ĥε(x− ξj, Pj)

∂x
χ(x−Mj), x < Mj +

√
ε

−∂ĥε(x− ξj, Pj)

∂x
, x ∈

[

Mj +
√
ε, Mj+1 −

√
ε
]

1
2
χ′(x−Mj+1)

(

ĥε(x− ξj, Pj) − ĥε(x− ξj+1, Pj+1)
)

−∂ĥε(x− ξj, Pj)

∂x
(1 − χ(x−Mj+1)), x > Mj+1 −

√
ε

(3.10)
The remaining two functions have a representation:

φ0(s )(x) =



















∂ĥε(x+ L, P0)

∂P
, x ∈ [0, M1 −

√
ε]

∂hε(x+ L, P0)

∂P
(1 − χ(x−M1)) , x > M1 −

√
ε

φN(s )(x) =































∂ĥε(x− L, PN)

∂P
χ(x−MN ) , x < MN +

√
ε

∂ĥε(x− L, PN)

∂P
, x ∈ [MN +

√
ε, L]

The next proposition shows that the right-hand side (2.2) of the lubrication equation
(2.1) is small on the manifold Pε (due to the fact that it is formed by compositions
of stationary solutions). For this reason we refer to Pε as ’approximate stationary’ or
’approximate invariant’.

Proposition 3.1. For every m ∈ Pε and sufficiently small ε > 0 one has
∣

∣

∣

∣

∣

∣
Fε (m )

∣

∣

∣

∣

∣

∣

L∞(−L, L)
≤ Kε3/2,

where the constant K > 0 does not depend on m or ε.

Proof: Let us fix below any m ∈ Pε corresponding to some s ∈ Bε . Due to the
definitions (3.5)–(3.6) for all x ∈ [0, M1−

√
ε]∪[MN +

√
ε, L] one has Fε (m )(x) ≡ 0.

Let us estimate Fε (m )(x) on the interval Ij from (3.8) for every j ∈ {1, ..., N − 1}.
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Due to (3.5)–(3.6) one has a representation:

Fε (m )(x) =























































Fε

(

(1 − χ(x−Mj))ĥε(x− ξj−1, Pj−1)+

+χ(x−Mj)ĥε(x− ξj, Pj)
)

, x ∈ [Mj −
√
ε, Mj +

√
ε]

0, x ∈ [Mj +
√
ε, Mj+1 −

√
ε]

Fε

(

(1 − χ(x−Mj+1))ĥε(x− ξj, Pj)+

+χ(x−Mj+1)ĥε(x− ξj+1, Pj+1)
)

, x ∈ [Mj+1 −
√
ε, Mj+1 +

√
ε]

(3.11)
Let us first estimate Fε (m )(x) for x ∈ [Mj −

√
ε, Mj +

√
ε]. Due to the asymptotic

representation (2.5a) and the definitions (3.4), (3.6), we conclude that for sufficiently
small ε > 0 it holds that

ε ≤ min
{

ĥε(x− ξj, Pj), ĥε(x− ξj−1, Pj−1)
}

≤ |m (x)|

≤ max
{

ĥε(x− ξj, Pj), ĥε(x− ξj−1, Pj−1)
}

≤ ε+ 2P ∗ε2, (3.12)

where min and max are taken in x ∈ [Mj −
√
ε, Mj +

√
ε]. Therefore, for such x and

sufficiently small ε > 0 one obtains

|Πε(m (x))| =
∣

∣

∣
ε−1

(

( ε

m

)3

−
( ε

m

)4
)

∣

∣

∣
≤
∣

∣

∣
ε−1

(

1 −
(

1

1 + 2P ∗ε

)4
)

∣

∣

∣
≤ K0.

(3.13)
In the same manner one obtains

|Π′
ε(m (x))| ≤ K1/ε

2 and |Π′′
ε(m (x))| ≤ K2/ε

3,

where constants the Ki, i = 0, 1, 2 do not depend on m ∈ Pε , ε > 0 and x ∈
[Mj −

√
ε, Mj +

√
ε]. Using definition (3.4) one obtains that

∣

∣

∣

dkχ

dxk

∣

∣

∣
≤
(

π

2
√
ε

)k

, for k ∈ N 0 uniformly in x ∈ R . (3.14)

By the estimate (2.10b) and definition (3.1)

∣

∣

∣

∂kĥε(x− ξj, Pj)

∂xk

∣

∣

∣
≤ C0

εk
exp

(

− d√
2ε

)

for all s ∈ Bε , j = 0, ..., N , x ∈ [Mj −
√
ε, Mj +

√
ε] and k = 1, ..., 4. Therefore,

using also (3.12) one obtains

∣

∣

∣

∂k
m (x)

∂xk

∣

∣

∣
≤ K3 ε

1−k/2, k = 0, 1, ..., 4,

14



where constant theK3 > 0 does not depend on m ∈ Pε , ε > 0 and x ∈ [Mj −
√
ε, Mj +

√
ε].

Finally, using the last five estimates one obtains for all x ∈ [Mj −
√
ε, Mj +

√
ε]

|Fε (m )(x)| ≤ |m 3
m xxxx| + |m 3Π′

ε(m )m xx| + |m 3Π′′
ε(m )m 2

x|
+|3m 2

m xm xxx| + |3m 2
m xΠ

′
ε(m )m x| ≤ K5 ε

3/2. (3.15)

In the very same manner an analogous estimate on |Fε (m )| can be obtained for
x ∈ [Mj+1 −

√
ε, Mj+1 +

√
ε], and therefore using (3.11) one ends up with

∣

∣

∣

∣

∣

∣
Fε (m )

∣

∣

∣

∣

∣

∣

L∞(Ij)
≤ K ε3/2 for every j ∈ {1, ..., N − 1}.

�

3.2 Projection on the tangent space TmPε

Next, we define for each m ∈ Pε the orthogonal L2(−L,L)-projection on TmPε

acting in L∞(−L, L) using so called “adjoint function” ψj(s ) ∈ C∞
c (−L, L), j =

0, ..., 2N − 1. Namely, we define

ψj(s )(x) = Cj(s )χj(s )(x), j = 0, ..., N

ψN+j(s )(x) = CN+j(s )χj(s )(x)

∫ x

ξj

ĥε(s− ξj, Pj) − ĥ−ε (Pj)

ĥε(s− ξj, Pj)3
ds, j = 1, ..., N − 1,

(3.16)

where we denote

Cj(s ) =

(

∫ Mj+1−
√

ε

Mj+
√

ε

∂ĥε(x− ξj , Pj)

∂P
dx

)−1

,

CN+j(s ) =







∫ Mj+1−
√

ε

Mj+
√

ε

(

ĥε(x− ξj, Pj) − ĥ−ε (Pj)
)2

ĥε(x− ξj , Pj)3
dx







−1

, for j = 1, ..., N − 1

(3.17)

and

C0(s ) =

(

∫ M1−
√

ε

−L

∂ĥε(x+ L, P0)

∂P
dx

)−1

, CN(s ) =

(

∫ L

MN+
√

ε

∂ĥε(x− L, PN)

∂P
dx

)−1

.

(3.18)

Again for j ∈ {1, ..., N − 1} the functions ψj(s )(x) and ψN+j(s )(x) have compact
support on Ij given by (3.8).
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Remark 3.2. Recall that the formal adjoint Fε
′(m )∗ to the operator, obtained by dif-

ferentiation of Fε (m ) at a point m ∈ Pε , and due to the definitions (2.2), (3.6), acts
as:

Fε
′(m )∗[ψ(s )](x) =

(

Π′
ε

(

ĥε(x− ξj, Pj)
)

− ∂xx

) [

∂x

(

ĥε(x− ξj, Pj)
3ψ(x)

)]

for x ∈ [Mj +
√
ε, Mj+1 −

√
ε]. From this it follows that Fε

′(m )∗[ψj(s )](x) ≡ 0 for
x ∈ [Mj +

√
ε, Mj+1 −

√
ε]. This justifies the name ’adjoint’ for the functions ψj(s ).

Before defining a projection on TmPε we prove two helpful propositions.

Proposition 3.3. There exists a positive number K > 0 such that for all m ∈ Pε ,
sufficiently small ε > 0 and j, k ∈ {0, ..., 2N − 1} one has

∣

∣

∣
(ψj(s ), φk(s )) − δj, k

∣

∣

∣
≤ K ε3/2, (3.19)

where (·, ·) denotes the standard inner product in L2(−L, L).

Proof:
a) Let us first consider (ψj(s ), φj(s )) for j ∈ {1, ..., N − 1}. By definitions (3.7b) and
(3.16) one has:

(ψj, φj)

Cj(s )
=

∫ Mj+1−
√

ε

Mj+
√

ε

∂ĥε(x− ξj, Pj)

∂P
dx

+

∫ Mj+
√

ε

Mj−
√

ε

(∂ĥε(x− ξj, Pj)

∂P
χ(x−Mj)

)

χ(x−Mj) dx

+

∫ Mj+1+
√

ε

Mj+1−
√

ε

(∂ĥε(x− ξj, Pj)

∂P
χ(x−Mj+1)

)

(1 − χ(x−Mj+1)) dx.

(3.20)

By (2.10c) and (3.1) there exists a positive number K0 such that for all s ∈ Bε ,
x ∈ [ξj−1 + 2d, ξj − 2d] with j = 1, ..., N and sufficiently small ε > 0 it holds

∂ĥε(x− ξj, Pj)

∂P
≤ K0 ε. (3.21)

From the last two expressions and estimate (3.14) one obtains:

|(ψj(s ), φj(s )) − 1| ≤ K1 ε
3/2Cj(s ).

By definition (3.17) Cj(s ) is bounded uniformly in s ∈ Bε and j = 0, ..., N . Therefore,
the estimate (3.19) for this case follows.
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b) Let us consider (ψj(s ), φN+j(s )) for j ∈ {1, ..., N − 1}. By definitions (3.3), (3.4)
and (3.7b), (3.16) one has:

(ψj , φN+j)

Cj(s )
= −

∫ ξj+2d

ξj−2d

∂ĥε(x− ξj, Pj)

∂x

+

∫ ξj−2d

Mj−
√

ε

(1

2
χ′(x−Mj)

(

ĥε(x− ξj−1, Pj−1) − ĥε(x− ξj, Pj)
)

−∂ĥε(x− ξj, Pj)

∂x
χ(x−Mj)

)

χ(x−Mj) dx

+

∫ Mj+1+
√

ε

ξj+2d

(1

2
χ′(x−Mj+1)

(

ĥε(x− ξj, Pj) − ĥε(x− ξj+1, Pj+1)
)

−∂ĥε(x− ξj, Pj)

∂x
χ(x−Mj+1)

)

(1 − χ(x−Mj+1)) dx. (3.22)

The first integral in the last expression is identically zero because of (2.4b). By (2.10a)
and (2.5a) for x ∈ [ξj−1 + d, ξj − d] one has

|ĥε(x− ξj−1, Pj−1) − ĥε(x− ξj, Pj)| ≤ (P ∗ − P∗)ε
2 +O(ε3). (3.23)

Using this, (3.14) and (2.10b) one obtains

|(ψj(s ), φN+j(s ))| ≤ K2 ε
3/2,

where constant the K2 > 0 does not depend on s ∈ Bε , j = 1, ..., N − 1 and ε.

c) Let us estimate the inner products for ’neighbors’ (ψj(s ), φj−1(s )) for j ∈ {1, ..., N−
1}. By definitions (3.7b) and (3.16) one has

∣

∣

∣

(ψj(s ), φj−1(s))

Cj(s )

∣

∣

∣
=
∣

∣

∣

∫ Mj+
√

ε

Mj−
√

ε

(

(1−χ(x−Mj))
∂ĥε(x− ξj, Pj)

∂P

)

χ(x−Mj) dx
∣

∣

∣
≤ K3 ε

3/2,

where we used again estimates (3.14), (3.21).

d) Let us estimate (ψj+N(s ), φj+N(s )) for j ∈ {1, ..., N − 1}.

(ψj+N , φj+N)

Cj+N(s )
= −

∫ Mj+1−
√

ε

Mj+
√

ε

∂ĥε(x− ξj, Pj)

∂x

∫ x

ξj

ĥε(s− ξj, Pj) − ĥ−ε (Pj)

ĥε(s− ξj, Pj)3
ds dx

+

∫ Mj+1+
√

ε

Mj+1−
√

ε

(1

2
χ′(x−Mj+1)

(

ĥε(x− ξj, Pj) − ĥε(x− ξj+1, Pj+1)
)

−∂ĥε(x− ξj, Pj)

∂x
(1 − χ(x−Mj+1))

)

∫ x

ξj

ĥε(s− ξj , Pj) − ĥ−ε (Pj)

ĥε(s− ξj, Pj)3
ds dx

+

∫ Mj+
√

ε

Mj−
√

ε

(1

2
χ′(x−Mj)

(

ĥε(x− ξj−1, Pj−1) − ĥε(x− ξj, Pj)
)

−∂ĥε(x− ξj, Pj)

∂x
χ(x−Mj)

)

∫ x

ξj

ĥε(s− ξj, Pj) − ĥ−ε (Pj)

ĥε(s− ξj, Pj)3
ds dx. (3.24)
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Let us integrate by parts the first integral at the right-hand side of (3.24):

−
∫ Mj+1−

√
ε

Mj+
√

ε

∂ĥε(x− ξj, Pj)

∂x

∫ x

ξj

ĥε(s− ξj, Pj) − ĥ−ε (Pj)

ĥε(s− ξj, Pj)3
ds dx =

1

CN+j(s )

−
(

ĥε(Mj+1 −
√
ε− ξj, Pj) − ĥ−ε (Pj)

)

∫ Mj+1−
√

ε

ξj

ĥε(x− ξj, Pj) − ĥ−ε (Pj)

ĥε(x− ξj, Pj)3
dx

+
(

ĥε(Mj +
√
ε− ξj, Pj) − ĥ−ε (Pj)

)

∫ Mj−
√

ε

ξj

ĥε(x− ξj, Pj) − ĥ−ε (Pj)

ĥε(x− ξj, Pj)3
dx.

(3.25)

Using this and estimates (2.10a), (2.5a)–(2.5b) one obtains
∣

∣

∣

∫ Mj+1−
√

ε

Mj+
√

ε

∂ĥε(x− ξj, Pj)

∂x

∫ x

ξj

ĥε(s− ξj, Pj) − ĥ−ε (Pj)

ĥε(s− ξj , Pj)3
ds dx+ 1/CN+j(s )

∣

∣

∣

≤ K4

ε3
exp

(

− d√
2ε

)

. (3.26)

As done in paragraph b), the remaining terms in (3.24) can be estimated by O(ε3/2),
using (3.14), (3.23) and (2.10b). Therefore, from (3.24) one ends up with

|(ψj+N(s ), φj+N(s )) − 1| ≤ K5 ε
3/2.

e) The rest of inner products (ψj(s ), φj(s )), which were not considered yet, can be
estimated in a similar way as in in b) - c). �

Proposition 3.4. For every s ∈ Bε there exist functions

ψ̄0(s ), ψ̄1(s ), ..., ψ̄2N−1(s ) ∈ C∞(−L, L),

such that for all sufficiently small ε > 0 and every j, k ∈ {0, ...2N − 1} one has
(

ψ̄j(s ), φk(s )
)

= δj, k. (3.27)

Moreover, there exists a positive number K not depending on s , ε, j such that
∣

∣

∣

∣

∣

∣
ψj(s ) − ψ̄j(s )

∣

∣

∣

∣

∣

∣

L∞(−L, L)
≤ K ε3/2. (3.28)

Proof: Let us search ψ̄j(s ) in the form

ψ̄j(s ) =
2N−1
∑

i=0

Bj
i (s )ψi(s )

From (3.27) it necessarily follows that the vector
[

Bj
0, B

j
1, ..., B

j
2N−1

]T
is the solution

to a linear system of 2N algebraic equations given as












(ψ0, φ0) (ψ1, φ0) ... (ψ2N−1, φ0)
... ... ... ...

(ψ0, φj) (ψ1, φj) ... (ψ2N−1, φj)
... ... ... ...

(ψ0, φ2N−1) (ψ1, φ2N−1) ... (ψ2N−1, φ2N−1)

























Bj
0

...

Bj
j

...

Bj
2N−1













=













0
...
1
...
0













. (3.29)
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By Proposition 2.3 for sufficiently small ε > 0 the matrix A(s ) of the system (3.29)
has a diagonal dominance and is therefore invertible. Hence, there exists a unique
solution to (3.29) and existence of ψ̄j(s ) satisfying (3.27) is proved. Moreover, one
has A(s ) = Id + D(s ), where by Proposition 2.3 ||D(s )||2 ≤ const ε3/2 uniformly in
s . Expanding the inverse to Aε as a Neumann series

A−1 =
∞
∑

k=0

(−1)kDk,

one obtains from (3.29) that

|Bj
i (s ) − δi,j | ≤ const ε3/2.

Estimate (3.28) follows from this and the uniform bounds in s ∈ Bε by definition (3.16)
for ||ψj(s )||L∞(−L, L), j = 0, ..., 2N − 1. �

Finally, we define for every m ∈ Pε a linear operator Pm acting on v ∈ L∞(−L, L)
by

Pm v =

2N−1
∑

j=0

(

ψ̄j(s ), v
)

φj(s ). (3.30)

From this definition it is clear that the image of Pm belongs to TmPε and from the
orthogonality conditions (3.27) it follows that Pm

2 = Pm . Thus, Pm are indeed pro-
jections on the tangent space TmPε . From definitions (3.7b), (3.16) one can deduce
that ||Pm ||L(L∞(−L, L), L∞(−L, L)) is bounded uniformly in m ∈ Pε , and Pm is Fréchet
differentiable with respect to m .

4 Decomposition in a neighborhood of the manifold

We start this section by showing that in a sufficiently small L∞(−L, L) neighborhood
of the ’approximate invariant’ manifold Pε every function h(x) can be decomposed
into the sum of some point m ∈ Pε and the remainder function v such that Pm v = 0.
Everywhere below Oδ(Pε ) and Oδ1(∂Pε ) denote L∞ neighborhoods with diameters δ
and δ1 of Pε and its boundary ∂Pε , respectively.

Theorem 4.1. There exist positive constants ε1 and δ, δ1 such that for all ε ∈ (0, ε1)
there exist a nonlinear differentiable function πε : Oδ(Pε ) \ Oδ1(∂Pε ) → Pε , which
satisfies

Pπε(h)(h− πε(h)) ≡ 0, for all h ∈ Oδ(Pε ) \ Oδ1(∂Pε ).

Proof: Let us first show, that the required projector can be constructed locally for
Oδ(m0) a neighborhood of each point m 0 ∈ Pε . If h ∈ Oδ(m0) then h = m 0 +w with
||w||L∞ ≤ δ and the required m = πε(h) is found from equation

Pm (m 0 + w −m ) = 0. (4.1)
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Recall, that Pε = m ε(Bε ), where m ε is a diffeomorphism between the open set Bε

given by (3.1) and Pε . Therefore, there exist points s , s 0 ∈ Bε , such that m 0 =
m ε(s 0) and m = m ε(s ). Moreover, using definition (3.30) one can rewrite (4.1) as:

(

m ε(s 0) + w − m ε(s ), ψ̄j(s )
)

= 0, for j = 0, ..., 2N − 1. (4.2)

Define now a function Fε : R 2N × L∞(−L, L) → R 2N as

Fε(s , w)j =
(

m ε(s 0) + w − m ε(s ), ψ̄j(s )
)

, j = 0, ..., 2N − 1.

Then one has Fε(s 0, 0) = 0 and

(∂sFε(s 0, 0) δs )j = −(m ′
ε(s ) δs , ψ̄j(s 0)) = −

i=2N−1
∑

i=0

(

φi(s ) δsi, ψ̄j(s 0)
)

= −δsj ,

(4.3)
where we denoted δs = [δs0, δs1, ..., δs2N−1] and used the orthogonality relations
(3.27), which hold for sufficiently small ε > 0. From this it follows that DsFε(s 0, 0) =
−Id, and therefore by the implicit function theorem, that there exist a constant δ > 0
not depending on ε, such that for all w with ||w||L∞ ≤ δ, equation Fε(s , w) = 0 has a
unique solution s = s̃ ε(w) or, what is the same, there exists a unique m = m̃ ε(w)
satisfying equation (4.2). Moreover, again due to (4.3) there exists a positive con-
stant δ1 not depending on ε such that one can choose δ not depending on the choice
of m 0 ∈ Pε \ Oδ1(∂Pε ). Therefore, one can construct the required projector πε glob-
ally on Oδ(Pε ) \ Oδ1(∂Pε ). The differentiability of πε(h) also follows from the implicit
function theorem. �

In [9] it was shown that for every positive initial data h0 ∈ H1(−L, L) with

∫ L

−L

1

2
|∂xh0|2 + U(h0) dx <∞,

for all t > 0, there exists a unique positive smooth solution h(x, t) to (2.1) with
boundary conditions (1.4) such that h(x, 0) = h0(x). We restrict ourselves to con-
sider (2.1) in a small neighborhood Oδ(Pε ) \ Oδ1(∂Pε ) of the ’approximate invariant’
manifold Pε . Taking δ sufficiently small and using definition of Pε one obtains that
any h0 ∈ Oδ(Pε ) ∩ H1(−L, L) is positive, and therefore any solution to (2.1) with
(1.4) such that h(x, 0) = h0(x) exists for all t > 0. According to Theorem 4.1 such a
solution can be uniquely decomposed as follows:

h(t) = m (t) + v(t), m (t) ∈ Pε (4.4a)

P
m(t) v(t) ≡ 0. (4.4b)

Inserting this into equation (2.1) one can write it in an equivalent form

∂tv + Fε
′(m (t))v(t) = −Fε (m (t)) − Fε (v(t),m (t)) − m

′(t), (4.5)
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where Fε (v,m ) = Fε (v+m )−Fε (m )−Fε
′(m )v and the differential Fε

′(m (t)) is
taken in an appropriate space, e.g. W 4,2

bc (−L,L) where

W 4,2
bc (−L,L) = {u ∈W 4,2

bc (−L,L)| u satisfies (1.4)}.

Let us now differentiate (4.4b) with respect to time

P ′
m (t)[m

′(t)]v(t) + Pm(t) ∂tv(t) ≡ 0.

Applying the projection Pm(t) to (4.5) and noting the last expression yields a differen-
tial equation for m (t) on the manifold Pε in the following form

(Id − D (m (t))[·]v(t))m ′(t) = P
m(t) (−Fε (m (t)) − Fε (v(t),m (t))) − S (m (t))v(t),

(4.6)
where

D (m )[δm ]v = P ′
m

[δm ]v, (4.7a)

S (m )v = Pm (Fε
′(m )v). (4.7b)

Let us also denote
M (m , v)w = (Id − D (m )[·]v)−1w (4.8)

Then for each v ∈ L∞(−L, L) such that ||v||L∞ is sufficiently small and each m ∈ Pε

the operator M (m , v) : L∞(−L, L) → Pε is well defined and can be represented
by a Neumann series

M (m , v) =

∞
∑

i=0

(D (m )[·]v)i .

Thus, equation (4.6) can be written in the following more convenient form

m
′(t) = f(m (t), v(t)), (4.9)

where

f(m , v) := M (m , v) (−Pm (Fε (m ) + Fε (v, m )) − S (m )v) . (4.10)

We conclude that if h(t) solves (2.1) and h(t) ∈ Oδ(Pε ) \Oδ1(∂Pε ) on [0, T ] then the
associated functions m (t) and v(t) satisfy on [0, T ] the following system

{

∂tv + Fε
′(m (t))v(t) = h(m (t), v(t), m

′(t))
m

′(t) = f(m , v)
, (4.11)

where we denoted h(m , v, w) = −Fε (m )−Fε (v,m )−w. Vice versa, any solution
(m (t), v(t)) to (4.11) on [0, T ] with sufficiently small v(t) satisfying P

m(0)v(0) = 0
generates a unique solution u(t) = m (t) + v(t) to equation (2.1). Therefore, instead
of the initial lubrication equation (2.1) we can consider the associated system (4.11).
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5 Equations on the manifold

In this section we derive the reduced ODE system via a reduction onto the approxi-
mate invariant manifold. We assume that for any solution to (2.1) having at t = 0 an
initial value in the neighborhood Oδ(Pε ) \Oδ1(∂Pε ) defined in Theorem 4.1, the norm
of remainder v(t), obtained via decomposition (4.4a), is negligibly small for all t > 0
in comparison with that of m (t) ∈ Pε . Then putting v(t) ≡ 0 for t > 0 we obtain to
leading order

m
′(t) = f(m (t), 0) (5.1)

for equation (4.9), which describes the evolution of m (t) on the manifold Pε . Below
we transform (5.1) to an ODE system describing the evolution of pressures Pj(t) and
positions ξj(t) of the multi-droplet structure m (t).

Putting v(t) ≡ 0 into definitions (4.7b)–(4.8), (4.10) one writes (5.1) as

m
′(t) = −Pm Fε (m ).

Let us rewrite the last equation in a coordinate form on manifold Pε . Denoting as
before

s = (s0, ..., s2N−1) := (P0, ..., PN , ξ1, ..., ξN−1)

such that m = m ε(s ) and taking the standard scalar product in L2(−L, L) of m
′(t)

with ψ̄j(s ) for j = 0, ..., 2N − 1 one gets

(m ′(t), ψ̄j(s )) =
i=2N−1
∑

i=0

(

φi(s )
dsi

dt
, ψ̄j(s )

)

=
dsj

dt
, (5.2)

where we used definition (3.7b) and the orthogonality conditions (3.27). On the other
hand

(Pm Fε (m ε(s )), ψ̄j(s )) = (Fε (m ε(s )), ψ̄j(s ))

By Proposition 2.4 one has for all s ∈ Bε and j = 0, ..., 2N − 1

(Fε (m ε(s )), ψ̄j(s )) ∼ (Fε (m ε(s )), ψj(s )) as ε → 0. (5.3)

Next, by definition (3.16) and representation (3.11) one has for j = 1, ..., N − 1

(Fε (m ε(s )), ψj(s )) = Cj(s )
(

∫ Mj+
√

ε

Mj−
√

ε

χ(x−Mj)Fε (m )(x) dx

+

∫ Mj+1+
√

ε

Mj+1−
√

ε

(1 − χ(x−Mj+1))Fε (m )(x) dx
)

= Cj(s )

(

∫ Mj+
√

ε

θj

Fε (m )(x) dx+

∫ θj+1

Mj+1−
√

ε

Fε (m )(x) dx

)

=
J(s )(θj+1) − J(s )(θj)

∫ Mj+1−
√

ε

Mj+
√

ε

∂ĥε(x− ξj, Pj)

∂P
dx

, (5.4)
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where we used the second mean-value theorem for integration (see paragraph 1.13
in [17]) with θj being some point in (Mj −

√
ε, Mj +

√
ε) and introduced for each

s ∈ Bε a flux function J(s ) ∈ C∞(−L, L) as

J(s ) = m ε(s )3∂x (−Πε(m ε(s )) + ∂xxm ε(s )) . (5.5)

Analogously, by definition (3.16) for j = 1, ..., N − 1:

(Fε (m ε(s )), ψj+N(s ))

= CN+j(s )
(

∫ Mj+
√

ε

Mj−
√

ε

χ(x−Mj)

∫ x

ξj

ĥε(s− ξj, Pj) − ĥ−ε (Pj)

ĥε(s− ξj, Pj)3
dsFε (m )(x) dx

+

∫ Mj+1+
√

ε

Mj+1−
√

ε

(1 − χ(x−Mj+1))

∫ x

ξj

ĥε(s− ξj , Pj) − ĥ−ε (Pj)

ĥε(s− ξj, Pj)3
dsFε (m )(x) dx

)

= CN+j(s )
(

∫ Mj+
√

ε

ξj

ĥε(x− ξj, Pj) − ĥ−ε (Pj)

ĥε(x− ξj, Pj)3
dx

∫ Mj+
√

ε

θj

Fε (m )(x) dx

+

∫ Mj+1−
√

ε

ξj

ĥε(x− ξj, Pj) − ĥ−ε (Pj)

ĥε(x− ξj, Pj)3
dx

∫ θj+1

Mj+1−
√

ε

Fε (m )(x)
)

dx

=

∫ Mj+1−
√

ε

Mj+
√

ε

ĥε(x− ξj, Pj) − ĥ−ε (Pj)

ĥε(x− ξj, Pj)3
dx

2

∫ Mj+1−
√

ε

Mj+
√

ε

(ĥε(x− ξj, Pj) − ĥ−ε (Pj))
2

ĥε(x− ξj, Pj)3
dx

(J(s )(θj+1) + J(s )(θj)). (5.6)

Finally, denoting

Jj−1, j = J(s )(θj), j = 1, ..., N − 1

J−1, 0 = −J0, 1, JN, N+1 = −JN−1, N (5.7)

and combining (5.2), (5.3), (5.6) one obtains the following coordinate form for the
leading order equation of (5.1) as ε→ 0

dPj

dt
= CP,j · (Jj, j+1 − Jj−1, j),

dξj
dt

= −Cξ,j · (Jj, j+1 + Jj−1, j), j = 0, ..., N (5.8)

where for j = 1, ..., N − 1

CP,j = −
(

∫ Mj+1−
√

ε

Mj+
√

ε

∂ĥε(x− ξj, Pj)

∂P
dx

)−1

, (5.9)

Cξ,j =

∫ Mj+1−
√

ε

Mj+
√

ε

ĥε(x− ξj, Pj) − ĥ−ε (Pj)

ĥε(x− ξj, Pj)3
dx

2

∫ Mj+1−
√

ε

Mj+
√

ε

(

ĥε(x− ξj, Pj) − ĥ−ε (Pj)
)2

ĥε(x− ξj, Pj)3
dx

; (5.10)
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and

CP,0 = −
(

2

∫ M1−
√

ε

−L

∂h0

∂P
dx

)−1

,

CP,N = −
(

2

∫ L

MN+
√

ε

∂hN

∂P
dx

)−1

. (5.11)

We conclude that (5.8)–(5.11) gives us a new reduced ODE model describing the
evolution of pressures and positions in multi-droplet structures governed by the no-
slip lubrication equation (1.1) considered with boundary conditions (1.4).

Conclusions and discussion

Comparing (5.8)–(5.11) with the ODE model (1.6), obtained via formal asymptotic
methods in [11], together with coefficients (1.7a)–(1.7b) one observes that formally
they do have the same structure. The differences between them appear in the for-
mulas for the coefficients CP,j, Cξ,j and the fluxes Jj−1, j. In the definitions (5.11) the
interval of integration [Mj +

√
ε, Mj+1−

√
ε] represents the support of the j-th droplet,

while in (1.7a)–(1.7b) this corresponds to [−L̃, L̃]. While in the latter case, for given
positions ξj, j = 1, ..., N − 1 of the droplets in the array of N + 1, the singular inte-
grals are estimated asymptotically, in the former case we can calculate the interval
[Mj +

√
ε, Mj+1 −

√
ε] explicitly using formula (3.3). In the case of system (1.6) the

fluxes Jj−1, j between neighboring droplets are derived asymptotically and given by
(1.9), while for the system (5.8) derived here, we obtained the formulas (5.5), (5.7),
and θj ∈ (Mj−

√
ε, Mj +

√
ε) in definition (5.7) arise after application of a mean-value

theorem.

Both reduced ODE models give us in some sense a leading order approximation for
the late phase evolution of solutions to the no-slip lubrication equation. The ’approx-
imate invariant’ approach developed here for the derivation of the system (5.8) gives
us possibilities for analytical error estimates of the obtained approximations. Namely,
using Propositions 3.3, 3.4 and formula (5.3) one can now estimate that passing from
equation (5.1) to system (5.8) terms of O(ε3) are neglected. In addition we note that
having an estimate of the remainder function v(t) from the decomposition (4.4a) one
could similarly estimate the order of magnitude of terms that are neglected when
passing from the exact equation (4.9) on the ’approximate invariant’ manifold Pε to its
leading order (5.1).

Finally, we summarize that the analysis of this paper together with the results of [13,
16] all suggest that the reduced ODE models (5.8) (or (1.6)) are valid in the limit ε → 0.
The next step towards a rigorous justification of our approach could be the proof of a
corresponding center manifold existence theorem. In turn this theorem concerns the
spectrum of the operator (2.2) linearized at a point m ∈ Pε as ε→ 0.

In contrast to the center manifold existence theorem for the class of semilinear parabolic
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equations and the main assumptions on the spectrum used in the approach of [5]
(see assumptions (2.20) and (2.25) there), it turns out that here the corresponding lin-
earized eigenvalue problem has a more complex structure. This initiated our analysis
of the asymptotics of the spectrum for (2.2) linearized at the stationary solution h0, ε,
which describes physically a droplet on a bounded interval. The results of this analy-
sis are contained in a companion paper [18], where we show that the corresponding
linearized eigenvalue problem is a singular perturbed one and the spectrum of it tends
to zero as ε→ 0.

While this by itself is an interesting problem, we moreover expect that the construction
of the center manifold will be a singularly perturbed problem as well. However, as of
now there are only a few studies in the literature that rigorously show existence of a
singularly perturbed center manifold, see e.g. [19] and [20].

Acknowledgement

GK thanks the DFG research training group GRK 1128 for the support and fruitful
environment during which this work was initiated, in addition, for the support from
the Weierstrass Institute and the postdoctoral scholarship at the Max-Planck-Institute
for Mathematics in the Natural Sciences, Leipzig. LR and BW are grateful for the
support of MATHEON. BW also thanks the Oxford Centre for Collaborative and Applied
Mathematics (OCCAM), where this paper was finished, for a supportive environment
during her stay as an OCCAM visiting fellow.

References

[1] S. L. Ei and J. Wei. Dynamics of metastable localized patterns and its applica-
tion to the interaction of spike solutions for the Gierer-Meinhardt systems in two
spatial dimensions. Japan J. Indust. Appl. Math., 19:181–226, 2002.

[2] D. Iron and M. J. Ward. The dynamics of multispike solutions to the one-
dimensional Gierer-Meinhardt model. SIAMJ. Appl. Math., 62:1924–1951, 2002.

[3] N. D. Alikakos, P. W. Bates, and G. Fusco. Slow motion for the Cahn–Hilliard
equation in one space dimension. J. Diff. Equations, 90:81–135, 1991.

[4] C. L. Emmott and A. J. Bray. Coarsening dynamics of a one-dmensional driven
Cahn-Hilliard system. Phys. Rev. E, 54:4568–4575, 1996.

[5] A. Mielke and S. Zelik. Multi-pulse evolution and space-time chaos in dissipative
systems. Mem. Amer. Math. Soc., 198(925):1–97, 2009.

[6] R. Limary and P. F. Green. Late-stage coarsening of an unstable structured liquid
film. Phys. Rev. E, 60:021601, 2002.

25



[7] R. Limary and P. F. Green. Dynamics of droplets on the surface of a structured
fluid film: Late-stage coarsening. Langmuir, 19:2419–2424, 2003.

[8] P.G. de Gennes. Wetting: Statics and dynamics. Review of Modern Physics,
57:827, 1985.

[9] A. L. Bertozzi, G. Grün, and T. P. Witelski. Dewetting films: bifurcations and
concentrations. Nonlinearity, 14:1569–1592, 2001.

[10] A. Oron, S. H. Davis, and S. G. Bankoff. Long-scale evolution of thin liquid films.
Rev. Mod. Phys., 69(3):931–980, 1997.

[11] K. B. Glasner and T. P. Witelski. Coarsening dynamics of dewetting films. Phys.
Rev. E, 67:016302, 2003.

[12] K. B. Glasner and T. P. Witelski. Collission vs. collapse of droplets in coarsening
of dewetting thin films. Physica D, 209:80–104, 2005.

[13] K. B. Glasner. Ostwald ripening in thin film equations. SIAM J. Appl. Math.,
69:473–493, 2008.

[14] G. Kitavtsev and B. Wagner. Coarsening dynamics of slipping droplets. Journal
of Engineering Mathematics, 66:271–292, 2009.

[15] K. Glasner, F. Otto, T. Rump, and D. Slepjev. Ostwald ripening of droplets: the
role of migration. European J. Appl. Math., 20(1):1–67, 2009.

[16] G. Kitavtsev. Derivation, analysis and numerics of reduced ode models describ-
ing coarsening dynamics of liquid droplets. PhD Thesis, Institute of Mathematics,
Humboldt University of Berlin, 2009.

[17] H. Jeffreys and B. S. Jeffreys. Methods of Mathematical Physics, 3rd ed. Cam-
bridge, England: Cambridge University Press, 1988.

[18] G. Kitavtsev, L. Recke, and B. Wagner. Asymptotics for the spectrum of a thin film
equation in a singular limit. Submitted to the SIAM Journal on Applied Dynamical
Systems (SIADS), WIAS Preprint 1555, 2010.

[19] N. Fenichel. Geometric singular perturbation theory for ordinary differential equa-
tions. J. Diff. Equations, 31:53–98, 1979.

[20] C. Jones. Geometric singular perturbation theory. In L. Arnold, editor, Dynamical
Systems, Lecture Notes in Mathematics, volume 1609, pages 44–118. Springer,
Berlin, 1995.

26


