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Generalized Lighthill criterion for the modulation instability

Shalva Amiranashvili, Elena Tobisch

Abstract

An universal modulation instability is subject to Lighthill criterion: nonlinearity and dispersion should
make opposite contributions to the wave frequency. Recent studies of wave instabilities in optical fibers with
the minimum chromatic dispersion revealed situations in which the criterion is violated and fast unstable
modulations appear due to the four wave mixing process. We derive a generalized criterion, it applies to an
arbitrary dispersion and to both slow and fast unstable modulations. Since the fast modulations depend on
nonlinear dispersion, we also demonstrate how to describe them in the framework of a single generalized
nonlinear Schrödinger equation.

1 Introduction

Monochromatic nonlinear waves are important special solutions of weakly nonlinear hyperbolic systems [40, 62].
Their stability with respect to self-modulations is governed by the Lighthill criterion. A wave experiences mod-
ulation instability (MI) if contribution of the group velocity dispersion (GVD) to the wave frequency is opposite
to that of the nonlinearity. MI discovery [41, 61, 9, 8, 44, 30, 66, 26] is related to the discovery of the nonlin-
ear Schrödinger equation (NLSE), an universal model for slow wave modulations. NLSE is integrable [70] and
provides a striking correlation between, e.g., water waves and fiber optics [16].

MI manifests itself by appearance of Stokes and anti-Stokes sideband waves, which grow at the expense of the
seed carrier wave. They take part in nonlinear interactions, generate a cascade, and can in turn be destroyed by
modulations [28, 14, 56, 34]. As MI develops, system’s spectrum on a logarithmic scale takes a typical ∧-shape
with the seed carrier wave frequency in the middle. Finally, the system enters into a chaotic wave-turbulent
state [68] with the addition of solitons and spontaneous rogue waves or breathers [20, 22, 67, 45].

MI in optical fibers was first observed in [55]. Single-mode fibers [43], which are in the focus of this work,
offer important advantages for studies of nonlinear wave interactions. To derive NLSE for fibers, one rigorously
eliminates two radial space coordinates [2]. The resulting equation is truly one-dimensional, as opposed by
the NLSE for deep-water waves. With the generalized NLSE (GNLSE) one can get rid of the slowly varying
envelope approximation [11, 13, 24]. Attenuation is extremely small in the fiber transparency window. One can
generate millions of pulses per second and collect their statistics to study optical supercontinuum [19], wave
turbulence [58], and rare extreme events [54, 36]. Optical pulses are well suited to envelope equations like
NLSE. For instance, the pioneer work [55] deals with pulses containing ≈ 20 000 field oscillations, such wave
packets are unavailable in water channels. Moreover, envelope and few-cycle pulses readily coexist in optical
fibers, non-envelope effects are then described by the GNLSE.

Lighthill criterion requires a negative GVD for MI in a focusing nonlinear fiber [2]. An important feature of op-
tical fibers is that their dispersion law can be manipulated [71]. Microstructured fibers may have several zero-
dispersion frequencies (ZDF) at which GVD vanishes making the standard Lighthill criterion degenerate. Such
spectral regions have minimum chromatic dispersion and are of interest for optical communication. This trig-
gered studies of MI for a small or zero GVD.

GVD in fibers is quantified by the second-order derivative of the wave vector with respect to frequency [2].
The third-order dispersion has no influence on MI domain and increment [59, 48]. To describe MI at ZDF one
needs GNLSE with the fourth-order dispersion. MI requires then a negative fourth-order dispersion in a focusing
fiber [15]. A combined effect of a small GVD and the fourth-order dispersion may result in a new instability mode
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with the growing “fast modulation” of the carrier wave [1]. The classical Lighthill criterion is unsuitable for such
situations.

Both slow and fast wave modulations result from the resonance wave interactions in the form of the four-wave
mixing [2] (FWM). The FWM conditions provide the possible MI bands for any dispersion law and does not
require GNLSE [38, 29]. Wave instability due to the fast modulation was first observed in [60] and related to
FWM in [42]. Such FWM instability [65] requires a small positive GVD and negative fourth-order dispersion or
vice versa [23]. It clearly violates the classical Lighthill criterion. The FWM instability was further observed in
several experiments and quantified using the resonance wave interactions and GNLSE [47, 25, 49, 10, 17, 64].

Following [65, 33], one can distinguish between MI and FWM instability, where Lighthill criterion applies only to
MI. On the other hand, both instabilities appear due to literally the same resonance interaction of four waves.
A natural question is whether we can generalize the standard Lighthill criterion. The generalization is given
in Section 4, after we discuss NLSE (Section 2) and GNLSE (Section 3). Dispersion of nonlinearity, which is
important for the FWM instability, is further accounted for in Sections 5 and 6.

2 Background

A useful way to study a physical system is to choose some direction Ox and to look for a monochromatic
small-amplitude plane wave solution, Aei(kx−ωt). Each system variable has its own complex amplitude A, but
all variables share the same wave vector k and frequency ω. The shared parameters are connected by the
dispersion relation, ω = f(k), which ensures existence of the assumed waveform [62, 39]. General system
states are constructed as combinations of such linear waves, e.g., using Fourier transform or replacing A =
const by a slow-varying complex envelope Ψ(x, t).

Continuation of plane wave solutions for nonlinear systems is an important problem [31]. One can look for simple
waves, in which all variables explicitly depend on phase φ = kx− ωt with the period 2π and thus implicitly on
space and time. A less restrictive approach is based on the fact that the monochromatic plane waves survive in a
generic weakly nonlinear wave-system as long as one can neglect small higher-order nonlinear terms oscillating
at multiple frequencies. Yet the dispersion relation starts to include wave amplitude, ω = fnl(k, |A|2), where
f(k) = fnl(k, 0). The difference δω = fnl(k, |A|2)− f(k) is the nonlinear frequency shift. Stability is crucial
for such nonlinear waves: in one-dimensional geometry a wave with the wavenumber k is unstable if

δω(k, |A|2) · f ′′(k) < 0, (1)

which is Lighthill criterion [69]. A fundamental fact is that, roughly speaking, a half of weakly nonlinear waves is
unstable with respect to modulations.

The complex envelope Ψ(x, t) of a carrier wave with the wave vector k is described by the following NLSE

i(∂tΨ + vgr∂xΨ) +
µ

2
∂2
xΨ + Γ|Ψ|2Ψ = 0, (2)

where the group velocity vgr = f ′(k) and the dispersion parameter µ = f ′′(k). Parameter Γ is positive

(negative) for focusing (defocusing) nonlinearity. The NLSE solution Ψ = AeiΓ|A|
2t provides the nonlinear

correction to the carrier wave frequency

fnl(k, |A|2) = f(k)− Γ|A|2. (3)

According to Eq. (1) the currier wave is unstable when µΓ > 0.

NLSE (2) is a time-propagated equation in which one starts from Ψ(x, t)|t=0 to calculate Ψ(x, t)|t>0. In
some cases, especially in optical fibers, it is convenient to solve an alternative space-propagated equation. To
distinguish between time- and space-propagated problems we now denote the space variable by z and envelope
by ψ(z, t). Consequently, one starts from ψ(z, t)|z=0 to calculate ψ(z, t)|z>0, e.g., when the input is known
at the beginning of the fiber and the output should be calculated at the end of it.
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Generalized Lighthill criterion 3

Well-posed z-propagated equations assume unidirectionality. The dispersion relation is used in the form k =
β(ω) or k = βnl(ω, |A|2), with β(ω) = βnl(ω, 0). The nonlinear frequency shift is replaced by the nonlinear
wave vector shift, δk = βnl(ω, |A|2) − β(ω). A monochromatic wave, which propagates along Oz with the
carrier frequency ω, is unstable if

δk(ω, |A|2) · β′′(ω) < 0, (4)

because δω in Eq. (1) is replaced by −δk and positive f ′′(k) with positive vgr correspond to negative β′′(ω).

Equation (4) is z-propagated version of the Lighthill criterion (1). Wave evolution is described by the z-propagated
NLSE

i(∂zψ + β1∂tψ)− β2

2
∂2
t ψ + γ|ψ|2ψ = 0, (5)

where the inverse group velocity β1 = β′(ω) and the GVD parameter β2 = β′′(ω) are calculated at the wave
carrier frequency. Coefficients in (2) and (5) are connected by β1 = 1/vgr, β2 = −µ/v3

gr, and γ = Γ/vgr. The

solution ψ = Aeiγ|A|
2z of the NLSE (5) describes the carrier wave with

βnl(ω, |A|2) = β(ω) + γ|A|2, (6)

cf., Eq. (3). The carrier wave is destroyed by modulations when β2γ < 0.

3 Higher-order dispersion

The space-propagated framework is used in the rest of the manuscript. We abbreviate the seed monochromatic
carrier wave by pump, when appropriate. Pump frequency is denoted by ω0, its wave vector is β0 = β(ω0).
Optical materials are mostly focusing [12], for simplicity we take γ > 0. MI is expected for a negative GVD,
β2 = β′′(ω0) < 0. If it is the case, the spectral interval of growing perturbations reads [2]

(ω − ω0)2 < −4γ|A|2

β2
. (7)

The interval diverges if (negative) β2 → 0. A better MI description is then required, it is provided by GNLSE.

The simplest GNLSE reads [12, 2]

i∂zψ +
J∑
j=1

βj
j!

(i∂t)
jψ + γ|ψ|2ψ = 0, (8)

where NLSE (5) corresponds to J = 2. By analogy, βj should be j-th derivative of β(ω) at ω = ω0. Attenuation
is neglected, such that β(ω) and all dispersion parameters βj are real. Complex-valued dispersion parameters
are discussed in Sections 5 and 6.

To get a better understanding of Eq. (8), we consider a monochromatic modulation ψ ∝ ei(κz−Ωt) which corre-
sponds to a shifted carrier wave ei(β0+κ)z−i(ω0+Ω)t. One expects that for a small-amplitude (linear) modulation

κ = β(ω0 + Ω)− β(ω0),

whereas linearized Eq. (8) provides

κ =
J∑
j=1

βj
j!

Ωj , βj ∈ R.

We then approximate a real part of the dispersion law by a polynomial of order J . The approximation is usually
associated with the Taylor expansion, but it can actually be any fitting polynomial for β(ω) in the transparency
window. Non-polynomial fitting functions are also possible [51, 53, 4, 46].
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(a)

(b)

(c)

(d)

Figure 1: Different shapes ofM(Ω) and frequency bands of the unstable offsets (red). (a,c) classical applica-
tions of the Lighthill criterion. (b,d) new unstable Ω-bands appear for a more complex mismatch function.

In what follows we use the following real-valued dispersion function

D(Ω) = β(ω0 + Ω)− β0 − β1Ω ≈
J∑
j=2

βj
j!

Ωj ,

and write the GNLSE (8) in the form

i∂zψ +D(i∂τ )ψ + γ|ψ|2ψ = 0, (9)

where ψ = ψ(z, τ). The delay τ = t−β1z is introduced to remove β1-term from Eq. (8). Note that real-valued
dispersion coefficients βj yield a self-adjoint operator D(i∂τ ). Equation (9) is then a Hamiltonian one

i∂zψ +
δ

δψ∗

∫ ∞
−∞

[
ψ∗D(i∂τ )ψ +

γ

2
|ψ|4

]
dτ = 0.

The pump solution of Eq. (9) will be used in the form

ψ =
√
P0e

iγP0z, P0 = const (10)

where P0 replaces |A|2 and describes power of the pump. The z-propagated Lighthill criterion (4) predicts
pump instability if

β2 = D′′(0) < 0. (11)

Possible violation of this criterion has been discussed in the Introduction. Generalization of the criterion (11) is
given in the next Section.

4 Generalized Lighthill criterion

Nonlinear process that is responsible for MI is FWM. Two “input” and two “output” waves are involved in such
mixing if the following conditions are satisfied [68]

ω1 + ω2 = ω3 + ω4, (12)

β(ω1) + β(ω2) = β(ω3) + β(ω4). (13)

We set ω1,2 = ω0 for the seed pump wave, and we get ω3,4 = ω0∓Ω for the Stokes and anti-Stokes daughter
waves. The offset Ω is the modulation frequency when (and only when) Ω� ω0, yet GNLSE makes it possible
to study any offsets. It is profitable to introduce the wave vector mismatch function [2]

M(Ω) =
β(ω0 + Ω)− 2β(ω0) + β(ω0 − Ω)

2
, (14)
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Generalized Lighthill criterion 5

which measures to which extent the resonance condition (13) is violated. The factor 1
2 is introduced to enjoy a

more direct relation between FWM and GNLSE in what follows.

The generalized Lighthill criterion (GLC) for a focusing nonlinearity claims:

GLC The pump is unstable if for some offset Ωs both the mismatch vanishes, M(Ωs) = 0, and M(Ω) is
either monotone or has a local maximum at Ω = Ωs (Fig. 1b,c,d).

Frequency offsets of the growing perturbations compose a subset of the domainM(Ω) < 0 (red bands
in Fig. 1).

A slow modulation yields M(Ω) ≈ 1
2β2Ω2, GLC reduces then to the classical condition (11). The general

formulation is valid both for vanishing GVD [38, 29, 15, 1] and for fast unstable modulations observed in [60, 42,
65, 23, 47, 25, 10, 49, 17, 64].

GLC is quantified by specifying the first non-vanishing derivative

M(m)(Ωs) 6= 0 for some m ∈ N such that

M(m−1)(Ωs) =M(m−2)(Ωs) = · · · =M(Ωs) = 0.

The pump is always unstable for an odd m. For an even m, the pump is unstable ifM(m)(Ωs) < 0, i.e., when
M(Ω) has a local maximum at Ωs. Frequency bands of the growing perturbations increase with the increase
of the pump power P0, they scale as m

√
γP0/|M(m)(Ωs)|.

One should always try Ωs = 0 when using GLC, because by construction M(0) = 0. Equation (14) pro-
vides [38]

M(2n−1)(0) = 0, M(2n)(0) = β2n, ∀n ∈ N. (15)

GLC requires β2 < 0, which is the standard Lighthill criterion. If β2 = 0 (ZDF), MI occurs for β4 < 0 and so
on in accord with [38, 29, 15, 1]. Frequency bands of growing modulations scale as 2n

√
−γP0/β2n.

It is important to stress that non-zero offsets withM(Ωs) = 0 andM′(Ωs) 6= 0 are also possible and yield
instability of the pump [60, 42, 65, 23, 17, 64, 47, 25, 10, 49]. Such offsets appear in pairs because M(Ω)
is an even function. We then deal with the FWM instability [65] or, informally speaking, with the growing fast
modulations. To the best of our knowledge such possibility was first predicted in [66].

Figure 1 illustrates two typical situations in which non-zero roots ofM(Ω) come into play. The mismatch shown
in Fig. 1a should not lead to MI, yet considering larger offsets (Fig. 1b) we see that the pump is unstable.
The mismatch in Fig. 1c leads to the classical MI, yet considering larger offsets (Fig. 1d) we see that two
additional unstable bands appear. The non-MI regimes of pump instability provide a temporal analog of the
Turing instability [57, 46]

GLC resulted from the analysis of the papers cited above. We provide an independent derivation in the rest
of this Section for completeness. The special solution (10) of Eq. (9) describes an unperturbed pump wave at
frequency ω0 and wave vector β0 + γP0. Considering a perturbation imposed by two sideband waves with the
frequencies ω0 ± Ω we set

ψ(z, τ) =
[√

P0 + u(z)e−iΩτ + v∗(z)eiΩτ
]
eiγP0z, (16)

where Ω is real, v∗ denotes complex conjugation, and the yet unknown behavior of u(z) and v(z) for z →∞
along the fiber is of interest. Inserting the above ψ(z, τ) in GNLSE (9), we obtain the following linearized
equations for u(z) and v(z)

[i∂z +D(Ω) + γP0]u+ γP0v = 0, (17)

[−i∂z +D(−Ω) + γP0]v + γP0u = 0. (18)
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Figure 2: MismatchM is plotted vs offset Ω to obtain unstable Ω-bands (red) from Eq.(21) for the bulk silica
dispersion, γ = 50 W−1km−1, and P0 = 40 W. (a) pump wavelength λ = 1.4µm yields β2 < 0 and two
standard MI bands. (b) λ = 1.265µm yields β2 > 0 and two non-MI bands in agreement with GLC.

Recall that D(Ω) is taken real-valued and that D(Ω) and D(−Ω) are independent of each other, as opposed
by the general relation β(−ω) = −β(ω) for lossless media [18]. To proceed we split D(Ω) into even and odd
parts [11]

M(Ω) =
D(Ω) +D(−Ω)

2
, N (Ω) =

D(Ω)−D(−Ω)

2
,

where the even part is precisely the mismatch function in Eq. (14). With both u(z) and v(z) proportional to
eiκz , the system (17–18) yields the dispersion relation

[κ−N (Ω)]2 =M(Ω)[M(Ω) + 2γP0], (19)

which describes two branches of κ(Ω). The pump is unstable if a real Ω yields a complex κ, because Im[κ] < 0
for one of the branches.

For a generic Ω the mismatchM(Ω) in Eq. (19) is much larger than γP0 and Im[κ] = 0. The branches of
κ(Ω) are then given by

κ1,2 = N (Ω)± [M(Ω) + γP0], (20)

where O(γ2P 2
0 /M) terms are neglected. Unstable modulations may come into play for a special choice of

Ω. Recall, that we consider a focusing γ > 0 medium. The instability appears ifM(Ω) is negative and small
enough such that

−2γP0 <M(Ω) < 0, (21)

as illustrated in Fig. 2. The fastest growth rate eγP0z is reached for the perturbation with

M(Ω) = −γP0 ⇒ Im[κ] = ±γP0. (22)

An unstable Ω-domain appears each time when the mismatchM(Ω) approaches zero from the negative side,
which explains GLC. Such domains always appear in pairs (Fig. 1). Using the leading term of the Taylor expan-
sion

M(Ω) ≈ M
(m)(Ωs)

m!
(Ω− Ωs)

m,

together with the inequality (21), we see that width of the unstable Ω-band is approximated by

∆Ω ≈ m

√
2m!γP0/|M(m)(Ωs)|.

For m = 2 we return to the classical relation (7) due to Eq. (15). Figure 2a,b illustrates two relevant shapes of
M(Ω) leading to the MI regime (∆Ω ∝

√
P0) and non-MI regime (∆Ω ∝ P0) of the pump instability for the

fused silica dispersion.

To conclude this Section we stress that the FWM conditions (12–13) adopt the linear dispersion law [32]. In
general, it is problematic to account for the nonlinear frequency or wave vector shifts because amplitudes of the
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interacting waves are unknown and changing. An initial stage of MI is an exception, one can generalize Eq. (14)
by introducing a nonlinear mismatchMnl(Ω).

To defineMnl(Ω) one should replace pump’s β0 with βnl(ω0, P0) = β0 + γP0 in accord with Eq. (6). The
sideband waves are small, yet they get their nonlinear wave vector shifts due to the presence of the pump. By
linearizing GNLSE (9) with respect to ψ = ψ0 + δψ, we obtain the pump-induced wave vector shift 2γP0.
Altogether, the linear mismatch (14) is replaced by the nonlinear one [38, 29]

Mnl(Ω) =M(Ω) + γP0, (23)

where Eq. (19) yields that MI domain is determined by |Mnl(Ω)| < γP0 and that the largest increment is
achieved for the sidebands withMnl(Ω) = 0. Although the nonlinear mismatch (23) offers a more symmetric
MI description, in what follows we will stay with the more commonM(Ω).

5 Nonlinear dispersion

The standard MI band (7) is close to the carrier frequency (Fig. 2a) such that both the carrier wave and the
growing daughter waves are characterized by the same nonlinear coefficient γ in the NLSE (5) or GNLSE (9).
The generalized MI condition (21) may involve perturbations that are separated from the carrier frequency
(Fig. 2b). The frequency-independent γ, which was used in all GNLSE-based studies of MI, is then problematic.
To address this problem we now consider GNLSE with the general dispersive nonlinear term

i∂zψ +D(i∂τ )ψ + γ(|ψ|2 + I)ψ = 0, (24)

where
I = ψ∗A(i∂τ )ψ + ψB(i∂τ )ψ∗, A(0) = B(0) = 0.

Here γ refers to γ(ω0) and it is safe to assume that bothA(0), B(0) are zero.

The new operators A(i∂τ ) and B(i∂τ ) depend on individual application and, among other things, describe
dispersion of the nonlinearity

γ(ω0 + Ω)

γ(ω0)
= 1 +A(Ω) + B(−Ω).

In most casesA(i∂τ ) andB(i∂τ ) will be polynomials with respect to i∂τ in a full analogy withD(i∂τ ). Nonlocal
operators are also possible, their action is calculated in the frequency domain by multiplication with operator
symbolsA(Ω), B(Ω) which are analytic for Im Ω > 0 due to causality. Examples are as follows.

(A) in general,A(Ω) and B(Ω) are different and provide a complex-valued I , e.g.,

A(Ω) = 2Ω/ω0,

B(Ω) = Ω/ω0,
⇒ Iψ = iω−1

0 ∂τ (|ψ|2ψ), (25)

for the self-steepening nonlinearity [2, 12]. In a similar way one can obtain the derivative NLSE [35].

(B) another possible choice is

A(Ω) = THΩ,

B(Ω) = 0,
⇒ Iψ = iTH |ψ|2∂τψ.

With the time scale TH = β3/β2 and J = 3, this leads to the Hirota equation [27]

i∂zψ +
∑
j=2,3

βj
j!

(i∂τ )jψ + γ|ψ|2
(
ψ + i

β3

β2
∂τψ

)
= 0,

in physical units. One can also obtain a more sophisticated Sasa-Satsuma equation [50].

DOI 10.20347/WIAS.PREPRINT.2512 Berlin 2018



Sh. Amiranashvili, E. Tobisch 8

(C) the so-called interpulse Raman scattering is described by

A(Ω) = iTRΩ,

B(Ω) = iTRΩ,
⇒ I = −TR∂τ |ψ|2, (26)

where TR ≈ 3 fs for fused silica fibers [2].

(D) physical mechanisms that lead to second-order polynomialsA(Ω) and B(Ω) were discussed in [37, 3].

(E) to give a more complicated example, consider a general expression that accounts for the Raman effect [11]

I = fR

[∫ ∞
0

h(τ ′)|ψ(z, τ − τ ′)|2dτ ′ − |ψ(z, τ)|2
]
. (27)

Here fR and 1 − fR quantify relative contributions of the Raman and Kerr interactions in GNLSE (24), while
h(τ) is a causal response function with

∫∞
0 h(τ)dτ = 1.

By changing to the frequency domain in Eq. (27), one can derive that

I = R(i∂τ )
(
|ψ(z, τ)|2

)
, (28)

where we now deal with a non-polynomial symbol

R(Ω) = fR

[∫ ∞
0

h(τ)eiΩτdτ − 1

]
, R(0) = 0. (29)

For instance, for fused silica fibers one can take [2]

fR = 0.18, h(t) =
ν2

1 + ν2
2

ν1
e−ν2t sin(ν1t),

ν−1
1 = 12.2 fs, ν−1

2 = 32 fs.

To return to Eq. (26) one should neglect the real part of R(Ω) and approximate the imaginary part by iTRΩ.
The approximation works reasonably well for slow modulations with TRΩ . 0.3.

To link Eq. (28) to the nonlinear term in GNLSE (24), recall that we are interested in small perturbations of the
monochromatic pump wave (10)

ψ(z, τ) =
√
P0e

iγP0z + δψ,

in which case Eq. (28) yields

I = ψ∗R(i∂τ )ψ + ψR(i∂τ )ψ∗ +O(δψ2).

Therefore to address MI with the full integral Raman term (27), it is sufficient to use GNLSE (24) and set

A(i∂τ ) = B(i∂τ ) = R(i∂τ ). (30)

The above examples demonstrate that GNLSE (24) is an adequate framework for studies of MI with the disper-
sive nonlinearity. We are in a good position to recognize the pump wave (10) as an exact solution of Eq. (24).
There is no need to account for the further nonlinear terms like (∂τψ)2ψ∗ or |∂τψ|2ψ, which appear, e.g., in
the Lakshmanan-Porsezian-Daniel equation [5]. Such terms vanish when GNLSE is linearized around the pump
wave, they do not affect MI.

Another important fact is that the pump wave (10) is an exact solution of Eq. (24) even for a complex-valued
D(Ω). In what follows we allow for the complex-valued dispersion parameters

β(j)(ω0) = βj + iαj for j ≥ 2,
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Generalized Lighthill criterion 9

to trace the effect of linear wave dissipation. In the case of interest, a complex GVD with α2 > 0 accounts
for the diffusion. However, we ignore both α0 and α1. In other words, gain terms in a driven dissipative wave
system should be organized in such a way that

Im[β(ω0 + Ω)] ≈ 1

2
α2Ω2. (31)

A full treatment of the interplay between dispersion, dissipation, nonlinearity, and gain requires use of the
Ginsburg-Landau type models (see, e.g., Refs. [6, 63]), which is out of scope of this work. We now turn to
MI for the dispersive nonlinearity (24).

6 Beyond MI

To summarize results of the previous Section, the pump wave (10) solves Eq. (24) both for the real- and complex-
valuedA(Ω), B(Ω), andD(Ω), which includes many if not all relevant envelope equations. The pump stability
problem is addressed by substituting (16) into (24) and linearizing with respect to u(z) and v(z) which provides[

i∂z +D(Ω) 0
0 −i∂z +D∗(−Ω)

] [
u
v

]
+ γP0

[
1 +A(Ω) 1 + B(Ω)

1 + B∗(−Ω) 1 +A∗(−Ω)

] [
u
v

]
= 0.

The previous system (17–18) is a special case of the above equation for A(Ω) = B(Ω) = 0 and real-valued
D(Ω).

In what follows it is convenient to split D(Ω), A(Ω), and B(Ω) into symmetric “s” and asymmetric “a” compo-
nents following the pattern

Ds,a(Ω) =
D(Ω)±D∗(−Ω)

2
.

Thus, we generalize evenM(Ω) and oddN (Ω) dispersion components, which were used in the Section 4 for
a real-valued D(Ω) = M(Ω) +N (Ω). Recall that the even component is the mismatch function (14). For a
complex-valued D(Ω) = Ds(Ω) +Da(Ω) we have

Ds(−Ω) = D∗s(Ω), Da(−Ω) = −D∗a(Ω).

Informally speaking, Ds(Ω) is the complex mismatch.

Inserting u, v ∝ eiκz into the above matrix equation we derive the dispersion relation

(κ−Da − γP0Aa)2 = Ds[Ds + 2γP0(1 +As)] + γ2P 2
0 [(1 +As)2 − (1 + Bs)2 + B2

a], (32)

cf., Eq. (19). For each Ω the latter equation provides two complex-valued solutions for κ, the pump wave is
unstable if Imκ < 0. Note that Eq. (32) is invariant under replacement

Ω 7→ −Ω, κ 7→ −κ∗,

followed by the complex conjugation. Unstable Ω-bands are therefore symmetric with respect to the carrier
frequency, Stokes and anti-Stokes sideband waves always grow with the same rate.

Equation (32) is the main result of this Section. Adding to previous studies, it accounts for the dispersion of
nonlinearity, which is relevant when pump instability involves a wide range of frequencies. Let us consider
several examples.
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Figure 3: (a,b) instability increments (color lines) are calculated from Eq. (33) for the MI regime (as in Fig. 2a)
and FWM regime (Fig. 2b). Solutions of the Raman-free Eq. (19) (grey lines) are shown for comparison. (c,d)
instability increments are calculated from the more accurate Eq. (34).

6.1 Self-steepening effect on MI

Here we discuss how the MI is modified by the self-steepening effect [52, 48, 1, 7]. The dispersion relation (32)
is then combined with the shock nonlinearity (25) and a real-valued D(Ω) =M(Ω) +N (Ω), i.e.,[

κ−N (Ω)− 2γP0
Ω

ω0

]2

=M(Ω)[M(Ω) + 2γP0] + γ2P 2
0

Ω2

ω2
0

.

Without the self-steepening term the fastest growth rate is achieved for M(Ω) = −γP0. Taking the self-
steepening term into account, we obtain from the above equation

M(Ω) = −γP0 ⇒ Im[κ] = ±γP0

√
1− Ω2

ω2
0

,

cf., Eq. (22). The correction is unimportant for the classical MI regime (Fig. 2a) with Ω� ω0. As to the situation
shown in Fig. 2b, the instability is inhibited but does not disappear completely. The reason is that any GNLSE at
the carrier frequency ω0 is suitable in the spectral window [0, 2ω0] at most, such that |Ω| < ω0.

6.2 Raman effect on MI

Here we consider how the MI description in Section 3 is modified by the Raman effect [48, 65, 10, 7]. The disper-
sion relation (32) is then combined with a real-valued D(Ω) =M(Ω) +N (Ω) and Raman nonlinearity (26),
which yields

[κ−N (Ω)]2 =M(Ω)[M(Ω) + 2γP0(1 + iΩTR)]. (33)

The right hand side of Eq. (33) is complex-valued, cf., Eq. (19). Therefore Im[κ] is nonzero for a generic Ω
and is negative for one of two branches. This leads to a striking conclusion: the pump-wave is unstable for all
possible modulations. Moreover, the increment increases without limit with the increase of Ω (Fig. 3a,b). This
indicates that Eq. (26) is a very bad approximation even for the classical MI regime [21].

A better description of the Raman effect is clearly required, it is provided by Eq. (27) in place of Eq. (26). The
dispersion relation (32) should then be used with Eq. (30), where

As(Ω) = Bs(Ω) = R(Ω), Aa(Ω) = Ba(Ω) = 0,

DOI 10.20347/WIAS.PREPRINT.2512 Berlin 2018



Generalized Lighthill criterion 11

because Eq. (29) yields thatR(Ω) = R∗(−Ω). The result reads

[κ−N (Ω)]2 =M(Ω)[M(Ω) + 2γP0(1 +R(Ω))], (34)

where Eq. (33) is recovered for Ω� 1/TR. Note thatR(Ω) vanishes for Ω→∞ and there is no growth of the
increment (Fig. 3c,d). Solutions of Eq. (34) for a generic Ω outside MI and FWM bands, i.e., withM(Ω)� γP0,
are given by

κ1,2 = N (Ω)±M(Ω)± γP0[1 +R(Ω)], (35)

cf., Eq. (20). Raman peaks are clearly observed in Fig. 3c,d. The pump-wave is formally unstable for all possible
modulations [10], this is consequence of the Raman gain [11]. Unstable frequency bands are then limited by
dissipation, as explained in the next Section.

6.3 Diffusion effect on MI

In this Section we use complex-valued β(ω) from Eq. (31) to quantify how MI and FWM are affected by diffusion.
We start with GNLSE (9) in which we set

D(Ω) =M(Ω) +N (Ω) +
iα2Ω2

2
,

such that the general dispersion relation (32) takes the form[
κ−N (Ω)− iα2Ω2

2

]2

=M(Ω)[M(Ω) + 2γP0],

cf., Eq. (19). MI increments, which can be calculated with and without the diffusion term, are related by

Im[κ] = Im[κ]α2=0 +
α2Ω2

2
.

MI condition Im[κ] < 0 is then always inhibited by the downhill diffusion with α2 > 0. Note, that diffusion does
not provide gain, as opposed by the Raman effect.

In the classical MI regime withM(Ω) = 1
2β2Ω2 and β2 < 0, the instability, being suppressed by diffusion,

never disappears completely because

Im[κ]Ω→0 =
α2Ω2

2
± CΩ, C =

√
−β2γP0,

where we neglected O(Ω3) terms to observe that Im[κ] is negative for slow enough modulations. On the
contrary, MI at ZDF withM(Ω) = 1

24β4Ω4 and β4 < 0, is eliminated if α2 >
√
−β4γP0/3. In a similar way

FWM instability, which involves fast modulations, may be completely eliminated by diffusion.

Finally, Eq. (35) for the Raman gain takes the form

κ1,2 = N (Ω) +
iα2Ω2

2
±M(Ω)± γP0[1 +R(Ω)].

We conclude that diffusion completely eliminates Raman gain for the fast modulations for whichR(Ω)→ 0.

7 Conclusions

In summary, modulation instability is an universal phenomenon and it is reasonable to expect that it is governed
by a simple universal criterion. However, many studies indicated that the commonly accepted Lighthill criterion is
limited even in the most simple case of a single-mode nonlinear fiber. On one hand, the criterion does not apply
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to waves with the vanishing group velocity dispersion. On the other hand, Lighthill criterion does not apply to
situations where slow modulations coexist with the fast ones. The latter appear and may grow because nonlinear
waves can mix in many different ways.

We have found that Lighthill criterion can be generalized. The generalized criterion successfully applies to the
vanishing dispersion and to the both slow and fast modulations. It is equivalent to a simple geometric property
of the mismatch function, as summarized in Fig. 1.

Furthermore, the recently found instability regimes involve growing daughter waves with the frequencies which
are considerably different from each other and from that of the seed wave. This makes use of a simple envelope
equation with an arbitrary dispersion but just one nonlinear coefficient questionable. To address this problem we
introduced a general dispersive nonlinearity and studied how it affects both classical and new regimes of the
modulation instability.

Last but not least, special attention is given to interplay of linear and nonlinear dissipative effects such as Raman
gain and diffusion. We demonstrate how recently found instability regimes, in which all modulations seem to
grow, are regularized by diffusion.
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