© by Oldenbourg Wissenschaftsverlag, München

Crystal structure of tris[(diphenylphosphino)methylene)diphenylphosphoranylmethyl]yttrium diethyl ether monosolvate,

A. Spannenberg*, B. H. Müller and U. Rosenthal

Leibniz-Institut für Organische Katalyse an der Universität Rostock e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany

Received September 22, 2005, accepted and available on-line December 14, 2005; CCDC no. 1267/1650

 $[Y{P(C_6H_5)_2CHP(C_6H_5)_2CH_2}_3] \cdot (C_2H_5)_2O$

Abstract

C₈₂H₇₉OP₆Y, monoclinic, P12/c1 (no. 13), a = 24.392(5) Å, b = 12.632(2) Å, c = 23.709(5) Å, $\beta = 100.97^{\circ}$, V = 7171.8 Å³, Z = 4, $R_{gt}(F) = 0.054$, $wR_{ref}(F^2) = 0.112$, T = 200 K.

Source of material

A solution of 1.020 g (2.56 mmol) of the ylide Ph₂PCH=PPh₂Me (Ph = C₆H₅, Me = CH₃) in 10 ml of THF was metallated at the Me group by adding 1.6 ml of an 1.6 M solution of LiMe in diethyl ether [1,2]. Adding this solution to a suspension of 0.167 g (0.85 mmol) YCl₃ in 10 ml of THF resulted in a light-yellow solution within a few minutes. The solvent was removed in vacuum and the residue was extracted with 10 ml diethyl ether. From this solution 0.520 g (46 %) light-yellow prismatic crystals could be isolated at 279 K.

Discussion

We investigated the complexation behavior of various α -stabilized phosphorus ylides towards early [3] and late transition metal ions [4]. Now we extend our interest to phosphorus ylides as ligands to form rare earth metal complexes for catalytic applications. The ylide Ph₂PCH=PPh₂Me and a nickel complex of the metallated ylide Ni[CH₂Ph₂PCHPPh₂]₂ are already described [1,2]. By reaction of the in situ lithiated ligand Ph₂PCHPPh₂CH₂Li with YCl₃ the homoleptic yttrium complex Y[CH₂Ph₂PCHPPh₂]₃ was obtained. Its molecular structure was confirmed by the present X-ray diffraction study.

The six-coordinated yttrium atom is surrounded by three chelate ligands. The P—C distances are 1.744(7) Å – 1.751(6) Å for P–CH₂, 1.692(6) Å – 1.713(7) Å and 1.706(7) Å – 1.725(6) Å for P–CH₄, respectively, comparable with those in Ni(CH₂Ph₂PCHPPh₂)₂ [2]. They indicate double bond character and an electron delocalization in the anionic PCPC unit. The bite angle C–Y–P with 73.4(1)° – 75.0(2)° is smaller than in the square planar nickel complex Ni[CH₂Ph₂PCHPPh₂]₂ (90.1(2)°). The five membered metallacycles are twisted. The Y—P distances of 2.971(2) Å – 2.983(2) Å are similar to the corresponding bond distances in YCI[C₅H₄CH₂CH₂PMe₂]₂ (2.975 Å) [5], but shorter than observed in Y[OC'Bu₂CH₂PMe₂]₃ (^tBu = C(CH₃)₃, 3.045(2) Å) [6]. Two of the phenyl rings in the molecules are observed.

Table 1. Data collection and handling.

Crystal:	light-yellow prism,
	size $0.3 \times 0.4 \times 0.4$ mm
Wavelength:	Mo K_{α} radiation (0.71073 Å)
μ:	9.90 cm ⁻¹
Diffractometer, scan mode:	Stoe IPDS, φ
$2\theta_{\rm max}$:	48.46°
N(hkl)measured, N(hkl)unique:	20771, 10974
Criterion for Iobs, N(hkl)gt:	$I_{\rm obs} > 2 \sigma(I_{\rm obs}), 4173$
N(param)refined:	740
Programs:	SHELXS-97 [7], SHELXL-97 [8]

Table 2. Atomic coordinates and displacement parameters (in $Å^2$).

Atom	Site Occ.	x	у	Z	$U_{\rm iso}$
U(1A)	40	0 1022	0 6022	0.0055	0.047
	48	0.1932	0.0922	0.0000	0.047
п(1D)	48	0.2309	0.0309	-0.0361	0.047
H(2A)	4g	0.2182	0.5895	0.1619	0.045
H(2B)	4g	0.2819	0.5523	0.1789	0.045
H(3A)	4g	0.2376	0.3635	-0.0439	0.056
H(3B)	4g	0.3008	0.4011	-0.0286	0.056
H(4)	4g	0.0598	0.5260	-0.0420	0.039
H(5)	4g	0.3545	0.7927	0.1165	0.066
H(6)	48	0.2631	0.1308	0.0768	0.056
H(8)	4g	0.3530	0.6744	0.2465	0.091
H(9)	48	0.3898	0.7588	0.3315	0.111
H(10)	4g	0.3568	0.9230	0.3511	0.121
H(11)	4g	0.2897	1.0096	0.2837	0.109

^{*} Correspondence author (e-mail: anke.spannenberg@ifok-rostock.de)

Table 2. Continued	•
--------------------	---

Atom	Site	Occ.	x	у	z	Uiso	Atom	Site	Occ.	x	у	z	Uiso
H(12)	4g		0.2508	0.9223	0.1976	0.085	H(44)	4g		0.2467	0.3291	0.2369	0.069
C(13A)	4g	0.741(8)	0.3592(3)	0.7041(6)	0.0018(2)	0.044(2)	H(45)	4g		0.1780	0.2759	0.2864	0.071
C(14A)	4g	0.741	0.3537(3)	0.6466(5)	-0.0490(3)	0.053(3)	H(46)	4g		0.1074	0.1619	0.2441	0.075
H(14A)	4g	0.741	0.3439	0.5738	-0.0495	0.064	H(47)	4g		0.1066	0.0999	0.1515	0.078
C(15A)	4g	0.741	0.3626(3)	0.6957(6)	-0.0990(2)	0.070(4)	H(48)	4g		0.1733	0.1583	0.0998	0.058
H(15A)	4g	0.741	0.3588	0.6564	-0.1337	0.083	H(50)	4g		0.1304	0.3955	0.1518	0.050
C(16A)	4g	0.741	0.3769(3)	0.8023(6)	-0.0982(2)	0.079(4)	H(51)	4g		0.0906	0.4601	0.2282	0.062
H(16A)	4 g	0.741	0.3829	0.8358	-0.1323	0.095	H(52)	4g		0.0277	0.5993	0.2120	0.065
C(1/A)	48	0.741	0.3824(3)	0.859/(4)	-0.0474(3)	0.088(4)	H(53)	4g		0.0005	0.6705	0.1213	0.063
H(1/A)	4g	0.741	0.3921	0.9320		0.100	H(34)	4g		0.0412	0.0098	0.0455	0.048
U(10A)	4g	0.741	0.3733(3)	0.8107(0)	0.0020(2)	0.004(3)	H(50)	4g		0.1471	0.2/40	-0.0330	0.052
C(12P)	4g	0.741	0.3770(7)	0.6499	0.0372	0.077	EL(59)	48		0.1049	0.1152	-0.0046	0.008
C(13D)	48 40	0.239	0.3379(7)	0.030(2)	-0.0049(0)	0.044(2)	H(50)	48 4 a		0.0222	0.0030	-0.0340	0.000
H(14B)	-18 1 a	0.239	0.3013(7)	0.574(1)	-0.0404(9)	0.000(9)	H(60)	48		-0.0128	0.1092	0.0293	0.033
C(15R)	78 4 a	0.239	0.3618(8)	0.5010	-0.0302	0.072	H(62)	78 4 a		0.0301	0.5235	-0.1490	0.047
H(15B)	-8 40	0.259	0.3641	0.5519	-0.1020(0)	0.09(1)	H(63)	-78 4 a		_0.0133	0.3937	_0.1450	0.051
C(16B)	40	0.259	0.3589(8)	0.711(2)	-0.1175(7)	0.08(1)	H(64)	-5 40		0.0123	0.7200	-0.1975	0.004
H(16B)	40	0.259	0.3593	0.7313	-0.1559	0.099	H(65)	40		0.0939	0.9460	-0.1205	0.071
C(17B)	40	0.259	0.3555(8)	0.787(1)	-0.0760(9)	0.088(4)	H(66)	40		0.1489	0.8163	-0.0701	0.054
H(17B)	42	0.259	0.3536	0.8598	-0.0862	0.106	H(68)	42		0.2356	0.5966	-0.1270	0.073
C(18B)	4g	0.259	0.3550(8)	0.757(2)	-0.0198(8)	0.064(9)	H(69)	4g		0.2632	0.4902	-0.1968	0.108
H(18B)	4g	0.259	0.3527	0.8089	0.0085	0.077	H(70)	4g		0.2103	0.3459	-0.2335	0.112
H(20)	4g		0.4317	0.6767	0.1669	0.091	H(71)	4g		0.1299	0.3040	-0.2005	0.098
H(21)	4g		0.5232	0.6213	0.2049	0.129	H(72)	4g		0.1021	0.4076	-0.1290	0.069
H(22)	4g		0.5639	0.4971	0.1557	0.173	H(74)	4g		0.1565	0.7166	0.1458	0.077
H(23)	4g		0.5179	0.4313	0.0692	0.173	H(75)	4g		0.0812	0.8169	0.0995	0.091
H(24)	4g		0.4263	0.4850	0.0322	0.125	H(76)	4g		0.0942	0.9562	0.0407	0.087
C(25A)	4g	0.61(2)	0.3670(2)	0.2510(9)	0.0087(4)	0.037(3)	H (77)	4g		0.1821	0.9952	0.0241	0.074
C(26A)	4g	0.61	0.3862(3)	0.2798(9)	-0.0407(3)	0.062(4)	H(78)	4g		0.2578	0.8942	0.0687	0.062
H(26A)	4g	0.61	0.3604	0.2954	-0.0750	0.074	O(1)	2e	0.5	0	0.908(1)	1/4	0.252(6)
C(27A)	4g	0.61	0.4432(3)	0.2856(9)	-0.0399(3)	0.068(4)	O(2)	2f	0.5	¥2	0.955(2)	1/4	0.311(8)
H(Z/A)	48	0.61	0.4564	0.3053	-0.0737	0.081	C(79A)	4g	0.5	0.0372(4)	0.876(1)	0.2136(6)	0.110(6)
U(28A)	4g	0.01	0.4811(2)	0.203(1)	0.0102(4)	0.063(4)	H(79A)	4g	0.5	0.0224	0.8990	0.1737	0.132
FI(20A)	4g	0.01	0.5201	0.2007	0.0108	0.070	H(79B)	4g	0.5	0.0400	0.7981	0.2139	0.132
U(20A)	48 40	0.01	0.4019(3)	0.234(1)	0.0390(3)	0.072(4)		48	0.5	0.0939(4)	0.923(2)	0.234(1)	0.231(9)
C(30A)	-τε Δα	0.61	0.4677	0.2184	0.0559	0.060	H(80R)	4χ Δο	0.5	0.1192	0.9048	0.2080	0.377
H(30A)	40	0.61	0 3917	0.2282())	0.0926	0.050(4)	H(80C)	τ <u>5</u> Δο	0.5	0.1091	1 0025	0.2735	0.377
C(25B)	40	0.39	0.3645(4)	0.211(1)	0.0076(5)	0.043(6)	C(79B)	40	0.5	0.0519(4)	0.858(1)	0.2718(6)	0.121(7)
C(26B)	42	0.39	0.3871(5)	0.236(1)	-0.0403(4)	0.044(6)	H(79C)	40	0.5	0.0457	0.7814	0.2780	0.145
H(26B)	4g	0.39	0.3636	0.2621	-0.0741	0.053	H(79D)	4g	0.5	0.0691	0.8893	0.3092	0.145
C(27B)	4g	0.39	0.4440(5)	0.224(1)	-0.0386(4)	0.055(6)	C(80B)	4g	0.5	0.0907(5)	0.871(2)	0.230(1)	0.251(9)
H(27B)	4g	0.39	0.4594	0.2413	-0.0713	0.066	H(80D)	4g	0.5	0.1277	0.8434	0.2466	0.377
C(28B)	4g	0.39	0.4783(4)	0.186(2)	0.0109(6)	0.076(7)	H(80E)	4g	0.5	0.0935	0.9459	0.2204	0.377
H(28B)	4g	0.39	0.5172	0.1779	0.0120	0.091	H(80F)	4g	0.5	0.0759	0.8313	0.1944	0.377
C(29B)	4g	0.39	0.4557(5)	0.161(2)	0.0588(5)	0.087(8)	C(81A)	4g	0.5	0.4650(9)	0.934(4)	0.1958(4)	0.33(1)
H(29B)	4g	0.39	0.4792	0.1352	0.0926	0.105	H(81A)	4g	0.5	0.4304	0.9766	0.1919	0.394
C(30B)	4g	0.39	0.3988(5)	0.173(1)	0.0571(5)	0.053(6)	H(81B)	4g	0.5	0.4544	0.8583	0.1933	0.394
H(30B)	4g	0.39	0.3834	0.1559	0.0898	0.064	C(82A)	4g	0.5	0.496(1)	0.962(3)	0.1480(2)	0.27(2)
H(32)	48		0.3614	0.4335	0.1688	0.080	H(82A)	4g	0.5	0.4710	0.9485	0.1108	0.410
H(33)	4g		0.4441	0.4172	0.2387	0.110	H(82B)	4g	0.5	0.5291	0.9176	0.1513	0.410
H(34)	4g		0.4633	0.2572	0.2865	0.109	H(82C)	4g	0.5	0.5062	1.0304	0.1509	0.410
n(33) u(24)	4g		0.4029	0.1260	0.2080	0.094		4g	0.5	0.491(2)	0.900(2)	0.1902(0)	0.33(1)
II(30)	48 4~		0.3212	0.1330	0.2009	0.076		4g 4-	0.5	0.4/13	0.6320	0.2000	0.394
II(30)	48 4 ~		0.2701	0.0130	-0.0009	0.070	(01D)	48 4~	0.5	0.32/3	0.0007/	0.1000	0.394
H(40)			0.2373	-0.1139	-0.0000	0.097	C(02D)	ч8 Да	0.5	0.457	0.300(3)	0.1303(4)	0.24(2)
H(41)	78 40		0 1831	0.0027	-0.1521	0.101	H(82F)	-78 40	0.5	0.4733	1 0386	0.1120	0.558
H(42)	40		0.2222	0.2415	-0.1065	0.096	H(82F)	40	0.5	0.4185	0.9737	0.1577	0.358
()	••							·8	0.0	0.1200	5.5.51	0.2011	5.556

Table 3. Atomic coordinates and displacement parameters (in $\mbox{\AA}^2\mbox{)}.$

Atom	Site	x	у	z	<i>U</i> 11	U ₂₂	U33	<i>U</i> ₁₂	U ₁₃	<u>U23</u>
Y(1)	4g	0.24590(2)	0.49686(6)	0.05612(3)	0.0234(3)	0.0484(4)	0.0329(4)	0.0015(4)	0.0068(2)	0.0016(4)
P(1)	4g	0.14288(6)	0.5885(1)	-0.06300(7)	0.0258(9)	0.040(1)	0.026(1)	0.0014(8)	0.0057(8)	0.0032(8)
P(2)	4g	0.27668(7)	0.7217(2)	0.14573(8)	0.038(1)	0.054(1)	0.044(1)	-0.0083(9)	0.0152(9)	0.001(1)
P(3)	4g	0.29107(7)	0.2396(2)	0.00761(7)	0.037(1)	0.062(1)	0.038(1)	0.010(1)	0.0153(9)	0.001(1)
P(4)	4g	0.12381(6)	0.4498(1)	0.03294(7)	0.0239(8)	0.038(1)	0.032(1)	-0.0004(7)	0.0090(8)	-0.0001(8)

Table 3.	Continued.
----------	------------

Atom	Site	x	у	z	<i>U</i> 11	U ₂₂	U ₃₃	U ₁₂	<i>U</i> ₁₃	U ₂₃
P(5)	40	0 34708(6)	0.6320(2)	0.06774(8)	0.027(1)	0.083(2)	0.040(1)	-0.006(1)	0.0095(9)	-0.001(1)
P(6)	40	0.26909(7)	0.2963(2)	0.12258(8)	0.035(1)	0.057(1)	0.038(1)	0.0030(9)	0.0102(9)	0.004(1)
C(1)	4g	0.2027(2)	0.6289(5)	-0.0154(2)	0.029(3)	0.056(5)	0.031(4)	-0.008(3)	0.004(3)	0.003(3)
C(2)	4g	0.2548(2)	0.5905(4)	0.1495(2)	0.034(4)	0.045(5)	0.031(4)	0.008(3)	0.003(3)	-0.003(3)
C(3)	4g	0.2703(2)	0.3690(5)	-0.0121(3)	0.047(4)	0.055(5)	0.038(5)	0.007(4)	0.006(3)	0.012(4)
C(4)	4g	0.0989(2)	0.5226(4)	-0.0278(2)	0.021(3)	0.041(5)	0.035(4)	0.005(3)	0.003(3)	0.012(3)
C(5)	4g	0.3318(2)	0.7311(5)	0.1113(3)	0.037(4)	0.074(6)	0.062(5)	-0.021(4)	0.030(4)	-0.004(4)
C(6)	4g	0.2720(2)	0.2026(5)	0.0706(2)	0.049(4)	0.054(5)	0.039(5)	-0.001(3)	0.015(3)	0.005(4)
C(7)	4g	0.2996(3)	0.7909(6)	0.2138(3)	0.038(4)	0.056(6)	0.044(5)	-0.014(4)	0.011(4)	0.002(4)
C(8)	4g	0.3400(3)	0.7429(7)	0.2540(4)	0.072(6)	0.101(7)	0.051(7)	-0.012(5)	0.000(5)	-0.021(6)
C(9)	4g	0.3615(4)	0.7922(9)	0.3043(4)	0.080(6)	0.12(1)	0.073(9)	-0.001(7)	0.004(6)	-0.005(7)
C(10)	4g 4 c	0.3423(3)	0.890(1)	0.3155(4)	0.107(9)	0.14(1) 0.087(7)	0.034(8)	-0.030(8)	0.025(0)	-0.019(8)
C(12)	48 40	0.3020(4)	0.3400(8)	0.2700(3)	0.088(6)	0.087(7)	0.060(9)	-0.024(7)	0.021(5)	-0.013(7)
C(12)	-8 40	0.4196(2)	0.5860(6)	0.0964(3)	0.028(4)	0.089(6)	0.046(6)	0.005(4)	0.002(4)	0.004(5)
C(20)	4g	0.4489(3)	0.6254(7)	0.1467(4)	0.050(5)	0.119(7)	0.059(7)	0.004(5)	0.011(4)	0.011(5)
C(21)	4g	0.5035(4)	0.5930(9)	0.1697(4)	0.053(6)	0.19(1)	0.071(8)	0.008(7)	-0.004(5)	0.022(7)
C(22)	4g	0.5271(4)	0.521(1)	0.1404(5)	0.075(7)	0.24(2)	0.11(1)	0.062(9)	-0.007(7)	0.05(1)
C(23)	4g	0.4999(4)	0.481(1)	0.0896(5)	0.059(6)	0.23(1)	0.15(1)	0.078(8)	0.041(6)	0.01(1)
C(24)	4g	0.4455(3)	0.5135(8)	0.0675(4)	0.067(6)	0.127(8)	0.125(8)	0.018(6)	0.036(6)	-0.017(7)
C(31)	4g	0.3322(3)	0.2866(6)	0.1793(3)	0.039(4)	0.067(6)	0.032(5)	-0.002(4)	0.009(3)	0.013(4)
C(32)	4g	0.3693(3)	0.3692(6)	0.1896(3)	0.059(5)	0.084(7)	0.057(6)	-0.009(5)	0.008(4)	0.008(5)
C(33)	4g	0.4188(3)	0.3595(8)	0.2306(4)	0.045(5)	0.128(9)	0.093(8)	-0.025(6)	-0.009(5)	0.011(7)
C(34)	4g	0.4298(3)	0.2647(9)	0.2588(4)	0.039(5)	0.10(1)	0.071(7)	0.000(6)	0.001(4)	0.023(7)
C(35)	4g	0.3944(3)	0.1819(7)	0.2482(3)	0.034(0)	0.113(8)	0.003(7)	0.000(5)	0.003(3)	0.034(5)
C(30)	48 40	0.3400(3)	0.1934(0)	-0.0461(3)	0.043(5)	0.069(7)	0.054(6)	0.000(4)	0.002(4)	-0.001(3)
C(38)	-8 40	0.2745(3)	0.0364(7)	-0.0358(3)	0.067(5)	0.065(7)	0.059(6)	-0.009(5)	0.029(4)	-0.001(4)
C(39)	40	0.2517(4)	-0.0411(7)	-0.0747(4)	0.088(7)	0.085(8)	0.076(8)	-0.009(6)	0.031(6)	-0.002(6)
C(40)	4g	0.2181(3)	-0.0108(9)	-0.1247(4)	0.069(6)	0.096(9)	0.095(9)	-0.008(6)	0.034(6)	-0.033(7)
C(41)	4g	0.2072(3)	0.092(1)	-0.1356(4)	0.079(6)	0.13(1)	0.071(8)	0.028(7)	-0.009(5)	0.041(8)
C(42)	4g	0.2299(3)	0.1691(7)	-0.0975(4)	0.081(6)	0.109(8)	0.047(7)	0.038(6)	0.002(5)	-0.020(6)
C(43)	4g	0.2175(2)	0.2482(5)	0.1637(3)	0.034(4)	0.051(5)	0.032(5)	0.002(3)	0.006(3)	0.005(4)
C(44)	4g	0.2179(3)	0.2827(6)	0.2189(3)	0.046(4)	0.091(6)	0.037(5)	0.004(4)	0.013(4)	-0.015(4)
C(45)	4g	0.1771(3)	0.2509(6)	0.2484(3)	0.060(5)	0.081(6)	0.042(5)	0.012(5)	0.024(4)	0.005(4)
C(46)	4g	0.1354(3)	0.1836(6)	0.2237(3)	0.052(5)	0.083(6)	0.061(7)	0.005(5)	0.035(5)	0.009(5)
C(47)	4g	0.1348(3)	0.1480(0)	0.1088(3)	0.053(5)	0.073(0)	0.009(7)	-0.014(4)	0.020(5)	0.003(5)
C(40)	48 40	0.1730(3)	0.1814(3)	0.1382(3)	0.040(3)	0.003(3)	0.030(3)	-0.012(4)	0.013(4)	-0.002(4)
C(50)	40 40	0.0097(2) 0.1043(2)	0.4521(5)	0.0912(2) 0.1454(3)	0.022(3) 0.037(4)	0.056(5)	0.030(4)	-0.012(4) -0.005(3)	0.009(3)	-0.003(4)
C(51)	40	0.0807(3)	0.4904(6)	0.1910(3)	0.061(4)	0.067(6)	0.029(4)	-0.018(5)	0.012(3)	-0.009(4)
C(52)	4g	0.0431(3)	0.5722(6)	0.1811(3)	0.055(5)	0.055(6)	0.062(6)	-0.012(4)	0.035(4)	-0.027(5)
C(53)	4g	0.0275(2)	0.6154(6)	0.1276(3)	0.034(4)	0.063(5)	0.066(6)	0.001(4)	0.027(4)	-0.013(5)
C(54)	4g	0.0513(2)	0.5786(5)	0.0825(3)	0.028(4)	0.049(5)	0.044(5)	0.000(3)	0.009(3)	-0.004(4)
C(55)	4g	0.0935(2)	0.3190(4)	0.0176(2)	0.019(3)	0.042(4)	0.025(4)	0.004(3)	0.005(3)	0.010(3)
C(56)	4g	0.1143(2)	0.2532(5)	-0.0203(3)	0.043(4)	0.042(5)	0.050(5)	0.000(4)	0.023(4)	-0.009(4)
C(57)	4g	0.0892(3)	0.1589(5)	-0.0394(3)	0.079(6)	0.030(5)	0.059(6)	0.003(4)	0.010(4)	-0.020(4)
C(58)	4g	0.0406(3)	0.1276(5)	-0.0211(3)	0.058(5)	0.035(5)	0.069(6)	-0.016(4)	0.003(4)	0.000(4)
C(59)	4g	0.0201(2)	0.1905(5)	0.0103(3)	0.044(4)	0.041(5)	0.033(6)	-0.010(4)	0.013(4)	-0.004(4)
C(60)	48 40	0.0434(2)	0.2640(3)	-0.1038(2)	0.036(4)	0.041(5)	0.038(3)	-0.003(3)	0.009(3)	-0.001(4)
C(62)	78 40	0.1020(2)	0.0920(3)	-0.1036(2)	0.024(4)	0.036(5)	0.028(4)	0.002(3)	0.012(3)	0.01(3)
C(63)	40	0.0202(2)	0.7445(7)	-0.1718(3)	0.030(4)	0.077(6)	0.052(5)	0.010(4)	0.003(3)	0.019(5)
C(64)	4g	0.0350(3)	0.8483(6)	-0.1640(3)	0.062(5)	0.048(6)	0.071(6)	0.020(4)	0.031(5)	0.024(5)
C(65)	4g	0.0832(3)	0.8738(6)	-0.1261(3)	0.064(5)	0.041(5)	0.071(6)	-0.006(4)	0.009(4)	0.003(4)
C(66)	4g	0.1160(2)	0.7969(6)	-0.0963(3)	0.040(4)	0.051(5)	0.041(5)	0.001(4)	0.001(3)	0.001(4)
C(67)	4g	0.1665(2)	0.5111(6)	-0.1195(2)	0.040(4)	0.060(5)	0.020(4)	0.015(4)	-0.001(3)	0.008(4)
C(68)	4g	0.2141(3)	0.5362(6)	-0.1411(3)	0.057(5)	0.088(7)	0.046(5)	0.015(4)	0.032(4)	0.011(4)
C(69)	48	0.2302(4)	0.4735(8)	-0.1830(4)	0.089(7)	0.13(1)	0.069(8)	0.054(7)	0.053(6)	0.037(7)
C(70)	4g	0.1990(5)	0.3882(9)	-0.2046(4)	0.14(1)	0.110(9)	0.037(6)	0.065(8)	0.041(7)	0.014(6)
C(71)	4g	0.1517(4)	0.3633(7)	-0.1851(3)	0.103(7)	0.091(7)	0.043(6)	0.032(6)	-0.008(5)	-0.022(5)
C(72)	4g	0.1353(3)	0.4251(6)	-0.1424(3)	0.055(5)	0.074(6)	0.041(5)	0.017(4)	0.004(4)	-0.012(4)
C(74)	48 4 c	0.2133(2)	U./Y/Y(3) 0.7722(4)	0.1120(3)	0.037(4)	0.045(5)	0.041(3)	0.000(3)	0.013(3)	0.003(4)
C(75)	78 40	0.1021(3)	0.7755(0)	0.1212(3)	0.039(4)	0.070(0)	0.076(0)	-0.001(4)	0.010(4)	0.024(3)
C(76)	-8 40	0.1254(3)	0.9152(6)	0.0536(4)	0.050(5)	0.066(6)	0.098(7)		-0.002(5)	0.006(5)
C(77)	-8 4g	0.1768(3)	0.9386(5)	0.0489(3)	0.066(5)	0.047(5)	0.069(6)	-0.007(5)	0.006(5)	0.011(4)
C(78)	4g	0.2216(3)	0.8786(6)	0.0758(3)	0.040(4)	0.060(5)	0.058(6)	-0.008(4)	0.017(4)	0.003(4)
	-			• •	• •	••	• •	•••		• •

Acknowledgment. The work was supported by the Deutsche Forschungsgemeinschaft (grant no. SPP 1166).

References

- 1. Schmidbaur, H.; Deschler, U.: Die Atomsequenz PCPCP als Grundstrukturelement für Phosphoniumsalze, Ylide und deren Alkalikomplexe. Chem. Ber. 116 (1983) 1386-1392.
- Schmidbaur, H.; Deschler, U.; Milewski-Mahrla, B.: Ein neuer ylidischer Organophosphor-Ligand. Angew. Chem. 93 (1981) 598-599.
- Spannenberg, A.; Baumann, W.; Rosenthal, U.: Early transition-metal complexes of α-keto-stabilized phosphorus ylides. Appl. Organomet. Chem. 14 (2000) 611-615.
- Spannenberg, A.; Baumann, W.; Rosenthal, U.: Palladium(II) Complexes of α-Stabilized Phosphorus Ylides. Organometallics 19 (2000) 3991-3993.
- 5. Karsch, H. H.; Graf, V. W.; Scherer, W.: Phosphane coordination to rare

earth metal centers: monomeric, solvent-free complexes of type Cp'_2LnX with phosphanoethyl substituted cyclopentadienyl ligands. J. Organomet. Chem. **604** (2000) 72-82.

- Hitchcock, P. B.; Lappert, M. F.; MacKinnon, I. A.: Use of a Highly Hindered Phosphino-alkoxide Ligand in the Formation of Monomeric Homoleptic Lanthanoid Metal Complexes: X-Ray Structures of [Ln(OCBu¹₂CH₂PMe₂)₃] (Ln = Y or Nd). J. Chem. Soc., Chem. Commun. (1988) 1557-1558.
- Sheldrick, G. M.: SHELXS-97. Program for the Solution of Crystal Structures. University of Göttingen, Germany 1997.
- Sheldrick, G. M.: SHELXL-97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany 1997.