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Abstract

A robust residual-based a posteriori estimator is proposed for the SUPG finite element
method applied to stationary convection-diffusion-reaction equations. The error in the nat-
ural SUPG norm is estimated. The main concern of this paper is the consideration of the
convection-dominated regime. A global upper bound and a local lower bound for the error
are derived, where the global upper estimate relies on some hypotheses. Numerical stud-
ies demonstrate the robustness of the estimator and the fulfillment of the hypotheses. A
comparison to other residual-based estimators with respect to the adaptive grid refinement
is also provided.
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1 Introduction

A posteriori error estimation in the context of stationary convection-dominated
convection-diffusion-reaction equations is studied in this paper. This kind of
equations describe the transport of a quantity such as temperature or con-
centration. In applications, the convective forces usually dominate the diffu-
sive forces. In this case, standard discretization methods do not provide good
approximations. Stabilization techniques are employed to produce accurate
numerical approximations. The study of appropriated schemes to deal with
the convection-dominated regime is a subject that has received a lot of at-
tention in the last decades, see [15,17] for an overview of results. The most
popular stabilized finite element method is the Streamline-Upwind Petrov-
Galerkin (SUPG) method introduced in [3,8]. This method will be considered
in the present paper. The results obtained with the SUPG method are gen-
erally not perfect because there are often spurious oscillations in a vicinity
of layers. Nevertheless, the SUPG method has been proved in a competitive
study of stabilized discretizations [2] as a good choice to compute approxima-
tions where sharpness and position of layers are important. With respect to
efficiency (quality of the computed solution per computing time), this method
outperformed all modern approaches that where included in the studies of [2].

In the review [17], the author prognosticates that adaptive methods will tri-
umph over all types of convection-diffusion problems, although much work re-
mains to be done. It is well known that for the design of an adaptive method
the provision of an appropriate a posteriori error estimator is necessary. A
robust (with respect to the ratio of diffusion and convection) upper estimate
serves as actual error estimate and stopping criterion of the solution process.
Local lower estimates control an adaptive grid refinement. About a decade
ago, a competitive study of a number of proposed error estimators for the
SUPG solution of convection-dominated convection-diffusion equations [10]
came to the conclusion that none of them is robust and that the quality of
the adaptively refined grids is often not satisfactorily. Since then, only a few
contributions concerning new a posteriori error estimators for the considered
class of problem and type of discretization can be found in the literature. The
two most important ones [20,16] will be discussed below.

In the present paper, robust residual-based a posteriori error bounds are de-
rived for the error of the SUPG finite element approximation. The error bounds
are obtained in the norm typically used in the a priori analysis of this method.
Since the SUPG method is the most popular stabilized finite element method
for convection-diffusion problems, there were of course attempts to derive a
posteriori error estimates for this method. In [19], an a posteriori error bound
is presented for the error in the norm (ε‖∇v‖2

0 +‖v‖2
0)1/2, ε being the diffusion

parameter. This bound is not robust. An extension of the analysis of [19] led
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in [20] to a robust error estimator for a norm that adds to the norm of [19]
a dual norm of the convective derivative. The additional term in this norm
can be only approximated. Some error bounds are also proved in [16] in the
one-dimensional case in a norm that includes a semi-norm of the error of order
1/2. In summary, there are robust a posteriori error estimates in the literature
but only for norms that do not show up in the a priori analysis, that are hard
to compute, and that are, in our opinion, not of interest in applications.

The main goal of this paper is to prove a robust a posteriori error bound for
the method in the same norm as used in the a priori error analysis, namely the
SUPG norm. As shall be seen in Section 3, the derivation of the upper bound
will use some hypotheses. These hypotheses are probably not fulfilled in the
worst case. But it will be argued and checked numerically that they are true
in standard situations. Because of the hypotheses, the obtained results are
from the mathematical point of view less general than, e.g., the results of [20].
However, we think that from the practical point of view the derivation of a
robust error estimator for the natural norm of the SUPG method is of interest.
A similar situation can be found in [4], where the derivation of an a posteriori
error estimator for the natural norm of some other stabilized discretization is
also based on an assumption (a saturation assumption) that most probably is
not satisfied in the worst case.

The paper is organized as follows. In Section 2, the considered equations,
some preliminaries, and notations are presented. Section 3 is devoted to the
derivation of a robust global upper bound for the error in the SUPG norm.
Hypotheses that relate the error of an interpolant in different norms and the
error of the SUPG approximation will be assumed. A comparison between
the derived error estimator and other residual-based error estimators from the
literature is provided in Remark 3. In Section 4, local lower bounds for the
error are obtained. Both in Sections 3 and 4, the case ε � hK is considered
to be able to bound the errors in the SUPG norm. The key point is that
in the convection-dominated regime there are two additional terms in the
bounds that are negligible in this case compared with the other terms, see
Remarks 2 and 4. On the other hand, in the diffusion-dominated regime, the
derived error estimator possesses the same weights as the estimators from
[19,20], see Remark 3. Section 5 provides numerical studies. For the derived
error estimator, the robustness of the effectivity index can be observed for
different examples and finite elements of different polynomial degree. With
respect to the adaptive grid refinement, it turns out that the proposed error
estimator tends to refine subregions with strong singularities deeper and to
start the refinement of subregions with weaker singularities later than other
residual-based a posteriori error estimators.
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2 The equations, notations, preliminaries

Throughout the paper, standard notations are used for Sobolev spaces and
corresponding norms, see, e.g., [5]. In particular, given a measurable set D ⊂
Rd, the inner product in L2(D) or L2(D)d is denoted by (·, ·)D and the notation
(·, ·) is used instead of (·, ·)Ω. The norm (seminorm) inWm,p(D) will be denoted
by ‖ · ‖m,p,D (| · |m,p,D), with the convention ‖ · ‖m,D = ‖ · ‖m,2,D.

This paper considers stationary convection-diffusion-reaction equations of the
form

− ε∆u+ b · ∇u+ cu= f in Ω,

u= 0 on ΓD, (1)

ε
∂u

∂n
= ε∂nu= g on ΓN ,

where Ω in a polygonal domain in Rd, d ≥ 2, with Lipschitz boundary Γ
consisting of two disjoint components ΓD and ΓN . The Dirichlet part ΓD has
a positive (d−1)-dimensional Lebesgue measure and ∂Ω− ⊂ ΓD, ∂Ω− being the
inflow boundary of Ω, i.e., the set of points x ∈ ∂Ω such that b(x) ·n(x) < 0.
It will be assumed that 0 < ε, b ∈ W 1,∞(Ω), c ∈ L∞(Ω), f ∈ L2(Ω), and (1)
is scaled such that ‖b‖L∞(Ω) = O(1), ‖c‖L∞(Ω) = O(1), and 0 < ε� 1. Hence,
the convection-dominated regime is studied. Furthermore, it will be assumed
that one of the following conditions is fulfilled: either

c(x)− 1

2
div(b(x)) = µ(x) ≥ µ0 > 0 ∀ x ∈ Ω, (2)

or

− 1

2
div(b(x)) = µ(x) ≥ µ0 = 0 ∀ x ∈ Ω, and c ≡ 0. (3)

Then, it is well known that (1) possesses a unique weak solution u ∈ H1
D(Ω) =

{v ∈ H1(Ω) : v|ΓD
= 0} that satisfies

ε(∇u,∇v) + (b · ∇u, v) + (cu, v) = (f, vh) + (g, vh)ΓN
∀v ∈ H1

D(Ω), (4)

e.g., see [15].

Let {Th}, h > 0, be a family of partitions of Ω. In the analysis, it will be
assumed that all partitions are admissible, i.e. any two (compact) mesh cells
are either disjoint or they share a complete k face, 0 ≤ k ≤ d−1. Furthermore,
the family should be regular, i.e., there exists a constant σ such that for each
mesh cell K ∈ Th it holds hK/ρK ≤ σ, where hK and ρK denote the diameter
of K and the diameter of the largest ball inscribed into K, respectively. The
characteristic parameter of the triangulation is given by h = maxK∈Th hK . The
conforming finite element space on a triangulation Th consisting of piecewise
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polynomials of local degree less than or equal to r that vanish on the Dirichlet
boundary will be denoted by Vh,r ⊂ H1

D(Ω).

Since the triangulations are assumed to be regular, the following inverse in-
equality holds for each vh ∈ Vh,r and each mesh cell K ∈ Th, see, e.g., [5,
Theorem 3.2.6],

‖vh‖m,q,K ≤ cinvh
l−m−d

(
1
q′−

1
q

)
K ‖vh‖l,q′,K , (5)

where 0 ≤ l ≤ m ≤ 1 and 1 ≤ q′ ≤ q ≤ ∞. In addition, it is assumed that
the space Vh,r satisfies the following local approximation property: for each
v ∈ V ∩Hr+1(Ω) there exists v̂h ∈ Vh,r such that

‖v − v̂h‖0,K + hK‖∇(v − v̂h)‖0,K + h2
K‖∆(v − v̂h)‖0,K ≤ Chr+1

K ‖v‖r+1,K . (6)

Following the notation of [19], the set of all d− 1 faces in Th is denoted by Eh.
This set can be decomposed into Eh = Eh,Ω ∪Eh,N ∪Eh,D, where Eh,Ω, Eh,N and
Eh,D refer to interior faces, faces on the Neumann boundary ΓN , and faces on
the Dirichlet boundary ΓD, respectively. For E ∈ Eh, let hE be the diameter of
E. The shape regularity of the triangulations implies that hK ' hE whenever
E ⊂ ∂K and hK ' hK′ if K ∩K ′ 6= ∅. The set of mesh cells having a common
d−1 face is denoted by ωE = ∪E⊂∂K′K ′. For any piecewise continuous function
v and any E ∈ Eh,Ω, the jump of v across E in an arbitrary but fixed direction

nE orthogonal to E is denoted by JvKE. Let K̃ = ∪K′∈Th,K′∩K 6=∅K
′ denote the

patch of mesh cells that are associated with K. It will be assumed that the
number of mesh cells in K̃ is uniformly bounded for all Th.

Let q ∈ [1,∞) and let s ∈ {0, 1} with s ≤ t ≤ r + 1. Then, Ih denotes a
bounded linear interpolation operator Ih : W t,q(Ω)→ Vh,r that satisfies for all
v ∈ W t,q(Ω) and all mesh cells K ∈ Th

|v − Ihv|s,q,K ≤Cht−sK |v|t,q,K , (7)

e.g., see [5]. Using the technique of [14, Lemma 2.1], one obtains for all v ∈
H1

D(Ω) ∩Hr+1(Ω) the estimate

‖∆(v − Ihv)‖2
0,K ≤ Ch2r−2

K ‖v‖2
r+1,K . (8)

A local trace inequality that takes the size of the mesh cell into account was
proved in [19, Lemma 3.1]: For v ∈ H1(K) and E ⊂ ∂K it holds
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‖v‖0,K ≤ C
(
h
−1/2
E ‖v‖0,K + ‖v‖1/2

0,K‖∇v‖
1/2
0,K

)
. (9)

For presenting the SUPG finite element discretization of (1), the bilinear form
aSUPG(·, ·) : H1

D ×H1
D → R is introduced

aSUPG(u, v) = ε(∇u,∇v) + (b · ∇u, v) + (cu, v)

+
∑

K∈Th
δK(−ε∆u+ b · ∇u+ cu,b · ∇v)K ,

where δK is the stabilization parameter (generally a function depending on
x). In the convection-dominated regime, the optimal choice of δK is known to
be δK = O(hK), [15]. Then, the SUPG finite element method reads as follows:
Find uh ∈ Vh,r such that

aSUPG(uh, vh) = (f, vh) + (g, vh)ΓN
+

∑
K∈Th

δK(f,b · ∇vh)K ∀vh ∈ Vh,r. (10)

The natural norm for analyzing (10) is given by

‖v‖SUPG :=

ε‖∇v‖2
0 +

∑
K∈Th

δK‖b · ∇v‖2
0,K + ‖µ1/2uh‖2

0

1/2

, (11)

in the case µ0 > 0 and by

‖v‖SUPG :=

ε‖∇v‖2
0 +

∑
K∈Th

δK‖b · ∇v‖2
0,K

1/2

, (12)

in the case µ0 = 0. A straightforward calculation shows that the SUPG method
satisfies the Galerkin orthogonality

aSUPG(u− uh, vh) = 0, ∀vh ∈ Vh,r. (13)

3 A global upper error bound

This section provides the global upper a posteriori bound of the error. The
analysis relies on Hypothesis 1 below that relates interpolation errors in dif-
ferent norms and the error of the SUPG approximation in the SUPG norm.
Hypothesis 1 will be discussed in detail and numerically checked in Section 5.

Hypothesis 1 It will be assumed that several norms of the interpolation error
u− Ihu can be bounded by norms of the error u− uh:
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∑
K∈Th

δ−1
K ‖u− Ihu‖2

0,K ≤ 2‖u− uh‖2
SUPG, (14)

∑
K∈Th

δK‖b · ∇(u− Ihu)‖2
0,K ≤ 2‖u− uh‖2

SUPG, (15)

∑
E∈Eh
‖u− Ihu‖2

0,E ≤ 2‖u− uh‖2
SUPG. (16)

Remark 1 Discussion of Hypothesis 1. Let u ∈ H1
D(Ω) ∩ Hr+1(Ω) and

consider a family of uniform triangulations. Since r ≥ 1 it follows that u ∈
H2(Ω) and then the Lagrange interpolation operator can be used. From the
error analysis of the SUPG method, it is well known [15] that the estimate

‖u− uh‖2
SUPG = O

(
h2r+1

)
(17)

holds. Using the optimal choice δK = O(hK) of the stabilization parameter,
one gets from the interpolation estimate (7)

∑
K∈Th

δ−1
K ‖u− Ihu‖2

0,K =O
(
h2r+1

)
,

∑
K∈Th

δK‖b · ∇(u− Ihu)‖2
0,K ≤‖b‖2

∞
∑

K∈Th
δK‖∇(u− Ihu)‖2

0,K = O
(
h2r+1

)
.

With the trace estimate (9), one obtains also

∑
E∈Eh
‖u− Ihu‖2

0,E

≤C
∑

K∈Th

(
h−1
K ‖u− Ihu‖2

0,K + ‖u− Ihu‖0,K‖∇(u− Ihu)‖0,K

)
= O

(
h2r+1

)
.

Hence, all terms in (14) – (16) are of the same order.

It is well known from numerical simulations that the solutions obtained with
the SUPG method are polluted with spurious oscillations in a vicinity of lay-
ers [11,2]. In contrast, the interpolation Ihu with the Lagrange interpolation
operator is nodally exact. The absence of spurious oscillations in the inter-
polant justifies, in our opinion, Hypothesis 1, at least in some standard case.
This statement will be supported numerically in Section 5, see particularly
Example 2. Of course, we are aware that Hypothesis 1 most probably does
not hold in the worst case scenario.

Lemma 1 Let v = u − uh, u being the solution of (4) and uh its SUPG
approximation computed by solving (10). If the SUPG parameters are chosen
such that

δK ≤
h2
K

8εc2
inv

, (18)

7



and in the case (2) also such that

δK ≤
µ0

2‖c‖2
K,∞

c2
inv, (19)

then

aSUPG(v, v)≥ 1

2
‖v‖2

SUPG −
∑

K∈Th
4δKh

−2
K ε2c2

inv‖∇(u− Ihu)‖2
0,K

−
∑

K∈Th
2δKε

2‖∆(u− Ihu)‖2
0,K . (20)

Proof The proof will be presented for the case (2). The simplifications for the
case (3) are obvious. A straightforward calculation leads from the definition
of aSUPG(·, ·) to

aSUPG(v, v) = ‖v‖2
SUPG +

∑
K∈Th

δK(cv,b · ∇v)K −
∑

K∈Th
δKε(∆v,b · ∇v)K . (21)

The terms on the right hand side of (21) have to be bounded. Using the
Cauchy–Schwarz inequality, Young’s inequality, and (19) gives directly

∣∣∣∣∣∣
∑

K∈Th
δK(cv,b · ∇v)K

∣∣∣∣∣∣
≤
∑

K∈Th
δK(cv, cv)K +

1

4

∑
K∈Th

δK‖b · ∇v‖2
0,K

≤
∑

K∈Th
δK
‖c‖2

K,∞

µ0

‖µ1/2v‖2
0 +

1

4

∑
K∈Th

δK‖b · ∇v‖2
0,K

≤ 1

2
‖µ1/2v‖2

0 +
1

4

∑
K∈Th

δK‖b · ∇v‖2
0,K . (22)

The estimate of the second term on the right hand side of (21) starts also with
the Cauchy–Schwarz inequality and Young’s inequality∣∣∣∣∣∣−

∑
K∈Th

δKε(∆v,b · ∇v)K

∣∣∣∣∣∣ ≤
∑

K∈Th
δKε

2‖∆v‖2
0,K +

1

4

∑
K∈Th

δK‖b ·∇v‖2
0,K . (23)

For the first term on the right hand side of (23), adding and subtracting Ihu
yields∑

K∈Th
δKε

2‖∆v‖2
0,K ≤ 2

∑
K∈Th

δKε
2
(
‖∆(u− Ihu)‖2

0,K + ‖∆(Ihu− uh)‖2
0,K

)
.

(24)
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One gets for the second term on the right hand side of (24) by applying the
inverse estimate (5), adding and subtracting u, and applying the definition of
the stabilization parameters (18)

∑
K∈Th

2δKε
2‖∆(Ihu− uh)‖2

0,K

≤
∑

K∈Th
2δKε

2h−2
K c2

inv‖∇(Ihu− uh)‖2
0,K

≤ 4
∑

K∈Th
δKε

2h−2
K c2

inv

(
‖∇v‖2

0,K + ‖∇(u− Ihu)‖2
0,K

)
≤ 1

2
ε‖∇v‖2

0 + 4
∑

K∈Th
δKε

2h−2
K c2

inv‖∇(u− Ihu)‖2
0,K . (25)

Inserting (25) into (24), then (24) into (23) and finally (23), (22) into (21)
gives (20). 2

If ‖c‖K,∞ = 0 in (19), then δK should be just bounded on K.

In the next step, a representation of the error will be derived. Using the
Galerkin orthogonality (13), the weak form of the equation (4), and inte-
gration by parts gives for all v ∈ H1

D(Ω)

aSUPG(u− uh, v)

= (f, v − Ihv) + (g, v − Ihv)ΓN
+

∑
K∈Th

δK(f,b · ∇(v − Ihv))K

−ε(∇uh,∇(v − Ihv))− (b · ∇uh, v − Ihv)− (cuh, (v − Ihv))

−
∑

K∈Th
δK(−ε∆uh + b · ∇uh + cuh,b · ∇(v − Ihv))K

=
∑

K∈Th
(f + ε∆uh − b · ∇uh − cuh, v − Ihv)K

+
∑

K∈Th
δK(f + ε∆uh − b · ∇uh − cuh,b · ∇(v − Ihv))K

+
∑

E∈Eh,Ω
(−εJ∂nE

uhKE, v − Ihv)E +
∑

E∈Eh,N
(g − ε∂nE

uh, v − Ihv)E

=
∑

K∈Th
(RK(uh), v − Ihv)K +

∑
K∈Th

δK(RK(uh),b · ∇(v − Ihv))K

+
∑
E∈Eh

(RE(uh), v − Ihv)E, (26)

where the mesh cell and the face residuals are defined by
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RK(uh) := f + ε∆uh − b · ∇uh − cuh |K ,

RE(uh) :=


−εJ∂nE

uhKE if E ∈ Eh,Ω,

g − ε∂nE
uh if E ∈ Eh,N ,

0 if E ∈ Eh,D.

Setting v = u−uh and observing that v−Ihv = (u−uh)−Ih(u−uh) = u−Ihu
leads together with (20) to

1

2
‖u− uh‖2

SUPG

≤
∑

K∈Th
(RK(uh), u− Ihu)K +

∑
K∈Th

δK(RK(uh),b · ∇(u− Ihu))K

+
∑
E∈Eh

(RE(uh), u− Ihu)E +
∑

K∈Th
4δKh

−2
K ε2c2

inv‖∇(u− Ihu)‖2
0,K

+
∑

K∈Th
2δKε

2‖∆(u− Ihu)‖2
0,K . (27)

Now, the first three terms on the right hand side of (27) have to be bounded
such that expressions with u − Ihu are absorbed by the left hand side. The
norm on the left hand side consists of two or three terms, respectively, see (11)
and (12). Thus, there are different ways for absorbing u− Ihu.

Consider the first term on the right hand side of (27). In the first step of the
estimate, the Cauchy–Schwarz inequality gives

∑
K∈Th

(RK(uh), u− Ihu)K ≤
∑

K∈Th
‖RK(uh)‖0,K‖u− Ihu‖0,K

=
∑

K∈Th
‖RK(uh)‖0,K‖v − Ihv‖0,K .

In the case (2), one can apply the interpolation estimate (7) to ‖v − Ihv‖0,K

with s = t = 0 and Young’s inequality to get

∑
K∈Th

(RK(uh), u− Ihu)K ≤
∑

K∈Th
C‖RK(uh)‖0,K‖u− uh‖0,K

≤
∑

K∈Th

C

µ0

‖RK(uh)‖2
0,K +

1

12
‖µ1/2(u− uh)‖2

0.(28)

Alternatively, one can use (7) with s = 0, t = 1 to obtain
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∑
K∈Th

(RK(uh), u− Ihu)K ≤
∑

K∈Th
C‖RK(uh)‖0,KhK‖∇(u− uh)‖0,K

≤
∑

K∈Th

Ch2
K

ε
‖RK(uh)‖2

0,K +
ε

12
‖∇(u− uh)‖2

0.(29)

Finally, one can try to use the term with the streamline derivative for the
bound. Young’s inequality yields

∑
K∈Th

(RK(uh), v − Ihv)K

≤ 6
∑

K∈Th
δK‖RK(uh)‖2

0,K +
1

24

∑
K∈Th

δ−1
K ‖u− Ihu‖2

0,K . (30)

Collecting the estimates (28), (29), and (30) together with hypothesis (14)
leads to

∑
K∈Th

(RK(uh), u− Ihu)K

≤min

{
C

µ0

, Ch2
Kε
−1, 6δK

}
‖RK(uh)‖2

0,K +
1

12
‖u− uh‖2

SUPG. (31)

The size of the individual terms in the minimum will be discussed in Remark 3.

For estimating the second term on the right hand side of (27), first the Cauchy–
Schwarz and Young’s inequality are applied

∑
K∈Th

δK(RK(uh),b · ∇(u− Ihu))K

≤ 6
∑

K∈Th
δK‖RK(uh)‖2

0,K +
1

24

∑
K∈Th

δK‖b · ∇(u− Ihu)‖2
0,K .

Using (15), one obtains

∑
K∈Th

δK(RK(uh),b · ∇(u− Ihu))K

≤ 6
∑

K∈Th
δK‖RK(uh)‖2

0,K +
1

12
‖u− uh‖2

SUPG. (32)

The estimate of the third term on the right hand side of (27) starts like the
estimates of the other terms
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∑
E∈Eh

(RE(uh), u− Ihu)E ≤
∑
E∈Eh
‖RE(uh)‖0,E‖u− Ihu‖0,E

=
∑
E∈Eh
‖RE(uh)‖0,E‖v − Ihv‖0,E. (33)

Using (9), (7), the shape regularity of the mesh cells, the Cauchy–Schwarz
inequality, and a straightforward estimate given in [19, Lemma 3.2], one gets

‖v − Ihv‖0,E

≤C

h−1/2
K min

{
hKε

−1/2, µ
−1/2
0

} (
ε1/2‖∇v‖0,K + ‖µ1/2v‖0,K

)
+ε−1/4 min

{
hKε

−1/2, µ
−1/2
0

}1/2

×
(
ε1/2‖∇v‖0,K + ‖µ1/2v‖0,K

)1/2
ε1/4‖∇v‖1/2

0,K


≤Cε−1/4 min

{
hKε

−1/2, µ
−1/2
0

}1/2 (
ε‖∇v‖2

0,K + ‖µ1/2v‖2
0,K

)1/2

≤C min

h
1/2
K

ε1/2
,

1

µ
1/4
0 ε1/4

 ‖u− uh‖SUPG,K .

This estimate is inserted into (33) and Young’s inequality is applied. A second
estimate of the term on the faces can be obtained by applying first Young’s
inequality in (33) and afterwards (16). Using the shape regularity of the tri-
angulation, one obtains

∑
E∈Eh

(RE(uh), u− Ihu)E

≤
∑
E∈Eh

min

{
6, C

hE
ε
,

C

ε1/2µ
1/2
0

}
‖RE(uh)‖2

0,E +
1

12
‖u− uh‖2

SUPG. (34)

Theorem 1 Let the conditions of Lemma 1 hold. Under Hypothesis 1, one
gets the following global upper bound

‖u− uh‖2
SUPG≤ η2

1 + η2
2 + η2

3 +
∑

K∈Th
16δKh

−2
K ε2c2

inv‖∇(u− Ihu)‖2
0,K

+
∑

K∈Th
8δKε

2‖∆(u− Ihu)‖2
0,K , (35)

where
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η2
1 =

∑
K∈Th

min

{
C

µ0

, C
h2
K

ε
, 24δK

}
‖RK(uh)‖2

0,K ,

η2
2 =

∑
K∈Th

24δK‖RK(uh)‖2
0,K ,

η2
3 =

∑
E∈Eh

min

{
24, C

hE
ε
,

C

ε1/2µ
1/2
0

}
‖RE(uh)‖2

0,E. (36)

Proof The proof follows directly by inserting (31), (32), and (34) into (27).
2

Remark 2 On the additional terms on the right hand side of (35).
Besides the a posteriori terms, there are two extra terms on the right hand
side of (35). It will be discussed here that these terms are in the convection-
dominated regime negligible compared with the error of the SUPG approx-
imation. This point justifies the use of the quantity (η2

1 + η2
2 + η2

3)1/2 as an
upper error estimate.

Consider the convection-dominated regime. Then, the order of convergence of
the error of the SUPG approximation is r + 1/2, see (17). For the first extra
term on the right hand side of (35), one obtains with (7)

∑
K∈Th

16δKh
−2
K ε2c2

inv‖∇(u− Ihu)‖2
0,K ≤C

∑
K∈Th

δKh
−2
K ε2c2

invh
2r
K‖u‖2

r+1,K

≤C
∑

K∈Th

(
ε

hK

)2

δKh
2r
K‖u‖2

r+1,K . (37)

Since δK = O(hK) this term is O(h2r+1) but it is multiplied by the factor
(ε/hK)2 which is very small for ε � hK . For the other additional term the
reasoning is similar. Applying (8) leads to

∑
K∈Th

8δKε
2‖∆(u− Ihu)‖2

0,K ≤C
∑

K∈Th
δKε

2h2r−2
K ‖u‖2

r+1,K

≤C
∑

K∈Th

(
ε

hK

)2

δKh
2r
K‖u‖2

r+1,K ,

which is exactly the same as (37).

In the diffusion-dominated regime, the two extra terms do not appear in the
bounds, see Remark 3.

Remark 3 Comparison with residual-based error estimators from
the literature. Residual-based a posteriori error estimators for convection-
diffusion-reaction equations can be obtained for different norms. With the
standard approach of deriving this kind of estimators, one gets
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‖∇(u− uh)‖2
0≤C

 ∑
K∈Th

h2
K‖RK(uh)‖2

0,K +
∑
E∈Eh

hE‖RE(uh)‖2
0,E


+h.o.t., (38)

‖u− uh‖2
0≤C

 ∑
K∈Th

h4
K‖RK(uh)‖2

0,K +
∑
E∈Eh

h3
E‖RE(uh)‖2

0,E


+h.o.t. (39)

The estimates (38) and (39) are not uniform, i.e., the constants C depend on
the Péclet number, i.e. on the ratio of diffusion and convection. The higher or-
der terms describe data approximation errors. In [19], a non-uniform residual-
based error estimator for the energy norm

‖v‖en =
(
ε‖∇v‖2

0 + ‖µ1/2v‖2
0

)1/2

was derived. The analysis of [19] was refined in [20], leading to a uniform
residual-based a posteriori error estimator for the energy norm plus a dual
norm of the convective derivative

‖u− uh‖2
en + sup

v∈H1
D(Ω)

〈b · ∇(u− uh), v〉2

‖v‖2
en

≤C

 ∑
K∈Th

min

{
1

µ0

,
h2
K

ε

}
‖RK(uh)‖2

0,K

+
∑
E∈Eh

min

{
hE
ε
,

1

ε1/2µ
1/2
0

}
‖RE(uh)‖2

0,E

+ h.o.t. (40)

Note that the weights in (40) appear also in (36). Indeed, in the diffusion-
dominated regime, the weights including hK and hE will eventually become
effective in (36) and (40) such that in both cases one obtains

‖u− uh‖2
SUPG ≤ C

 ∑
K∈Th

h2
K

ε
‖RK(uh)‖2

0,K +
∑
E∈Eh

hE
ε
‖RE(uh)‖2

0,E

+ h.o.t.

That means, the weights of the H1 norm estimator (38) divided by ε are
recovered. At this point, a comment about the two additional terms in (35) is
in order. In the diffusion-dominated regime, the norms ‖ · ‖en and ‖ · ‖SUPG are
equivalent. Then, one can get the error bounds for the energy norm instead
of the SUPG norm and following the analysis of [19,20], the two extra terms
in (35) do not appear.

On the other hand, in the convection-dominated regime on coarse grids, i.e.,
ε� hK , the other weights 24δK and 24 are effective in (36) since the minimum
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is attained at these values of the weights. Hence, in this regime δK = O(hK)
and the error estimate (35) becomes

‖u− uh‖2
SUPG ≤ C

 ∑
K∈Th

hK‖RK(uh)‖2
0,K +

∑
E∈Eh
‖RE(uh)‖2

0,E

+ h.o.t. (41)

Both parts
(∑

K∈Th δK‖b · ∇(u− uh)‖2
0,K

)1/2
and ‖µ1/2(u−uh)‖0 of the SUPG

error are bounded by the right hand side of (41). This gives for the a posteriori
bound the same difference of order h1/2 between the weighted L2 norm and
the L2 norm of the streamline derivative that is known from the a priori
error analysis. In the convection-dominated regime, the weights in (41) will
be generally smaller than the weights of (40). Thus, the right hand side of
(41) will be a smaller upper bound of the energy norm compared with the
right hand side of (40). Note that the scaling for the interior residual in (41)
is the same as for an a posteriori error estimate of an interior penalty finite
element method applied to convection-reaction equations, see [4]. The norm
considered in [4] possess also a contribution from the streamline derivative.

4 A local lower error bound

This section presents a local lower a posteriori estimate for the error in the
SUPG norm. The derivation of this estimate does not require an hypothesis
of the kind it was used for the global upper error bound.

Bubble functions are usually applied in the derivation of local lower residual-
based a posteriori error estimates. Let ψK be the interior bubble function
associated to the mesh cell K and let ψE be the face bubble function associated
to the face E that vanishes on the boundary of ωE = K ∪K ′, where K and
K ′ are the two mesh cells sharing the face E, see [18] for details. It is known
that there exists a constant CK independent of v and hK such that for all
v ∈ Pk(K), k ≥ 0, the following bounds hold

C−1
K ‖v‖2

0,K ≤ (v, vψK)0,K ≤ CK‖v‖2
0,K , (42)

C−1
K ‖v‖0,K ≤‖vψK‖0,K + hK‖∇(vψK)‖0,K ≤ CK‖v‖0,K . (43)

For the proof of this estimates see [18], [1, Theorem 2.2]. Similar estimates
hold for the face bubble functions. There exists a constant C independent of
v and hK such that for all v ∈ Pk(K), k ≥ 0, E ∈ ∂K, the following bounds

C−1‖v‖2
0,E ≤ (v, vψE)0,E ≤ C‖v‖2

0,E, (44)

h
−1/2
K ‖vψE‖0,K + h

1/2
K ‖∇(vψE)‖0,K ≤ C‖v‖0,E (45)
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are valid. Again, the proof can be found in [18], [1, Theorem 2.4].

4.1 Interior residuals

Consider a mesh cell K and let

RK,h(uh) = fh − εuh − bh · ∇uh − chuh

be a continuous approximation of the interior residual on K in a suitable finite-
dimensional space, not necessarily in Vh,r, where fh,bh and ch are appropriate
approximations of the coefficients. Then, it follows from (42) that

‖RK,h(uh)‖2
0,K ≤ CK (RK,h(uh), RK,h(uh)ψK)K . (46)

Let v = RK,h(uh)ψK , then this function vanishes on the boundary of K and it
can be extended to the rest of the domain as a continuous function by defining
its value outside K to be zero. The resulting function, again denoted by v,
belongs to the space H1

D(Ω). Using the same technique as for the derivation
of (26), without applying the Galerkin orthogonality, leads to

aSUPG(e, RK,h(uh)ψK) = (RK(uh), RK,h(uh)ψK)K
+δK (RK(uh),b · ∇(RK,h(uh)ψK))K , (47)

where e = u− uh. From (46) and (47) one obtains

‖RK,h(uh)‖2
0,K

≤CK

[
(RK,h(uh)−RK(uh), RK,h(uh)ψK)K

+aSUPG(e, RK,h(uh)ψK)− δK (RK(uh),b · ∇(RK,h(uh)ψK))K

]
=CK

[
(RK,h(uh)−RK(uh), RK,h(uh)ψK)K + aSUPG(e, RK,h(uh)ψK)

−δK ((RK(uh)−RK,h(uh)) ,b · ∇(RK,h(uh)ψK))K

−δK (RK,h(uh),b · ∇(RK,h(uh)ψK))K

]
. (48)

The terms on the right hand side of (48) have to be bounded. Besides the
Cauchy–Schwarz inequality or Hölder’s inequality, estimate (43) will be used.
One obtains for the first term

∣∣∣(RK,h(uh)−RK(uh), RK,h(uh)ψK)0,K

∣∣∣
≤‖ψKRK,h(uh)‖0,K‖RK,h(uh)−RK(uh)‖0,K

≤CK‖RK,h(uh)‖0,K‖RK,h(uh)−RK(uh)‖0,K , (49)
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for the third term

∣∣∣−δK ((RK(uh)−RK,h(uh)) ,b · ∇(RK,h(uh)ψK))K

∣∣∣
≤ δK‖RK(uh)−RK,h(uh)‖0,K‖b‖∞,K‖∇(RK,h(uh)ψK)‖0,K

≤CKδKh
−1
K ‖b‖∞,K‖RK,h(uh)−RK(uh)‖0,K‖RK,h(uh)‖0,K , (50)

and for the fourth term

∣∣∣−δK (RK,h(uh),b · ∇(RK,h(uh)ψK))K

∣∣∣
≤ δK‖RK,h(uh)‖0,K‖b‖∞,K‖∇(RK,h(uh)ψK)‖0,K

≤CKδK‖b‖∞,Kh
−1
K ‖RK,h(uh)‖2

0,K .

Choosing δK such that

δK ≤
hK

2C2
K‖b‖∞,K

, (51)

finishes the estimate of the fourth term

∣∣∣−δK (RK,h(uh),b · ∇(RK,h(uh)ψK))K

∣∣∣ ≤ 1

2CK

‖RK,h(uh)‖2
0,K . (52)

The goal of estimating the second term on the right hand side of (48) consists
in introducing the SUPG norm of the error. To this end, the estimate starts
with

|aSUPG(e, RK,h(uh)ψK)|
≤ ε1/2‖∇e‖0,Kε

1/2‖∇(RK,h(uh)ψK)‖0,K

+δ
1/2
K ‖b · ∇e‖0,Kδ

−1/2
K ‖RK,h(uh)ψK‖0,K

+‖µ1/2e‖0,K‖c‖∞,Kµ
−1/2
0 ‖RK,h(uh)ψK‖0,K

+δKε‖∆e‖0,K‖b‖∞,K‖∇(RK,h(uh)ψK)‖0,K

+δ
1/2
K ‖b · ∇e‖0,Kδ

1/2
K ‖b‖∞,K‖∇(RK,h(uh)ψK)‖0,K

+‖µ1/2e‖0,KδK‖c‖∞,Kµ
−1/2
0 ‖b‖∞,K‖∇(RK,h(uh)ψK)‖0,K . (53)

Using the inverse inequality (5), one gets

‖∆e‖0,K ≤‖∆(u− Ihu)‖0,K + ‖∆(Ihu− uh)‖
≤‖∆(u− Ihu)‖0,K + cinvh

−1
K ‖∇(Ihu− uh)‖0,K

≤‖∆(u− Ihu)‖0,K + cinvh
−1
K (‖∇e‖0,K + ‖∇(u− Ihu)‖0,K) .

Inserting this estimate into (53), applying (43), and rearranging terms leads
to
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|aSUPG(e, RK,h(uh)ψK)|

≤
[ (
ε1/2CKh

−1
K + ε1/2δKh

−2
K cinvCK‖b‖∞,K

)
ε1/2‖∇e‖0,K

+
(
‖c‖∞,Kµ

−1/2
0 CK + δKµ

−1/2
0 ‖c‖∞,K‖b‖∞,KCKh

−1
K

)
‖µ1/2e‖0,K

+
(
δ
−1/2
K CK + δ

1/2
K h−1

K ‖b‖∞,KCK

)
δ

1/2
K ‖b · ∇e‖0,K

+εh
−1/2
K ‖∇(u− Ihu)‖0,K

(
δKCKh

−3/2
K ‖b‖∞,Kcinv

)
+εh

1/2
K ‖∆(u− Ihu)‖0,K

(
δKCKh

−3/2
K ‖b‖∞,K

) ]
‖RK,h(uh)‖0,K . (54)

Let α̃K be the maximum of the terms in parentheses in (54) and set αK =√
3α̃K . Then, it follows that

|aSUPG(e, RK,h(uh)ψK)| ≤
[
αK‖e‖SUPG,K (55)

+α̃K

(
εh
−1/2
K ‖∇(u− Ihu)‖0,K + εh

1/2
K ‖∆(u− Ihu)‖0,K

)]
‖RK,h(uh)‖0,K .

Inserting (49), (50), (52), and (55) into (48) and using δKh
−1
K ≤ C leads to

1

2
‖RK,h(uh)‖0,K

≤CKαK‖e‖SUPG,K + C‖RK,h(uh)−RK(uh)‖0,K

+CKα̃K

(
εh
−1/2
K ‖∇(u− Ihu)‖0,K + εh

1/2
K ‖∆(u− Ihu)‖0,K

)
. (56)

An inspection of the individual terms of αK and α̃K gives that αK ≤ Ch
−1/2
K

and α̃K ≤ Ch
−1/2
K Denoting by

ηint,K := h
1/2
K ‖RK(uh)‖0,K , (57)

one obtains from (56) with the help of the triangle inequality

ηint,K ≤C
[
‖e‖SUPG,K

+h
1/2
K (‖f − fh‖0,K + ‖(b− bh) · ∇uh‖0,K + ‖(c− ch)uh‖0,K)

+εh
−1/2
K ‖∇(u− Ihu)‖0,K + εh

1/2
K ‖∆(u− Ihu)‖0,K

]
. (58)

Note that for δ = ChK the local error estimator ηint,K is of the same order as
the local contribution η2 of the global error estimator, see (36). If the minimum
of the terms in η1 is the last term, then also the local contribution of η1 is
of the same order as ηint,K . This situation will be the case in the convection-
dominated regime, see Remark 3.
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Remark 4 On the additional terms on the right hand side of (58).
The application of (7) yields

εh
−1/2
K ‖∇(u−Ihu)‖0,K ≤ Cεh

−1/2
K hrK‖u‖r+1,K̃

≤ C
(
ε

hK

)
h
r+ 1

2
K ‖u‖

r+1,K̃
, (59)

and using (8) the same bound is valid for the other term

εh
1/2
K ‖∆(u− Ihu)‖0,K ≤ Cεh

1/2
K hr−1

K ‖u‖r+1,K̃
≤ C

(
ε

hK

)
h
r+ 1

2
K ‖u‖

r+1,K̃
. (60)

Reasoning in the same way like in Remark 2, one finds that (59) and (60)
are in the convection-dominated regime ε � hK negligible compared with
‖e‖SUPG,K . The other additional terms in (58) are just the usual data approx-
imation errors. In practice, one has to take care that the data are approxi-
mated sufficiently well such that these terms are also negligible compared with
‖e‖SUPG,K . Then, ηint,K is the first contribution of a local a posteriori error
estimate.

4.2 Face residuals

The analysis of the face residuals follows in principal the analysis of the interior
residuals. LetRE,h(uh) be an approximation to the face residual from a suitable
finite-dimensional space. Then, one obtains with (44)

‖RE,h(uh)‖2
0,E ≤ C(RE,h(uh), RE,h(uh)ψE)E. (61)

Now, the function v = RE,h(uh)ψE is defined, which is continuous and which
vanishes on the boundary of ωE. This function can be extended by zero to Ω
such that a function v ∈ H1

D(Ω) is obtained. Inserting v into the analog of
(26), which is obtained without the application of the Galerkin orthogonality,
gives

aSUPG(e, RE,h(uh)ψE) =
∑

K∈ωE

(RK(uh), RE,h(uh)ψE)K

+
∑

K∈ωE

δK(RK(uh),b · ∇(RE,h(uh)ψE))K + (RE(uh), RE,h(uh)ψE)0,E.(62)

From (61) and (62), one gets
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‖RE,h(uh)‖2
0,E ≤C

[
(RE,h(uh)−RE(uh), RE,h(uh)ψE)E

+aSUPG(e, RE,h(uh)ψE)−
∑

K∈ωE

(RK(uh), RE,h(uh)ψE)K

−
∑

K∈ωE

δK(RK(uh),b · ∇(RE,h(uh)ψE))K
]
. (63)

The four terms on the right hand side of (63) have to be bounded. Applying
the Cauchy–Schwarz inequality and (44) yields

|(RE,h(uh)−RE(uh), RE,h(uh)ψE)0,E|
≤ ‖RE,h(uh)ψ

1/2
E ‖0,E‖(RE,h(uh)−RE(uh))ψ

1/2
E ‖0,E

≤C‖RE,h(uh)‖0,E‖(RE,h(uh)−RE(uh))‖0,E. (64)

For estimating the third and fourth terms on the right hand side of (63),
inequality (45) is applied

∣∣∣∣∣∣
∑

K∈ωE

(RK(uh), RE,h(uh)ψE)K

∣∣∣∣∣∣ ≤
∑

K∈ωE

‖RK(uh)‖0,K‖RE,h(uh)ψE‖0,K (65)

≤ C

 ∑
K∈ωE

h
1/2
K ‖RK(uh)‖0,K

 ‖RE,h(uh)‖0,E

and

∣∣∣∣∣∣
∑

K∈ωE

δK(RK(uh),b · ∇(RE,h(uh)ψE))K

∣∣∣∣∣∣
≤

∑
K∈ωE

δK‖RK(uh)‖0,K‖b‖∞,K‖∇(RE,h(uh)ψE)‖0,K

≤C

 ∑
K∈ωE

δKh
−1/2
K ‖RK(uh)‖0,K‖b‖∞,K

 ‖RE,h(uh)‖0,E

≤C

 ∑
K∈ωE

h
1/2
K ‖RK(uh)‖0,K‖b‖∞,K

 ‖RE,h(uh)‖0,E, (66)

where in the last estimate δK = O(hK) has been used. Finally, the definition
of aSUPG(·, ·), (54), and (45) give for the second term on the right hand side
of (63)
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|aSUPG(e, RE,h(uh)ψE)|

≤C
∑

K∈ωE

[
ε1/2‖∇e‖0,K

(
ε1/2h

−1/2
K + ε1/2δKh

−3/2
K ‖b‖∞,Kcinv

)
+δ

1/2
K ‖b · ∇e‖0,K

(
δ
−1/2
K h

1/2
K + δ

1/2
K h

−1/2
K ‖b‖∞,K

)
+‖µ1/2e‖0,K

(
h

1/2
K µ

−1/2
0 ‖c‖∞,K + δKh

−1/2
K µ

−1/2
0 ‖c‖∞,K‖b‖∞,K

)
+εh

−1/2
K ‖∇(u− Ihu)‖0,K

(
δKh

−1
K ‖b‖∞,Kcinv

)
+εh

1/2
K ‖∆(u− Ihu)‖0,K

(
δKh

−1
K ‖b‖∞,K

) ]
‖RE,h(uh)‖0,E. (67)

Note that δK = O(hK) in the convection-dominated case from what follows
that all terms in parentheses in (67) are O(1). Using the definition of ‖·‖SUPG,
one gets

|aSUPG(e, RE,h(uh)ψE)| ≤C
[
‖e‖SUPG,ωE

+
∑

K∈ωE

εh
−1/2
K ‖∇(u− Ihu)‖0,K

+
∑

K∈ωE

εh
1/2
K ‖∆(u− Ihu)‖0,K

]
‖RE,h(uh)‖0,E.(68)

Inserting (64), (65), (66), and (68) into (63) yields

‖RE,h(uh)‖0,E ≤C
[
‖e‖SUPG,ωE

+ ‖RE,h(uh)−RE(uh)‖0,E

+
∑

K∈ωE

h
1/2
K ‖RK(uh)‖K (69)

+
∑

K∈ωE

εh
−1/2
K ‖∇(u− Ihu)‖0,K + εh

1/2
K ‖∆(u− Ihu)‖0,K

]
.

The term ‖RE,h(uh) − RE(uh)‖0,E vanishes on the interior faces and it re-
duces to g − gh on the Neumann boundary, where gh is a finite dimensional
approximation to g. Denoting by

ηedge,E := ‖RE(uh)‖0,E, (70)

and using the definition (57), one gets from (69)

ηedge,E ≤C
(
‖e‖SUPG,ωE

+
∑

K∈ωE

ηint,K + ‖g − gh‖0,E∈Eh,N

+
∑

K∈ωE

εh
−1/2
K ‖∇(u− Ihu)‖0,K + εh

1/2
K ‖∆(u− Ihu)‖0,K

)
. (71)

The last two terms on the right hand side of (71) can be bounded by (59) and
(60). In the convection-dominated regime, the term ηedge,E from (70) is of the
same order as η3 from (36).
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The a posteriori local lower estimate is finally obtained by combining (58) and
(71)

η2
int,K +

∑
E⊂∂K

η2
edge,E

≤C‖e‖2
SUPG,K̃

+ ChK
(
‖f − fh‖2

0,K̃
+ ‖(b− bh) · ∇uh‖2

0,K̃
+ ‖(c− ch)uh‖2

0,K̃

)
+C‖g − gh‖2

0,E∈εh,N + C
(
ε

hK

)2

h2r+1
K ‖u‖2

r+1,K̃
.

Note that in the derivation of this estimate only the convection-dominated
regime was considered and conditions like (51) and δK = O(hK) were used.
Unlike the global error estimator, there is no transition of the weights in
the case that the local mesh Peclét number becomes smaller, see Remark 3.
However, this situation has to be faced for adaptively refined grids. Since the
the norms ‖·‖en and ‖·‖SUPG are equivalent in the diffusion-dominated regime,
it is reasonable to use the same weights as for the estimator (40) in this regime.
For this reason, we propose to use as local estimator the local counterpart of
the global estimator

min

{
C

µ0

, C
h2
K

ε
, 24δK

}
‖RK(uh)‖2

0,K + 24δK‖RK(uh)‖2
0,K

+
∑

E∈∂K
min

{
24, C

hE
ε
,

C

ε1/2µ
1/2
0

}
‖RE(uh)‖2

0,E

1/2

. (72)

In the convection-dominated case, this local estimator is equivalent to (η2
int,K +∑

E⊂∂K η
2
edge,E)1/2.

5 Numerical studies

The numerical studies will present, on the one hand, results with respect to the
effectivity of the error estimators (35), (36) and the fulfillment of the hypothe-
ses (14) – (16). On the other hand, the adaptive grid refinement controlled by
the local estimator (72) will be compared with the refinements obtained with
the other residual-based estimators from Remark 3.

A comprehensive discussion concerning possible choices of the SUPG stabi-
lization parameter can be found in [11]. In the numerical studies presented
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below, the same choice of this parameter as in [11] was used

δK =
h̃K

2 p |b|
ξ(PeK) with ξ(α) = cothα− 1

α
, PeK =

|b|h̃K
2 p ε

,

where h̃K is the cell diameter in the direction of the convection vector b, |b|
is the Euclidean norm of this vector, p is the polynomial degree of the local
finite element space, and PeK is the local Péclet number. The arising linear
systems of equations were either solved with the direct sparse solver Umfpack
[6] or with a flexible GMRES method with multigrid preconditioner until the
Euclidean norm of the residual vector was less than 10−14. All simulations
were performed with the code MooNMD [13].

A posteriori error estimators should, on the one hand, estimate the error in a
certain norm. The quality of the fulfillment of this task is usually measured
by the effectivity index

ηeff =
η

‖u− uh‖
,

where η is the computed error estimate and ‖ · ‖ is the norm the estimator is
designed for. For the proposed error estimator, it is

η =
(
η2

1 + η2
2 + η2

3

)1/2
, (73)

where η1, η2, η3 are given in (36). The constants in η1 and η3 were chosen to be
C = 1, also for the lower estimator (72). With these constants, one obtains the
same weights as in the error estimator (40) for the energy norm and the dual
norm of the convective derivative. On the other hand, a posteriori error esti-
mators should control an adaptive grid refinement. There are several strategies
for utilizing local error estimates in this process, see [10] for a discussion on
this topic. Here, the same strategy as in [10] was used. After having computed
the local error estimates, e.g. (72), for all mesh cells, the maximal value η̄ was
determined. Then, all mesh cells were refined whose local estimate is at least
tol = 0.5 of η̄. For efficiency reasons, tol was decreased by 0.9 as long as less
than 10% of the mesh cells were marked for refinement. It turned out that
in all simulations, the minimal amount of mesh cells that should be refined
became effective such that the initial value for tol was of little importance.

Example 1 Smooth solution. This example studies the effectivity of the a
posteriori error estimator (73) for the diffusion- and convection-dominated
regime. To this end, equation (1) is considered in Ω = (0, 1)2 with b =
(1,−4)T , c = 1, and with the prescribed solution

u(x, y) = sin(πx) sin(πy).

Dirichlet boundary conditions were prescribed at x = 0, y = 0, and y = 1. At
x = 1, Neumann boundary conditions were applied.

23



Uniformly refined grids were used in the simulations. The coarsest grids (level 0)
are presented in Figure 1. The finest grid in all simulations was the first grid
with more than 106 degrees of freedom. Simulations were performed for first,
second, and third order finite elements. For the sake of brevity, only one result
will be presented for each order higher than one.

Fig. 1. Coarsest grids for the simulations on the unit square.

Results with respect to the effectivity index for different finite elements and
different diffusion parameters ε are presented in Figure 2. In all cases, the
effectivity index is in the interval [5, 13]. Considering only the convection-
dominated case, then the effectivity index is always in the interval [5.5, 8.5].
In summary, one can observe that the effectivity index behaves uniformly with
respect to the ratio of diffusion and convection.

It should be noted that the error estimators for the H1 norm (38), the L2 norm
(39), and the energy norm estimator from [19] do not possess this property,
see [10] for corresponding studies. Using these estimators, we could observe
the same non-robust behavior in the present example as reported in [10].

Finally, it shall be noted that the hypotheses (14) – (16) were always fulfilled
in the convection-dominated regime. Only in two simulations with ν = 1
and ν = 10−2, the factor of 2.1 instead of 2 would have been necessary on
the right hand side of (14). However, in the diffusion-dominated regime, the
weights which are based on hypotheses (14) – (16) are not effective in the error
estimator (35), (36). For the sake of brevity, detailed results concerning this
topic will be presented only in Example 2.

Example 2 Solution with circular interior layer. This example was proposed
in [9] and it is defined by Ω = (0, 1)2, ε = 10−4, b = (2, 3)T , c = 2, and the
prescribed solution

u(x, y) = 16 x (1−x) y (1−y)

(
1

2
+

arctan[2 ε−1/2 (0.252 − (x− 0.5)2 − (y − 0.5)2)]

π

)
,

see Figure 3. Dirichlet conditions were applied at the whole boundary. It has
been recently observed in [12] that the diffusion should not be chosen too
small in this example. Otherwise, the quadrature error of the right hand side
term of the finite element problem might dominate. For this reason, the same
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Fig. 2. Example 1. Effectivity index for different values of the diffusion and for
different finite elements.

diffusion ε = 10−4 and the same quadrature rules were used as in [12].

Fig. 3. Solution of Example 2.

Solutions on adaptively refined grids were studied in this example. The coarse
grids from Figure 1 were used and uniform grid refinement was applied until
the first grid with more than 250 degrees of freedom was obtained. Starting
from this grid, local adaption in the way described above was applied. The
solution process was stopped after having computed the solution on the first
grid with more than 105 degrees of freedom.
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Snapshots of the adaptively refined grids using the local estimator (72) for the
P1 finite element are presented in Figure 4. For quadrilateral grids, an adaptive
refinement with hanging nodes was applied. The behavior of the effectivity
index on adaptively refined grids for different discretizations is presented in
Figure 5. One can observe a very similar behavior as in Example 1. The
effectivity indices are always in the interval [5.5, 8.5]. In addition, we could
observe that the proposed error estimator (35), (36) is robust in estimating the
error in the SUPG norm also on the grids obtained with the other estimators.

Fig. 4. Example 2. Adaptively refined grids obtained by using the local estimator
(72), P1 finite element.

A study of quantities involved in hypotheses (14) – (16) is presented in Fig-
ure 6, where again only one result is presented for each finite element of order
higher than one. It can be seen that for this example the hypotheses were
always fulfilled. In addition, it can be noted that the replacement of the factor
2 on the right hand sides of (14) – (16) by a smaller factor would sometimes
lead to a violation particularly of hypothesis (15).

The considered example possesses only one layer. All estimators lead more or
less to the same type of adaptive refinement. This statement is supported by
the errors in the SUPG norm on the adaptively refined grids obtained with the
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Fig. 5. Example 2. Behavior of the effectivity index on adaptively refined grids
obtained with (72) for different finite elements.

Fig. 6. Example 2. Quantities from hypotheses (14) – (16) with Ihu being the
Lagrange interpolant.

(local counterparts of the) error estimators (38), (39), (40), and (72) presented
in Figure 7.

Example 3 Hemker problem. The Hemker problem, defined in [7], is a simple
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Fig. 7. Example 2. Error in the SUPG norm on adaptively refined grids with different
error estimators.

two-dimensional model of the transport of temperature from a hot obstacle
(circle) in the direction of a constant convection field. It possesses a number of
properties which are encountered also in problems coming from applications,
see [2] for a discussion of this topic. From the point of view of adaptive grid re-
finement, the interesting property of the Hemker problem is the appearance of
different layers: boundary layers at the circle and interior layers starting from
the circle and evolving in the direction of the convection. The Hemker problem
has been studied recently in [2] for a number of stabilized discretizations and
the current study will follow the lines of [2].

The Hemker problem is defined in Ω = {[−3, 9]× [−3, 3]}\{(x, y) : x2 +y2 <
1}, the coefficients of (1) are ε = 10−4, b = (1, 0)T , c = 0, and f = 0, and the
boundary conditions are given by

u(x, y) =


0, for x = −3,

1, for x2 + y2 = 1,

ε∇u · n = 0, else,

see Figure 8 for the solution of this problem.
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Fig. 8. Solution of the Hemker problem.

For assessing numerical solutions of the Hemker problem, not errors in Sobolev
spaces or in the SUPG norm are of interest. Instead, quantities like the size
of spurious oscillations or the smearing of layers are important. None of the
considered error estimators in this paper is designed to adapt the grids with
respect to such outputs of interest. Based on the experience from [10], it can
be expected that the error estimator will lead to the best grids that adapts
the grids most uniformly, since this strategy minimizes the probability of ne-
glecting the refinement of an important subregion.

Results on adaptively refined quadrilateral grids with hanging nodes will be
presented for this example. The initial grid is depicted in Figure 9. It was
refined uniformly until the first grid with more than 2500 degrees of freedom
was obtained. Starting from this grid, an adaptive grid refinement was applied.
The simulations were terminated after having computed the first solution with
more than 250 000 degrees of freedom. For choosing the mesh cells for refine-
ment, the strategy described at the beginning of this section was applied. Note
that for this example µ0 = 0 and the weights of the estimators (38) are the
weights of the estimator (40) times ε. Since the selection procedure for refining
the mesh cells is based on a relative comparison of the local error estimates,
both estimators lead to the same locally refined grids.

Fig. 9. Hemker problem, initial grid.

The final adaptively refined grids obtained with the (local counterparts of the)
error estimators (38), (39), and with the error estimator (72) are presented
in Figure 10. It can be seen that the grids look quite differently, in particular
for the Q2 finite element. Whereas the adaptive grid obtained with the L2

error estimator (39) refines the interior layer completely, the other estimators
concentrate the refinement to the neighborhood of the circle. This behavior
was already explained in [10]. All estimators start to refine the regions with
the strongest layer, which is for the Hemker problem the boundary layer at the
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circle, in particular in a neighborhood of the point (−1, 0). In these layers, the
largest local residuals occur. All error estimators multiply the local residuals
by a weight that depends on the size of the mesh cell. The smaller the weights
are, the sooner the refinement of large mesh cells in weaker layers will start.
Having a look at the weights in (38), (39), and (72), then it becomes clear that
the L2 estimator (39) will first refine the interior layers, then the H1 estimator
will be second, and the SUPG estimator (72) will be last. In this sense, the
L2 estimator refines most uniformly among the considered estimators. This
situation can be clearly observed in Figure 10.

Fig. 10. Hemker problem, final adaptively refined grids, left: Q1 finite element, right:
Q2 finite element, top to bottom: error estimators (38), (39), (72), note that error
estimator (40) leads to the same grids as error estimator (38).

One criterion defined in [2] for the quality of the computed solution is the size
of the undershoots and overshoots. It was observed in [2] that for the SUPG
solution on uniformly refined grids in particular the size of the undershoots
is comparatively large. The largest undershoots occur at the starting points
of the interior boundary layers at the circle. Figure 11 shows that the local
grid refinement at the circle leads to a reduction of the undershoots, without
removing them. The largest reductions were obtained on the grids computed
with the L2 estimator (39). This statement is also true with respect to the
overshoots. Thus, the better resolution of the region of the interior layers
on the grids from the L2 estimator is of advantage for the reduction of the
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spurious oscillations.

Fig. 11. Hemker problem, undershoots and overshoots.

Another criterion for the quality of the computed solution defined in [2] is the
smearing of the interior layer at x = 4, see [2] for a precise definition of the
layer width and the reference value. Results with respect to this criterion are
presented in Figure 12. Not surprisingly, the sharpest layers are obtained on
the grids computed with the L2 estimator (39) since these grids are finest in
the considered region.

Since a clear conclusion can be already drawn and for the sake of brevity,
results concerning the other quality criteria from [2] will be omitted. Having
problems with quantities of interest in different kinds of layers, the adaptive
grid refinement should be controlled by an error estimator that relatively soon
selects large mesh cells in weaker layers for refinement. Among the considered
error estimators, the L2 estimator (39) meets this criterion. The use of this
estimator for controlling the adaptive grid refinement in this situation was
already recommended in [10].
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Fig. 12. Hemker problem, layer width at x = 4.

6 Summary

A residual-based a posteriori error estimator for the SUPG approximation of
the solution of convection-dominated convection-diffusion-reaction equations
was proposed. The error in the natural SUPG norm is estimated robustly if
certain hypotheses are fulfilled that connect the interpolation error in different
norms and the error in the SUPG norm. It was discussed that these hypotheses
are justified in some standard situation and this statement was supported by
numerical results.

The proposed error estimator possesses different weights than other residual-
based estimators for convection-diffusion-reaction equations. These weights
cause a deep refinement of the subregion with the strongest singularity before
a refinement of subregions with weaker singularities starts. Thus, the proposed
estimator can be used for the adaptive grid refinement if the solution possesses
only one kind of singularity. It was demonstrated that otherwise the residual-
based error estimator for the L2 error should be preferred. But independently
of the used error estimator for constructing the adaptive grid, one can expect
to obtain with the proposed error estimator a robust estimate of the error in
the SUPG norm in the standard situation described in Remark 1.
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