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a b s t r a c t

We employ density functional theory (DFT) to calculate pressure dependences of selected thermody-
namic, structural and elastic properties as well as electronic structure characteristics of equiatomic B2
FeTi. We predict ground-state single-crystalline Young’s modulus and its two-dimensional counterpart,
the area modulus, together with homogenized polycrystalline elastic parameters. Regarding the elec-
tronic structure of FeTi, we analyze the band structure and electronic density of states. Employing (i) an
analytical dynamical matrix parametrized in terms of elastic constants and lattice parameters in com-
bination with (ii) the quasiharmonic approximation we then obtained free energies, the thermal
expansion coefficient, heat capacities at constant pressure and volume, as well as isothermal bulk moduli
at finite temperatures. Experimental measurements of thermal expansion coefficient complement our
theoretical investigation and confirm our theoretical predictions. It is worth mentioning that, as often
detected in other intermetallics, some materials properties of FeTi strongly differ from the average of the
corresponding values found in elemental Fe and Ti. These findings can have important implications for
future materials design of new intermetallic materials.

� 2013 The Authors. Published by Elsevier Ltd.Open access under CC BY-NC-ND license.
1. Introduction

Ti-based alloys represent a class of materials with a great po-
tential in automotive, aerospace and biomechanical applications
because of their low density (w4.5 kg/m3), sufficient corrosion
resistance, high strength (w1000 MPa), and good ductility with a
plastic elongation to failure of 10e15% [1e3]. Specially the ultrafine
eutectic TieFe alloys, containing FeTi in the B2 (CsCl) phase and a b-
Ti(Fe) solid solution, have been shown to simultaneously possess
both high strength and good ductility in recent experiments [4e6].
In order to identify and understand the mechanisms governing the
mechanical behavior of eutectic TieFe alloys, a first but critical step
is to describe separately each of the two phases, FeTi and b-Ti(Fe).

Focusing specifically on FeTi, this equiatomic intermetallic
compound has attracted a large number of experimental and
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theoretical studies recently, partly due to the fact that it is one of
the important materials for hydrogen storage [7]. Regarding
experimental studies, the bulk band structure of FeTi has been
studied by photo-electron spectroscopy with synchrotron radiation
[8]; the elastic constants of FeTi at room temperature have been
determined by ultrasonic method [9] and inelastic neutron scat-
tering [10], respectively; the optical properties of FeTi were
measured by spectroscopic ellipsometry and the measured data
were partially compared to the calculated band structures and
optical conductivity spectra [11].

As far as theoretical studies are concerned, zero temperature
properties for FeTi, such as electronic structures (density of states)
for bulk, surfaces and interfaces [12e16] and elastic properties
(elastic constants and bulk modulus) [17e19], have been studied
based on first-principles density-functional calculations. However,
a theoretical prediction of finite-temperature thermodynamic
properties of FeTi is still missing despite of experimental data [9,10]
available in literature.

The reason for lacking theoretical data may be related to the fact
that density-functional calculations [20e22] are mostly used for
calculating T ¼ 0 K properties. Fully ab initio based approaches to
finite temperatures do exist but are computationally expensive and
 license.
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thus still rather rare (see e.g. Ref. [23]). A simplified method for
thermal expansion calculations, DebyeeGrüneisen based model
[24], is the one which has already been applied to various materials
[25e27]. In our study, we followed the same method [24] but
replaced the empirical Debye treatment by a fully consistent first-
principles approach to compute the temperature dependence of
the free energy [28] (see Computational methods). The vibrational
free energy we obtain using the quasiharmonic approximation
(QHA). In this approximation, anharmonic effects are included
through the explicit volume dependence of the vibrational fre-
quencies. Our choice was motivated by previous theoretical studies
of thermal expansion of cubic metals that were based on the qua-
siharmonic approximation [29e32] and that accurately predicted
thermal properties.

Our paper is structured as follows. We first introduce our
computational methods and then apply ab initio calculations to
predict T ¼ 0 K structural, elastic and electronic properties of FeTi.
Then we extend our study to finite temperatures and predict
thermal expansion coefficients, heat capacities at constant pressure
and at constant volume, as well as the isothermal bulk moduli.
2. Computational methods

For our density-functional-theory calculations, we employed
the projector augmented wave (PAW) method [33] and the gener-
alized gradient approximation (GGA) in the PerdeweBurkeeErn-
zerhof (PBE) parametrization [34] as implemented in the Vienna Ab
initio Simulation Package (VASP) [35e37]. The convergence of the
total energies was checked with respect to the plane-waves basis-
set size and the number of k-points. The plane-wave energy cutoff
of 350 eV was used to guarantee a numerical accuracy of the results
of about 1 meV per atom. The 7d and 1s electrons for Fe and the 3p6
3d3 4s1 electrons for Ti were treated as valence. The Brillouin zones
of the unit cell was sampled by an 18 � 18 � 18 Monkhorst-Pack k-
point mesh for the 2-atomic cubic cell of FeTi.

In order to predict finite-temperature properties, we have
employed the quasiharmonic approximation (QHA) within which
we determined phonon frequencies for different volumes. Phonon
spectra were for each volume derived approximatively (i) in the
long-wave-length limit, i.e. from the single-crystalline elastic con-
stants, and (ii) the FeTi B2 crystal was modeled as an effective
single-component bcc lattice (see details in Appendix). The thermal
properties of solids at constant volume can be calculated from their
phonon density of states as a function of frequencies.

The heat capacity CV and the entropy S at constant volume (see
details e.g. in Ref. [38]) read

CV ¼
X
q;n

kB

�
Zuq;n

kBT

�2 exp
�
Zuq;n=kBT

�
�
exp

�
Zuq;n=kBT

�� 1
�2; (1)

and

S ¼ �kB
X
q;n

ln
�
1� exp

�� Zuq;n=kBT
��

� 1
T

X
q;n

Zuq;n

exp� Zuq;n=kBT � 1
; (2)

where q and n are thewave vector and band index, respectively, uq,n
is the phonon frequency at q and n, and T is the temperature.
Further, kB and Z are the Boltzmann constant and the reduced
Planck constant. In many practical thermodynamical studies
related to solids, the thermal properties are necessary to be known
at constant pressure. They can be calculated from the previous
quantities through thermodynamic relationships. The Gibbs free
energy G is given by

GðT ;pÞ ¼ min
V

½UðVÞ þ FvibðT ;VÞ þ pV �; (3)

where V and p are the volume and pressure, and U(V) is the total
energy of electronic structure (here computed by ab initio means)
at constant volume. Regarding the right-hand side of Eq. (3), the
function inside the square brackets is minimized with respect to
the volume for each couple of T and p variables. Subsequently, the
heat capacity at constant pressure is derived from G(T,p) by

CpðT; pÞ ¼ �T
v2GðT ; pÞ

vT2

¼ T
vVðT ; pÞ

vT
vSðT;VÞ

vV

���
V¼VðT ;pÞ

þ CV ½T;VðT; pÞ�; (4)

where VT,p is the equilibrium volume at T and p.
Both total energies U(V) and free energies Fvib (T;V) were

calculated for 10 different volumes V. The thermodynamic func-
tions of Eq. (3) were fitted to the integral form of the Murnaghan
equation of state (EOS) [44] at p ¼ 0. Gibbs free energies at finite
temperatures were obtained as the minimum values of the ther-
modynamic functions, and the corresponding equilibrium volumes
and isothermal bulk modulus were obtained simultaneously from
the equation of states. The thermal expansion is observed as an
increase in the equilibrium volume.
3. Experimental measurements

Cylindrical specimens of FeTi B2 measuring 26 mm in length
and 8 mm in diameter, were cast in a cold crucible device. The
casting conditions ensure homogeneity of the chemical composi-
tion and defect free (non-porous) samples. Detailed investigation of
the microstructural properties of FeeTi alloy reported in earlier
studies [6]. Thermal expansion of FeTi was measured with Netzsch
dilatometer DIL 402C in the range of �120 �C to 480 �C (170 Ke
750 K) in argon atmosphere with heating and cooling ratios of 2 K/
min. The dilatometer is equipped with an inductive displacement
transducer to measure the thermal elongation of the specimens
automatically. The calibration of the dilatometer and treatment of
the results were made according to the standard procedure using
Proteus Analysis Software (Netzsch).
4. T [ 0 K thermodynamic, structural, elastic, and electronic
properties

FeTi has a particularly stable CsCl structure (B2 phase, as shown
in Fig. 1(a)) with a melting point of almost 1600 K (for details see
e.g. the PhD thesis of Jorge Alberto Muñoz Jr [39].). Our theoretical
calculations predict the formation energy to be �0.421 eV/atom
(see our previous paper [19]) in a reasonable agreement with other
theoretical calculations, such as all-electron calculations by Kellou
et al. [13], who reported �0.476 eV/atom, and those by Gonzales-
Ormeño and Schön [40], who predicted �0.457 eV/atom,
or �0.422 eV/atom reported by J. A. Muñoz Jr. [39] who employed
the same computational code (VASP). The only exception is recent
CASTEP calculations by Nong et al. [41] who report �0.67 eV/atom.
It should be noted that, as a long-standing issue (see e.g. a dis-
cussion in Ref. [40]), theoretical calculations for yet unknown rea-
sons overestimate the stability of the B2 FeTi intermetallics and
predict the formation energies about a factor of two different when
compared with experimental data such as �0.207 eV/atom



Table 1
Selected T ¼ 0 K properties of FeTi. Specifically, the lattice constant a (�A), bulk
modulus B (GPa), single crystalline elastic constants C11, C12 and C44 (GPa), poly-
crystalline shear modulus GH and Young’s modulus Y (GPa), Poisson’s ratio n and
ratio R ¼ GH/B for FeTi intermetallics. The room temperature experimental results
[9,10] for FeTi, pure Fe [50,51] and pure Ti [52,53], and the mass densities r (g/cm3)
for them at room temperature were also given, respectively.

FeTi a B C11 C12 C44

Theory 2.95 192 385 95 72
Theory [13] 2.96 186 e e e

Theory [40] 2.97 e e e e

Exp. [9] e 160.8 � 2 310 � 2 86.2 � 4 74.9 � 1
Exp. [10] e 189 325 � 10 121 � 10 69 � 1
Fe [50,51] e 174 e e e

Ti [52,53] e 112 e e e

FeTi GH Y n GH/B r

Theory 95 245 0.287 0.496 6.5[54]
Exp. [9] 88 223 0.269 0.547 e

Exp. [10] 81 213 0.313 0.429 e

Fe [50,51] 82 e 0.289 e 7.86
Ti [52,53] 41 e 0.339 e 4.5

Fig. 1. The B2 (CsCl prototype) structure of FeTi (a) with the smaller blue ball representing a Ti atom and the bigger reddish ball a Fe atom, and the orientation dependences of (b)
the single-crystalline Young’s modulus and (c) area modulus A of FeTi. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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reported by Kubaschewski and Dench [42] or recently (�0.233 eV/
atom) by Gasior and Debski [43].

The equilibrium lattice constant is predicted to be 2.95�A, which
agrees well with our own experimental value 2.98 �A [6]. The
calculated bulk modulus B (192 GPa) was derived from the Mur-
naghan equation of states [44]. The single crystalline elastic con-
stants C11, C12 and C44 were obtained by following the approach
described in Ref. [45]. These Cij were then used to determine a
directional dependence of single-crystalline Young’s modulus (see
Fig. 1b). We found that FeTi has strongly anisotropic elastic prop-
erties and shows the largest Young’s modulus about 340 GPa along
the [001] direction.

As far as the elastic response of FeTi to biaxial strains is con-
cerned, we have also analyzed the directional dependence of the
area modulus A(r) as recently introduced e.g. in Refs. [46,47]. The
area modulus is a 2-dimensional counterpart of the Young’s
modulus. In a similar manner as the Young’s modulus describes
uniaxial loadings along a vector r, the area modulus describes the
change of the area within a plane with the plane normal vector r.
Specifically for cubic systems it was derived [47] that the following
relation between the single-crystalline Young’s modulus Y(r)
(describing an uniaxial loading along the direction r) and the bulk
modulus B holds

1
AðrÞ ¼ 1

YðrÞ þ
1
3B

: (5)

The area modulus is a useful visualization of the amount of
elastic energy that is necessary in order to e.g. epitaxially deposit a
studied material on a substrate in a fully coherent manner. Fig. 1(c)
can be thus interpreted such that the elastic energy will be lowest
when growing FeTi on cubic {111} -terminated substrates and the
energy will be highest for {100} -terminated substrates.

In order to predict polycrystalline properties, we employed
Hershey’s homogenization approach (see e.g. [48,49]) and calcu-
lated the polycrystalline shear modulus GH. Once the homogenized
values GH is known, it is combinedwith the bulkmodulus B in order
to predict the polycrystalline Young’s modulus Y using the formula

Y ¼ 9BGH

3Bþ GH
: (6)

The Poisson’s ratio n could be calculated from

n ¼ 1
2

�
1� Y

3B

�
: (7)

The lattice constant, single crystalline elastic constants, poly-
crystalline moduli from our first-principles calculations and the
corresponding experimental results for FeTi are summarized in
Table 1. In addition, the mechanical properties of pure Fe [50,51]
and pure Ti [52,53] are also given for comparison together with
the mass densities of FeTi [7], pure Fe and pure Ti. Our zero tem-
perature results for FeTi from first-principles calculations as
described above agree well with the existing experimental and
theoretical data (see Table 1).

After analyzing elastic properties of FeTi we have also studied its
electronic properties, such as density of states (DOS) and band
structures, that are shown in Fig. 2 (a and b), respectively. There is a
deep minimum near the Fermi level in the DOS, which separates the
higher-energy bands predominantly occupied by Ti d states and the
lower energy bands predominantly occupied by Fe d states. The
contributions from s, p states of Ti and Fe are quite small in thewhole
energy range. The stability of FeTi can be thus ascribed to the lower
andflatter electron-states distribution at the Fermi level [11e13,17,18].
Our band structures and DOS obtained from GGA neatly agree with
those from previous local density approximation (LDA) calculations
[11] (that have been partially compared to the measured data [11]).

To analyze influence of different lattice parameters, band
structures at different volumes/pressures were computed and are
shown in Fig. 3. The electronic states at the Fermi level for the
lattice parameter a ¼ 3.00 �A and 2.80 �A show very small shifting
compared to that of the equilibrium structure with lattice constant
a ¼ 2.95�A. That means the electronic structures of B2 FeTi exhibits
a stability with respect to the application of external hydrostatic
pressures (or equivalently reduced volumes e see Table 2).
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5. Thermal properties at finite temperatures

In this section we combined the first-principles calculations
with the quasiharmonic approximation to obtain the thermal
properties of a FeTi at finite temperatures. In order to calculate
phonon spectra of FeTi crystal at different lattice parameters we use
an analytical form of the dynamical matrix (see details in
Appendix). We employ the virtual crystal approximation, i.e., FeTi is
approximated as a bcc lattice occupied by species-averaged atoms
with the atomic weight equal to the average of the atomic weights
of Fe and Ti.

In order to compute finite-temperature thermodynamic prop-
erties within the quasi-harmonic approximation, the relative en-
ergy DE (in meV/atom) with respect to the ground-state energy, the
volume per atom (in �A3/atom), the isothermal bulk modulus B (in
GPa), the single crystalline elastic constants C11, C12, and C44 (in
GPa) under pressure from �5.7 GPa to 3.7 GPa were calculated and
are listed in Table 2. As seen, the bulk modulus B and elastic con-
stants C11, C12, and C44 slightly increase with increasing hydrostatic
pressure.

The thus computed temperature dependence of the free en-
ergies F is plotted in Fig. 4(a). The thermal expansion coefficients
between 0 w 1200 K, 1

V
vV
vT , of FeTi are shown in Fig. 4(b). With
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Fig. 3. Band structures of FeTi a
increasing temperature, the thermal expansion coefficient grows
rapidly up to w200 K, for higher temperatures the slope becomes
less steep and the trend flattens when approaching 800 K. Another
pronounced increase is then for yet higher temperature, between
800 and 1200 K. As may be seen, our theoretically predicted ther-
mal expansion coefficient (full black line in Fig. 4(b)) agrees very
well with our experimental data (red data points in Fig. 4(b)) be-
tween 180 and 700 K [6].

Specifically for the room temperature, the experimental thermal
expansion coefficients 9.5 � 10�6 K�1 [6] (at 300 K) and
9.8 � 10�6 K�1 [9] (at 293 K) are both slightly higher than our
theoretical result 8.2 � 10�6 K�1. The experimental thermal
expansion coefficients for pure bcc Fe [55] between 90 K and 960 K
are also given for comparison in Fig. 4(b) and found larger (by an
almost constant off-set) compared with FeTi for temperatures up to
920 K.

Fig. 4(c) visualizes calculated temperature dependences of the
heat capacity CP (experimental data were published also by Wang
et al. [56]) at constant pressure (black solid line) and that at con-
stant volume CV (black dashed line). Our results are compared with
(i) theoretical CV which were calculated based on the experimental
elastic constants [10] (blue solid line) as well as (ii) experimental
data of CV [10] (red circles). As far as the heat capacity as constant
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Table 2
Pressure dependence (between �5.7 andw3.7 GPa) of the relative energy DE (meV/
atom) compared to the total energy of the equilibrium structure, volume per atom
(�A3/atom), bulk modulus B (GPa), single crystalline elastic constants C11 (GPa), C12
(GPa), and C44 (GPa) for FeTi intermetallics.

P DE V B C11 C12 C44

3.7 2.81 12.64 206.7 405.2 107.4 77.9
2.7 1.52 12.71 202.1 397.9 104.2 76.3
1.6 0.63 12.77 198.1 391.4 101.4 74.7
0.1 0.01 12.88 191.4 378.0 98.2 72.2
�1.3 0.37 12.97 185.9 371.9 92.9 70.0
�2.2 1.08 13.03 181.9 365.9 89.9 68.5
�3.1 2.20 13.10 178.1 362.4 85.9 67.0
�4.0 3.67 13.17 174.1 353.3 84.5 65.5
�4.9 5.51 13.23 170.5 347.4 82.1 64.1
�5.7 7.73 13.30 167.1 341.6 79.8 62.6

L.-F. Zhu et al. / Intermetallics 45 (2014) 11e17 15
volume CV is concerned, our results excellently agree with existing
theoretical and experimental results at temperatures
200 < T < 500 K. The heat capacities for pure Fe
(25.065 J mol�1 K�1) [57] and pure Ti (25.095 J mol�1 K�1) [58] at
300 K are also shown in Fig. 4(c).

We also see that the experimental heat capacities of elemental
Fe and Ti at room temperature are clearly higher than that of their
equiatomic combination, i.e. FeTi intermetallics. It should be
nevertheless noted that Ti crystallizes at room temperature in a
hexagonal closed packed (hcp) structure (for which the heat ca-
pacity was measured) but the CsCl-type B2 structure of FeTi is
essentially like a body-centered cubic (bcc) one.

Isothermal bulk modulus as a function of temperature is shown
in Fig. 4(d). It decreases with increasing temperature. The experi-
mental bulk moduli at room temperature [9,10], especially that
from Ref. [10] (189 GPa), are quite close to our first-principles result
(184 GPa). The bulkmoduli of pure Fe [50,51] between 0 and 1200 K
and those of pure Ti [52,53] between 293 and 1073 K are also given
(a)

(c)

Fig. 4. Temperature dependence of (a) the free energies F (eV/atom), (b) the thermal expans
moduli B (GPa). In the four graphs, the black solid lines indicate our first-principles based res
results from Ref. [9] and the green rhombus the experimental results from Ref. [10]. In (c)
corresponds to CV calculated from the experimental elastic constants [10] and the red circle
experimental thermal expansion coefficient of pure Fe [55], the red up-triangle and black
temperature of pure Fe [57] and pure Ti [58], the red short-dash line and the blue short-das
pure Fe [50,51] and pure Ti [52,53]. (For interpretation of the references to color in this fig
in Fig. 4(d). Similarly as in case of heat capacities discussed above, it
is worth to mention that, at room temperature for which experi-
mental data exist, the bulk modulus of B2 FeTi is not any simple
average of values found in both constituents, elemental Fe and Ti.
Instead it is close to that of pure Fe and much higher than that in
pure Ti. This particular conclusion is also true in case that the bulk
modulus of body-centered cubic Ti would be considered. Despite of
the fact that the bulk modulus bcc Ti may not be experimentally
measured at low temperatures under ambient pressure conditions,
our quantum-mechanical calculations can be used to predict it. The
thus determined bulk modulus of bcc Ti at T ¼ 0 K is even lower
(around 90 GPa) than that in hcp Ti. The fact, that some materials
characteristics of intermetallics are not related in any simple
manner to their values in elemental constituents, is important for
any theory-based materials design of intermetallics in general.

Above room temperature, with increasing temperature the bulk
modulus of FeTi decreases significantly more than those of pure Fe
and pure Ti. Below room temperature the decrease for both FeTi
and pure Fe is small and the trend is almost constant.
6. Conclusion

Using density functional theory we have studied T ¼ 0 K ther-
modynamic, structural, elastic and electronic properties of B2 FeTi
intermetallics including single-crystalline Young’s modulus and the
area modulus, homogenized polycrystalline elastic parameters, as
well as densities of states and band structures at different volumes.
Our results are in good agreement with existing experimental and
theoretical data and show a particularly strong stability of the
electronic structure of FeTi with respect to hydrostatic pressures.
Combining first-principles method with (i) an analytical dynamical
matrix parameterized in terms of elastic constants and lattice pa-
rameters and (ii) the quasiharmonic approximation, we have also
investigated finite-temperature thermodynamic properties of FeTi.
(b)

(d)

ion coefficients a (K�1), (c) the heat capacities CP and CV (J mol�1 K�1), and (d) the bulk
ults, the red dots the experimental results from Ref. [10], the blue star the experimental
, the black dashed line indicates our theoretical results for CV and the blue solid line
the experimental results [10] of CV. In addition, the green solid line in (b) denotes the
down-triangle in (c) respectively indicate the experimental heat capacities at room
h line in (d), respectively, indicate the temperature dependences of the bulk moduli of
ure legend, the reader is referred to the web version of this article.)



Fig. 5. Computed phonon spectra of a-Fe crystal (full lines) compared with experi-
mental data [61].

Fig. 6. Computed phonon spectra of FeTi crystal for a series of lattice parameters.
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The free energies, the thermal expansion coefficients, the heat ca-
pacities at constant pressure and volume, as well as the isothermal
bulk moduli at finite temperatures of B2 FeTi have been computed.
Theoretical results neatly match both (i) our own experimental
measurements in case of the thermal expansion coefficient as well
as (ii) data available in literature. It is worth mentioning that, as
often detected in other intermetallics, some materials characteris-
tics of FeTi clearly different from the average of corresponding
values known for elemental Fe and Ti. These findings can have
important implications for future theory-guided materials design
of advanced intermetallics.
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Appendix

Free energy is the key quantity, which defines at elevated
temperatures all material thermodynamic properties, and within
adiabatic approximation for nonmagnetic crystal reads

FðV ; TÞ ¼ FelðV ; TÞ þ FvibðV ; TÞ (8)

where Fel and Fvib are electronic excitations and ionic vibrations,
respectively. The vibrational contribution Fvib to the free energy per
single atom unit cell within the harmonic approximation is given by

Fvib ¼ 1
N

X3N
i

	
1
2
hui þ kBT ln



1� exp

��hui

kBT

���
(9)

where h is the Planck constant, kB is the Boltzmann constant, ui are
phonon frequencies. Summation is curried over the complete set of
3N phonon states for N atoms in the crystal cell. The phonon fre-
quencies ui are the values of the dynamical matrix D.

The electronic free energy Fel depends on the volume and
electronic temperature, by that directly influences the volume
dependence of the phonon frequencies and vibrational free energy
Eq. (9). However, in the following we apply quasiharmonic
approximation [30e32] by replacing Fel with Fel (T ¼ 0 K) and thus
omit the explicit temperature dependence in the phonon fre-
quencies: ui ¼ ui(V). In contrast to previous studies (see, e.g. Ref.
[28]), we employ here an analytical form of the dynamical matrix
[59] in reciprocal space. Thematrix is parameterized in terms of the
elastic constants Cij and the lattice parameter a with the latter
obtained using density-functional-theory calculations as described
above. In the simplest form, when only interactions between the
nearest-neighbor atoms are considered [59], the analytical
expression for the lattice Green’s function G(k)¼D�1(k)(ks 0) can
be represented in terms of lattice parameters abcc and elastic con-
stants Cij. The individual components are then given

DxxðkÞ ¼ 4abccC44
�
1� cospabcckx � cospabcckycospabcckz

�
þ abccðC11 � C44Þcos2pkx

(10)

DxyðkÞ ¼ 2abccðC12 þ C44Þsinpabcckxsinpabcckysinpabcckz
(11)

The other components of the Green’s tensor can be obtained
from Eqs. (10) and (11) by cyclic permutations of the indices x, y, z.
For the calculation of the thermodynamic potential F(V,T) we used
Fel (T ¼ 0 K) obtained ab initio for 10 atomic volumes.

The performance of the method is demonstrated for a-Fe in
Fig. 5 where computed phonon spectrum is shown by full lines and
compared with experimental data [61].

It is worth mentioning that the above described analytical form
of the dynamical matrix can be used as an effective tool to calculate
vibrational properties of disordered systems containing atoms with
not too different atomic weights after calculating their elastic
properties (see e.g. our previous paper [60]).

Having the phonon spectra for FeTi (see Fig. 6), the total energy
Fel (T ¼ 0 K) þ Fvib has been parameterized by a least-squares fit to
the Murnaghan equation of state [44].

The results obtained from the fits for the temperature depen-
dent lattice constant a, were used for the calculation of the linear
thermal expansion h and its coefficient a
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hðTÞ ¼ aðTÞ � a Tref� � ; aðTÞ ¼ 1 daðTÞ
: (12)
� �
a Tref aðTÞ dT

with a the equilibrium lattice constant, reference temperature is
Tref ¼ 0 K.
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