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Gibbsianness and non-Gibbsianness for Bernoulli lattice fields
under removal of isolated sites

Benedikt Jahnel, Christof Külske

Abstract

We consider the i.i.d. Bernoulli field µp on Zd with occupation density p ∈ [0, 1]. To each
realization of the set of occupied sites we apply a thinning map that removes all occupied sites
that are isolated in graph distance. We show that, while this map seems non-invasive for large
p, as it changes only a small fraction p(1 − p)2d of sites, there is p(d) < 1 such that for all
p ∈ (p(d), 1) the resulting measure is a non-Gibbsian measure, i.e., it does not possess a
continuous version of its finite-volume conditional probabilities. On the other hand, for small p, the
Gibbs property is preserved.

1 Introduction

Random fields under local maps are defined and analyzed in different fields of probability and statistics.
In these studies a random field is typically a stochastic process whose variables take values in a
subset of the real numbers, and which has a geometric index set such as the infinite lattice, a graph
with infinite vertex set, or the Euclidean space. It is of interest to understand the behavior of the given
random field with distribution µ under application of a map T that acts on infinite-volume realizations
of the process, and investigate resulting properties of the image process whose distribution we denote
by µ′. Relevant deterministic maps T typically have local-dependence windows. They may also be
generalized to stochastic kernels that act locally. In this general setup let us call µ the first-layer
measure, and the measure µ′, which we shall be mostly interested in, the second-layer measure.

This setup is of theoretical interest, but also occurs in many applications of natural sciences,
engineering, and statistics. We mention thinning transformations of Poisson point processes (in which
points from a realization are omitted according to local rules) [Bre79, Bro79, Ish80, RS91, Las93,
Bal05, MS10, BK19], transformations in image analysis [Gem90, Guy95], and renormalization group
transformations in statistical mechanics (where a physical system like a ferromagnet is considered
on increasingly large scales by means of maps which forget details on small scales) [GP78, GP79,
vEFS93]. Processes appearing as local maps in this way can also be viewed as generalizations of the
much used hidden Markov models [EAM95].

Hidden Markov models are images under local kernels of an underlying first-layer Markov chain, and
appear when noisy observations shall be modeled, and so the generalization is made to a situation
with spatial index sets, and more complex dependence structures.

It was discovered first in the context of such renormalization group transformations that strictly
local transformations acting on a spatially Markovian random field µ indexed by a lattice, may
result in singularities in the image measure µ′. Two concrete examples for this are provided by
the low-temperature Ising model under a block average transformation, or the projection to a
sublattice [Sch89, vEFS93, BKL98, LN13, BC18]. The original motivation of such renormalization
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group transformations was, suggested by heuristic schemes of theoretical physics, to understand the
iterated coarse-graining dynamics of the level of Hamiltonians to investigate critical behavior [WK74].

The singularity in the second-layer measure µ′ means, that µ′ loses not only the spatial Markov
property of µ under the map T (which is less surprising), but it even loses the more general
Gibbs property. This is more severe, it means that the infinite second-layer system acquires internal
long-range dependence, and in particular does not posses a well-behaved Hamiltonian with good
summability properties of its interaction potentials anymore. The singular long-range dependence
appears on the level of finite-volume conditional probabilities of the image measure, which are not
quasilocal functions of their conditioning. Put equivalently, finite-volume sub-systems depend on their
boundary conditions arbitrarily far away, and their behavior cannot be described by kernels that are
continuous in product topology. This may cause standard theory of infinite-volume states, including
the variational principle, to fail, see the examples in [KLNR04].

A variety of examples have been studied ever since, where non-Gibbsian behavior was proved to occur
with different mechanisms, but always in regimes of sufficiently strong coupling, where the first-layer
measure differs much from independence. (Having said this, there are known examples that show that
the range of temperatures where non-Gibbsian behavior in the image system occurs, may be larger
than the critical temperature for the first-layer system [HK04]) Moreover, examples have been found
where, the set of discontinuity points is even of full measure w.r.t. µ′ itself, which is the strongest form
of singularity [KLNR04, vEEIK12, JK17b, BKK20].

Main subclasses of relevant transformations which have been studied were projections in terms
of a variety of deterministic maps [vELN17, LN13, KR17, JK17a, HKK19], and stochastic time-
evolutions [LNR02, vEFdHR02, KLN07, vEEIK12, RR14, FdHM14, JK17b, KRvZ21], in various
underlying geometries of lattice models, mean-field models, Kac-models, and models in the
continuum [JK17b].

Informal result: Even independent fields may become non-Gibbs under projections

In the present paper we provide a new and simple example that shows that a natural local transform
of range 1 can produce singularities, even when it is applied to an independent field. In our example
we chose as the first-layer field the i.i.d. Bernoulli lattice field µp on the integer lattice, with state
space {0, 1}Zd

, and occupation probability p ∈ [0, 1). The Bernoulli lattice field in itself is studied
in site-percolation, where one asks for existence of infinite clusters and refined connectedness
properties [Gri99]. It also drives more complex processes, in statistical mechanics of disordered
systems [Gri97, vEMSS00, Bov06], and elsewhere in probability [Adl91, BR06, BDC13, Kum14, JK20]
and its application. We then study the second-layer measure µ′p that appears as an image under
application of the concrete range-one map T that is defined by removing from a realization of occupied
sites the occupied isolated sites. T is a projection map as it satisfies T 2 = T , and we will call it
the projection to non-isolates. Hence it keeps from a realization of occupied sites only the occupied
clusters of size of at least two. This includes the infinite cluster, in case there is one, i.e., in the
percolation regime of large enough p. We may also view T as a simple smoothing transformation, as
isolated ’dust’ of occupied sites (or ’pixels’) is forgotten under the map.

What to expect for the second-layer measure µ′p? As the µp-probability that a given site is isolated
equals p(1 − p)2d, the map T seems non-invasive, in particular for probabilities p close to 1. In
particular the removed sites do no percolate in this regime. So one might naively conjecture that the
second-layer measure shall not be much affected and well-behaved, and in particular is representable
as a Gibbsian distribution with quasilocal conditional probabilities.
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As a main message of this paper, we prove that this is not the case: We show that µ′p is spatially
non-Markovian and non-quasilocal, when p < 1 is large, see Theorem 2.1. We hope that this result
is of some interest for the percolation community. We complement this result by proving regularity of
the projected measure when p ≥ 0 is small enough see, Theorem 2.2. This implies the existence of a
Gibbs-non Gibbs transition driven by p.

Let us finally discuss our map T that projects to non-isolates (and removes the isolates) from a dual
perspective. Namely, T has a natural companion map T ∗ that is again a projection map. T ∗ does
precisely the opposite, it projects to the isolated sites (and removes the non-isolates).

There is independent interest in the action of T ∗ to the i.i.d. Bernoulli lattice field, for the reason that
it produces the thinned Bernoulli lattice field, in which all occupied sites are separated. This thinned
Bernoulli lattice field is relevant, as it is the lattice analogue of the well-known and much studied Matérn
process in the continuum [Mat60, MHW10, BB12]. The latter by definition is derived from a first-layer
Poisson process in Euclidean space by removing all points in the realization that have at least one
point in the Euclidean ball of radius one.

Clearly, the second-layer measures of both maps T, T ∗ acting jointly on the same Bernoulli lattice-
field realization appear in a natural coupling. As a first guess one may conjecture from this that, either
both second-layer measures are Gibbs, or both are non-Gibbs. We warn the reader that this is too
naive, not only on the level of proofs, but also the statement may be false. We leave the analysis of the
companion process, the thinned Bernoulli lattice field, to another study.

The paper is organized as follows. In Section 2 we present the setting and our main results and non-
Gibbsianness and Gibbsianness for the Bernoulli field under the removal-of-isolates transformation. In
Section 2 we present the corresponding proofs.

2 Setting and main results

To define our process we start from the Ω = {0, 1}Zd
-valued i.i.d. Bernoulli field µp with parameter

p ∈ [0, 1]. We consider realizations of the Bernoulli field under the application of the transformation
T : Ω→ Ω given by

(Tω)x := ω′x = ωx

(
1−

∏
y∈∂x

(1− ωy)
)
,

where ∂x denotes the set of nearest neighbors of x ∈ Zd inZd, equipped with the usual neighborhood
structure. In words, T is the projection to the non-isolates, see Figure 1 for an illustration. The image
measure under the transformation

µ′p := µp ◦ T−1

is supported on the subset Ω′ := T (Ω) of sites that obey the non-isolation constraint.

Intuitively the application of T should not change the measure very much at large p close to 1, where
a typical configuration consists of a large percolating cluster and very few isolated sites. In this regime
one may view T as a cleansing transformation that wipes away the smallest dust of isolated sites,
and keeps the apparent main parts. From the definition of T as a local map it is also obvious that for
variables at sites of graph distance greater equal than 3 are independent, under µ′p, so that one could
expect that µ′p is a nicely behaved measure.

Recall that a specification γ = (γΛ)ΛbZd is a consistent and proper family of conditional probabilities,
i.e., for all Λ ⊂ ∆ b Zd, ωΛ ∈ ΩΛ := {0, 1}Λ and ω̂ ∈ Ω, we have that

∫
Ω
γ∆(dω̃|ω̂)γΛ(ωΛ|ω̃) =
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Figure 1: Realization of a Bernoulli field (left) and its image under the transformation T (right).

γ∆(ωΛ|ω̂), and for all ωΛc ∈ ΩΛc we have γΛ(ωΛc |ω̂) = 1{ωΛc = ω̂Λc}. A specification is called
quasilocal, if for all Λ b Zd and ω̂Λ ∈ ΩΛ, the mapping ω 7→ γΛ(ω̂Λ|ω) is continuous with respect to
the product topology on Ω. We say that γ is a specification for some random field µ on Ω, if it satisfies
the DLR equations, i.e., for all Λ b Zd and ωΛ ∈ ΩΛ, we have that

∫
Ω
µ(dω̃)γΛ(ωΛ|ω̃) = µ(ωΛ).

Our present result shows that this is not the case in the whole parameter regime, but the following is
true: For large p, µ′p is not spatially Markovian, it is not even a Gibbs measure in the sense of existence
of a version of its finite-volume conditional probabilities which is continuous with respect to the product
topology on Ω′. More precisely we have the following theorem.

Theorem 2.1. (Non-Gibbsianness for large p) Consider the image measure µ′p of the Bernoulli field
on Zd under the map to the non-isolates in lattice dimensions d ≥ 2. Then, there is pc(d) < 1 such
that for p ∈ (pc(d), 1), there is no quasilocal specification γ′ for µ′p.

The result shows that Gibbsian descriptions of thinning processes of various types derived from
Bernoulli or Poissonian fields are by no means obvious, and that more research on such processes in
discrete and continuous setups is necessary.

In order to complement the above non-Gibbsianness result, let us also present the following theorem
on the existence of a quasilocal specification for µ′p for small values of p.

Theorem 2.2. (Gibbsianness for small p) Consider the image measure µ′p of the Bernoulli field on Zd
under the map to the non-isolates in lattice dimensions d ≥ 1. Then, for p < 1/(2d), there exists a
quasilocal specification γ′ for µ′p.

As we can see from the proofs, for p < 1/(2d), in fact the continuity of γ′ is even exponentially fast.
In summary, the statements of Theorems 2.1 and 2.1 indicate a phase-diagram of Gibbsianness of
thinned Bernoulli fields under the local non-isolation constraint as exhibited in Figure 2.

In the following section, we present the proofs.
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1

pc(d)

1
2d

0
Gibbsianness

non-Gibbsianness

Figure 2: Illustration of Gibbs-non-Gibbs transitions in p for the thinned Bernoulli field under non-
isolation constraint.

3 Proofs

The key idea of the proof is to first re-express conditional probabilities of µ′p in finite volumes in terms
of a first-layer constraint model in which occupied sites have to be isolated. Indeed, for large p, there
are two distinct groundstates given by the (shifted) checkerboard configurations. We can leverage a
Peierls’ argument in order to show that the first-layer constraint model exhibits a phase transition of
translational symmetry breaking. We note that the argument works even though there is no spin-flip
symmetry in the system. The translational symmetry breaking gives rise to a point of discontinuity for
which we subsequently show that it is present for any system of finite-volume conditional probabilities
for µ′p, i.e., it is an essential discontinuity. The converse case of small p can be handled by arguments
using Dobrushin uniqueness techniques.

3.1 Proof of Theorem 2.1: Non-Gibbianness

The main ingredient for the proof is to exhibit one non-removable bad configuration for conditional
probabilities. For this, we will use the so-called two-layer view, in which one needs to understand the
Bernoulli field conditional on a fixed image configuration. We choose as the image configuration the
all empty configuration, for which the first-layer measure becomes the Bernoulli field µp conditional on
isolation.

We proceed as follows. In Section 3.1.1 we exhibit a phase transition for the latter model at large
p, in which translation symmetry is broken, which can be selected via suitable shapes of loophole-
volumes. The technique is based on a (slightly non-standard) Peierls argument. In Section 3.1.2 we
then show how this implies non-Gibbsianness of the image measure. This is based on the proof
that jumps of conditional probabilities occur for certain suitably chosen local patterns, which allow to
make a transparent connection to the first-layer model in suitable connected boxes, where the Peierls
argument from Section 3.1.1 was made to work.

3.1.1 Translational-symmetry breaking via a Peierls argument for the conditional first-layer
model

For the purpose of showing that the empty configuration is bad for any specification, we will analyze
the following particular finite-volume first-layer measures, and we will restrict to particular volumes Λ.
Namely, let us consider finite volumes Λ that have a shape of type 0, and put fully occupied boundary
conditions all 1 outside of Λ. By this we mean that Λ has a shape which allows to put the checkerboard
groundstate of zeros and ones inside Λ for which the origin obtains the value 0 such that one obtains
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a configuration compatible with the boundary condition, see Figure 4 for an illustration. We define

νΛ(ωΛ) :=
µp,Λ(ωΛ1T (ωΛ1Λc )|Λ=0Λ

)

µp,Λ(T (σΛ1Λc)|Λ = 0Λ)
,

where µp,Λ is the Bernoulli product measure in Λ. Hence, by definition νΛ is the Bernoulli measure
conditioned on isolation of ones inside Λ, where the isolation constraint remembers also the fully
occupied boundary condition.

A similar definition is made for volumes of type 1. For us, large boxes BL centered around the origin
with sidelength 2L with a loophole boundary, will be useful, see the illustration in Figure 3. For such
type-0 boxes BL we will show in this section that

sup
L
νBL

(ω0 = 1) ≤ ε(p), with lim
p↑1

ε(p) = 0. (3.1)

This means that, with large probability, the origin copies the information from the boundary condition.

Figure 3: Illustration of a type-0 volume with loophole boundary.

Similarly, we will prove that the spin at the origin for the box shifted by a lattice unit vector e satisfies

sup
L
νBL+e(ω0 = 0) ≤ ε(p), with lim

p↑1
ε(p) = 0. (3.2)

This is an essential step as it proves that the shape of the volume BL induces a phase transition
for the first-layer constrained model, and there is breaking of translational symmetry. To complete the
proof of essential badness of the empty configuration on the second layer, we will however need to
go one step further, and connect to the measure on the second layer. This will be done in Lemma 3.2
below.

Note that configurations of the model are energetically equivalent under a lattice shift. They are
not equivalent under the site-wise spin-flip that exchanges zeros and ones, much unlike the Ising
antiferromagnet in zero external field. Therefore, the Peierls argument we are about to give has to be
different from the one for the Ising ferromagnet or antiferromagnet. Namely, the Peierls argument
we will present involves suitable lattice shifts of parts of configurations, while the standard more
straightforward Peierls argument for the Ising model involves spin-flips.

DOI 10.20347/WIAS.PREPRINT.2878 Berlin 2021



Gibbsianness and non-Gibbsianness for Bernoulli lattice fields 7

Consider the nearest-neighbor graph with vertex set Zd. Consider, for a spin configuration ω, the set
of sites

Γ(ω) := {x ∈ Zd : there exists y ∈ ∂x such that ωx = ωy = 0}.

Note that there is a one-to-one correspondence between configurations ω that satisfy the
neighborhood constraint, and sets Γ(ω). Note that outside of Γ(ω), the configuration ω looks like
one of the two groundstates formed by the two possible checkerboard configurations of zeros and
ones. Indeed, each site x 6∈ Γ(ω) has the property that either ωx = 0 and all the neighbors are
1 (by definition of a contour), or ωx = 1 and all the neighbors are 0 (as the model contains the
isolation-constraint).

Further note that not all possible subsets of Zd can occur as Γ, because of the isolation constraint of
ones.

The connected (in the sense of graph-distance) components γ of these sets Γ are called contours.
To visualize this, consider a star-shaped contour that is built from flipping the one site from one to
zero starting from a checkerboard configuration, see Figure 5. This yields the minimal contour which
has 2d + 1 sites. In two dimensions, e.g., it is possible that different contours can be reached from
each other via the diagonal. Note that each γ that is a contour of a configuration, must be surrounded
by ones in nearest neighbor sense in the configuration. These ones must be surrounded by nearest
neighbors which carry zeros, by the isolation constraint of ones. Hence the contour specifies the
configuration up to sites with graph distance two.

The complement of a finite contour γ has one infinite component, and finitely many finite components
(the internal ones). Each of these components are labelled by one of the two labels 1 (or 0 respectively)
determined whether, given γ, the component admits a configuration obtained by substituting the
infinite-volume checkerboard configurations in which the origin in Zd obtains a 1 (or a 0 respectively),
see Figure 4. A configuration is uniquely determined by its set of compatible contours. Contours γ

o o

Figure 4: Illustration of the type-0 (left) and type-1 (right) groundstates, i.e., checkerboard
configurations. Dots indicate occupied sites. The origin is indicated as o.

themselves are labelled by 1 (or 0) according to the two possible labels of their outer connected
components. Contours are compatible when they arise from an allowed configuration, which is the
case when the types of checkerboards on shared connected components of the complements match.

Now, suppose that γ is a contour in a finite volume Λ. We decompose the volume in terms of the
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o

Figure 5: Illustration of a minimal contour in blue containing the origin.

contour and the connected components of its complement

Λ = γ ∪ V0 ∪i=1,...,k Vi.

Here V0 is the outer connected component of the complement of γ intersected with Λ. (Note that the
intersection with Λ may produce several connected components, but this poses no difficulty.) The sets
(Vi)i≥1 are the interior connected components of the complement of γ. We also write

γ = γ ∪i=1,...,k Vi

for the sites that are contained in the support of γ or surrounded by γ.

We now prove the statements (3.1) and (3.2) via a Peierls estimate. It suffices to treat the first
case (3.1), as the case (3.2) is similar. We start with a union bound over contours surrounding the
origin

νBL
(ω0 = 1) ≤ νBL

(ω : ∃γ such that Γ(ω) 3 γ and γ 3 0) ≤
∑
γ : γ30

νBL
(ω : Γ(ω) 3 γ).

With a slight abuse of notation, we here write γ ∈ Γ to indicate that γ is a contour in Γ.

The main point for the Peierls estimate in our non-flip invariant situation, which is formulated in the
following lemma, will be the construction of compatible configurations after removal of contours. Let
|γ| denote the number of vertices in γ.

Lemma 3.1. There exists a Peierls constant τ = τ(p) with limp↑1 τ(p) = ∞, such that for all γ we
have that

νBL
(ω : Γ(ω) 3 γ) ≤ e−τ |γ|.

Proof. Define the activity of a contour γ ⊂ BL to be the natural weight of the zeros prescribed by it
in the Bernoulli measure, i.e.,

ρ(γ) := (1− p)|γ|.
For any configuration ωU in a finite volume U we write for its weight in the Bernoulli field

R(ωU) :=
∏
x∈U

pωx(1− p)1−ωx .

In particular ρ(γ) = R(0γ), where we use the short-hand notation 0B to indicate the all-zero
configuration in the volume B. Then, we may write

νBL
(ω : Γ(ω) 3 γ) =

ρ(γ)ZV0

∏k
i=1 ZVi

ZBL

,
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where ZVi , for i = 0, 1, . . . , k denotes the partition functions over all configurations in the volumes
Vi which are compatible with γ, with the isolation constraint on the ones, with weights provided by the
Bernoulli measure for all sites in Vi.

Case 1. Suppose that γ only contains interior connected components of type 0. This means that
there is no typechange when going from the outside to the inside. Then we may remove γ, i.e.,
continue the checkerboard configuration outside of γ to where γ used to be. This means that we
will assign to each ω for which Γ(ω) 3 γ the reference configuration (ωΛ\γω

0
γ) which appears in the

partition function ZΛ to lower bound the latter. Here ω0
γ denotes the type-0 checkerboard configuration

on γ. It is important to note that this removal keeps all other contributions from exterior and interior
components compatible. Hence, we immediately arrive at a lower bound

ZBL
≥ R(ω0

γ)ZV0

k∏
i=1

ZVi .

We may write ρ(γ) = R(ω0
γ)((1− p)/p)N

repl
, where N repl denotes the number of replacements of a

zero by a one on the support of the contour. By definition of a contour each site in γ has a neighbor
which is zero. Therefore it will replaced itself by a one, or a neighbor of it will be replaced by a one.
Hence N repl ≥ |γ|/(2d+ 1). Thus, we have the desired estimate

νBL
(ω : Γ(ω) 3 γ) ≤

(
(1− p)/p

)|γ|/(2d+1)
.

Case 2. Suppose now that γ additionally also contains interior volumes of type 1 (the bad type that
does not agree with the boundary outside Λ), which we will denote by Wj , j = 1, . . . , l. Writing Vi
for the interior components of type-0, we have

νBL
(ω : Γ(ω) 3 γ) =

ρ(γ)ZV0

∏k
i=l+1 ZVi

∏l
j=1 ZWj

ZBL

,

where all partition functions are sums over compatible configurations in the respective connected
components, such that the total configuration contains the contour γ.

The difficulty of this case is that the removal of γ does not immediately create compatible
configurations. However, it does so after the shift of each of the internal volumes of wrong
checkerboard subtypes Wj in one of the 2d possible (positive or negative) lattice directions e. Let
us explain the details now. Our comparison configuration will now be equal to the type-0 checkerboard
on the following set γe which describes the appropriate modification of γ, obtained by shifts of the
internal components,

γe :=
(
γ\

l⋃
j=1

(Wj + e)
)
∪

l⋃
j=1

Wj\(Wj + e). (3.3)

Note that there is the volume preservation |γe| = |γ|. For each ω for which Γ(ω) 3 γ, the reference
configuration will then be

(ω0
γe , ω∪ki=l+1Vi

, (θeω)∪lj=1(Wj+e)), (3.4)

where θe represents the shift of the configuration by e. We see from the definition that ω will not be
modified on the external component and the internal components of good type. It will however be
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shifted by e on the internal components of bad type, and it will be a checkerboard of good type on
the modified contour γe. Note that this configuration really occurs in ZΛ as it satisfies the isolation
constraint on the ones. Hence it can be used to lower bound the partition function which gives us

ZΛ ≥ R(ω0
γe)ZV0

k∏
i=l+1

ZVi

l∏
j=1

ZWj
,

where we have used the shift invariance for the internal partition functions ZWj
(those with the bad

types).

Now, the proof is finished once we show that there is a dimension-dependent constant cd > 0 such
that

ρ(γ) ≤ R(ω0
γe)
(
(1− p)/p

)cd|γ|. (3.5)

We denote by S0 the occupied sites of ω0 (the good checkerboard configuration).

The idea is to use the fact that any connected (in graph distance) subset of Zd hits at least a positive
fraction of S0 to conclude the inequality

|γe ∩ S0| ≥ cd|γe| = cd|γ|. (3.6)

Then, the Inequality (3.5) would follow immediately from that.

However, there is the small problem with that argument since, while γ by definition is connected
(w.r.t. graph distance), the modified set γe may have obtained isolated sites, see Figure 6. This may

Figure 6: Illustration of a configuration with one contour γ (left in green), where the outside
configuration is of type 0 and the inside configuration is of (bad) type 1. Moving the inside configuration
by−e1 (middle) creates a (good) configuration also inside the contour γe as described in (3.3) (middle
in green), however the shift also creates isolated zeros. On the right, in the large connected component
of γe, sites are indicated in dashed blue, which can be flipped from unoccupied to occupied, as in the
configuration presented in (3.4), and therefore create an energetically preferable configuration.

occur if the only neighbor of such a site is eaten up by a translated interior component. We will now
explain that this is not a real problem as the number of those unwanted sites is too small to spoil our
desired bound (3.6).

Indeed, consider the case Z2 and e = −e1 for visualization. Then, in each fixed row, the sets γ and
γe contain the same number of sites. To each loss site (on the left) there corresponds a site in the
set
⋃l
k=1 Wl\(Wl + e) (which is added to the contour) and which is not isolated but has a nearest

neighbor in γ. From this it follows that γe still has a nearest-neighbor-connected component γ̃e that is
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at least of size |γ|/2. Now, already γ̃e being connected, it hits a fraction (which we call c̃d > 0) of S0

and we arrive at

|γe ∩ S0| ≥ |γ̃e ∩ S0| ≥ c̃d|γ̃e| ≥ cd|γ|, (3.7)

where cd = c̃d/2. Note that we may regard γ̃e, as obtained in this process, as a contour, and its
removal in the line of Case 1.

This proves the claim in the general form and hence proves the Peierls estimate.

3.1.2 Non-removable discontinuities for µ′p via the relation to Bernoulli fields conditioned on
isolation

Proof of Theorem 2.1. Suppose that γ′ is a any specification for µ′p. Consider a square Q of
sidelength 3 around the origin. It will play the role of an observation window. Recall that we write ω′

for the second-layer variables, and we write ω for the first-layer variables. We will draw the assumption
that

ω′Qc 7→ γ′Q(dω′Q|ω′Qc)

is continuous at ω′Qc = 0′Qc to a contradiction, by exhibiting a finite jump size. We use the notation
1′B for the all-one configuration in the volume B. A single-site observation window would not show the
phenomenon, as a conditioning 0′0c for the model conditional on non-isolation forces the origin to be
0′ due to the non-isolation constraint.

For the purpose of showing the persistence of jumps onQ, we consider the loophole volumesBL and
BL + e as above, and choose for each L cubes CL that contain both BL and BL + e with a layer of
sufficiently large finite thickness. Thickness two will do.

In the first step, we consider conditional probabilities of the second-layer measure µ′p = Tµp of the
form

µ′p(ω
′
Q|ω′CL\Q).

We want to show that they are essentially discontinuous at the empty conditioning, so they cannot
come from a quasilocal specification γ′. The latter argument will be discussed below in the second
step, let us now discuss how to obtain the essential discontinuity. There is a slightly tricky part, as we
need to go to higher volumes than single-sites, and need to take care of the constraints very carefully.
In order to do consider

µ′p(ω
′
Q|0′BL\Q1′CL\BL

)

where ω′Q ∈ {0, 1}Q.

It is useful to compare with the empty configuration on the second layer

µ′p(ω
′
Q|0′BL\Q1′CL\BL

)

µ′p(0
′
Q|0′BL\Q1′CL\BL

)
=
µ′p(ω

′
Q0′BL\Q1′CL\BL

)

µ′p(0
′
Q0′BL\Q1′CL\BL

)
.

The denominators never vanish, as the configuration that appears in the denominator on the right-hand
side obeys the non-isolation constraint.

Given the boundary condition 0′BL\Q, the non-isolation constraint on the second layer limits the
configurations to non-isolated configurations on the cube Q in order to have a non-zero measure.
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We will take as a useful local pattern on Q, the following second-layer reference configuration, which
is most easily visualized in two dimensions where it looks as follows

ω′∗Q =
0 1 0
1 1 1
0 1 0

.

It is clearly compatible with the second-layer constraint as ω′∗Q0′Qc contains no isolated ones. In general
dimensions d we choose it analogously, namely as the checkerboard groundstate of type-0 but with
an additional 1 at the origin, i.e.,

(ω′∗Q)i =

{
ω0
i i ∈ Q\0

1 i = 0.
(3.8)

We have the following useful observation. Given ω′∗Q, the underlying Bernoulli-field configuration ωQ
from which it appears as T -image, must take the same values on Q, independently of ω′Qc .

To understand the following steps it will be helpful to make a notational distinction and write ω∗Q = ω′∗Q
when we refer to the same configuration as a first-layer configuration. With this we have

µ′p(ω
′∗
Q0′BL\Q1′CL\BL

)

µ′p(0
′
Q0′BL\Q1′CL\BL

)
=
µp,CL

(TσCL
= ω′∗Q0′BL\Q1′CL\BL

)

µp,CL
(TσCL

= 0′Q0′BL\Q1′CL\BL
)
.

Next, we are aiming for a reformulation that involves only quantities of the first-layer model with
isolation constraint in the whole volume BL including Q. For this we perform some manipulations.
We split the numerator as follows,

µp,CL
(TσCL

= ω′∗Q0′BL\Q1′CL\BL
) = µp,Q(ω∗Q)µp,CL\Q

(
T (ω∗Q, σCL\Q)

∣∣
CL\Q

= 0′BL\Q1′CL\BL

)
.

Now, we change the middle site on Q on the right-hand side from 1 to 0 to obtain a first-layer
configuration that obeys the isolation constraint on Q. For this, we first write the simple identity

µp,CL
(ω∗Q) = p

1−pµp,CL
(ω0

Q).

It is important to note that we may also replace

TCL
(ω∗Q, σCL\Q)

∣∣
CL\Q

= TCL
(ω0

Q, σCL\Q)
∣∣
CL\Q

,

which is possible as the middle site of Q has no influence on the values of the restriction of
TCL

(ω0
Q, σCL\Q) to Qc. So we arrive at

µp,CL
(TσCL

= ω′∗Q0′BL\Q1′CL\BL
) =

p

1− p
µp,CL

(σQ = ω0
Q, TCL

(ω0
Q, σCL\Q)

∣∣
CL\Q

= 0′BL\Q1′CL\BL
).

Now we have achieved our goal, as we may recognize that

µp,CL
(σQ = ω0

Q, TCL
(ω0

Q, σCL\Q)
∣∣
CL\Q

= 0′BL\Q1′CL\BL
)

µp,CL
(TσCL

= 0′Q0′BL\Q1′CL\BL
)

= νBL
(σQ = ω0

Q),

with the conditional first-layer measure νBL
that is conditioned on isolation, in the whole volume BL,

as defined in the beginning of Section 3.1.1. Indeed, the denominator on the l.h.s. is the partition
function of the conditional measure, up to the terms on CL\BL on which the first-layer configuration
is frozen, and which cancel against those in the numerator. In particular there is no CL-dependence.
We have thus proved the following unfixing lemma.
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Lemma 3.2. The second-layer conditional probabilities and the first-layer model under the non-
isolation constraint satisfy the following relation

µ′p(σ
′
Q = ω′∗Q|0′BL\Q1′CL\BL

)

µ′p(σ
′
Q = 0′Q|0′BL\Q1′CL\BL

)
=

p

1− p
νBL

(σQ = ω0
Q),

where ω0
Q denotes the checkerboard groundstate and ω′∗Q is defined in (3.8). The same relation holds

for the shifted volume BL + e.

Note that this representation is particularly nice, as we are reduced to the discussion of the first-layer
model in the full volume BL (and not a volume reduced by Q) where we have the Peierls estimate to
our disposition. In particular, by the Peierls estimate we have that

νBL
(σQ = ω0

Q) ≥ 1−
∑
j∈Q

µBL
(σj 6= ω0

j ) ≥ 1− |Q|ε(p),

while
νBL+e(σQ = ω0

Q) ≤ ε(p).

In the final step, we bring the arbitrarily chosen specification γ′ into play, with the aim to show that
it must inherit a discontinuity at the empty configuration, too. For any pattern ω′Q in the observation
window Q, we bound the infimum over perturbations of the empty configuration outside the volume
∆L := BL ∩BL+e via

µ′p(ω
′
Q|0′BL\Q1′CL\BL

) =

∫
γ′Q(ω′Q|0′BL\Q1′CL\BL

ω̃′Cc
L
) µ′p(dω̃

′
Cc

L
|ω′CL\Q = 0′BL\Q1′CL\BL

)

≥ inf
ω′

∆c
L

γ′Q(ω′Q|0′∆L\Qω
′
∆c

L
) =: aL(ω′Q).

Similar arguments give that

µ′p(ω
′
Q|0′BL+e\Q1′CL\BL+e) ≥ aL(ω′Q)

µ′p(ω
′
Q|0′BL\Q1′CL\BL

) ≤ sup
ω′

∆c
L

γQ(ω′Q|0′∆L\Qω
′
∆c

L
) =: bL(ω′Q)

µ′p(ω
′
Q|0′BL+e\Q1′CL\BL+e) ≤ bL(ω′Q).

Now consider specifically the patterns 0′Q and ω′∗Q and note that

p

1− p
νBL

(σQ = ω0
Q) =

µ′p(ω
′∗
Q|0′BL\Q1′CL\BL

)

µ′p(0
′
Q|0′BL\Q1′CL\BL

)
≤
bL(ω′∗Q)

aL(0Q)
(3.9)

and

p

1− p
νBL+e(σQ = ω0

Q) =
µ′p(ω

′∗
Q|0′BL+e\Q1′CL\BL+e)

µ′p(0
′
Q|0′BL+e\Q1′CL\BL+e)

≥
aL(ω′∗Q)

bL(0Q)
, (3.10)

and remark that the denominators are uniformly bounded against zero.

Now, by the Peierls estimate presented in Lemma 3.1 in previous section, we have lower bounds
on the left-hand side of (3.9) and upper bounds on the left-hand side of (3.10). These contradict the
continuity assumption on the specification γ′, i.e., that the right-hand sides have the same limit as
L ↑ ∞.

This proves the discontinuity of the specification kernel γ′Q for any arbitrary specification γ′, at the fully
empty configuration.
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3.2 Proof of Theorem 2.2: Gibbsianness

In this section, we construct a continuous specification γ′ for µ′p for small p. The main ingredient is
an application of the Dobrushin-uniqueness bound and the backward-martingale theorem. In the first
step, we construct the conditional probabilities in finite volumes.

For this we use the following notation. For Λ ⊂ Zd we denote by Λc := Zd \Λ its complement and by
∂−Λ := {x ∈ Λ: there exists y ∈ Λc with y ∼Zd x} its interior boundary. The set Λo := Λ \ ∂−Λ
denotes the interior and Λ̄ := ((Λc)o)c the extension of Λ. Moreover, ∂+Λ := Λ̄ \ Λ then denotes
the outer boundary of Λ.

3.2.1 The specification

Let us consider, for any (large) finite volume ∆ b Zd, conditional probabilities of µ′p inside ∆ also
given a (first-layer) boundary condition ω outside ∆. More precisely, let Λ ⊂ ∆, ω′ = ω′Λω

′
∆\Λω

′
∆c ∈

Ω′ and let ω be such that ω∆c ∈ T−1(ω′(∆o)c), then

γ′ω∆c ,Λ(ω′Λ|ω′∆\Λ) :=

∑
ω̃∆
µp(ω̃∆)1{T∆(ω̃∆ω∆c) = ω′∆}∑

ω̃∆\Λo
µp(ω̃∆\Λo)1{T∆\Λ(ω̃∆\Λoω∆c) = ω′∆\Λ}

=

∑
ω̃∆\Λo

µp(ω̃∆\Λo)1{T∆\Λ(ω̃∆\Λoω∆c) = ω′∆\Λ}
∑

ω̃Λo
µp(ω̃Λo)1{TΛ(ω̃Λoω̃∆\Λo) = ω′Λ}∑

ω̃∆\Λo
µp(ω̃∆\Λo)1{T∆\Λ(ω̃∆\Λoω∆c) = ω′∆\Λ}

=

∑
ω̃∆\Λo

µp(ω̃∆\Λo)1{T∆\Λ(ω̃∆\Λoω∆c) = ω′∆\Λ}fω′Λ(ω̃∂−Λ∪∂+Λ)∑
ω̃∆\Λo

µp(ω̃∆\Λo)1{T∆\Λ(ω̃∆\Λoω∆c) = ω′∆\Λ}
,

(3.11)

where we wrote TΛ(ω) instead of (T (ω))Λ and

fω′Λ(ω∂−Λ∪∂+Λ) :=
∑
ω̃Λo

µp(ω̃Λo)1{TΛ(ω̃Λoω∂−Λ∪∂+Λ) = ω′Λ}

is a local function. We have the following consistency result.

Lemma 3.3. Assume that, given Λ b Zd and ω′ ∈ Ω′, lim∆↑Zd γ′ω∆c ,∆(ω′Λ|ω′∆\Λ) =: γ′Λ(ω′Λ|ω′Λc)

exists and is independent of ω∆c ∈ T−1(ω′(∆o)c). Then, γ′ is a specification for µ′p.

Proof. First note that for any ω′ ∈ Ω′ we can estimate,∣∣µ′p(ω′Λ|ω′∆\Λ)− γ′Λ(ω′Λ|ω′Λc)
∣∣ ≤ sup

ω∂+∆

∣∣γ′ω∂+∆,∆
(ω′Λ|ω′∆\Λ)− γ′Λ(ω′Λ|ω′Λc)

∣∣, (3.12)

where the supremum is taken over suitable boundary configurations compatible with ω′, since
µ′p(ω

′
Λ|ω′∆\Λ) can be written as an integral with respect to γ′·,∆(ω′Λ|ω′∆\Λ). In particular, under our

assumptions, the right-hand side of Equation 3.12 tends to zero as ∆ tends to Zd.

Now, consider a cofinal sequence ∆n ↑ Λc and let (F ′∆n
)n∈N denote the canonical filtration on

Ω′. Note that the sequence of random variables µ′p(ω
′
Λ|F ′∆n

) that are µ′p-almost surely defined as
µ′p(ω

′
Λ|F ′∆n

)(ω′) = µ′p(ω
′
Λ|ω′∆n\Λ), is a uniformly-integrable martingale adapted to (F ′∆n

)n∈N. Since

σ
(⋃

nF ′∆n

)
= F ′Λc , by Lévy’s zero-one law, (µ′p(ω

′
Λ|F ′∆n

))n∈N converges µ′p-almost surely and in
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L1 towards µ′p(ω
′
Λ|F ′Λc) as n tends to infinity. But this implies that for any ω̃′Λ, we can pick n sufficiently

large such that∫
µ′p(ω

′)|µ′p(ω̃′Λ|ω′Λc)− γ′Λ(ω̃′Λ|ω′Λc)|

≤
∫
µ′p(ω

′)|µ′p(ω̃′Λ|ω′Λc)− µ′p(ω̃′Λ|ω′∆n\Λ)|+
∫
µ′p(ω

′)|µ′p(ω̃′Λ|ω′∆n\Λ)− γ′Λ(ω̃′Λ|ω′Λc)| < ε,

where we used Lévy’s zero-one law in the first summand and the bound (3.12) in the second summand
on the right-hand side. But this implies that

∫
µ′p(ω

′
Λc)γ′Λ(ω̃′Λ|ω′Λc) = µ′p(ω̃

′
Λ) and hence γ′ is a

specification for µ′p.

3.2.2 Transformations into first-layer constraint models

In order to establish the conditions of Lemma 3.3 for sufficiently small p, we employ the Dobrushin
uniqueness theorem for the first-layer constraint model as defined in (3.13). For this, first note that we
can uniquely identify ω′ with the subset of its occupied sites in Zd and with some notational abuse
ω̄′ ⊂ Zd of ω′ is a fixed area in the sense that, under T , there is no choice for the Bernoulli field in
how to realize ω′. Recall that ω′ consist of clusters of size at least two and ω̄′ then consists of clusters
of size at least two surrounded by unoccupied sites, see Figure 7 for an illustration.

Figure 7: Illustration of the fixed area (black and white dots) based on a thinned configuration (black
dots). The thinned configuration is surrounded by unoccupied sites (white dots).

In view of this, we introduce the following specification associated to the first-layer constraint model on
Ω

γS∆(ω∆|ω∆c) :=
µp(ω∆∩S)1{ω∆∩Sω∆c∩S is T -feasible on ∆ ∩ S}∑

ω̃∆∩S
µp(ω̃∆∩S)1{ω̃∆∩Sω∆c∩S is T -feasible on ∆ ∩ S}

. (3.13)

Here, S ⊂ Zd is an unfixed area that is arbitrary at this stage, ∆ b Zd and any configuration ω ∈ Ω
is called T -feasible on a set ∆ ∩ S if all occupied sites of ω in ∆ ∩ S have no neighboring occupied
sites in ∆̄ ∩ S. In particular, with this definition,

γ′ω∆c ,Λ(ω′Λ|ω′∆\Λ) = γS∆(fω′Λ|ω∆c)
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for the particular choice of the unfixed area given by S = S(ω′∆\Λ) = (∆ \ Λo) \ ω̄′∆\Λ. Here we
used that, in the fixed area ω̄′∆\Λ, the Bernoulli field is completely determined by ω′∆\Λ and hence the
corresponding factor cancels in (3.11). The following result verifies the conditions of Lemma 3.3 for
sufficiently small p.

Lemma 3.4. Let p < 1/(2d). Then, for any Λ b Zd and ω′ ∈ Ω′, the limit

lim∆↑Zd γ
S(ω′

∆\Λ)

∆ (fω′Λ |ω∆c) exists and is independent of ω∆c ∈ T−1(ω′(∆o)c).

Proof. We use the Dobrushin-uniqueness approach for the specification γS∆ as defined in (3.13),
where S ⊂ Zd is any unfixed area. Consider the Dobrushin matrix

Cij(p) = max
ωjc=ω̃jc

‖γSi (·|ωic)− γSi (·|ω̃ic)‖TV

for i, j ∈ S, where complements are defined in S. Note that the exterior boundary ∂+S of S consists
of unoccupied sites, see Figure 7. We have Cij(p) = 0 unless i and j are neighbors in S. Otherwise,

Cij(p) = 1
2

max
ωjc=ω̃jc

(|γSi (0|ωic)− γSi (0|ω̃ic)|+ |γSi (1|ωic)− γSi (1|ω̃ic)|) = p,

where the maximum is realized when ωjc is unoccupied while ωj is unoccupied and ω̃j is occupied.
In particular, for the Dobrushin criterion, we have

c(p) = sup
i∈S

∑
j∼i

Cij(p) ≤ 2dp,

independent of S. By [Geo11, Theorem 8.7], for all p < 1/(2d) and S, γS∆ admits a unique
infinite-volume Gibbs measure µS . Finally, using the remark made above [Geo11, Equation 8.25],
γS∆(fω′Λ|ω∆c) converges uniformly in ω towards µS(fω′Λ), which finishes the proof.

3.2.3 Quasilocality of the specification

What remains to be done in order to finish the proof of Theorem 2.2 is to establish quasilocality for the
specification. Let s denote the `∞ metric on Zd and define s(Λ,∆) = inf{s(i, j) : i ∈ Λ, j ∈ ∆}.
Lemma 3.5. For p < 1/(2d) there exist constants C, c > 0 such that for all Λ ⊂ ∆ b Zd and all
configurations ω′ and ω̃′ with ω′∆ = ω̃′∆ we have that

|γ′Λ(ω′Λ|ω′Λc)− γ′Λ(ω′Λ|ω̃′Λc)| ≤ C|Λ|e−cs(Λ,∆c).

In particular, the specification γ′ is quasilocal.

Proof. We use the representation of γ′Λ(ω′Λ|ω′Λc) in terms of the unique infinite-volume Gibbs
measure µS(fω′Λ) as presented in the proof of Lemma 3.4. This representation exists since we work
in the Dobrushin-uniqueness regime. Now, for the quasilocality, we use the criterion [Geo11, Remark
8.26] applied to [Geo11, Theorem 8.20]. More precisely, since p < 1/(2d), by [Geo11, Theorem
8.20], for S ∩∆ = S ′ ∩∆, we have that

|µS(fω′Λ)− µS′(fω′Λ)| ≤ D(Λ,∆),

where D(Λ,∆) =
∑

i∈Λ,j∈∆c

(∑
n≥0C

n
)
i,j

with Cn = Cn(p) the n-th power of the Dobrushin
matrix as presented in the proof of Lemma 3.4. Now choose c > 0 sufficiently small such that
pec < 1/(2d), then, by [Geo11, Remark 8.26],

D(Λ,∆) ≤ |Λ|(1− 2dpec)−1e−cd(Λ,∆c).

This finishes the proof.
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