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AbstratWe onsider planar vetor �elds depending on a real parameter. It is as-sumed that this vetor �eld has a family of limit yles whih an be desribedby means of the limit yles funtion l. We prove a relationship between themultipliity of a limit yle of this family and the order of a zero of the limityles funtion. Moreover, we present a proedure to approximate l(x), whihis based on the Newton sheme applied to the Poinaré funtion and representsa ontinuation method. Finally, we demonstrate the e�etiveness of the pro-posed proedure by means of a Liénard system. The obtained result supportsa onjeture by Lins, de Melo and Pugh.1 IntrodutionWe onsider the planar autonomous system
dx

dt
= P (x, y, a),

dy

dt
= Q(x, y, a) (1.1)depending on the salar parameter a for (x, y) ∈ Ω ⊂ R2. Under ertain onditions,the phase portrait of system (1.1) in Ω is determined by the so-alled singulartrajetories, namely equilibria, separatries and limit yles of (1.1) in Ω (see, e.g., [1,12℄). The most di�ult problem in studying these singular trajetories is to loalizemultiple limit yles and to estimate the number of limit yles. This problem isstill unsolved even in the ase of polynomial systems, and it represents the seondpart of the famous 16-th problem of D. Hilbert [9℄. As already D. Hilbert indiated,the investigation of the dependene of limit yles on parameters should play afundamental role in solving the posed problem.Our main goal is to exploit the parameter dependene in (1.1) for deteting multiplelimit yles. If we onsider the parameter a as an additional state variable, then weget from (1.1) the extended system

dx

dt
= P (x, y, a),

dy

dt
= Q(x, y, a),

da

dt
= 0. (1.2)We assume that this system has an invariant manifold of the form

a = m(x, y) (1.3)onsisting of limit yles of system (1.1), and that there exists a smooth segment
S := {(x, y) ∈ R2 : y = s(x), x0 ≤ x ≤ x1}1



in the phase plane suh that any limit yle of the family (1.3) intersets S transver-sally and there are no two distint limit yles of this family interseting S in thesame point. Then, the limit yles of the family (1.3) an be uniquely haraterizedby the x-oordinate of their intersetion point (x, s(x)) with the segment S. We de-note by L(x) the limit yle of the family (1.3) interseting S in the point (x, s(x)).Now we introdue the funtion l: [x0, x1] → R by
l(x) := m(x, s(x)), (1.4)whih assoiates L(x) with the orresponding parameter a. This funtion is alledthe limit yles funtion. Under some onditions it oinides with the Andronov-Hopf funtion [2, 4, 7, 8℄. In this note we will show that the order of a zero ofthe derivative of l(x) is related to the multipliity of the orresponding limit yle

L(x). Moreover, we present a proedure to approximate l(x), whih is based onthe Newton sheme applied to the Poinaré funtion and represents a ontinuationmethod. Finally, we demonstrate the e�etiveness of the proposed proedure bymeans of a Liénard system.For all alulations we used the software MATHEMATICA 5.2.2 PrelimineriesLet Ω be some simply onneted region in R2, and let I ⊂ R be some interval. Weonsider system (1.1) in Ω for a ∈ I under the following smoothness assumption.
(A1). P and Q are n-times ontinuously di�erentiable with respet to x and y, andontinuously di�erentiable with respet to a in Ω × I with n ≥ 1.System (1.1) de�nes the planar vetor �eld f := (P, Q) on Ω. We denote f assmooth if assumption (A1) is satis�ed.An isolated periodi solution of (1.1) whih is no stationary solution is alled a limityle.Our key assumptions with respet to the extended system (1.2) are the followingones.
(A2). There is a smooth funtional m: dom m ⊂ Ω → I suh that system (1.2) hasan invariant manifold of the form

M = {(x, y, a) ∈ R3 : a = m(x, y), (x, y) ∈ domm}, (2.1)onsisting of limit yles of system (1.1).Remark 2.1 The invariane of M implies that the funtional m satis�es the rela-tion
∂m

∂x
(x, y)P (x, y, m (x, y)) +

∂m

∂y
(x, y)Q(x, y, m (x, y)) ≡ 0 for (x, y) ∈ domm. (2.2)2



(A3). There is a smooth segment S := {(x, y) ∈ Ω : y = s(x), x0 ≤ x ≤ x1}interseting transversally all limit yles belonging to M. There are no two di�erentlimit yles of M interseting S in the same point.De�nition 2.1 The funtion l: [x0, x1] → I de�ned by (1.4) is alled the limityles funtion.We note that l is a smooth funtion. In ase that the manifoldM is onneted withthe bifuration of a limit yle from an equilibrium point and that the parameter arotates the vetor �eld f , the limit yles funtion l oinides with the Andronov-Hopf funtion (see [2, 4, 7, 8℄).To illustrate the introdued onepts we onsider the system
dx

dt
= −y + x(x2 + y2 − a)n ≡ P (x, y, a),

dy

dt
= x + y(x2 + y2 − a)n ≡ Q(x, y, a)

(2.3)for a ∈ R, n ∈ N . Using polar oordinates x = r cos ϕ, y = r sin ϕ system (2.3)reads
dr

dt
= r(r2 − a)n,

dϕ

dt
= 1.

(2.4)It is easy to verify that the irle
Ka := {(x, y) ∈ R2 : x2 + y2 = a, a > 0}is a limit yle of system (2.3). Thus, we have m(x, y) := x2 + y2 with dom m:= R2\{(0, 0)} for any n, and the invariant manifold M is onneted with thebifuration of the limit yle Ka from the origin when a passes the value zero forinreasing a. It is also obvious that the positive x−axis intersets the limit yle

Ka transversally. Hene, we have s(x) ≡ 0 and the limit yles funtion l reads
l(x) ≡ x2 and is de�ned for x > 0. From (2.3) we get the relation

P (x, y, a)
∂Q

∂a
(x, y, a) − Q(x, y, a)

∂P

∂a
(x, y, a) = n(x2 + y2)(x2 + y2 − a)n−1that implies that system (2.3) represent for n = 1 a rotated vetor �eld, and thusthe limit yles funtion l oinides with the Andronov-Hopf funtion.Sine for x ∈ [x0, x1] the limit yle L(x) of system (1.1) for a = l(x) intersetsthe segment S transversally, the Poinaré funtion π(x, a) (�rst return funtion) isde�ned for x ∈ [x0, x1] and a near l(x). From the property that a �xed point of thePoinaré funtion orresponds to a periodi solution of (1.1), we have aording tothe de�nition of l

π(x, l(x)) ≡ x for x ∈ [x0, x1]. (2.5)3



Introduing the displaement funtion δ by
δ(x, a) := π(x, a) − x, (2.6)then an isolated root of the displaement funtion orresponds to a limit yle of(1.1).De�nition 2.2 A limit yle is alled a limit yle of multipliity k if the orre-sponding isolated root of the displaement funtion δ has multipliity k.To determine the multipliity of the limit yle Ka of system (2.3) for n = 1 weonsider the orresponding equation in polar oordinates and study the initial valueproblem

dr

dϕ
= r(r2 − a), r(0) = r0 > 0.As solution we get

r(ϕ, r0, a) = r0

√

a

r2
0 − (r2

0 − a)2ϕa
.Thus, we have

δ(r0, a) = r(2π, r0, a) − r0 = r0

(
√

a

r2
0 − (r2

0 − a)4πa
− 1

)

.The following relations an be veri�ed
δ(
√

a, a) = 0, δr0
(
√

a, a) = −1.Thus, Ka is a simple limit yle for system (2.3) with n = 1.3 Multiple limit ylesIn this setion we derive an result about the zeros of the derivative of the limit ylesfuntion l and the existene of multiple limit yles. From (2.5) and (2.6) we get
δ(x, l(x)) = π(x, l(x)) − x ≡ 0 for x ∈ dom l.Di�erentiating this relation we obtain

πx(x, l(x)) − 1 + πa(x, l(x)) l′(x) ≡ 0. (3.1)Hene, if we have
πa(x̃, l(x̃)) 6= 0 (3.2)for some x̃ ∈ dom l, it holds

l′(x̃) = π−1
a (x̃, l(x̃)) (1 − πx(x̃, l(x̃))) = −π−1

a (x̃, l(x̃)) δx(x̃, l(x̃)). (3.3)4



Thus, under the ondition (3.2), the property that for a = l(x̃) the limit yle L(x̃)of system (2.3) represents a simple limit yle is equivalent to the ondition l′(x̃) 6= 0.Further, di�erentiating relation (3.1) we obtain
πxx(x, l(x)) + 2πxa(x, l(x)) l′(x) + πaa(x, l(x)) (l′(x))2 + πa(x, l(x)) l′′(x) ≡ 0.If we assume δx(x̃, l(x̃)) = 0, whih implies l′(x) = 0, then we get from (3.3) underthe ondition (3.2) the relation

l′′(x̃) = −π−1
a (x̃, l(x̃))δxx(x̃, l(x̃)).Analogously, after k−times di�erentiating the displaement funtion δ we obtain

π(k)
x (x, l(x)) + f1(x) l′(x) + f2(x) l′′(x) + ... + πa(x, l(x)) l(k)(x) ≡ 0.If we assume

δx(x̃, l(x̃)) = δxx(x̃, l(x̃)) = ... = δ(k−1)
x (x̃, l(x̃)) = 0we get under the validity of (3.2)

l′(x̃) = l′′(x̃) = ... = l(k−1)(x̃) = 0, l(k)(x̃) = −π−1
a (x̃, l(x̃))δ(k)

x (x̃, l(x̃)).Hene, we have the resultTheorem 3.1 Suppose that the assumptions (A1) − (A3) hold and that for some
x̃ ∈ dom l the relation (3.2) is valid. Then a neessary and su�ient ondition for
L(x̃) to be a limit yle of multipliity k, k ≤ n, is that x̃ is a root of the funtion
l′(x) of order k − 1.To illustrate that theorem we onsider the system

dx

dt
= −y + x((x2 + y2 − 1)2 − a) ≡ P (x, y, a),

dy

dt
= x + y((x2 + y2 − 1)2 − a) ≡ Q(x, y, a)

(3.4)for a ∈ R. Using polar oordinates x = rcos ϕ, y = rsin ϕ, system (3.4) reads
dr

dt
= r((r2 − 1)2 − a),

dϕ

dt
= 1.

(3.5)The extended system to (3.4) has for a ≥ 0 the invariant manifold a = (x2 +y2−1)2onsisting of limit yles of system (3.4). The positive x-axis intersets these limityles transversally. Thus, the limit yle funtion l reads l(x) := (x2 −1)2. It has asimple minimum at x = 1, where l takes the value a = l(1) = 0. The orresponding5



limit yle L(1) reads x2 + y2 = 1. To determine its multipliity we onsider theinitial value problem
dr

dϕ
= r(r2 − 1)2, r(0) = r0that has the impliit solution

1

2(r2
0 − 1)

− 1

2(r2(ϕ, r0) − 1)
+ ln

(

r(ϕ, r0)
√

r2(ϕ, r0) − 1

)

− ln

(

r0
√

r2
0 − 1

)

= ϕ.Using this relation we get
δ(1) = 0, δr0

(1) = 0, δr0r0
(1) 6= 0.This an be veri�ed e.g. by means of the software MATHEMATICA 5.2. Hene,the limit yle x2 + y2 = 1 of system (3.4) with a = 0 has the multipliity 2.4 A numerial proedure to approximate the limityles funtionIn what follows we desribe a numerial method to approximate to given x ∈ dom

l the value of l(x). For this purpose we denote by (x̄(t, x, y, a), ȳ(t, x, y, a)) thesolution of (1.1) satisfying x̄(0, x, y, a) = x, ȳ(0, x, y, a) = y. Under the hypotheses
(A1) − (A3), to x ∈ dom l there is a unique parameter value a = l(x) and a uniqueprimitive period T = T (x) > 0 suh that the orbit of system (1.1) starting at thepoint (x, s(x)) is the limit yle L(x) with primitive period T (x). Hene, the systemof equations

x̄(T, x, s(x), a) − x = 0, ȳ(T, x, s(x), a) = s(x) (4.1)an be used to determine a and T as funtions of x.Our basi idea is to apply a ontinuation method to ompute l(x) for x ∈ dom l.We assume that for some point x = x0 the value a0 = l(x0) as well as the limit yle
L(x0) is known and use these fats for our ontinuation method. For the following weassume that x0 and the orresponding value l(x0) is onneted with the appearane ofa simple limit yle from the equilibrium point (xe, ye) of system (1.1) (Andronov-Hopf bifuration) when a passes the value l(x0). From the theory of Andronov-Hopf bifuration we know that the primitive period T0 of the bifurating limit ylesatis�es T0 = 2π/b0, where b0 is the imaginary part of the ritial eigenvalues of theJaobian of the right hand side of (1.1) for a = a0 = l(x0) at the equilibrium (xe, ye).Moreover, we an use a segment of the straight line y = ye as our segment S.In the next step we replae x0 by x0 + h, where h is a small positive number andapply Newton's iteration sheme to determine a and T from system (4.1), where weuse a0 and T0 = 2π/b0 as initial guess.In the pratial realization we use a slight modi�ation of this proedure. By means6



of the transformation t = T (x)
2π

τ = µτ with µ = T (x)
2π

we introdue a new time τ suhthat the primitive period of the limit yle L(x) is always 2π, but then we have todetermine the additional parameter µ. Using the new time τ , we get from (1.1) thesystem
dx

dτ
= µP (x, y, a),

dy

dτ
= µQ(x, y, a). (4.2)If we denote by (x̃(τ, x, ye, µ, a), ỹ(τ, x, ye, µ, a)) the solution of system (4.2) satisfy-ing

x̃(0, x, ye, µ, a) = x, ỹ(0, x, ye, µ, a) = ye,then the system of equations whih analogously to (4.1) determines the parameters
a and µ has the form

ϕ1(x, a, µ) ≡ x̃(2π, x, ye, µ, a) − x = 0,

ϕ2(x, a, µ) ≡ ỹ(2π, x, ye, µ, a) = ye.
(4.3)Suppose we have determined to the sequene x1, ..., xi−1 the values µ∗

1, ..., µ
∗

i−1,
a∗

1, ..., a
∗

i−1 approximating the orresponding values µ(x1) = T (x)/2π, ..., µ(xi−1) =
T (xi−1)/2π, and a(x1) = l(x1), ..., a(xi−1) = l(xi−1). In order to determine to xi theorresponding approximating values (µ∗

i , a
∗

i ) we apply Newton's method to system(4.3) yielding the sequene (µk
i , a

k
i ) de�ned by

(

ak+1
i

µk+1
i

)

=

(

ak
i

µk
i

)

− J−1
k (xi)

(

ϕ1(xi, µ
k
i , a

k
i )

ϕ2(xi, µk
i , a

k
i , )

)

, k = 0, 1, ...where a0
i = a∗

i−1, µ
0
i = µ∗

i−1,
Jk(xi) =

(

∂x̃
∂a

(2π, xi, ye, µ
k
i , a

k
i )

∂x̃
∂µ

(2π, xi, ye, µ
k
i , a

k
i )

∂ỹ

∂a
(2π, xi, ye, µ

k
i , a

k
i )

∂ỹ

∂µ
(2π, xi, ye, µ

k
i , a

k
i )

)

.Remark 4.1 Under the assumption that the Jaobian matrix Jk(xi) is invertibleand that the di�erene |xi − xi−1| is su�iently small for any i, the sequenes
{µk

i }, {ak
i }, onverge to µ∗

i , a
∗

i , respetively, as k tends to in�nity.The entries of the matrix Jk an be alulated by solving the initial value problem
dx

dτ
= µP (x, y, a),

dy

dτ
= µQ(x, y, a),

d(∂x
∂a

)

dτ
= µ

(

∂P

∂a
+

∂P

∂x

∂x

∂a
+

∂P

∂y

∂y

∂a

)

,

d(∂y

∂a
)

dτ
= µ

(

∂Q

∂a
+

∂Q

∂x

∂x

∂a
+

∂Q

∂y

∂y

∂a

)

,7



d(∂x
∂µ

)

dτ
= P + µ

(

∂P

∂x

∂x

∂µ
+

∂P

∂y

∂y

∂µ

)

,

d( ∂y

∂µ
)

dτ
= Q + µ

(

∂Q

∂x

∂x

∂µ
+

∂Q

∂y

∂y

∂µ

)

,

x(0, xi, ye, µ
k
i , a

k
i ) = xi, y(0, xi, ye, µ

k
i , a

k
i ) = ye,

∂x

∂µ
(0, xi, ye, µ

k
i , a

k
i ) =

∂y

∂µ
(0, xi, ye, µ

k
i , a

k
i ) = 0,

∂x

∂a
(0, xi, ye, µ

k
i , a

k
i ) =

∂y

∂a
(0, xi, ye, µ

k
i , a

k
i ) = 0.5 ExampleWe onsider the Liénard system

dx

dt
= y + ax − 1024x11 − 2816x9 + 2816x7 − 12325x5 + 220x3

1024
≡ P (x, y, a),

dy

dt
= −x ≡ Q(x, y, a)

(5.1)depending on the real parameter a. This system has the following properties.(i). It has a unique equilibrium point in the �nite part of the phase plane, namelythe origin, whih does not depend on the parameter a.(ii). Let α(a) ± iβ(a) be the eigenvalues of the linearization of system (5.1) forsmall a at the origin. We have
α(0) = 0, α′(0) = 1/2, β(0) > 0.The orresponding Lyapunov number α1 (see, e.g., [6, 11℄) is negative.(iii). By (5.1) we have

Q(x, y)P ′

a(x, y, a) ≡ −x2,that is, the parameter a rotates the vetor �eld f orresponding to (5.1) (see[6, 11℄).(iv) Any trajetory of (5.1) intersets the positive x-axis transversally.From (ii) we get that Hopf bifuration takes plae when the parameter a rosseszero, where exatly one limit yle Γ(a) bifurates from the origin for inreasing
a. This limit yle is simple and orbitally asymptotially stable. Moreover, byproperty (iv), for small a this limit yle interset the positive x-axis transversally.From the theory of rotated vetor �elds [6, 11℄ we get that Γ(a1) and Γ(a2) do not8
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Figure 1: Graph of the funtion a = l9(x)interset for small a1 and a2 if a1 6= a2. Thus, the family of bifurating limit yles
{Γ(a)} an be haraterized also by the x-oordinates of their intersetion pointwith the positive x-axis, that means by the limit yle funtion l, whih oinides inthe present ase with the Andronov-Hopf funtion. In a given small neighborhoodof the origin the number of limit yles an hange by the ourrene of multiplelimit yles. In our ase, we restrit to the neighborhood x2 + y2 ≤ 1.2 and usethe limit yle funtion l to investigate the appearane of multiple limit yles. Byapplying the numerial proedure desribed in the setion before we ompute l(x)for x = 0.01 + j 0.025, j = 1, .., 44. Then we approximate the obtained set of pointsby some polynomial lN of order N . For this purpose we apply the method of leastsquares. We hoose N in suh a way that number of extrema of the polynomial lNin the interval [0.01, 1.085] does not hange if we inrease N . By this way, we havegot the result

l9(x) = 0.154224x2 + 0.124769x3 − 1.63087x4

+ 3.22805x5 − 5.36163x6 + 8.75029x7 − 7.9267x8 + 2.6726x9.By means of Sturm's hains we an prove that the polynomial l9 has in the interval
[0.01, 1.085] exatly four extrema: the points A(0.4522, 0.0121) and C(0.8726, 0.0111)are minima, the points B(0.6952, 0.0101) and D(0.9758, 0.0105) are maxima. Thegraph of the funtion a = l9(x) is represented in Fig. 1. From these investigationswe an onlude that system (5.1) has at least �ve limit yles for 0.0105003 ≤ a ≤
0.0111532.To hek the quality of the obtained numerial results for a = 0.0107 we applythe method of Dula-Cherkas funtion Ψ(x, y) as desribed in [3, 4, 5, 7℄. We on-strut the funtion Ψ(x, y) in the form of a polynomial of 100-th degree. The urve
Ψ(x, y) = 0 de�nes �ve nested ovals surrounding the unique �nite equilibrium atthe origin (Fig. 2) whih are interseted transversally by the trajetories of system(5.1) for a = 0.0107. Using the tehniques from [7℄ we an establish that system9



(5.1) for a = 0.0107 has exatly �ve limit yles. We note that it is possible toonstrut a Dula-Cherkas funtion whih depends on the parameter a and to provethat system (5.1) has for any a not more than �ve limit yles. This result supportsthe onjeture by Lins, de Melo and Pugh [10, 13℄ that Liénard's systems of theform
dx

dt
= y +

2k+1
∑

i=1

aix
i,

dy

dt
= −xhave not more than k limit yles.
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Figure 2: Ovals de�ned by Ψ(x, y) = 06 AknowledgementThe seond author aknowledgements the �nanial support by DAAD and the hos-pitality of the WIAS.Referenes[1℄ A. A. Andronov, E. A. Leontovih, I. I. Gordon, A. G. Maier, Qual-itative theory of seond order dynamial systems, John Wiley and Sons, NewYork, 1973.[2℄ L. A. Cherkas, The question on the analytiity of a manifold determininglimit yles, Di�erential Equations 18 (1982), 839-845.10
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