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Abstract. Due to transaction costs, illiquid markets, large investors or risks from an unprotected
portfolio the assumptions in the classical Black—Scholes model become unrealistic and the model
results in strongly or fully nonlinear, possibly degenerate, parabolic diffusion—convection equations,
where the stock price, volatility, trend and option price may depend on the time, the stock price or
the option price itself.

In this chapter we will be concerned with several models from the most relevant class of nonlin-
ear Black—Scholes equations for American options with a volatility depending on different factors,
such as the stock price, the time, the option price and its derivatives.

We will analytically approach the option price by following the ideas proposed by Sevéovié and
transforming the free boundary problem into a fully nonlinear nonlocal parabolic equation defined
on a fixed, but unbounded domain. Finally, we will present the results of a split—step finite difference
scheme for various volatility models including the Leland model, the Barles and Soner model and
the Risk adjusted pricing methodology model.

1 Introduction

The strong interest in pricing financial derivatives — among them in pricing options — arises
from the fact that financial derivatives, also called contingent claims, can be used to mini-
mize losses caused by price fluctuations of the underlying assets. This process of protection
is called hedging. There is a variety of financial products on the market, such as futures,
forwards, swaps and options. In this chapter we will focus on American Call options.

We recall that an American Call option is a contract where at any time before a pre-
scribed time in the future, known as the expiry date T, the owner of the option, known as
the holder, may purchase a prescribed asset, known as the underlying asset S (t), for a pre-
scribed amount, known as the exercise or strike price K . The opposite party, or the writer,
has the obligation to sell the asset if the holder chooses to excercise his right. The value of
the American Call option at the time of execution, known as the pay-off function, is

V(S,t)=(S-K)*.
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Option pricing theory has made a great leap forward sincedédwelopment of the
Black—Scholes option pricing model by Black and Scholesri6l973 and previously by
Merton [44]. The solution of the famouybnear) Black—Scholes equation

1
0=Vt+§a252Vss+r5V5—rV, 0< S <Spt), te(0,T), 1)

whereV denotes the value of the option andhe riskless interest rate, provides both an
option pricing formula for an American Call option and a hiedgportfolio that replicates
the contingent claim. This is true under the assumptionttietnarket icomplete which
means that any derivative and any asset can be replicateatigeti with a portfolio of other
assets in the market, cf. [61].

However, this assumption of a complete market is never Ilidfiln reality. Due to
transaction costs [4, 8, 41], large investor preferenc8s2, 50] and incomplete markets
[55] the classical model results in strongly or fully nomdan, possibly degenerate, parabolic
convection—diffusion equations, where both the volgtiitand the drifty, can depend on
the timet, the stock priceS or the derivatives of the option prideé itself. Here, we will
be concerned with several transaction cost models from t® ralevant class of nonlinear
Black—Scholes equations for American options with a corsiaift  and a nhonconstant
modified volatility function

o2 = 5(t, S, Vs, Vss).

Under these circumstances (1) becomes the followimglinear Black—Scholes equa-
tion:

1
0=V, + 502(15, S, Vs, Vss)S?Ves +1rSVs —rV, S§>0,te (0,T) (2)

Studying (1) for an American Call option would be redundaihce the value of an
American Call option equals the value of a European Calloopifi no dividends are paid
and the volatility is constant. In order to make the modeleamealistic, we will consider a
modification of (2) for American options, whefepays out acontinuous dividendSdt in
atime stepit:

1
0=V, + 552@, S, Vs, Vss)S?Vss + (r —q)SVs —rV, S§>0,te (0,T7), (3)
where the dividend yield is constant.

Remark 1.1 Most dividend payments on an index — such as the Dow Jonestiiadidv-
erage (DJIA) or the Standard and Poor’s 500 (S&P500) — arereqguent that they can
be modeled as a continuous payment, which is the ca¢8)inHowever, if companies
only make two or four dividend payments per year, then onddaeat the dividend pay-
ments discretely and the question of how to incorpodigerete dividend paymenisto the
Black—Scholes equation arises.

Even though in this work we will focus on the case of contisutividend payments,
we briefly review the results for discrete dividend payménots [63] in the sequel.
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We assume that there is only one dividend payment of theedidiglieldq during the
lifetime of the option at thelividend datet,. Neglecting other factors, such as taxes, the
asset priceS must decrease exactly by the amount of the dividend paymantmet,.
Thus we have themp condition

S(ty) = (1—a)S(ty),

wheret;, t; denote the moments just before and after the dividend #jatéhis leads to
the following effect on the option price:

V (S, t;) =V((1—9q)5, t;_)> (4)

i.e. the value of the option & and timet " is the same as the value immediately after the
dividend datef, but at the asset valugl — ¢)S. In order to calculate the value of a Call
option with one dividend payment we solve the Black—Sclegjeation from expiry = T
until ¢t = t; and use the relatioi) to compute the values at= ¢, . Finally, we continue

to solve the Black—Scholes equation backwards startirig-at,~ using these values as the
initial data. The boundary conditions, that are discussethie next section, do not need to
be modified for this case.

In the mathematical sense equations (2) and (3) are callagecbon—diffusion equa-
tions. The second-order ter§&?(t, S, Vs, Vgg)S?*Vss is responsible for theliffusion the
first-order termrSVs or (r — ¢)SVs is theconvectiorterm and—rV can be interpreted as
thereactionterm (cf. [53, 62]).

In the financial sense, the partial derivatives indicatestesitivity of the option price
V to the corresponding parameter and are caBedeks The option delta is denoted by
A = Vg, the option gamma by = Vg and the option theta by = V; [33].

Since American options can be exercised at any time befqueyexve need to find
the optimal timet of exercise, known as theptimal exercise time At this time, which
mathematically is astopping time the asset price reaches thptimal exercise pricer
optimal exercise boundar§(t).

This leads to the formulation of the problem for Americaniaps by dividing the do-
main [0, oo[x [0, T'] of (3) into two parts along the cun(t) and analyzing each of them
(see Fig. 1(a)). Sinc((t) is not known in advance but has to be determined in the process
of the solution, the problem is calldabe boundary value probleisee e.g. [67]).

For different numerical approaches, the free boundarylemotfor American options
can be reformulated into lenear complementary problena variational inequalityand a
minimization probleni26]. Here, we will only consider the formulation as a freaibdary
problem.

For the American Call option thepatialdomain is divided into two regions by tliee
boundaryS(t), the stopping regionS;(t) < S < oo, 0 < t < T, where the option is
exercised or dead with’(S,t) = S — K and thecontinuation regiord0 < S < Sy(t),

0 < t < T, where the option is held or stays alive and equation (3) iisl wmnder the
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Figure 1: American Call.

following terminal and boundary conditions:

V(S,T)=(S—K)" for0 < S < Sy(T)
V(0,t) =0 foro<t<T
V(Sf(t),t) = Sf(t) — K for0<t<T (5)
Vs(S¢(t),t) =1 for0<¢t<T
S#(T) = max(K,rK/q).

For the sake of simplicity we will assume > ¢ in this chapter, and therefore we have
S¢(T) = rK/q for the American Call.

The structure of the value of an American Call can be seenlfix), where we notice
that the free boundar§(¢) determines the position of the exercise.

For American options, in general, analytic valuation fotaeuare not available, except
for a few special types, which we are not going to addressignctapter. Those types are
Calls on an asset that pays discrete dividendsergetualCalls — meaning Calls with
an infinite time to expiry [40]. For the other types, thereagous kinds of analytical and
numerical approximations that will be discussed in thisptba

The structure of this chapter is as follows. In Section 2 sdvwsonconstant volatility
models that lead to the nonlinearity of the Black—Scholas#ggn will be introduced. The
focus of this chapter is the solution of the resulting nagdinproblems for American Call
options. Since in general, a closed—form solution to thdinear Black—Scholes equation
for American options does not exist (even in the linear case)have to solve the prob-
lems numerically. The numerical solution and the comparstady for American options
will be achieved by the transformation of the free boundaobfem (3) subject to (5) into a
forward-in-time parabolic equation defined on a fixed (budaumded) spatial domain (Sec-
tion 3). This new problem will be numerically solved by thethmal of finite differences
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using an operator splitting technique (Section 4). It wikn be evaluated and concisely
discussed in Section 5 thereafter.

2 Volatility Models

The essential parameter of the standard Black—Scholes|ntivatds not directly observable
and is assumed to be constant, is the volatiity There have been many approaches to
improve the model by treating the volatility in different ygand using anodified volatility
functiono(-) to model the effects of transaction costs, illiquid markatsl large traders,
which is the reason for the nonlinearity of (2) and (3). Irsteection we will first give

a brief overview of several volatility models and then foars the volatility models of
transaction costs.

e The constant volatilityr in the standard Black—Scholes model can be replaced by
the estimated volatility from the former values of the umgag. This volatility is
known as thehistorical volatility [26].

¢ If the price of the option and the other parameters are knawtigh is e.g. the case
for the European Call and Put options, then itglied volatility can be calculated
from those Black—Scholes formulae. The implied volatilgythe values, for which
the Black—Scholes equation. is true compared to the reakenaiata. It can be
calculated implicitly via the difference between the oledroption pricel” (from
the market data) and the Black—Scholes formulae, wheréalbarameters - except
for the implied volatility o - are taken from the market data (the stock pisehe
time ¢, the expiration dat&, the strike price, the interest rate the dividend rate

q).

Considering options with different strike pric&Sbut otherwise identical parameters,
we see that the implicit volatility changes depending orsthige price. If the implicit
volatility for a certain strike pricey is less than the implicit volatility for both the
strike price greater and less than this effect is calledrolatility smile(see e.g. [39]).

e Replacing the constant volatility with the observed imipNolatilities at each stock
price and time leads to the term of theral volatility o := o(S,t). Dupire [16]
examines the dependencies and expresses the local tkila function of implicit
volatilities.

e Hull and White [32] and Heston [28] develop a model, in whicé volatility follows
the dynamics of a stochastic process. This is known astt@hastic volatility

e The assumption, that each security is available at any timdeaay size, or that in-
dividual trading will not influence the price, is not alwaysd. Therefore, illiquid
markets and large trader effects have been modeled by sawthars. In [23] Frey
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and Stremme and later Frey and Patie [24] consider thesetefia the price and

come up with the result
~ g

T T T pA(S)SVss

(6)

whereo is the historical volatility,p is constant\(S) is a strictly convex function
andA(S) > 1. The functionA(S) depends on the pay-off function of the financial
derivative. For the European Call option, Frey and Patievghat \(.S) is a smooth,
slightly increasing function fo6 > K. Bordag and Chmakova [7] assume tha$)

is constant and solve the problem (2) with the modified Vithati6) explicitly using
Lie-group theory (see also [12]).

The main scope of this chapter is the numerical solution@fitnlinear Black—Scholes
equation for the American Call option, where the nonlingagsults from transaction costs.
Therefore, after this general overview, we devote our &tiero a more detailed description
of several transaction cost models.

2.1 Transaction Costs

The Black—Scholes model requires a continuous portfoljosaishent in order to hedge the
position without any risk. In the presence of transacticst€ is likely that this adjustment
easily becomes expensive, since an infinite number of tcéinga is needed [40]. Thus, the
hedger needs to find the balance between the transactiatasare required to rebalance
the portfolio and the implied costs of hedging errors. Assaiteto this "imperfect" hedging,
the option might be over- or underpriced up to the extent witiee riskless profit obtained
by the arbitrageur is offset by the transaction costs, sbtkigae is no single equilibrium
price but a range of feasible prices. It has been shown tlzairarket with transaction costs
there is no replicating portfolio for the European Call optand the portfolio is required to
dominate rather than replicate the value of the option (4pe $oner, Shreve and Cvitdni
prove in [54] that the minimal hedging portfolio that donmiesa European Call is the trivial
one (hence holding one share of the stock that the Call isemriin), so that efforts have
been made to find an alternate relaxation of the hedging tionglito better replicate the
pay-offs of derivative securities.

2.1.1 The model of Leland

Leland’s idea of relaxing the hedging conditions is to tratleliscrete times [41], which
promises to reduce the expenses of the portfolio adjustntémiassumes that the transac-
tion costx|A|S/2, wherex denotes the round trip transaction cost per unit dollar ef th
transaction and\ the number of assets boughk (> 0) or sold (A < 0) at pricesS, is
proportional to the monetary value of the assets boughtldr Eeland derives the relation

2
Bt — g\ams = (V,+ %s%s)at, (7)
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whereB is the bond anda the riskless interest rate, and shows that
2
gyfmys - %LeSz\Vss\ét. (8)

Here, Le denotes théeland numberwhich is given by

2 K
ko= \/;<am> ®)

with 6t being the transaction frequency (interval between suseessvisions of the port-
folio) and x the round trip transaction cost per unit dollar of the tratisa. Plugging (8)
andB =11 — AS =V — SVg into the equation (7) becomes

0'2 02
rV —rSVs — 7[/652“/35‘ =V, + 7S2VSS. (10)

Therefore, Leland deduces that the option price is the isoludf the nonlinear Black—
Scholes equation

1.
0=V, + 50252‘/35 +rSVs —1rV,

with the modified volatility

7% = o2 (1 + Le sign(VSs)>, (11)

whereo represents the historical volatility ardg the Leland number. It follows from the
definition of the Leland number (9) that the more frequentrédimlancing {¢ smaller), the
higher the transaction cost and the greater the valdé. of

Leland’s model has played a significant role in financial raathtics, even though it has
been partly criticized by e.g. Kabanov and Safarian in [@/Fp prove that Leland’s result
has a hedging error. The restriction of his model is the cdtw®f the resulting option
price V (henceVsgs > 0) and the possibility to only consider one option in the pmiitf.
Hoggard, Whalley and Wilmott study equation (2) with the iified volatility (11) for
several underlyings in [30]. An extension to this approacieneral pay-offs is obtained
by Avellaneda and Paras in [3].

2.1.2 The model of Barles and Soner

In [4] Barles and Soner derive a more complicated model dpvahg theutility function
approachof Hodges and Neuberger [29].

Supposing that the proportional transaction co$t equal toa./c for some constant
a > 0, they prove that as andx go to 0, V' is the unique (viscosity) solution of the
nonlinear Black—Scholes equation

1.
0= ‘/t + 50’2S2V52<S+7°SVS —7”“/,
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where
52 =o? (1 + xy(e’“<T—t>a232vss)>. (12)

Hereo denotes the historical volatility, = x//c and¥(z) is the solution to the following
nonlinear ordinary differential equation (ODE)

W 1
V()= DLy (13a)
2/zV(z) — x
with the initial condition
¥(0) =0. (13b)

The analysis of this ODE (13) by Barles and Soner in [4] imgptieat

im 2% _1 and  lim U(z) = —1. (14)

r—oo X T——00

The property (14) encourages to treat the functign) as the identity for large arguments
and therefore to simplify the calculations. In this casevdlatility becomes

52 = 0,2(1 + er(T_t)QZSZVSs). (15)

The existence of a viscosity solution to (2) for Europeanarst with the volatility given
by (12) is proved by Barles and Soner in [4] and their numénriesults indicate an eco-
nomically significant price difference between the stadddlack—Scholes model and the
nonlinear model with transaction costs.

2.1.3 Risk Adjusted Pricing Methodology

In this model, proposed by Kratka in [39] and improved by Jitkd and Setovic in [35],
the optimal time-lagit between the transactions is found to minimize the sum ofake r
of the transaction costs and the rate of the risk from an uepted portfolio. That way the
portfolio is still well protected with the Risk Adjusted Bitng Methodology (RAPM) and
the modified volatilityis now of the form

2
52 = a2<1 +3(02M

SVss) 1) , (16)

™

whereM > 0 is the transaction cost measure &g 0 the risk premium measure.

It is worth mentioning that these nonlinear transactiont cosdels that are described
above are all consistent with the linear model if the add#lgparameters for transaction
costs are equal to zero and vanighe (W (-), M). We will study these models — more
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precisely equations (2) and (3) where the volatility is gitsy the equations (11), (12), (15)
and (16) — for American Call options.

In general, an exact analytical solution leading to a clesquession is not known for
American options in a market with transaction costs. In #rd Bection we will analytically
approach the solution of (3) by a transformation, that fiatéds the numerical solution in
the section thereafter. We will compare and evaluate thétesis the section thereafter.

3 The fixed Domain Transformation

The equation (3) subject to (5) is a backward-in-time freargary problem. In order to
ease the numerical solution of (3) (5) for American Call op#, we transform the prob-
lem into a problem posed on a a fixed (unbounded) domain addity to the forward
transformation in time. Hence, the domain does not depenth@rree boundarys;(t)
anymore and we simply calculate an algebraic constrainatexufor the position of the
free boundary. Following the idea of S®wit [52] we change the variables to:

T=T-t, z=In <%T)> & S=e"(r), olr)=S5¢T—1),
such that: € R* andr € [0, 7).
Then, we construct a portfolio
M(x,7) = V(S,t) — SVs(S,t)

by buying A = Vg sharesS and selling an optio’V. DifferentiatingIT with respect tox
andr gives us
I, = VsS, — S.Vs — SVssS, = S?Vss

and
11, = VsS; + Vit: — S; Vg — S(VgsSr + Viytr)
Q/(T) 2
= -V, — —25°V SV
t o(7) ss + o Vst (17)
o'(7)
= -V, - —21II, — SO
G
Substituting
~9 ~9

Vi = T8V — 1(V — §Vs) — qSVs = T-11, — 711 - gSVs
from (3) into (17) and using the fact thatSos = 9., we get

! ~2
II, = U—H —rll —¢SVg — MH;B + 0: U—Hm —rll ) 4+ S95(¢SVs)
2 o(T) 2

o (1) 1, -
(7 ~ —r+ q>Hx —rll+ 5050(021_[:0).
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We therefore obtain

~2
0=TI, + (b(r) - Z)TL, - %ax@?m) oI, (18)

defined onr € R*, 0 < 7 < T, where the coefficierti(r) is

b(r) = %/(7') +r—q.

The terminal condition from (5) in the original variableS, 7') becomes the initial condi-
tion in the new variablesr, 0):

(z,0) = V(S,T) — SVs(S,T)

—K for§>K&z<indd (19a)
0 otherwise '

and the boundary conditions from (5) transform to
I(z,7) =0 asr — o0, 0<7<T, (19b)
I1(0,7) = - K for0 <7 <T. (19¢)

To complete the system of equations that enables the cotiguutaf the portfolioll we
need to use the last two conditions of (5) to obtain an expmesat the free boundary
positiono(7). Differentiating and evaluatiny (S¢(t),t) = S¢(t) — K at the free boundary
gives us

Vs(S7(), 1)S}(2) + Vi(S5(1), 1) = S} (1),

Using (5), we conclude that
Vi(S¢(t),t) =0for0 <7 <T.
Computing (3) at the pointS¢(t),t) or at(0, 7) in the transformed variables yields:
0= Vi(Sy(1),1) + 55°T0(0,7) + (r — q)Sy (Vi (S7(0), 1) — rV (1)1
= %52Hm(0,7‘) +rK — qo(T).
We remind the reader that we have assumeésd ¢ and therefore we obtain the last condi-
tion:

1 5 rkK rK
7) = —0c“I1(0,7) + — with 0) = —, 19d
0lr) = 57 T1e(0.7) + = 0l0) = = (194)

where0 < 7 < T ands? depends on the volatility model we choose. The volatility)(1
from Leland’s model becomes

52 = o2 (1 + Le sign(Hx)> , (20a)
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for Barles’ and Soner's model (12) we get
2 =01+ V(e a’l,)), (20b)
for the identity model (15) we obtain
7% = *(1 +€a’T,), (20c)

and for the Risk Adjusted Princing Methodology (16) we deriv

2
52 = o2 <1 + 3((/;—7TMHIQ(T)6_“T)

=

) . (20d)

This transformed problem (18) subject to (19) with the cgpanding volatilities (20) is
solved by the split-step finite-difference method propdsg&eovic [52]

Once we have numerically solved the transformed problemabyutating the solution
to our portfolioII(x, 7) and the free boundary(r), we calculate the value of the American
Call V (S, t) option by transforming

I(z,7) =V (S,t) — SVs(S,t)

back to the original variables. Since we know that

(z,7) V(S,t) Vs(St) V(S,t)
sz s SS :as<— S >

we integrate the above equation frdirio S;(t), take into account the boundary condition
V(S¢(t),t) = Sf(t) — K and obtain:

/:fa Mn(e()/9)7) 45 _ / < ?ﬂ)ds

In £175 I(x, ) B (S¢(t),t)  V(S,t)
/n<_ff) gz (~S)de =~ sf(t) T3
In a( )
_ qolr) - K
S/ de = -8 o) +V(S,1)
S In Q("')
V(S,T—71)= o0 <Q(7‘) - K —I—/O e H(:L',T)d$>. (21)

Therefore, (21) yields the price of the American Call optid(S, ¢) in the presence (and
absence) of transaction costs.
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4 Numerical Solution

Due to the lack of general closed—form solutions to the Bi&dholes equations, there are
various numerical methods for solving Black—Scholes egoatfor American options.

For European Call and Put options, the Black—Scholes faemplrovide the correct
answer, but for more complicated contracts in more genetéihgs analytical formulae
are seldom available and numerical methods have to be ussdvimthe problem. These
vary from lattice methods (including binomial and trinoirapproximations [14]), Monte-
Carlo methods using the least-square techniques [34)ytisalapproximations [5,11,42],
finite-element discretizations [26] to finite-differencetimods [2, 9, 13].

There are numerous other methods for pricing American pgtiocluding the method
of lines [45], front-tracking algorithms [64], penalty rheds [68] and many others. One
of the standard approaches for solving the Black—Scholaatem for American options
consists of the transformation of the original equatiom itite heat equation posed on a
semi—unbounded domain with a free bound&yyt) [53, 63]. For a new alternative direct
method using the Mellin transformation we refer to [36, 47].

Up to now, an exact analytical formula for the free boundaunfife S (t) in (3) subject
to (5) is not known, but several authors derived approxireatgessions to evaluate Amer-
ican Call and Put options in the linear case [25]. Recentlg promising approach [51],
Sewovic obtained a semi—explicit formula for an American Call ie ttase ofr > q.
By transforming the linear Black—Scholes equation for thmetican Call option into a
nonlinear parabolic equation on a fixed domain and applymgiEr sine and cosine trans-
formations, he derives a nonlinear singular integral égonadetermining the shape of the
free boundary. This integral equation can be solved effelgtiby the means of successive
iterations.

Another standard method consists of the reformulation efftee boundary problem
into a linear complementary problem (LCP) and the solutigrine Projected Successive
Over Relaxation (PSORNethod of Cryer [15]. Alternatively, penalty and front—figi
methods are developed (e.g. in [22,46]). A disadvantaghesfd methods is the change of
the underlying model.

A different approach [31] is based on a recursive calcutaticthe early exercise bound-
ary, estimating the boundary only at some points and theroappating the whole bound-
ary by Richardson extrapolation. Explicit boundary tragkalgorithms are e.g. fnite-
difference bisection scherfié8] or thefront—tracking strategyf Han and Wu [27].

This emphasis of this chapter is on finite-difference sclgnias other methods will
not be further elaborated on here. For more information anarical methods we refer the
reader to [48, 49, 66] and the references therein.

4.1 American Call option

Now we want to solve the transformed problem from the previgection.

~2

1
0 =TI, + (b(r) — %)HI ~50@IL,) 41, xeRT, 0<T<T (22)
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with the corresponding volatilities (20) subject to the didions

K forz <In2Y
11 = K
(,0) { 0 otherwise
(23)
I(z,7) =0 aszx — o0, 0<7<T,
I1(0,7) = =K for0<7<T,
and the constraint
1 5 rkK rK
o(t) = —c“Il,(0,7) + — with p(0) = —. (24)
(1) = 5,8 M (0,7) + 0)="

We therefore first describe the solution of (22) subject ) éhd (24) with the correspond-
ing volatilities (20) by finite-difference schemes and tipeesent the numerical results.

4.2 Finite-Difference Schemes

There have been many approaches to calculate the value ofnamidan option numeri-
cally by compact finite-difference schemes in the absendeanfaction costs. Recently,
Tangman et al. [59, 60] introduced a compact scheme of d2ler). Two other com-
pact schemes, known as tNemerov-typdsee [58, 66]) and th€randall-Douglas scheme
(see [43]), are analyzed for linear Black—Scholes equstidtowever, these schemes are
not directly transferable to the model in the presence &etien costs.

In order to find a solution for the nonlinear Black—Scholesaipn (22) subject to (23)
with the corresponding volatilities (20) and the constré®#), Se¢ovit suggests to com-
bine two approaches that solve the problem for the Americhv@th a constant volatility
numerically [52]. One of them is the transformation of thelgem into a variational in-
equality and its solution by the PSOR algorithm [26, 53]. ©lhiger one is the derivation of
a nonlinear integral equation for the position of the freermary without the knowledge
of the price itself [40, 64].

Even though these methods are not directly applicablegedimey require a constant
volatility o, this approach is successful when it is combined with anaipesplitting tech-
nique. The idea is to discretize (22) in time, to split theatmn into a convective and a
diffusive part and to find an approximation for the solutiairglIl, o) at each time level.
The detailed derivation is given in the sequel.

4.2.1 Grid

We discretize the problem (22) subject to the condition$ {2th the corresponding volatil-
ities (20) by confining the unbounded domaire R* andr € [0,7] to z € (0, R) with
R > 0 sufficiently large (see [52]). For the calculation Sevic chooses to tak& = 3,
since this is equivalent t&' € (S;(t)e %, S;(t)) and yields a good approximation for
S € (0,5¢(t)) (as the transformation was = S¢(t)e~*). In the sequel we refer th > 0
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A

- - - r- - - T- - - aOT T TTrv T T ™

Tn+1

r space

0 T Tyl R=Nh

Figure 2: Uniform grid for an American Call option.

as the spatial step andto> 0 as the time step;; = ih, ¢ € [0, N], R = Nhandr, = nk,
n € [0, M], T = Mk (see Fig. 2).

The approximate solution of (22) ir; at timer,, is denoted byI? := II(x;, 7,,), the
value of the free boundary at timg by ¢ := o(7,,) and the value of the coefficientr)
atr, by b" := b(7,).

We treat the initial and boundary conditions (23) in thedwling way:

_ . e0) _ 1.1
N A
0 otherwise
(25)
8 = —K,
N =0.

4.2.2 Difference Quotients

We denote the forward difference quotient with respect éogpatial variable in; at time
T, With the spatial step size by:

e, . —IIn
D;{HZ” = % ~ 1 (2, ),
the backward difference quotient by:
I — II»
D, 11} := S — I, (2, 7)

and the central difference quotient by

n n
7, — 1%,

D?LH;-1 = 57 ~ (2, ),
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omitting the truncation erro®(h), O(h) andO(h?), respectively. For the second spatial
derivative we introduce the standard difference quotient

e, — 2117 + 117
D;%H;L — i+1 hzz i—1

~ Ha:x(xh Tn)7

with the error termO(h?).

4.3 Volatility Functions

The volatilities (20) can all be written in the form
~n) 2 2 n
(Ui) :U(1+Si)7

wheres]' denotes the volatility correction in; at timer,,. We choose forward differences
to approximatdl, in the volatility formulae, so that for Leland’s model withet volatility
(20a) our volatility correction becomes

si = Lesign(D; 11}), (26a)
for the volatility correction in Barles’ and Soner’s modatthe volatility (20b) we get

sl = W(e"™a’ Dy 1IY), (26b)
for the volatility correction in case of treating(-) as the identity with the original volatility
(20c) we obtain

st=¢e"™ azDin?, (26c)

and for the volatility (20d) in the Risk Adjusted Pricing Metology (RAPM) the volatility
correction is

2M l
st = 3(027T D;H?Q”e_“> " (26d)

4.4 The Treatment of the Free Boundary

We discretize the free boundary (24) by approximating thaiapderivative at the origin
x = 0 by forward differences and obtain:

1 5 n rk o TK
o' = —o°(1+s3)D; 11y + —  with o' = —, 27)
2 ( 0) Dy 115 P P
wheresg denotes (26) at = 0 depending on the volatility model.
Note, that in case of the RAPM, where the volatility correwtis given by equation
(26d), sy depends o™ and therefore™ in (27) is expressed by a fixed point equation.
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Remark 4.1 For the American Call option (in contrast to the American Bgption) it is
possible to derive a series for the location of the optimalreise boundary close to expiry
using standard asymptotic analysis [1, 63]. This local ais& of the free boundary(t)
yields

S¢(t) ~ S(T) <1—|—50 %J%T—t)—l—...) , ast—T, (28)

where&y, = 0.9034 ... is auniversal constantf Call option pricing. Equatior{28) can be
rewritten as

o(r) ~ 0(0) (1 +&o %UZ(T) + .. ) , ast —0. (29)

With only very few terms we get a fairly accurate result fag free boundary and thus
equation(29) will serve us as a check for the case of a constant volafility= o2 (see
Fig. 3). Note that this result is especially useful in thetfiime levels of a numerical
calculation where rapid changes i{7) influence the whole solution region.

23

21

20
0

Figure 3: Asymptotic solution for the free boundarfyr) with 7' = 1, K = 10, o = 0.2,
r=20.1, ¢ = 0.05.
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4.5 The Splitting in Time Method

We approximate the time derivative of (22) by backward défeesD, 117, the first and
second spatial derivatives by central differeneg417 and D?117. Then, (22) becomes:

2
1
0= DyIL + (0" = 5 (1 + 7)) DI} — 50, (o*(1+ s}) DRIIY) 4+ rII}  (30)

subject to the Dirichlet conditions (25). We introduce ateimediate step at time, 1,
2
such that

_1 _1
mp — It TP -1 2 410

7
k k ’
and then split the problem (30) into @nvective partwith the linear first-order term
b DYTI?:

DI =

I’

0= ————+ b DITI? (31)

and adiffusive partwith the nonlinear first- and second-order terafg2(1 + s7)DOII?
and—0, (02/2(1 + sI") DRIIL):

1
np -1 2 o2 1
= S+ DI — 50, (7 (L4 s DRIL) 4+ 1T (32)

1
Assuming thatD{TI? ~ DIIIT; 2, which is reasonable for small time stepswe can
approximate the convective part (31) as

1I; n 0T 3

Now the solution to (32)-(33) gives a good approximatiorhi $olution of (30) (see [52]).
This decomposition of the problem is calle-Splittingand is a spitting of order in time.

4.5.1 Convective part

First, we solve the convective part (33), which can be agprated by an explicit solution
to thetransport equation
IT; + b(7)II, = 0, (34)

for (x,7) € R x [0, 77, subject to the boundary and initial conditions

110, 7) = — K,

T(z,0) = {—K forz <InZ ) (35)

0 otherwise
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We then know by the theory of partial differential equati¢gsse e.g. [20]) that the solution
for this problem (34)—(35) is

B B T _ o T
Mz, 7) = (x /O b(s) ds, 0) = T°(x /O b(s) ds) (36)
with the primitive function [ b(s)ds = B(r) + ¢ = Ino(r) + (r — ¢)7 + ¢. Hence,

considering the problem (34) fdqw;, ;) € R x [r,—1, 7] subject to the boundary and
initial conditions

H(O, Tj) = —K,
1 (37)
H(z;, 7—1) = 11" (24),
we know that the solution is given by
i
(z;,75) = H(aji — / b(s) dS,Tn_l)
Tn—1 (38)

-K otherwise,

B {H(g{,rn_l) for&l >0

where we set’ = z; — B(7;) + B(7_1) =
can write

&5 — (7j = Ta—1)(r — q). Then we

(r—q)>0
39
-K otherwise. (39)

e { () Tam1) € ==

Here, we use a linear approximation between the discretees@l(x;,7,—1), i € N in
order to compute the value 0F(£, 7,—1).
Hence, (39) is the solution to the convective part (33) ofgtablem (30).

4.5.2 Diffusive part

We solve the diffusive part (32) of the problem (30) by thetéirdifference method. We
approximate the second spatial derivative by central diffeesD?117 and the first spatial
derivative by both centralD,OlH? and backward difference’, 1I}. Then, (32) becomes:

1
e — 4_5 2 I I
0=+ "¢ p _%(1+ )%_Hﬂﬂ
P gy T 2R T () () T TR
2 h? h h
— 2 Hz —0—(14—8?)1_[?4_1_1_[?_1 —|—T‘H?

2h

k
2 I, — II% I — 117
_ %((1 I e e A S S?—I)ZTH>'
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Rearranging leads to a tridiagonal system of equations

_1
;% = af Ty — BPI + T (40)
with the coefficients
o2 o? k
a;i = 7(1 + S?)ﬂ - 7(1 + 3?—1)ﬁ>
2 2
o k o k
bln =1+4+kr+ 7(1 + S?)ﬁ + 7(1 + S?—l)ﬁ?
o? k o? k
Equation (40) can be written in the form of matrices:
"3 = A™MI" + d", (41)
where .
Hn: ( ?7 ) 7\/—1) 6RN_17
o0 - 0
ay by '
A= o 0 e RIV-Dx(N-1).
Dy_o N_o
0 - 0 a}, by,
and
A= (T, 0, -, 0, &y I%) RN

Therefore, (41) solves the diffusive part (32) of the prabi&0).

Now, we have a set of nonlinear equations (26), (27), (39) (444 that delivers the
solution to our portfolidI(z, 7) and to the free boundaw(r), from which we can calculate

the value of the American Call optidr (S, t) with equation (21).
In order to see the dependencies of the equations, we reilvata in the following

abstract form:

where
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D(-) denotes the right-hand side of (265(-) is the right-hand side of (27)%(-) is the
right-hand side of the transport equation (39J;) is the tridiagonal matrix and(s™) the
vector as defined in (41).

As we can see by this notation (42), befhandII™ are given in terms of themselves,
hence each is given in terms gf andII™. This problem can be approximately solved by a
successive fixed point iteration ovekr N at each time leveh.

Following Sewovit [52] we define fom > 1: TI™0 = 1", p»0 = g1 ands™0 =
s"~L. Then the (p+1)-th approximation dF?, o™ ands™ is obtained as the solution of the
system:

ghptl — D(II™P, g™P),
Qn7p+1 — f(Hnﬁn’ 8n7p+1)’
-3 — g(re, g,

A(Sn,p—i-l)l—[n,p—i-l — Hn—%,p+1 _ d(sn,p+1).

(43)

Both the volatility correctiom?’pﬂ, the free boundary”™?*! and the solutiodl”~ 37+ to

the convective part (31) can be directly computed from (&6)) and (39) respectively. The
solutionII™P*+! to the diffusive part (32) has to be calculated from the sypsté equations
(41).

Assuming that the system (43) converges to some limitingegd™Pmaz = ohPmaz
[I"~zPmer and [I™Pma= at each time level [52], we can calculateV (S;,t,) =
V(e ®i", T — 1,) with these values and proceed to the next time level1.

From (21) we then know that:

V(SZ, tn) =e T (g" - K+ ZZ‘), (44)

where

i—1 z;
7, = ka + / e“Il(z, 7)dx
j=0 Ti—1

i—1
=0

Here, we use thrapezoidal rulein order to approximate the integral in equation (21).
We summarize the calculation of the prit&.S, t) for the American Call option in the
presence or absence of transaction costs by the Algorithiveh ¢n the appendix.

5 Comparison Study

Based on the iterative algorithm described in the previeasien (Algorithm 1), we solve
the transformed Black—Scholes equation (22) with the spoading volatilities (20) for
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the American Call option and finally transforfi(z, 7) back to the original option price
V(S,t).

The main purpose of this section is to compare the resultpigo valueV (S, ¢) and
the free boundant (7" — t) = o(7) for the four different transaction cost models (26) to
the linear modeld4 constant) and to each other.

We choosep,,., = 5 for the successive iteration ovgrin our algorithm in order to
solve the system (42) with the precisioniof-” [52]. We use the following parameters to
calculatell(z, 7) ando(7):

r=01, 0c=02  K=10, T=1(oneyear) R=3.

We start by comparing the free boundafy) computed with Algorithm 1 to the asymptotic
solution (29) from Remark 4.1 for the linear cas¢ & 0). In Fig. 4 we observe that for
smaller spatial stegs — 0 the free boundary computed by the iterative algorithm cayes
monotonically towards the asymptotic solution (29) fronolae

23
= = =asymptotic solution
—h=0.0086 .
22.5[1 _ h=0.01 Pt
—h=0.012 i
2211 —h=0.015 Pt
N h=0.03

=
21.5
21

20.5

20

Figure 4: Free boundary for various spatial stépsith a constant time step = 0.0008
and a constant volatility?> computed by Algorithm 1 vs. the asymptotic solution of (29).

We keep the time step = 0.0008 constant and see that far= 0.0086 (purple line)
the free boundary &f is computed by our algorithm ag7’) ~ 22.2201. The asymptotic
solution atT" is o(T') ~ 22.5552, which means a relative error ©419%. The free boundary
values for the other spatial steps can be seen in Table 1.
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h| 003 | 0015 | 0012 | 0.01 | 0.0086
o(T) || 21.8764 | 22.1111 | 22.1619 | 22.1955 | 22.2201

Table 1: Values of the free boundary position for varioustiagpatepsh with a constant
time stepk = 0.0008 and a constant volatility 2.

Since the asymptotic solution of (29) is only an approximatiwe are satisfied by our
results and take the free boundayl’) ~ 22.1111 for £ = 0.0008, h = 0.015 (blue line
in Fig. 4) as our reference solution in the absence of trdiesacosts for the sake of the
computational time.

Fig. 5 shows the structure of the price for the American Cptlam V (S, ¢) without
transaction costs with = 0.0008 andh = 0.015. It is computed with the iterative algo-
rithm described in the previous sections and the paramabenge.

Figure 5: Value of an American Call optidi (S, ¢) in the absence transaction costs com-
puted with Algorithm 1 determined by the free boundary (iad)l

The corresponding synthetic portfolid(x, 7) in the absence of transaction costs is
illustrated in Fig. 6. Note, that we include rounding andcdiization errors when trans-
forming I1(z, 7) back intoV (.S, t), since equation (44) involves an integral approximation.
However, the analysis df (.S,t) is more interesting for us and we therefore assume that
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these errors are sufficiently small due to the chosen mesh.

=
< —7 =0
E —17=0.2
—7 =04
7=0.6
7=0.8
—_—T =
1% o, 2 5
(a) 3-D profile. (b) Profile at different time points.

Figure 6: Value of the synthetic portfolid(z, 7) in the absence of transaction costs com-
puted with Algorithm 1.

We now compare the pricé (.S, 0) computed by Algorithm 1 to the pricépsor(S,0)
computed by the PSOR algorithm in the linear cage= 0. Fig. 7 shows that with the
given mesh sizé = 0.0008 andh = 0.015 the price computed by our algorithm (Fig. 7(a))
only slightly differs from the price computed by the PSORaaitdhm (Fig. 7(b)).

17 17
S S
R0 1o
~ ~
% 0 g 20 25 % 0 g 20 25
(@) Computed with Algorithm 1. (b) Computed with PSOR.

Figure 7: Price of an American Call optidni(.S, 0) in the absence of transaction costs and
the pay-offlV/(S,T") (red dotted line).

We calculate the error of accuracy of our computation one {e&xpiry att = 0,
denoted by thé?-error

o

N =
2
erry(0) = <hz |VPsor(5:,0) — Vz’012> )

1=0



24 Julia Ankudinova and Matthias Ehrhardt

where Vpsor(S;,0) denotes the solution computed by the PSOR algorithnd;at=
e~ o(T) and o(T") depends on the step size For this purpose, we interpolate the so-
lution computed by the PSOR algorithm by tRATLAB routinesspl i ne andppval .
For V? we use our corresponding solution, whére= 0.0008. The error can be seen in
Table 2, which reveals that it is reasonable to assume theamO (h).

h| 0.03 | 0.015 | 0.012 | 0.01 | 0.0086
*-error || 0.0365 | 0.0162 | 0.0257 | 0.0084 | 0.0167

Table 2: /2-error of accuracy of Algorithm 1 compared to the PSOR atoriin the ab-
sence of transaction costs.

We further compute the free boundary profiles for the foufed#nt transaction cost
models (26) by Algorithm 1 and compare them to the profile effitee boundary in the
absence transaction costs. For our computations wektak€.0008 andh = 0.015.

23.5 !
- - -no transaction costs
231 Identity g
—Barles and Soner
22 5 —Leland N
—*—RAPM
. 22r
=
<
21.5¢
21+
20.5F ¥4~ .
2
0 1

Figure 8: Free boundary positions for various transactast models vs. the free boundary
profile in the absence of transaction costs.

As expected, we see that for all the transaction cost motelérée boundary values
are greater than in the case without transaction costs 8rigwith the given parameters
the free boundary in the absence of transaction cost$7i$ ~ 22.11, followed by the
identity model witha = 0.02 (o(7T") ~ 22.16), Barles’ and Soner’s model witlh = 0.02
(o(T) =~ 22.34), Leland’s model withit = 0.1, K = 0.02 (o(T") ~ 22.44) and finally the
RAPM with C' = 0.01, R = 30 (o(T) =~ 23.39).

Furthermore, we compute the corresponding valiés, ¢) for the American Call op-
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tion by Algorithm 1 and check the price difference betweanAlmerican Call option with
transaction costs and the American Call option withoutsaation costs

Vnonlinear (S, t) - Viinear(s’ t)-

The influence of transaction costs for the four models careba s Fig. 9. We notice that
the difference is maximal one year to expirytat 0 andS ~ 9.5. The difference is not
symmetric, but decreases towards the expiry. This seenasipla, since towards expiry the
portfolio can not be adjusted as often at it could be adjustfdre. Hence, the transaction
costs and the value of the American Call option with traneactosts decrease towards
t=1.

—0.15
o~
)
g 0
0
° 10 20 51 !
S
(a) Barles’ and Soner’'s modet & 0.02) vs. linear (b) ¥(z) := x chosen as the identity: (= 0.02) vs.
model. linear model.
—~0.1 —~0.4
+~ +~
) )
=~ © o2 0
0 0
0 0
10 20 5 1 t 10 20 5 1 t
S S
(c) Leland’s modeldt = 0.1, x = 0.02) vs. linear (d) RAPM model (/ = 0.01, C = 30) vs. linear
model. model.

Figure 9: The influence of transaction coBlSyiinear (S, t) — Viinear (S, t).

The corresponding pricelg (.S, 0) in the presence of transaction costs can be seen in
Fig. 10. AtS ~ 9.5 with the parameters as indicated above ang 0.0008, h = 0.015
the price of the American Call option evaluated with the RABR&hsaction cost model is
the highest4£ 1.06). It is followed by Barles’ and Soner’'s modek(0.82), Leland’s model
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(=~ 0.78), the identity model £ 0.74) and finally the model in the absence of transaction
costs & 0.71). As already shown in Table 2, the linear price computed hyabgorithm
(light blue solid line in Fig. 10) only slightly deviates frothe price computed by the PSOR
algorithm (black dotted line in Fig. 10).

- ==Pay-off V(S,T)
no transaction costs Algorithm 2
===no transaction costs PSOR
Identity
1.5/=Leland
—Barles and Soner 2
—RAPM =

V(S,0)

.
9 9.5 10 10.5 11

S

Figure 10: Price of an American Call optidn(.S, 0) for different transaction cost models
vs. the price without transaction costs.

For other numerical experiments in the future is recommigled® use ratheC or C++
in order to reduce the computational time which is relagivaegh in MATLAB.

Conclusion

In this chapter we solved the nonlinear Black—Scholes emu&ir American options in the
presence of transaction costs. Summing up, our numerisaltseshowed a considerable
price difference between linear and nonlinear prices foreAoan Call options.

While we focused in this chapter on standard options (knos\plain—vanilla option$
of American type, our future work will deal with extensiorferward and future contracts,
options on futures, more general pay—off functions (e @she-or—nothing call’) with trans-
action costs and instalment options.

Moreover, we will consider a higher-order splitting in time.g. the well-known
Strang—Splittingd56] and combine this with modern compact finite differenéaigh spa-
tial order, like theCrandall-Douglas Schenjd3] which is fourth-order accurate in ‘space’
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(i.e. asset price) or the high—order compact methods peabos[59], [60], [66]. Espe-

cially, the method of [60] is promising, since it is alreadyimprovement of the Han and
Wu method [27] with a higher order interior scheme and mooceigte tracking of the free
boundary.
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Algorithm 1 Computation of the pric& (S, ¢) for the American Call

Appendix

Require: R, T, h,k,M,N,r, K, D, o, Le,a,C, M

1:

10:
11:

12:
13:
14:

15:
16:
17:
18:
19:
20:
21:
22:

23:

24:

25:
26:

solve the ODE (13) required for the volatility model of Barknd Soner and interpolate
the solution
initialize I1°
initialize the free boundary® = rK/q
transformII® into V°
setr = I1° andv = V°
setIT0 = I1° andp'? = o
calculatell™, o™ at each time level
forn=1:Mdo
calculates™?, o™?, I1"~1/2? andII™" in the successive loop over
for p =1: pinaee do
calculate the volatility correctios™? depending on the volatility model using
II™r~1 and ¢™P~! (in the case of Barles’ and Soner’s model use the interpo-
lated solution of (13), in the case without transaction €e%¢ = (0,--- ,0)" €
RN'H)
calculatep™? usingII™?~! ands™?
calculatelI"~1/2» usingII"~! ando"?
fill the matrix A™P and the vector/? with the corresponding coefficients using
s™P
L-R-decomposed™P = [P R™P
solve LPy"P = [~ 1/2p _ qnp for 4P
solve R™PII™P = y™P for I1™P
start over with the loop over
end for
setl” = II"™"P andp" = p"™P
transformII” into V"
save the solution in the transformed variables in the array
m=[r [-K;II"0]
save the solution in the original variables in the array
v = [v [o" — K;V";OH
start over with the loop oves
end for
plot v at each time level and each stock price, plait each time level
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