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Hydroxyl radical-induced formation of highly
oxidized organic compounds
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Henrik G. Kjaergaard4, Frank Stratmann1, Hartmut Herrmann1, Mikko Sipilä2, Markku Kulmala2 & Mikael Ehn2

Explaining the formation of secondary organic aerosol is an intriguing question in atmospheric

sciences because of its importance for Earth’s radiation budget and the associated effects on

health and ecosystems. A breakthrough was recently achieved in the understanding of

secondary organic aerosol formation from ozone reactions of biogenic emissions by the rapid

formation of highly oxidized multifunctional organic compounds via autoxidation. However,

the important daytime hydroxyl radical reactions have been considered to be less important

in this process. Here we report measurements on the reaction of hydroxyl radicals with a- and

b-pinene applying improved mass spectrometric methods. Our laboratory results prove that

the formation of highly oxidized products from hydroxyl radical reactions proceeds with

considerably higher yields than previously reported. Field measurements support these

findings. Our results allow for a better description of the diurnal behaviour of the highly

oxidized product formation and subsequent secondary organic aerosol formation in the

atmosphere.
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A
tmospheric aerosol particles play important roles in the
climate1,2, human health3 and ecosystems. It is known
that a dominant source of atmospheric aerosol particles is

formation via oxidation of inorganic (for example, SO2) and
organic (for example, a- and b-pinene) precursor gases resulting
in low vapour pressure reaction products4. However, both
fundamental and quantitative knowledge, especially concerning
the chemical pathways leading to the formation of aerosol
particles from organic precursor gases, are still missing.

Ehn et al.5 conclusively demonstrated the formation of highly
oxidized multifunctional organic compounds (HOMs) from the
ozonolysis of a-pinene and their importance to secondary organic
aerosol (SOA) formation. HOMs can be partly classified as
extremely low-volatility organic compounds6 due to the expected
low vapour pressures. The remaining fraction can be attributed to
low- or semi-volatile organic compounds. An exact determination
of the vapour pressure of HOMs is currently impossible
preventing a more accurate classification. The HOM detection
became feasible by the latest developments of online mass
spectrometric techniques7,8. Other terpene ozonolysis studies9–11,
using the same detection technique, have confirmed the findings
by Ehn et al.5 and discovered that HOM formation with up to
12 O atoms in the molecules proceeds on a time scale of seconds
at atmospheric reactant concentrations. More recently, first
indications for the presence of HOMs from a-pinene ozonolysis
were found in the particle phase12.

The above observations suggest that especially the ozone
reaction with terpenes is responsible for rapidly formed low-
volatility SOA precursors. Up to now, laboratory studies5,9,10,
all using the nitrate ionization technique, indicate a minor
importance of OH radical-driven HOM generation compared
with ozonolysis. Estimated molar HOM yields of o1% (ref. 5)
and 0:44þ 0:44

� 0:22% (ref.10) from OHþa-pinene are reported using
total signal measurements, that is, all appearing signals in a
selected mass-to-charge range were taken into account without a
specification of the respective reaction product. Atmospheric
measurements, however, point to dominant particle formation
and growth during daytime, indicating that there must be a large
source of low-volatility organic species that is connected to the
photochemistry4. The most important daytime oxidant in the
atmosphere is the OH radical, whereas nighttime oxidation is
dominated by ozone and the NO3 radical13.

The present work represents a specific study on HOM
formation from the OH radical initiated oxidation of the
most abundant monoterpenes emitted by vegetation, a- and
b-pinene14. We measure the ‘early’ HOMs, that is, the highly
oxidized RO2 radicals, which represent the intermediates finally
forming closed-shell HOMs in the atmosphere via different
reaction pathways. These reaction pathways are, for example,
bimolecular reactions with NO, NO2, HO2 and other RO2 radicals
or unimolecular reaction steps13. We find that these RO2 radicals
can be detected with good sensitivity9,15, enhancing our ability to
understand the HOM formation process in more detail.
In our experiments designed to probe the highly oxidized
RO2 radical generation, consecutive bimolecular RO2 radical
reactions are unimportant because of low concentrations
(o107 molecules cm� 3) and short reaction times in the range
of 3.0–7.9 s. The HOM detection is carried out by means of
chemical ionization–atmospheric pressure interface–time-of-
flight (CI-APi-TOF) mass spectrometry (Airmodus, Tofwerk)
with a detection limit of B104 molecules cm� 3. A recent study
indicated that nitrate ionization, the technique used in almost all
HOM studies so far, may not be sensitive to all key HOM
compounds15. Therefore, the experimental approach applied
here comprises a set of four different reagent ions for
product identification, that is, nitrate (NO3

� ), lactate

(CH3CH(OH)COO� ), pyruvate (CH3C(O)COO� ) and acetate
(CH3COO� ), to probe the ion-specific detection efficiency. The
investigations are conducted in a free-jet flow system at 295±2 K
and at atmospheric pressure15. Additional experiments with
elevated HO2 and RO2 radical concentrations or NO additions
are conducted, to probe qualitatively the closed-shell HOM
formation starting from the highly oxidized RO2 radicals.
In conclusion, our results show the importance of the OH
radical-induced formation of HOMs from monoterpenes. This
finding allows a better description of the diurnal cycle of SOA
formation by available HOMs formed either from the ozonolysis
or via OH radical reactions.

Results
Reagent ion-dependent detection efficiency. In the experiments,
a strong enhancement of the signals attributed to the OH radical-
derived highly oxidized RO2 radicals occurred after switching the
reagent ion from nitrate to lactate, pyruvate or acetate. All
detected RO2 radicals were exclusively formed in the flow system
as shown by experiments for characterizing the measurement
system, (Supplementary Figs 1–3 and Supplementary Note 1).
The spectra in Fig. 1a,b show the comparison of results from
the ozonolysis of a-pinene (simultaneous O3 and OH
radical reaction) and from the pure OHþa-pinene reaction,
respectively, using either nitrate or acetate for ionization. The
occurrence of the strong signal at nominal 308 Th using acetate
ionization (at nominal 311 Th for nitrate ionization) in both sets
of experiments demonstrates that this product is formed from the
OH radical attack on a-pinene without a contribution of
any ozone reactions. In contrast to the OH radical-derived
RO2 radicals, the signal strength of RO2 radicals from
the simultaneous O3þ a-pinene reaction remained almost
unchanged switching from nitrate to acetate (Fig. 1a). A strong
signal at nominal 308 Th appeared also in the case of the
OHþ b-pinene reaction using acetate ionization, in line with the
findings from the a-pinene system (Supplementary Fig. 4).

The predominant signal of the OH radical-derived RO2

radicals, observed by means of all four reagent ions, is consistent
with the elemental formula HO-C10H16O6. Experiments in the
presence of heavy water allow the determination of acidic H
atoms in the molecules (equal to the number of OH and OOH
groups) by H/D exchange measuring the resulting signal shift
in the mass spectrum16, (Supplementary Fig. 5). The analysis
revealed two acidic H atoms in HO-C10H16O6, indicating a
chemical composition of HO-C10H15(OO)(OOH)O2. Another
composition of this species, including other functional groups
such as ether or carboxylic groups, is implausible and would be
contrary to the current knowledge of possible elementary steps in
these reaction systems5,9,11,15,16. It should be noted that there is
one acidic H atom less than expected, if all inserted O2 into the
molecule (beside the peroxy O2 of the RO2 radical) were present
as OOH groups9,15,16. It can be speculated that the additional
‘(OO)’ group stands for an endo-peroxide generated via
ring closure of an unsaturated RO2 radical. Such a process
was predicted by theoretical calculations17 and qualitatively
confirmed by a product study from a chamber experiment18.
The initial, unsaturated RO2 radicals, species 4 and 7, are formed
from the OH radical reaction of a- and b-pinene with high yields
(Fig. 2)19,20. Possible reaction pathways for the generation of the
highly oxidized RO2 radicals from the OHþa-pinene reaction
have been proposed (Supplementary Figs 6–9). The pathways
include an initial intramolecular H-shift5,9,15,16,21, followed by O2

addition leading to RO2 radicals with five O atoms. Then a very
rapid H-shift involving the OOH group22 takes place followed by
an endo-cyclization and a next O2 addition to get the RO2
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radicals 19, 20 and 29 containing seven O atoms each. Based on
quantum chemical calculations (Supplementary Tables 1–3 and
Supplementary Note 2), the RO2 radicals 19, 20 and 29, all with
the chemical composition HO-C10H15(OO)(OOH)O2, can be
formed on a seconds time scale starting from the RO2 radical 4 as
illustrated in a simplified way in Fig. 2b. The calculations
furthermore indicate that 19, 20 and 29 are relatively stable with
respect to further isomerization steps (H-shifts). For b-pinene,
similar reaction steps are assumed. An additional minor
signal appeared in the b-pinene spectra that was attributed to
HO-C10H16O8 (Supplementary Fig. 4). A composition
HO-C10H14(OO)(OOH)2O2 can be assumed based on the H/D
exchange results, which indicated three acidic H atoms in the
molecule. It should be noted that the reaction sequence of RO2

radical isomerization (H-shift or cyclization) followed by O2

addition (Fig. 2) represents a reaction principle well known in
low-temperature combustion chemistry23.

Estimated molar HOM yields. The estimated RO2 radical
concentrations for both terpenes as a function of reacted a- and
b-pinene gave a linear response for terpene conversions smaller
than 4� 108 molecules cm� 3 (Fig. 3). This behaviour confirmed
the absence of significant bimolecular RO2 radical reactions for
these experimental conditions. Different measurement series
(I–III) revealed consistent and reproducible results. The stated
radical concentrations, and consequently the yields, represent
estimated lower end values for the different ionization schemes.
Resulting molar yields of highly oxidized RO2 radicals from
OHþa-pinene are 2.4±0.1% (acetate ionization) and
0.052±0.006% (nitrate ionization). The corresponding values for
OHþb-pinene are 0.90±0.03% and 0.022±0.001%, respec-
tively. Given error limits comprise statistical errors only.

The estimated RO2 radical yields deduced from nitrate
ionization are about a factor of 40 smaller than those from
acetate ionization pointing to more stable (OH-RO2) � acetate
adducts compared with the corresponding nitrate adducts. (Note:
the factor of 40 is substance specific and not generally valid.)
Theoretical calculations on the cluster stability of model RO2

radicals with nitrate or acetate have been performed, which
support the experimental findings of this study (Supplementary
Figs 10 and 11, Supplementary Table 4 and Supplementary

Note 3). When comparing the experiments using ionization
by lactate and pyruvate with those applying acetate, the results
differ by a factor smaller than two, indicating similar cluster
stabilities for the organic reagent ions. In the case of the
ozonolysis-derived RO2 radicals, the four reagent ions yielded
almost the same sensitivities within a factor of 1.6
(Supplementary Fig. 12).

Additional runs with NO and increased RO2 concentrations.
Furthermore, we tested the reactivity of the detected RO2 radicals
from the OHþa-pinene reaction towards NO and measured the
resulting product formation for atmospherically relevant NO
concentrations of (5.6–280)� 108 molecules cm� 3 (Supplementary
Fig. 13). An increasing signal, HO-C10H15(OO)(OOH)ONO2,
appeared with rising NO concentrations according to the organic
nitrate formation via RO2þNO-RONO2 starting from
HO-C10H15(OO)(OOH)O2 (refs 9,15,24). Other signals were
tentatively attributed to reaction products of the corresponding
alkoxy radical, HO-C10H15(OO)(OOH)O, formed in a parallel
way via RO2þNO-ROþNO2. The total amount of products
indicates that the HO-C10H15(OO)(OOH)O2 radical formation
was not disturbed by the NO additions (Supplementary Fig. 13
and Supplementary Note 4). Thus, the RO2 isomerization steps
leading to HO-C10H15(OO)(OOH)O2 must be faster than the
corresponding RO2 reactions with NO, which proceed with
pseudo first-order rate coefficients of up to 0.28 s� 1. This esti-
mate assumes a rate coefficient k(NOþRO2) of 1� 10� 11 cm3

per molecule per second24. Consequently, the rate coefficients of
the RO2 isomerization steps forming the RO2 radicals 19, 20 and
29 must be larger than 0.28 s� 1 in line with the results of
theoretical calculations.

H2O2 photolysis experiments with increased reactant con-
centrations were conducted in the TROPOS flow tube25. For
OHþ a-pinene, the product formation from the reaction of the
highly oxidized RO2 radicals with HO2 and other RO2 radicals
were studied (Supplementary Fig. 14a,b). The analysis of the
mass spectra recorded for different RO2/HO2 ratios allowed
a qualitative description of the respective reaction products.
The reaction of HO-C10H15(OO)(OOH)O2 with HO2 yielded the
corresponding hydroperoxide according to RO2þHO2-
ROOHþO2. The main product from the reaction with other
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Figure 1 | Recorded mass spectra using acetate or nitrate for ionization. The detected RO2 radicals from the oxidation of a-pinene appear as adducts

with the reagent ions. Signals of nitrate adducts (black) are shifted by three mass units compared to the corresponding acetate adduct signals (red).

The spectra obtained with acetate ionization are offset by 1.5 s� 1 for more clarity. The reaction time in all experiments was 7.9 s. (a) Spectra obtained from

a-pinene ozonolysis for identical conditions [O3]¼6.1� 1011 and [a-pinene]¼ 1.0� 1012 molecules cm� 3. Simultaneous O3 and OH radical reaction takes

place due to OH radical production from ozonolysis. (b) Spectra from the pure OHþa-pinene reaction using H2O2 photolysis for OH radical formation,

[H2O2]B1� 1014 and [a-pinene]¼ 5.0� 1012 molecules cm� 3. The signal at nominal 309 Th (first isotope signal of the RO2 radical) can be partly

influenced by the corresponding hydroperoxide.
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RO2 radicals was a species with � 15 nominal mass units
compared with the precursor RO2 radical, probably
HO-C10H15(OO)(OOH)OH. In the mass spectra also signals of
C20 accretion products5,9,11,15,16 appeared, which are consistent
with the chemical formulas C20H34O8, C20H34O10 and C20H34O12

(Supplementary Fig. 14b). Their formation can be mechanistically
explained via RO2þR0O2-ROOR0 þ O2. RO2 and R0O2

represent the peroxy radicals from the OHþa-pinene reaction,
which contain either three (species 3, 4 or 5), five (species 12, 13
or 14) or seven O atoms (species 19, 20 or 29).

We calculated the vapour pressure of three closed-shell C10

HOMs formed from the reaction of HO-C10H15(OO)(OOH)O2

radicals with HO2, NO or other RO2 radicals using the increment
method SIMPOL.1 (ref. 26) and the COSMO-RS approach27. All
the estimated vapour pressures of the C10 products were below
10� 9 atm at 295 K. Vapour pressures below 10� 15 atm were
determined for the C20 accretion products applying solely the
SIMPOL.1 method26 (Supplementary Table 5 and Supplementary
Note 5). Thus, these highly oxidized products have a low volatility
(and are water soluble) and can effectively condense on surfaces.
Recently, SOA yields of 17–26% from low-NO a-pinene
photooxidation experiments in the Caltech chamber were
reported being independent of OH exposure28. This finding was
not in line with SOA modelling results for this reaction system,
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radical formation via O3þa-pinene. [O3]¼ 6.1� 1011 and [a-pinene]¼ (1.2–81)� 1010 molecules cm� 3. Series III (acetate ionization) shows findings from
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molecules cm� 3. (b) b-Pinene reaction: combined TME/b-pinene ozonolysis with preferred OH radical formation via the O3þTME reaction,

[O3]¼9.1� 1011, [TME]¼ (1.8–95)� 109, [b-pinene]¼ 1.05� 1011 molecules cm� 3.
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indicating the presence of other SOA formation routes, such as an
autoxidation mechanism5,9,21, not implemented in modelling
schemes yet28. Our lower limit molar HOM yield from
OHþa-pinene of 2.4% corresponds to a lower limit mass yield
of 4.4% (average HOM mass: 250 g mol� 1). This mass yield can
explain at least a fraction of the measured SOA yield from the
Caltech experiments28 and also from other SOA studies29.

Comparison of laboratory and field measurements.
Furthermore, field measurements from two different sites support
the findings from the laboratory studies presented here. Figure 4a
shows the time series of the most abundant, highly oxidized RO2

radicals from terpene ozonolysis9 (in black) and from the OH
radical reaction (in red), as well as the corresponding organic
nitrate (in green). The corresponding global radiation, serving as
a proxy for the OH radical concentration, and the measured NO
concentrations are depicted in Fig. 4b. The ozone concentration
showed relatively small variation during the whole campaign
(Supplementary Fig. 15). The measurements have been done
at the boreal research station SMEAR II30 in the spring 2011
using nitrate-CI-APi-TOF mass spectrometry. Considering

an underestimation of the RO2 concentrations from the OH
radical reaction by a factor of 40 using nitrate ionization,
as experimentally shown in this study, the corrected
HO-C10H15(OO)(OOH)O2 radical concentrations (dashed red
line) reach peak concentrations of about 107 molecules cm� 3 at
daytime. This level clearly exceeds the ozonolysis-derived RO2

radical concentrations. Further support for the atmospheric
relevance of the OH radical initiated HOM formation comes
from a 10-day measurement campaign at the TROPOS research
station in Melpitz31 in the summer 2013. Here, the diurnal
pattern of the HO-C10H15(OO)(OOH)O2 radical followed the
diurnal trend of the global radiation, which was again used as a
proxy for OH (Supplementary Fig. 16). This behaviour is
consistent with the findings from the SMEAR II station.

Atmospheric lifetimes of RO2 radicals regarding the reaction
with other RO2, HO2 and NO are in the range of 1.7–170 min for
the individual reactions assuming trace gas concentrations for
non-urban conditions of 109 molecules cm� 3 for RO2 and HO2

radicals, and NO each, k(RO2þRO2)B1� 10� 12–10� 13,
k(HO2þRO2)B1� 10� 11 and k(NOþRO2)B1� 10� 11 cm3

per molecule per second24. Taking all these bimolecular steps
together, a RO2 lifetime of a few minutes has to be taken into
account. The nocturnal HO-C10H15(OO)(OOH)O2 radical
decline as given in Fig. 4a, however, indicates a RO2 lifetime of
a few hours. It could be speculated that (i) changing air masses
with changing trace gas composition or (ii) boundary layer
effects, or (iii) the non-zero nighttime OH radical reaction with
terpenes influenced the nocturnal RO2 concentration. In addition,
instrumental uncertainties cannot be totally ruled out for the
nighttime measurements close to the detection limit.

Discussion
Our results clearly demonstrate the importance of the OH radical
initiated oxidation of monoterpenes for a rapid formation of
HOMs in the atmosphere. The findings of this work, together
with the known process based on the ozonolysis of biogenic
emissions5,8,9, allow a more precise description of the diurnal
behaviour of HOM generation and subsequent SOA formation,
from the different oxidants. The participation of OH radical
reactions for HOM formation is in agreement with the fact that
both photochemistry and HOMs seem to be important in
atmospheric particle formation processes5.

Furthermore, several studies indicate a strong quantitative
disagreement between experimentally observed SOA formation
from field campaigns and model simulations based on laboratory
data32–35. For instance, Russell et al.34 observed for
photooxidation conditions, most likely to be dominated by the
OH radical reactions of a- and b-pinene, up to two orders of
magnitude higher SOA generation compared with model
predictions. The results of our study are able to overcome this
discrepancy, at least qualitatively. However, also for urban areas
with prevalent anthropogenic emissions, much larger amounts of
SOA are reported than predicted by models35. Volkamer et al.35

determined that a significant fraction of the excess SOA was
formed from first-generation oxidation products of the
anthropogenic emissions. It could be speculated that similar
reaction pathways of HOM formation, as shown in our study for
OH radical reaction with a- and b-pinene, take place in the
course of the degradation of anthropogenic emissions, such as
aromatics. However, a simple transfer of our results to other
reaction systems is impossible due to the substance-specific
reactivity of the RO2 isomerization steps. Especially in this field,
much more experimental and theoretical works are needed, to
clarify the formation pathways of SOA precursors generated from
anthropogenic emissions.
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Methods
Free-jet flow system. The experiments have been performed in a free-jet flow
system at a pressure of 1 bar purified air (or O2/N2 mixtures) and a temperature of
295±2 K (refs15,36). The reaction time was in the range of 3.0–7.9 s. This set-up
allows the investigation of oxidation reaction for atmospheric conditions in
absence of wall effects.

The free-jet flow system consists of an outer tube (length: 200 cm, inner
diameter: 15 cm) and a moveable inner tube (outer diameter: 9.5 mm) equipped
with a nozzle. Ozone or H2O2 premixed with the carrier gas (5 l min� 1 STP,
standard temperature and pressure) is injected through the inner tube into the
main gas stream (95 l min� 1 STP), which contains the second reactant (a- or b-
pinene). Large differences of the gas velocities at the nozzle outflow (nozzle:
15.9 m s� 1; main flow: 0.13 m s� 1) and the nozzle geometry ensure rapid reactant
mixing downstream the nozzle. Diffusion processes at 1 bar air are too slow to
transport a significant fraction of the reaction products out of the centre flow
towards the walls within the time range of this experiment (3.0–7.9 s).

Ozone was produced by passing 1–2 l min� 1 (STP) air through an ozone
generator (UVP OG-2) and blended with carrier gas to a total flow of 5 l min� 1

(STP) taken as the feed for the inner tube. In the case of H2O2 photolysis
experiments, a flow of 0.03–1.0 l min� 1 air (STP) over a H2O2 sample (saturator
maintained at 273 K) supplied the oxidant feed. Photolysis was carried out
downstream the mixing point of the gas streams by means of 8 low-pressure
ultraviolet lamps emitting in the range 300–320 nm (Cosmedico Licht GmbH,
ARIMED B6).

Additional photolysis experiments were conducted in the TROPOS flow tube25

at a temperature of 293±0.5 K using synthetic air as the carrier gas. The first flow-
tube section (56 cm) contains the inlet system for the reactant gases (air mixed with
a-pinene and H2O2 taken from a saturator as described before). A second section
(344 cm) surrounded by 8 ultraviolet lamps (Hg-lamps made of quartz-glass
PN235 with a cutoff wavelength of 210 nm) represents the photolysis zone. The
sampling outlets are attached at the non-irradiated end section (B20 cm). The total
gas flow was set at 20 l min� 1 (STP) resulting in a reaction time of 48 s.

Ozone was followed by means of a gas monitor (Thermo Environmental
Instruments 49C). The concentrations of a- and b-pinene and tetramethylethylene
(TME) were detected with the help of a proton transfer reaction mass spectrometer
(Ionicon, PTR-MS 500)37.

All gas flows were set by means of calibrated gas flow controllers (MKS 1259/
1179). The chemicals and gases had the following purity: a-pinene (99.5%, Fluka),
b-pinene (99.0%, Fluka), TME (2,3-dimethyl-2-butene, 99%, Aldrich), acetic acid
(99.5%, Aldrich), lactic acid (B90%, Merck), pyruvic acid (98%, Fluka), NO
(98.5%, Aldrich), N2 (99.9997%, AirProducts) and O2 (99.9992%, AirProducts). Air
was taken from a commercial PSA (Pressure Swing Adsorption) unit with further
purification by activated charcoal, 4 Å molecular sieve and subsequently by
GateKeeper CE-2500KH084R, Entegris.

CI-APi-TOF mass spectrometer and HOM quantification. Detection of highly
oxidized products was carried out using a CI-APi-TOF mass spectrometer
(Airmodus, Tofwerk) sampling the centre flow through a sampling inlet (length:
28 cm, inner diameter: 1.6 cm) with a rate of 10 l min� 1 (STP). Another sampling
inlet with a similar geometry allows dilution of the sample flow by a factor of 7
using arbitrary dilution gases. Applied reagent ions were nitrate (NO3

� ), acetate
(CH3COO� ), lactate (CH3CH(OH)COO� ) and pyruvate (CH3C(O)COO� ).
A flow of 0.5–5 ml min� 1 air over a concentrated acid sample (HX: nitric acid,
acetic acid, lactic acid or pyruvic acid) was added to a 35 l min� 1 (STP) flow of
purified air producing the HX containing sheath air that forms the charger ions,
X� , (HX)X� and (HX)2X� , after ionization with a 241Am source. Highly
oxidized organic products are able to form stable (HOM)X� clusters as already
shown for nitrate adducts (X��NO3

� )5,9,11,15,16,38 and acetate adducts
(X��CH3COO� )15. Proton transfer from the HOM to the charger ion, as
described for measurements by acetate ionization39,40, was found to be negligible in
this reaction system. HOM concentrations were determined according to
equation (1). The values given in the brackets are the measured ion signals.

HOM½ �¼fHOM
HOMð ÞX�½ �

X�½ � þ HXð ÞX�½ � þ ðHXÞ2X�
� � ð1Þ

Absolute signal calibration is impossible due to the lack of HOM reference
substances. The lower end value of the calibration factor fHOM can be calculated
considering the (HOM)X� adduct formation in the CI-inlet via reaction (2),
fHOM,calc¼ 1/(k� t� finlet)5,41, where k is the rate coefficient of the ion-molecule
reaction, t the reaction time and the term finlet considers the sample (HOM) loss in
the sampling tube.

HOMþ HXð ÞnX� ! HOMð ÞX� þ HXð Þn; n¼0; 1; 2 ð2Þ

The rate coefficient k¼ k2 is set to k2¼ (2–3)� 10� 9 cm3 per molecule
per second, typical for a series of ion-molecule reactions close to the collision
limit42,43. Taking into account a 12% diffusion loss of the sample (HOM) in the
short sampling tube (diffusion controlled wall loss for an assumed diffusion
coefficient D¼ 0.08 cm2 s� 1), finlet¼ 0.88 and a reaction time of the ion-molecule
reaction t¼ 0.2–0.3 s, fHOM,calc¼ (1.3–2.8)� 109 molecules cm� 3 follows. The only
reliable absolute calibration at the moment in our system is that used for sulphuric

acid detection via H2SO4þ (HNO3)nNO3
� , n¼ 0, 1, 2, 3 (refs 44,45) with a

calibration factor fH2SO4,exp¼ 1.85� 109 molecules cm� 3 (ref. 46). This value
is in good agreement with the range of fHOM,calc, the lower end value of fHOM. By
practical reasons (using a definite value of the calibration factor and not a range),
fHOM in equation (1) was set equal to fH2SO4,exp. The total uncertainty of the lower
end determination of HOM concentration according to equation (1) is estimated
with a factor of 2 including changing ion transmission in the considered mass
range7 as well.

Identical voltage settings in the mass spectrometer were applied for the four
ionization techniques (reagent ion: nitrate, acetate, lactate and pyruvate) as
optimized for low fragmentation measurements in the nitrate ionization mode.

Determination of reacted a- and b-pinene. The reaction conditions chosen in
the free-jet experiments (low reactant concentrations, reactant conversion: oo1%)
did not allow measuring the amount of converted a- and b-pinene. Concentrations
of reacted a- and b-pinene from ozonolysis reactions were calculated based on a
simple reaction scheme.

O3 þ a-pinene! 0:85 OHþ . . . ð3Þ

OHþ a-pinene! products ð4Þ

O3 þb-pinene! 0:35 OHþ . . . ð5Þ

OHþb-pinene! products ð6Þ

O3 þTME! 1:0 OHþ . . . ð7Þ

OHþTME! products ð8Þ

OH radical yields from ozonolysis and the rate coefficients at 295 K were taken
from the literature13: (unit: cm3 per molecule per second) k3¼ 1.1� 10� 16,
k4¼ 5.3� 10� 11, k5¼ 2.24� 10� 17, k6¼ 7.8� 10� 11, k7¼ 1.0� 10� 15 and
k8¼ 1.1� 10� 10. Other OH radical reactions than those with the fed alkenes are
negligible.

Converted a- and b-pinene via the OH radical reaction or via ozonolysis was
calculated by numerical integration of the resulting ODE system according to
pathways (3)–(8).

Initial reactant concentration of the ozonolysis experiments were:

(i) pure ozonolysis of a-pinene: [O3]¼ 6.1� 1011, [a-pinene]¼ (1.2–250)
� 1010 molecules cm� 3.

(ii) simultaneous ozonolysis of TME/a-pinene: [O3]¼ 9.1� 1011, [TME]¼
(1.8–110)� 109, [a-pinene]¼ 1.0� 1011 molecules cm� 3.

(iii) simultaneous ozonolysis of TME/b-pinene: [O3]¼ 9.1� 1011, [TME]¼
(1.8–100)� 109, [b-pinene]¼ 1.05� 1011 molecules cm� 3

The calculation of converted a- and b-pinene from the H2O2 photolysis
experiments was impossible due to the lack of a precise measurement technique for
H2O2. Thus, only qualitative information can be obtained from the photolysis runs.

Unwanted bimolecular RO2 reactions in the free-jet experiment. The basic idea
of the ozonolysis-based OH radical experiments performed in the free-jet flow
system was to conduct the reaction under conditions of negligible bimolecular RO2

reactions. We are not able to measure total RO2 and HO2 radical concentrations in
our experiment. As a conservative estimate, it is assumed that the total RO2 as well
as the HO2 radical concentration did not exceed the amount of reacted terpene of
o8� 108 molecules cm� 3. Rate coefficient of the RO2þRO2 and the HO2þRO2

reactions are assumed to be in the range of k(RO2þRO2)B1� 10� 12–10� 13 cm3

per molecule per second and k(HO2þRO2) B 1� 10� 11 cm3 per molecule
per second24. From this, first-order rate coefficients for the stated upper
reactant concentration limit are derived as k1st(RO2)o8� 10� 4 s� 1 and
k1st(HO2)o8� 10� 3 s� 1. The corresponding lifetimes are 421 min and
42.1 min, respectively. In the case of NO, a background concentration smaller
than 1� 108 molecules cm� 3 can be deduced from the experiments with NO
additions. In those, even for an NO addition of 5.6� 108 molecules cm� 3,
clear product signals from NOþRO2 were visible (Supplementary Fig. 13), which
were absent without NO additions. An assumed rate coefficient k(NOþRO2) of
1� 10� 11 cm3 per molecule per second24 yields a first-order rate coefficients of
o1� 10� 3 s� 1 for NO concentrations smaller than 1� 108 molecules cm� 3

corresponding to a RO2-lifetime with respect to the NO reaction of more than
16 min.

Consequently, any bimolecular reactions of RO2 radicals with other RO2

radicals, HO2 or NO cannot be competitive with the RO2 isomerization steps
proceeding at a time scale of seconds or less.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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