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The conference was organized by NIKOLAI P. DOLBILIN (Moscow) and RUDOLF SCHARLAU

(Dortmund). There were 23 participants coming from Germany, Russia, USA, Switzerland,

Canada and Hungary. The aim was to bring together certain areas of algebra, combinatorics

and discrete geometry which could fruitfully interact, but normally are not represented at one

meeting. These areas were Geometry of Numbers, more precisely the ‘Voronoı̈-Delone school’

of geometry of positive quadratic forms; the theory of tilings; the combinatorial theory of convex

polytopes; mathematical crystallography, in particular crystallographic groups; and algorithmic

aspects of these fields.

In 19 talks, the participants presented mostly recent results; a few lectures were devoted to

surveys.

In an evening problem session, 8 participants proposed research problems of various kinds,

which led to lively discussions. Another evening was devoted to software presentations.

After the end of the ‘official’ lectures on Friday afternoon, there was an informal session on

geometry of numbers with contributions by Robert M. Erdahl, Konstantin Rybnikov and Sergey

S. Ryshkov.

Many participants met for the first time at this conference and took advantage of the generous

hospitality and relaxed atmosphere of the institute which, after the lectures, led to a lot of ex-

change and discussions and also to informal conversations in small groups.

Author of the report: FRANK VALLENTIN
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Abstracts of talks

Similarity submodules and semigroups

MICHAEL BAAKE

Lattices and Z-modules in Euclidean space possess an infinitude of subsets that are images of

the original set under similarities. The classification (which is far from being complete) if such

self-similar images according to their indices, together with the corresponding semigroups of

similarities, has several applications in (quasi-)crystallography, e.g. to the theory of colour sym-

metries and to inflation symmetries.

Complete results are presented for various lattices and Z-modules of interest in crystal and qua-

sicrystal theory, in particular for those related to root systems in dimensions 2, 3 and 4. Among

them are the root systems of the non-crystallographic COXETER groups H
2

, H
3

and H
4

. The

statistics of the similarity submodules (of the corresponding Z-modules generated by the root

systems) is encapsulated in terms of DIRICHLET series generating functions, and some of the

asymptotic properties are derived.

References for this joint work with R.V. MODDY can be found on the Los Alamos preprint

archive1 (under metric geometry).

Systems of halfspaces and constructions for fundamental domains

LUDWIG BALKE

The well known DIRICHLET-VORONOÏ construction produces a fundamental domain as inter-

section of halfspaces. Each of these halfspaces has as boundary a bisecting hyperplane between

two points. There are natural geometries likePSL(2;R) in which bisectors exist but the DIRICH-

LET-VORONOÏ construction can not be applied since there exists no metric producing the bisec-

tors.

In the talk of ANNA PRATOUSSEVITCH, the construction of THOMAS FISCHER for fundamental

domains of certain discrete subgroups of PSL(2;R) (or a finite cover) was explained. This

method yields a fundamental domain as intersection of union of halfspaces whose boundaries

are bisectors. I am interested in the question: Why does this construction work and how it is

related to the classical DIRICHLET-VORONOÏ procedure?

1http://arxiv.org
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I suggest the notion of halfspace systems as a framework in which both constructions can be

described in a uniform manner. Two observations led to this notion. First, if we describe

the DIRICHLET-VORONOÏ cell D(x) as intersection of the halfspaces H(x; y), x 6= y, and

prove that this is a fundamental domain, we make essential use of the “triangle inequality”

H(x; y) \ H(y; z) � H(x; z). The second observation inspired by FISCHER’s construction

is that in more general situations it is essential to ensure local finiteness, since this is not implied

by the discreteness of the point set for which a fundamental domain is produced.

Non-rigidity degree of a lattice and rigid lattices

EVGENII P. BARANOVSKII, VIATCHESLAV P. GRISHUKHIN

VORONOÏ defined a partition of the cone of positive definite quadratic n-ary forms into L-type

domains. Each L-type domain is an open polyhedral cone of dimension k, 1 � k �

n(n+1)

2

. We

say that a quadratic form f and the corresponding lattice L(f) have non-rigidity degree k, if f

belongs to an L-type domain of dimension k. A lattice and its forms of minimal non-rigidity

degree 1 are called rigid.

We prove that the non-rigidity degree of a lattice equals to the corank of a system of equations

connecting norms of minimal vectors of cosets of 2L in L. Using a list of 84 zone-contracted

Voronoi polytopes in R5 given by P. ENGEL, we find 7 five-dimensional rigid lattices.

0-1 polytopes with many facets

IMRE BARANY

There exist n-dimensional 0-1 polytopes with as many as (cn= logn)n=4 facets. This is our main

result. It answers a question of GÜNTER M. ZIEGLER. The construction showing this is random.

In particular, we prove that the expected number of facets of a random 0-1 polytope in R

n with

N vertices is at least (c logN)

n=4 in the range exp(log

2

n) < N < exp(n= logn). In the proof

extensive use is made of a beautiful result of DYER, FÜREDI and MCDIARMID.

This is a joint work with ATTILA POR.
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On a self dual 3-sphere of PETER MCMULLEN

JÜRGEN BOKOWSKI

We study an equifacetted self dual 3-sphere S
McM

of PETER MCMULLEN, in particular its auto-

morphism group A(S

McM

) and its relation to the COXETER group H
4

of the 600-cell. A closely

related equifacetted polyhedral 3-sphere (240-cell) with 240 facets and 120 vertices has the same

automorphism group. Both these 3-spheres and the polar dual of the last one cannot occur as

the boundary complex of a (convex) 4-polytope withA(S

McM

) as their full Euclidean symmetry.

It is an open problem, whether there exist one of these three 4-polytopes at all. Their combi-

natorial symmetry would differ from their Euclidean one within their whole realization space,

similar to the example given in [2], see also [1]. Tackling these problems with methods from

computational synthetic geometry [3] fail because of the large problem size. Therefore, a partial

Euclidean symmetry assumption for the questionable polytope is natural. On the other hand, we

show that even a certain subgroup of order 5 of the full combinatorial symmetry groupA(S

McM

)

of order 1200 cannot occur as a Euclidean symmetry for MCMULLEN’s questionable polytope.

This is a joint work with PHILIPPE CARA and SUSANNE MOCK.
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Tilings as templates for crystal structures

OLAF DELGADO FRIEDRICHS

Chemists and crystallographers often are concerned with what they call the “topology” of a

molecule or crystal, where the term “topology” should be understood in its original, informal

meaning as introduced by LISTING: “geometry without measurements”.

One important question is the classification of all possible crystal networks with, for example, all

vertices (representing atoms) incident to exactly 4 edges (representing bonds). Crystal networks,

which are infinite periodic graphs, are extremely hard to deal with. In contrast, the combinato-

rial theory of tilings based on the so-called DELANEY-symbol provides an excellent basis for a

systematic and complete treatment of spatial decompositions.
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Several crystal structures, most notably certain so-called zeolites, can be readily interpreted as

tiling structures. Recent results in tiling theory show that a much larger portion all known crystal

networks can be obtained from a relatively simple class of tilings.

Two important open problems in this area are the following:

� How can we construct and characterize a canonical tiling corresponding to a given periodic

point set or periodic network?

� What are strong necessary combinatorial conditions for tilings which lead to chemically

plausible networks?

Some tiling problems and theorems

NIKOLAI P. DOLBILIN

One of the basic tiling problems is: given a finite set of polyhedra, does it admit at least one

tiling. It was proved in 1966 that this problem is computationally undecidable.

We discuss here a solution of a more particular problem: given a convex polyhedron, can it

tile space in a translative way? The Extension Theorem provided by the author gives necessary

and sufficient conditions under which a well-defined finite polyhedral complex (a “k-corona”)

assembled with congruent copies of a given polyhedron admits the only isohedral tiling.

The Extension Theorem gives a way to get all possible regular tilings with the given polyhedron.

The well-known results on fundamental domains in the case of a translation group of a COXETER

group generated by mirrors follow from the Extension Theorem, too.

A theory of tilings — An introduction

ANDREAS W.M. DRESS

Based on the fundamental observation that every tiling of a simply connected n-manifold with

a symmetry group with compact orbit space can be encoded by a finite set D, an action of

�

n

:= h�

0

; �

1

; : : : ; �

n

j�

2

i

= 1i on D, and a map ofD into the set of (n+1)�(n+1)-COXETER-

matrices satisfying certain compatibility conditions, a number of results relating in particular to

two-dimensional and three-dimensional tilings and to problems motivated by chemistry and crys-

tallography have been discussed, and a more detailed indication of how the observation above can

be used to enumerate for instance all FULLERENE-type molecules with heptagons and pentagons,

only, and with (proper) icosahedral symmetry, consisting of exactly 280 C-atoms (minimal size)

was presented.
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VORONOÏ zonotopes and DELAUNAY dicings

ROBERT M. ERDAHL

We revisit the duality between VORONOÏ polytopes which are zonotopes and DELAUNAY dicings

which are dicings. The duality is made transparent by a new construction in which the VORONOÏ

polytope is realized as the projection of a parallelopiped in a higher dimensional space, and the

DELAUNAY tiling a section of a tiling by the same parallelopiped. This offers a very short, and

new, proof of VORONOÏ’s conjecture on parallelohedra for the case of zonotopes.

Cocircuit graphs and orientation reconstruction in oriented matroids

KOMEI FUKUDA

We consider the cocircuit graph of an oriented matroid, which is the 1-skeleton of the cell com-

plex formed by the span of the cocircuits. We show that the cell complex is uniquely determined

by the cocircuit graph if the oriented matroid is uniform. This answers an open problem posed

by CORDOVIL, FUKUDA, and GUEDES DE OLIVEIRA. Furthermore we present a polynomial

algorithm for the reconstruction problem, which verifies the correctness of input as well. As

a corollary, the face lattice of every cubical zonotope in R

d is uniquely determined by its dual

graph, and can be reconstructed in polynomial time. This partially answers a conjecture of

MICHAEL JOSWIG which claims the uniqueness for every cubical polytope. By duality, the face

poset of a simple arrangement of (d� 1)-spheres in Sd is uniquely determined by the 1-skeleton

and polynomially computable.

The reconstruction problem for the non-uniform case is also discussed.

This is a joint work with ERIC BABSON and LUKAS FINSCHI.

The fibrifold notation and classification for three dimensional space groups

DANIEL HUSON

We report on joint work whith JOHN H. CONWAY, OLAF DELGADO FRIEDRICHS and BILL

THURSTON in which we introduce the concept of “fibrifolds” (fibered orbifolds) and show how

it is used to obtain a nice notation and a new simple proof of the classification of space groups in

the reducible case.
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Torus actions, simple polytopes and coordinate subspace arrangements

TARAS E. PANOV

We show that the cohomology algebra of the complement of a coordinate subspace arrangement

in m-dimensional complex space is isomorphic to the bigraded cohomology algebra of STAN-

LEY-REISNER face ring of a certain simplicial complex on m vertices. (The face ring is regarded

as a module over the polynomial ring on m generators.) Then we calculate the latter cohomology

algebra by means of the standard KOSZUL resolution of polynomial ring. To prove these facts

we construct an equivariant with respect to the torus action homotopy equivalence between the

complement of a coordinate subspace arrangement and the moment-angle complex defined by

the simplicial complex. The moment-angle complex is a certain subset of a unit poly-disk in m-

dimensional complex space invariant with respect to the action of an m-dimensional torus. This

complex is a smooth manifold provided that the simplicial complex is a simplicial sphere, but

otherwise has more complicated structure. Then we investigate the equivariant topology of the

moment-angle complex. The very interesting particular case of our constructions is an arrange-

ment defined by the lattice of faces of a simple polytope P n with m codimension-one faces. The

corresponding simplicial complex is the dual to the boundary complex of P n. In this case the

above homotopy equivalence between the complement of the arrangement and the moment-angle

complex can be interpreted as the orbit map for a free action of the group Rm�n on the comple-

ment of the arrangement. The quotient (i.e. the moment-angle complex) is a smooth manifold

Z

P

invested with a canonical action of the compact torus Tm with the orbit space P n. For each

smooth projective toric variety M2n defined by a simple polytope P n with the given lattice of

faces there exists a subgroup T

m�n

� T

m acting freely on Z
P

such that Z
P

=T

m�n

= M

2n.

The cohomology ring of Z
P

is isomorphic to the cohomology ring of the STANLEY-REISNER

face ring of P n regarded as a module over the polynomial ring. In this way the cohomology of

Z

P

acquires a bigraded algebra structure with bigraded POINCARÉ duality, and the additional

grading allows to catch the combinatorial invariants of the polytope.

Crystallographic space groups, classifications in low dimensions

WILHELM PLESKEN

In joint work with T. SCHULZ I have computed the number of affine classes of space groups in

dimensions 5 and 6 using the package CARAT. The numbers are 222018 and 28927922 resp.

CARAT can count, construct, recognize and interrelate space groups up to degree 6. It contains

tables of the conjugacy classes of finite subgroups of GL
n

(Q), n � 6, and of BRAVAIS groups

up to degree 6. It has various algorithms to proceed from there, such as splitting Q -classes

in Z-classes, computing normalizers (OPGENORTH) and splitting Z-classes into affine classes

(ZASSENHAUS). Its philosophy is to have names for the groups before one has constructed

them.
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Fundamental domains in finite coverings of SU(1; 1)

ANNA PRATOUSSEVITCH

We describe a construction of fundamental domains for the action of a discrete subgroup of a

finite covering G of the LIE group SU(1; 1) = SL

2

(R) by left translations, generalizing the

construction for the case G = SU(1; 1) suggested by TH. FISCHER 1992. For cocompact fun-

damental domains with totally geodesic faces with respect to the LORENTZIAN metric on the

LIE group G induced by the KILLING form. We give explicit descriptions of the fundamen-

tal domains obtained by the construction for some infinite series of discrete subgroups of finite

coverings of SU(1; 1) with growing degree of the covering.

The defect of admissible sets in a lattice

ANDREI M. RAIGORODSKII

Let � � R

n be an n-dimensional lattice in the Euclidean space R

n containing the origin O.

Moreover, we suppose that � contains the n-dimensional integer lattice Zn as a sublattice. Con-

sider the set of unit coordinate vectors e
1

; : : : ; e

n

2 �. We denote by E the frame O e

1

; : : : ; e

n

.

Let f be the largest possible number of vectors e
i

1

; : : : ; e

i

f

in the frame E that can be comple-

mented to a basis of �. By the defect of the frame E with respect to the lattice � we mean the

value d(E ; �) = n� f . Note that d(E ; �) is bounded below by the smallest number of generat-

ing elements in the finite Abelian group �=Z

n; moreover, there exists a frame E 0 = O e

0

1

; : : : ; e

0

n

such that the vectors e

0

1

; : : : ; e

0

n

make up a basis of the lattice � and the quantity d(E

0

; �) is

exactly equal to the number of generating elements in the quotient group �=Z

n. Consider now

an arbitrary sequence of such sets f
n

E

g

1

n=1

that �E � 


n

E

� [�1; 1]

n and that, moreover, the

section of 
n

E

by the coordinate subspace R
i

1

;:::;i

k

of the variables x
i

1

; : : : ; x

i

k

coincides with 


k

E

8 1 � i

1

< � � � < i

k

� n. (Note that the unit octahedron On

E

, the unit ball Bn

E

or, say, the

hyperbolic cross can be considered as examples of the above sets.) A set 
n

E

is said to be admis-

sible with respect to a lattice � if 
n

E

T

� = fO;�e

1

; : : : ;�e

n

g. In the case when the set 
n

E

is

admissible with respect to the lattice �, the quantity d(E ; �) is called the defect of the admissible

set 
n

E

and is denoted by d(
n

E

; �). We now define quantities d
n

(


n

E

) and d�
n

(


n

E

), which depend

only on the dimension and the set under consideration, as follows: d
n

(


n

E

) = max

�

d(


n

E

; �),

d

�

n

(


n

E

) = max

�

�

d(


n

E

; �). Here in the case of d
n

(


n

E

) the maximum is taken over all lattices

� containing Zn as a sublattice such that the set 
n

E

is admissible in the lattice �; in the case of

d

�

n

(


n

E

) the maximum is taken over all lattices � containing Z

n as a sublattice such that the set




n

E

is admissible in the lattice � and the quotient group �=Z

n is cyclic, that is, the lattice � can

be obtained from Z

n by an addition of a single vector, which means that there exists a vector

a 2 Q

n such that � = hZ

n

; ai

Z

.

The present talk is dealt with exhibiting rather good (moreover, sharp in order as n ! 1 for a

sufficiently large class of cases) estimates for the values d
n

(


n

E

) and d�
n

(


n

E

) when 


n

E

satisfies the

conditions mentioned above. Note that the proofs of results involve the use of the combinatorial

methods developed for the set covering problem and of an averaging procedure. Note, further-

more, that similar questions in small dimensions have been discussed (however, in a different

notation) by T.W. CUSICK, L.J. MORDELL, R. BANTEGNIE, S.S. RYSHKOV.
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Triangulations of Polytopes and Polytope Boundaries

JÜRGEN RICHTER-GEBERT

This talk reports on recent reseach work (jointly with A. BELOW and J. DE LOERA) on the algo-

rithmic complexity of finding a minimal triangulation of a polytope or of a polytope boundary.

We show that already for 3-polytopes it is NP-hard to find a triangulation with a minimal num-

ber of simplices. The same holds for boundaries of 4-polytopes. The result on 3-polytopes is

obtained by combining two major ingredients.

� special sub-structures in the face lattice of a 3-polytope may force that in a minimal trian-

gulation certain inner diagonals have to occur.

� these inner structures can “block” each other so that the occurence of one implies the non-

occurence of another. This blocking gives the possibility of forming elementary gadgets

for logical operations. A certain construction shows that the structure can be modelled in

a way that a reduction to the 3-SAT problem is possible.

The result on boundaries of 4-polytopes may be either obtained as a corollary of the previous

result. However also a direct approach is possible that shows that finding a minimal triangulation

of a 4-polytope boundary is already NP-hard if only cubes, triangular prisms, and pyramids

occur as facets.

Tension percolation on a triangular lattice

KONSTANTIN RYBNIKOV

Lattice percolation models play an important role in the study of glasses and ferro-magnetism.

For example, the following problem is of considerable interest. Start with an infinite triangular

lattice graph in the plane. How many edges must be removed on average so that the resulting

graph can be longer support an equilibrium tension? This question is related to the crystalline-

glass transition. More formally, if each edge is removed with probability p, what is the critical

value of p, so that when exceeded the graph no longer has an infinite component which supports

an equilibrium stress positive in each edge? This problem is somewhat similar to the problem of

rigidity percolation. For example, every finite subgraph of a triangular (regular or generic) lattice

is contained in a finite rigid subgraph; in rigidity percolation one inquires if the graph maintains

this property after we remove each edge independently with probability p. Rigidity percolation

was intensively studied by physicists and mathematicians over the last 20 years (DUXBURY,

JACOBS, THORPE (1983, 1995, 1996, 1999), HOLROYD (1998)). The focus of this problem is the

combinatorial rigidity in the plane, whereas the focus of our investigation of tension percolation

is the behavior of the planar system in the space, since the property of an infinite graph to be

able to support tension implies a sort of strong stability in three-space (CONNELLY, WHITELEY

(1996)). We prove that for any value of p > 0 there is no equilibrium stress on the altered lattice

T

p

. Moreover, the complete relaxation of tension occurs in some finite non-random time almost
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surely. We conjecture that our result holds for a larger class of planar graphs, but does not hold

for a spatial lattice based on a regular simplex. (This is a joint work with R. CONNELLY and S.

VOLKOV.)

L-simplices of big relative volume and laminar planes in lattices

SERGEY S. RYSHKOV

Let Gn

2

be a lattice of dimension n � 3 with the second perfect quadratic form F

2

as its met-

ric form. Let G8

3

be the lattice of dimension 8 with the third perfect quadratic form F

3

as its

metric form. Let also be O(F ) an intersection of small enough neighbourhoods of F with the

discriminate surface in the space of coefficients and O(G) the corresponding set of lattices.

In this talk it will be shown that

i) If n � 4 then an L-subdivision of the lattice Gn

2

has no laminar planes; all these lattices

have such planes “with zero thickness”;

ii) If n = 4 then every lattice from O(G

4

2

) has at least one laminar plane;

iii) If n � 5 then there exists a lattice from O(G

n

2

) which has at least one laminar plane;

iv) If n � 5 and n is odd then there exist a lattices from O(G

n

2

) which have at least one

L-simplex of relative volume n�1

2

;

v) The lattice G8

3

and every lattice from O(G

8

3

) have no laminar planes.

On the combinatorics of zonotopal lattices

FRANK VALLENTIN

We provide a link between the theory of oriented matroids and the theory of zonotopal lattice

tilings and lattice dicings. The main advantage of this approach is the strict separation between

combinatorial and metrical data. Firstly, this link was investigated by GERRITZEN and LOESCH

([Ger82], [Loe90]).

Zonotopal lattices are defined as regular sublattices of Zn which are embedded in the euclidean

R

n . The standard basis of Rn is not necessarily an orthonormal basis, but it must be an orthogonal

basis. The definition of regularity is highly motivated by TUTTE’s theory of regular chain groups

([Tut71]).

Let L be a zonotopal lattice. The key observation is the fact that lattice vectors of minimal

support with coefficients in f�1; 0;+1g are exactly the facet vectors of the lattice’s DIRICHLET-

VORONOÏ-polytope. Using FARKAS’ lemma it follows that the DIRICHLET-VORONOÏ-polytope

of L is the orthogonal projection of the cube [�

1

2

;

1

2

]

n onto the subspace which is spanned by L.

In this setting two known results get transparent proofs: MCMULLEN’s characterization of space

tiling zonotopes ([McM75]) and ERDAHL’s proof for VORONOÏ’s conjecture in the special case

of zonotopes ([Erd99]).
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Problem session

Diameter of the dual of a cubical zonotope

KOMEI FUKUDA

Let Z be a d-zonotope with n zones. We know that

the diameter of the 1-skeleton of Z equals n.

Problem. If Z is a cubical zonotope (all facets of Z

are (d � 1)-cubes), then the diameter of its dual Z�

equals n� d+ 2?

This is true for d � 3. The distance between antipodal

vertices in Z

� is exactly n � d + 2, i.e. diam(Z

�

) �

n� d+2. Is n� d+2 only realized by the antipodal

vertices?

Equivalently, this problem can be studied in the set-

ting of sphere arrangements or in the setting of ori-

ented matroids. There might be a relationship to the

HIRSCH-conjecture.

Hexagonal extensions

ANDREAS W.M. DRESS

Can every fullerene cap (5 pentagons and x hexagons) be extended to a sphere?
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Fat DELONE simplices

ROBERT M. ERDAHL, KONSTANTIN RYBNIKOV

DELONE (Uspehi, 1937) asked if DELONE simplices of non-fundamental volume exist. COX-

ETER (CJM, 1951, 1953) noticed that for n � 9 the existence of such simplices implies that

for a given perfect form with fixed homogeneous minimum the lattice from which the mini-

mal vectors are taken need not be unique (see also “Geometry of Numbers” by GRUBER and

LEKKERKERKER (1987)). RYSHKOV (Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov.

(LOMI) 33 (1973), 65–71) using the COXETER-BARNES lattices Ak

n

, showed that in every di-

mension n = 2� + 1 there is a lattice with a DELONE simplex of relative volume � .

Proposition. There is a metric for which simplex whose vertices are the columns of the following

matrix is a DELONE simplex in the lattice Zn (n � 4). Its volume is n� 3.

0

B

B

B

B

B

B

@

0 1 0 : : : 0 1

... 0 1

. . .
...

...
...

... 0

. . .
0

...
...

...
...

. . .
1 1

0 0 0 : : : 0 �(n� 3)

1

C

C

C

C

C

C

A

The proof is based on the theory of dual systems of integer vectors. A good starting point

might be the article Dual systems of integral vectors (general questions and applications to the

geometry of positive quadratic forms) by R.M. ERDAHL and S.S. RYSHKOV (Mat. Sb. 182

(1991) 12, 1796–1812).

Conjecture. n� 3 is the maximal relative volume of a DELONE simplex in dimension n.

Maximal lattice dicings

ROBERT M. ERDAHL, KONSTANTIN RYBNIKOV

A dicing D is an arrangement of hyperplanes in R

d whose vertices form a lattice �(D). The

arrangement is required to be invariant under all lattice translates. Obviously, the hyperplanes of

such an arrangement dice the space into convex lattice polytopes.

A dicing is called maximal if one cannot add a new family of hyperplanes to the dicing without

creating new vertices.

Conjecture. Every maximal dicing has a simplicial cell.

This conjecture has been verified for d � 5 by ERDAHL and RYSHKOV.

This problem is related to the theory of unimodular matrices and to the theory of (regular) ori-

ented matroids. A good starting point might be the articles On lattice dicing by R.M. ERDAHL

and S.S. RYSHKOV (European J. Combinatorics (1994) 15, 459–481), and “Maximal Unimod-

ular Systems of Vectors” by VLADIMIR DANILOV and VIATCHESLAV GRISHUKIN (Europ. J.

Combinatorics (1999) 20, 507–526).
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Self-dual polytopes in R

4 with only one facet-type

JÜRGEN BOKOWSKI

Classify all polytopes in R4 which are self dual and possess only one facet-type. In particular are

there others than the simplex and the 24-cell?

Tile-, face-, edge- and vertex-transitive tilings in E

3

OLAF DELGADO FRIEDRICHS

As demonstrated by HEESCH, there are infinitely many tile-transitive tilings of three-dimensional

euclidean space. HEESCH’s examples, of course, are not strictly convex, but fullfill a necessary

local combinatorial condition for strict convexity, namely that each vertex has degree at least 3

relatively to each tile it is contained in. In the following, we shall call such tilings locally convex.

It is straightforward to see that local convexity carries over to duals.

DRESS, HUSON and MOLNAR have established in 1993 that there are exactly 7 topological and

88 equivariant types of (2-)face-transitive locally convex tilings in E

3 . As in many applications

locally non-convex tilings appear naturally, it would be interesting to know whether there are

finitely or infinitely many topological types of non-degenerate, but not necessarily locally con-

vex, face-transitive tilings. By non-degenerate, we mean the obvious thing here: each vertex is

incident to at least 3 edges in the whole tiling, each edge is incident to at least 3 faces, each faces

to at least 3 edges and, finally, each tile to at least 3 faces.

This question seems to be open even in a much stronger version:

Are there finitely or infinitely many topological types of non-degenerate tilings in

E

3 which are tile-, face-, edge- and vertex-transitive at the same time?

There are two such types in the list by DRESS, HUSON and MOLNAR. A third one can be

obtained by introducing a curved 2-face into each essential cycle of length 6 in the diamond net.

Its tiles are tetrahedra with one additional (i.e. degree 2) vertex on each edge. Faces are paired

in such a way that vertices of degree 2 are always matched with vertices of degree 3.

A computer enumeration has shown that there are exactly 9 topological types of such tilings

with DELANEY symbols of no more than 20 elements, i.e., with no more than 20 orbits of the

symmetry group of the tiling on its flag space.
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Torus actions, polytopes, ans subspace arrangements

Some open problems

TARAS E. PANOV

Let K be a simplicial complex on f1; : : : ; mg, and K a field. The face ring of K is the quotient

K (K) := K [v

1

; : : : ; v

m

]=I , I = (v

i

1

; : : : ; v

i

k

, i
1

< : : : < i

k

, fi
1

; : : : ; i

k

g is not a simplex of K).

Define U(K) = C

m

n

S

(z

i

1

= : : : = z

i

k

= 0, fi
1

; : : : ; i

k

g is not a simplex of K). (Algebraic)

cohomology of k(K) and (topological) cohomology of U(K) are the same:

Theorem. Tor
K[v

1

;::: ;v

m

]

(K (K); k) = H

�

(U(K); K ) = H[K (K)
�[u

1

; : : : ; u

m

]; d]; d(u
i

) = v

i

,

d(v

i

) = 0.

Problem 1. Does the above identity holds for Z coefficients?

Suppose now thatK is a simplicial sphere of dimensionn+1. In this caseU(K) is homotopically

equivalent to a smooth manifold, denoted by Z
K

. Let f
i

denote the number of i-simplices of K;

(f

0

; f

1

; : : : ; f

n�1

) is called the f -vector of K. Define the h-vector (h
0

; h

1

; : : : ; h

n

) from

h

0

t

n

+ � � �+ h

n�1

t+ h

n

= (t� 1)

n

+ f

0

(t� 1)

n�1

+ � � �+ f

n�1

The POINCARÉ duality for the Betti numbers ofZ
K

implies the well-knwon DEHN-SOMMERVILLE

equations h
i

= h

n�i

, i = 0; 1; : : : ; n.

Problem 2. GLB for simplicial spheres: h
0

� h

1

� h

2

� : : : � h

[

n

2

]

.

In our setting, this is equivalent to certain inequalities for the Betti numbers of Z
K

. For instance,

h

1

� h

2

() b

3

(Z

K

) �

�

f

0

�n

2

�

.

Problem 3. Find some analogues of the DEHN-SOMMERVILLE equations in the case when K is

a simplicial manifold (or PL-manifold).

Tetrahedra tiling in 3-space

NIKOLAI P. DOLBILIN

Is it possible to tile 3-space by tetrahedra whose angles are strictly greater than 60 degrees?
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Software presentations

DANIEL HUSON — “2D-Tiler”

The successor of “Reptiles”, a program to produce and visualize tilings in euclidean, hy-

perbolic and spherical 2-space.

OLAF DELGADO FRIEDRICHS — “3D-Tiler”

A program to produce and visualize tilings in euclidean 3-space.

WILHELM PLESKEN — “CARAT”

A software package to manage space groups and Bravais groups in low dimensions.

16



FRANK VALLENTIN — “DVL”

A small program which computes the DIRICHLET-VORONOÏ-polytope of a lattice.

JÜRGEN RICHTER-GEBERT — “Cinderella”

The famous geometry package.

a

b

c
d

e

A

B

C

D

E

a

b

A

B

C

D

E

17



List of participants

PD DR. MICHAEL BAAKE

Institut für Theoretische Physik

Universität Tübingen

Auf der Morgenstelle 14

72076 Tübingen
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