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Teleconnections among tipping elements  
in the Earth system

Teng Liu    1,11, Dean Chen1,2,11, Lan Yang1, Jun Meng3,4, Zanchenling Wang    5, 
Josef Ludescher4, Jingfang Fan    1,4  , Saini Yang    6,7  , Deliang Chen    8, 
Jürgen Kurths    4,9, Xiaosong Chen    1  , Shlomo Havlin10 & 
Hans Joachim Schellnhuber4

Tipping elements are components of the Earth system that may shift abruptly 
and irreversibly from one state to another at specific thresholds.  
It is not well understood to what degree tipping of one system can influence 
other regions or tipping elements. Here, we propose a climate network approach 
to analyse the global impacts of a prominent tipping element, the Amazon 
Rainforest Area (ARA). We find that the ARA exhibits strong correlations with 
regions such as the Tibetan Plateau (TP) and West Antarctic ice sheet. Models 
show that the identified teleconnection propagation path between the ARA and 
the TP is robust under climate change. In addition, we detect that TP snow cover 
extent has been losing stability since 2008. We further uncover that various 
climate extremes between the ARA and the TP are synchronized under climate 
change. Our framework highlights that tipping elements can be linked and also 
the potential predictability of cascading tipping dynamics.

As a complex adaptive system, the Earth system has multiple poten-
tial tipping elements that may approach or exceed a tipping point in 
response to a tiny perturbation1. Recently, others have highlighted 
nine climate tipping points2 that have been activated in the past dec-
ade and therefore urgent political and economic action is needed to 
reduce GHG emissions to prevent key tipping elements from tipping. 
Anthropogenic forcing is considered as one of the main factors for 
pushing several large-scale ‘tipping elements’ to exceed their tipping 
points3, which may cause abrupt and irreversible destabilizing effects 
on the Earth system4–6. Interactions between the different tipping ele-
ments may either have stabilizing or destabilizing effects on the other 
subsystems, potentially leading to cascades of abrupt transitions7. Fol-
lowing the rising awareness of a highly interconnected world, tipping 
cascades as possible links between tipping elements are increasingly 
discussed8. Using palaeoenvironmental records, ref. 9 illustrated how 

abrupt changes cascaded through the Earth system in the past 30 kyr. 
Others pointed out that tipping cascades could be formed when the 
global temperature reaches a threshold, affecting the trajectories of 
the Earth system in the Anthropocene10. However, a quantitative and 
systematic analysis framework on how the Earth system can be influ-
enced by tipping elements is still lacking, especially for identifying 
connections among tipping elements. While preliminary studies con-
ceptually proposed possible connections between tipping elements2,11, 
how these tipping elements are influenced by the mode of others and 
what the teleconnection paths are, are still open questions.

Here, we focus on a prominent and well-known tipping ele-
ment—the Amazon Rainforest Area (ARA). It has been reported that 
human activities and climate change have perturbed the stability 
of the tropical forest–climate equilibrium, resulting in extreme 
losses of tropical forests and biodiversity12. A recent empirical study 
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within the ARA (1,374 nodes, 12∘ N to 35∘ S, 30° W to 90∘ W land area) 
and the other contains the nodes outside the ARA (63,786 nodes). 
To quantify the overall impact of the ARA, for a given outside node j,  
we define its in-weight (IN(Cj)) and in-strength (IN(Wj)) as the sum 
of the weights and strengths of all in-links (Methods). A larger 
(smaller) positive (negative) value of IN(Cj) and IN(Wj) indicate 
stronger (weaker) warming (cooling) due to the influence of the 
ARA; likewise, out-weights (OUT(Cj) and OUT(Wj)) are introduced 
to quantify the overall impacts to the ARA. We present the influence 
pattern between the ARA and the outside area in Supplementary 
Fig. 1a,b for the past 40 yr (1979–2018). We find that some regions 
such as the Mid-Atlantic, the Arctic and the Indian Ocean, either by 
warming or cooling, are identified by relatively higher in-weights 
(Supplementary Fig. 1a). It has been reported that the climate  
variability in the ARA is significantly affected by the phase of  
El Niño/Southern Oscillation (ENSO)24; this influence is also 
confirmed by the high intensity of the tropical Pacific region  
in out-weight distributions (Supplementary Fig. 1b). In particular, 
we find that the Niño 3.4 region shows a strongly positive influence 
on the ARA.

There exist strong connections between ARA and ENSO. To further 
address whether the influence pattern of ARA varies between ENSO 
periods and normal years, we analyse and compare the global distribu-
tions of the total in-degrees IN(N), in-weights IN(C) and in-strengths 
IN(W), among one typical El Niño year (1997), one typical La Niña year 
(1998) and one normal year (1996). The result is shown in Fig. 2. We 
find that during El Niño and La Niña events, the overall global area 
that is influenced by the ARA becomes smaller, whereas the impacts 
in these more limited ranges become stronger. This enhanced impact 
in localized regions is demonstrated in Fig. 2a–f, which compares 
the global distributions of the normal year in Fig. 2g–i. This strongly 
localized planetary impact pattern of the ARA is robust during ENSO 
period, which is supported by more examples and quantitative analysis  
(Supplementary Figs. 2 and 3).

suggests that the observed tropical forest fragmentations, includ-
ing in the Americas, Africa and Asia–Australia, are approaching 
their tipping points13. Particularly striking is the deforestation in 
the Amazon—the world’s largest rainforest, which is home to nearly 
a quarter of the world’s terrestrial species. Southeast Amazonia has 
even become a net source of carbon emission during the dry season 
because of the deforestation and climate change14. It was recently 
pointed out that more than three-quarters of the Amazon rainfor-
est has been losing resilience since the early 2000s, consistent with 
the approach to a critical transition15. The Sixth Assessment Report 
of IPCC highlighted that continued deforestation and a warming 
raise the probability that the Amazon will cross a tipping point into 
a dry state5. However, global influences of rainforest dieback in the 
Amazon are still little known.

In the present study, we construct a series of dynamical and physi-
cal climate networks16–22, based on the global near-surface air tem-
perature field, to systematically study the global impacts of the ARA. 
The directed links from the ARA (Fig. 1, location labelled 6) to regions 
outside the ARA are defined as ‘in’-links. The in-weighted climate net-
work enables us to obtain a map of the global impacts of ARA, in par-
ticular, to study the impacts in specific regions, such as other tipping 
elements. In particular, we uncover that there exists a robust negative 
teleconnection between the ARA and the Tibetan Plateau (TP) (Fig. 1, 
location labelled 10), known as the third pole of the Earth23. We further 
explore the potential propagation pathway of the ARA–TP telecon-
nection. This work provides a concise and systematic framework to 
investigate the potential teleconnection among the tipping elements 
and can potentially be used to predict the abrupt changes caused by 
the tipping cascading in the Earth systems.

Strongly localized planetary impact pattern of 
the ARA
To reveal the global impact of the ARA, we divide the nodes of cli-
mate networks into two subsets. One subset includes the nodes 

(2) Greenland ice sheet
(3) Permafrost
(4) Boreal forest
(5) Atlantic circulation
(6) Amazon rainforest
(7) Coral reefs
(8) West Antarctic ice sheet
(9) Wilkes Basin, East Antarctica
(10) Tibetan Plateau snow cover

(1) Arctic sea ice
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Fig. 1 | Schematic view of the tipping elements of the Earth climate system, 
their connectivity and teleconnections. The numbered symbols show the 
potential tipping elements in the Earth system. The dashed yellow lines show the 

possible connections between these tipping elements2 and the solid red lines 
show teleconnection uncovered in this article. The arrows show the direction of 
the influence.
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Negative teleconnection between ARA and TP
The regions of localized activity vary from one year to another. Next, 
we study the variability of the regions that are influenced by ARA. For 
each year, we consider the high-intensity nodes, that is, with the value 
(absolute value) of the in-degree (negative in-weight) higher than 90% 
nodes (negative nodes). We then define the frequency of the nodes with 
high intensity during the past 40 yr from 1979 to 2018 as F(N) and F(C) 
(Methods). The results are shown in Fig. 3a,b for F(N) and F(C), respec-
tively. Higher values indicate stronger and more persistent impacts of 
ARA. Remarkably, we find that the intensity of the nodes within the TP 
region is high for both F(N) and F(C) and the spatial pattern of these 
nodes agrees well with the cartographic boundary (the dashed yellow 
lines in the right panels of Fig. 3a,b) and shape of the TP. A similar pat-
tern can also be obtained from the F(W) (Supplementary Fig. 4), which 
serves as a cross-check of the result of F(C). A typical cross-correlation 
function of two nodes, one in ARA and the other in TP, is presented in 
Supplementary Fig. 5, which indicates a significant negative telecon-
nection. Besides the TP, we also observe that there exist strong negative 
connections between the ARA and the West Antarctic, which is known 
as a tipping element2.

To demonstrate that these results are not accidental, we analysed 
randomized versions of F(N) and F(C), which we obtained by reshuf-
fling the temperature records at each site 100 times. This way, we 
destroy the correlations between different nodes (one example of 
the cross-correlation results of this NULL model can be found in Sup-
plementary Fig. 6c,d). Our results, shown in Fig. 3c,d, indicate that 
the values of F(N) and F(C) for the nodes in the TP region have a 95% 
confidence level compared with the NULL model.

Robust propagation pathway of ARA and TP 
teleconnection
Teleconnections describe remote connections between compo-
nents of the complex climate system and reflect the transportation 
of energy or materials on global scale25. The great-circle distances of 

teleconnections are typically thousands of kilometres. In the follow-
ing, we will identify the actual path of the teleconnection between the 
ARA and the TP by using the climate network analysis. We choose 726 
latitude–longitude grid points as climate network nodes19, such that 
the globe is covered approximately homogeneously. We follow ref. 26 
and detect a minimal total cost function of the direct links (Methods) 
from the ARA to the TP. We show a potential propagation path for 
this teleconnection in Fig. 4a and find that it can be roughly divided 
into three parts. The first part is from the centre of South America to 
the south of Africa, the second one is from the south of Africa to the 
Middle East and the last part is from the Middle East to the TP. The 
path length is close to 20,000 km (the great-circle distance between 
the ARA and TP is ~15,000 km). From a meteorological perspective, 
this path can be well explained by the main atmospheric and oceanic 
circulation.

On the one side, the orography of the eastern coast of the South 
American continent is prone to the formation of an anticyclone at 
mid-latitude due to the interaction with mid-latitude westerlies27. 
The anticyclonic circulation produces and brings warm winds from 
the east coast of South America to the South of Africa (~30∘ S). On the 
other side, there is an intertropical convergence zone that controls 
the African monsoon driving the wind from south to north of Africa 
in this regime28. Finally, the physical mechanism of the path from the 
Middle East to the TP may be linked to the northern hemispheric mid-
dle latitude westerlies29.

To examine the data dependence of the path, we perform the same 
climate network-based analysis with different reanalysis datasets, 
that is, the ERA5 with 2 m surface temperature and the NCEP/NCAR 
reanalysis with 1,000 hPa, 2 m surface temperature dataset. All results 
are presented in Supplementary Fig. 7 and suggest that the propagation 
pathway of the teleconnection between the ARA and TP is independ-
ent of datasets. The robustness is estimated by comparing with the 
second optimal path, as shown in Supplementary Fig. 8. We find that 
the second optimal path is close to the first optimal path, supporting 
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Fig. 2 | The different influence modes of the ARA for ENSO years and a normal year.  IN(C) (a. an El Niño year, d. a La Niña year and g. a normal year), IN(W) (b. an El 
Niño year, e. a La Niña year and h. a normal year) and IN(N) (c. an El Niño year, f. a La Niña year and i. a normal year) show a more localized and higher intensity pattern in 
the El Niño (a–c) and La Niña (d–f) years than in the normal year (g–i).
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that the propagation pathway is robust. Furthermore, various starting 
and ending nodes within ARA and TP have been selected by using the 
same analysis and we find that the optimal pathway between ARA and 
TP is still very stable (Supplementary Fig. 9).

Anthropogenic climate change has led to a widespread shrinking 
of the cryosphere, rising global mean sea levels, an increasing number 
of tropical cyclones and associated cascading impacts30. A critical 
question, then, is how climate change could affect the nature of the 
path of this teleconnection? We thus investigate the response of the 
teleconnection path to global warming by using the Coupled Model 

Intercomparison Project Phase 5 (CMIP5) and Phase 6 (CMIP6) models 
under the RCP8.5 (approximately equivalent to the Shared Socioeco-
nomic Pathway (SSP) 5–8.5) emission scenario from 2006 (CMIP5) 
and 2016 (CMIP6) to 2100. We chose 15 CMIP5 models and 15 CMIP6 
models and summarize the details in Supplementary Tables 1 and 2. To 
identify the response of the teleconnection pathway under the global 
warming condition, for simplicity but without loss of generality, we 
compare, in Fig. 4b–e, the path from ARA to TP for the first and last 
40 years of the twenty-first century, that is, 2016–2056 (2006–2046 
for CMIP5 datasets) versus 2060–2100. Interestingly, we observe that 

a

b

c d

(times)

(times)

90° N

30° N

30° S

90° S

90° N

30° N

30° S

90° S

180° 90° W

0 4 6 8 10 12 142

0 43 65 71 2

90° E 180°0°

180° 90° W 90° E 180°0°

Fig. 3 | Stable negative teleconnection between the ARA and the TP. a, The 
spatial distribution of F(N) and, b, F(C), depicting the areas influenced by ARA 
in the past 40 yr (1979–2018). The nodes within TP show high intensity and the 
spatial pattern is perfectly characterized by the cartographic boundary of the TP 
(the dashed orange line). c, The crosses depict the nodes’ signals F(N) and, d, F(C) 

passing the hypothesis test. The 95th percentile of the F(N) and F(C) distributions 
of the NULL model is considered as the significant threshold. The nodes in the TP 
with a higher intensity than the threshold are labelled by the crosses. Here, the 
red colour indicates F(N) and the blue colour stands for F(C).
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the overall pattern of this teleconnection pathway from the ARA to 
TP is quite stable across most models. Additionally, we calculate the 
propagation time by summing the time lags for each step and find 
that the time delay is ~15 d for most models (Supplementary Fig. 10). 
Besides the TP, the high-intensity nodes within the West Antarctic 
Ice Sheet (WAIS) in Fig. 3b indicate the existence of stable negative 
teleconnection between these two well-known tipping elements, 
ARA and WAIS. For more discussion about the propagation path and 
potential mechanism of this teleconnection see Supplementary 
Figs. 11 and 12.

Synchronization of extreme climate events
Since our results indicate that the teleconnection path is not affected 
by climate change (Fig. 4), one key issue is how do the climate vari-
abilities in between the ARA and TP synchronize in the presence of 
global warming? In the following, we focus on the synchronization 
of various extreme climate events between ARA and TP. We first ana-
lyse the global change by the fraction of days with above average tem-
perature (TXgt50p) in every two decades (2021–2040, 2041–2060, 
2061–2080 and 2081–2100) under four SSPs and notice a clear spatial 
synchronization of this indicator in the Amazon and the TP for all SSPs. 
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different colours. b–e, The robust propagation pathway under global warming 
conditions. By comparing the pathway in the first (b,d) and the last (c,e) 40 yr 
for this century in CMIP5 (b,c) and CMIP6 (d,e) datasets, we find that the overall 
pattern is quite stable across most models.
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Both the Amazon and the TP are the most sensitive areas globally in 
terms of the increase of TXgt50p, as shown in Supplementary Fig. 13. 
Multimodel ensemble were applied here, based on six models from 
Global Producing Centres for long-range forecasts designated by the 
World Meteorological Organization, which has been confirmed to have 
higher simulation capacity than that of each model31. To quantify the 
spatial synchronization of these two regions, we performed Pearson’s 
correlation analyses on the TXgt50p values. Surprisingly, we find that 
the Pearson’s r reaches 0.92 for the TXgt50p in the Amazon and the 
TP, illustrating a significant positive correlation between these two 
regions. Similarly, we tested the other major temperature-related indi-
cators, TMge10 (number of days with daily mean temperature equal 
to or above 10 ∘C) and TNn (the monthly minimum of Tmin). Strong 
positive correlation exists between the TP and Amazon region for both 
TMge10 (r = 0.70) and TNn (r = 0.74). Meanwhile, a strong or moderate 
negative correlation exists in precipitation-related indicators, such as 
Prcptot (−0.54; Supplementary Fig. 14), R20mm (−0.50; Supplementary  
Fig. 15) and Rx5day (−0.20, Supplementary Fig. 16). These three indica-
tors represent annual total precipitation, number of days with precipi-
tation above 20 mm and the maximum 5 d consecutive precipitation, 
respectively. These results support the finding that there exists some 
kind of physical connection between these two far-reaching regions. 
It is noticed that all precipitation-related indicators show a negative 
correlation, while temperature-related indicators show a positive  
correlation between the TP and Amazon.

The TP is operating close to a tipping point
The TP has attracted much attention due to its unique geological struc-
ture, irreplaceable role in global water storage and impact on the global 
climate system. Numerous literatures have shown that the warming 
trend in recent decades at the TP is several times faster than the global 
average and is similar to the trend of the arctic region23. Projections have 
shown that this amplification of warming will continue under global 
warming, thereby increasing the occurrence of climate extremes32. 
Snow cover is a comprehensive indicator of the mean conditions of tem-
perature and precipitation for an area. Especially for the TP, the snow 
cover can persist during all seasons over the high elevation area and 
serve as a vital water source for the surrounding countries. In particular, 
snow cover variability is an integrated indicator of climate change33 and 
thus can be a sensitive parameter reflecting the state change of the TP 
under global warming. In the following, we will detect the early warning 
signals based on the snow cover and reveal that the TP has been losing 
stability and approaching a tipping point since 2008.

The ‘critical slowing down’ (CSD) phenomenon has been suggested 
as one of the most important indicators of whether a dynamical sys-
tem is losing stability and getting close to a critical threshold4,34. The 
loss of stability (defined as the return rate from perturbation) can be 
detected by increases in the lag-1 autocorrelation (AR(1)) coefficients 35 
and detrended fluctuation analysis (DFA) exponents36. These methods 
have been applied to quantify the CSD and anticipate tipping points37,38. 
Here, we focus on the temporal evolution of AR(1) coefficients and DFA 
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exponents based on the time series of the snow cover fraction (SCF) 
over the whole TP area during 1990–2020 (Methods). The seasonal 
and trend decomposition based on Loess (STL) method has been used 
to obtain the detrended time series and avoid false alarms (Methods 
and Fig. 5a). By shifting a sliding 10 yr window and calculating the AR(1) 
coefficients (with 1 d time unit) and DFA exponents for every step, we 
can retrieve the temporal changes of the AR(1) coefficients (Fig. 5b) 
and DFA exponents (Fig. 5c) in the past 31 yr (1990–2020). The time 
series of the AR(1) coefficient shows a substantial increase over time, 
particularly since 2008 (the red line in Fig. 5b). The DFA exponent has 
also been increasing since 2008 and is consistent with the AR(1) coef-
ficient, as shown in Fig. 5c. We quantify the increasing tendency of 
AR(1) and DFA exponents by the Kendall rank correlation coefficient τ 
(Methods), with 0.95 and 0.86, respectively. Both results of the Kendall 
τ support an obvious increase for AR(1) and DFA, which implies that 
the snow cover in TP has been approaching a tipping point since 2008.

Discussion
The persistent warming fuelled by anthropogenic GHG emissions 
could push parts of the Earth system—tipping elements—into abrupt 
or irreversible changes, from collapsing ice sheets and thawing per-
mafrost, to shifting monsoons and forest dieback2. These climatic 
changes thus influence the nature of societies and the performance of 
economies39. Most importantly, possible connections and cascading 
dynamics between different tipping elements have been proposed. 
However, a method to quantify the connections or teleconnections 
among possible tipping elements was lacking. To fill the gap, here, 
we have developed a network-based framework to reveal the global 
impact of a widely pronounced tipping element—the ARA. We found 
that there is a planetary pattern of strongly localized impacts of the 
ARA and some specific regions, such as the TP and West Antarctic, are 
strongly and persistently influenced by the ARA. A robust teleconnec-
tion propagation path has been identified between the Amazon and TP. 
We proposed a possible physical mechanism underlying this path and 
associated it with the combination of: (1) the South Atlantic High, (2) 
the intertropical convergence zone and (3) the northern hemispheric 
middle latitude westerlies. The high degree of synchronization of the 
extreme events in the ARA and TP supports the existence of this telecon-
nection. Moreover, we provided strong support that the snow cover in 
TP (CDS phenomenon) has been losing stability and is operating close 
to a tipping point. We thus provided evidence that the TP, which was 
previously overlooked, should play an extremely important role as a 
component in the exhaustive list of tipping elements1.

Interactions and teleconnections among tipping elements poten-
tially lead to cascades of abrupt transitions. In particular, in the context 
of climate change, disaster phenomena such as floods, droughts and 
sea level rises have become more frequent and threatening. Thus, 
global, national and regional preparedness and response to extreme 
weather are facing challenges. Climate adaptation failure has gained 
the greatest concern globally. Especially, the systemic risk induced by 
the interdependency among systems and cascading of adverse impact 
is the emerging key for climate adaptation. Moreover, developing 
topological invariants based on network theory, such as, k-core, as a 
predictor of climate tipping points and the corresponding collapse 
phenomena40, can help engaging more stakeholder groups to perform 
early actions to reduce tipping points-related damages. Our framework 
based on network theory provides a potential path to understand the 
linkage of tipping elements of the complex Earth system, which is 
particularly important for a systemic risk-informed global governance 
and to improve understanding of tipping points.

Online content
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ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 

and competing interests; and statements of data and code availability 
are available at https://doi.org/10.1038/s41558-022-01558-4.

References
1.	 Lenton, T. M. et al. Tipping elements in the Earth’s climate system. 

Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).
2.	 Lenton, T. M. et al. Climate tipping points—too risky to bet against. 

Nature 575, 592–595 (2019).
3.	 Ghil, M. & Lucarini, V. The physics of climate variability and 

climate change. Rev.Mod. Phys. 92, 035002 (2020).
4.	 Lenton, T. M. Early warning of climate tipping points. Nat. Clim. 

Change 1, 201–209 (2011).
5.	 IPCC. Climate Change 2021: The Physical Science Basis (eds 

Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).
6.	 Zhang, P. et al. Abrupt shift to hotter and drier climate over  

inner East Asia beyond the tipping point. Science 370,  
1095–1099 (2020).

7.	 Scheffer, M. et al. Anticipating critical transitions. Science 338, 
344–348 (2012).

8.	 Klose, A. K., Wunderling, N., Winkelmann, R. & Donges, J. F.  
What do we mean, ‘tipping cascade’? Environ. Res. Lett. 16,  
125011 (2021).

9.	 Brovkin, V. et al. Past abrupt changes, tipping points and 
cascading impacts in the Earth system. Nat. Geosci. 14,  
550–558 (2021).

10.	 Steffen, W. et al. Trajectories of the Earth system in the 
Anthropocene. Proc. Natl Acad. Sci. USA 115, 8252–8259 (2018).

11.	 Martin, M. A. et al. Ten new insights in climate science 2021: a 
horizon scan. Glob. Sustain. 4, e25 (2021).

12.	 Gibson, L. et al. Primary forests are irreplaceable for sustaining 
tropical biodiversity. Nature 478, 378–381 (2011).

13.	 Taubert, F. et al. Global patterns of tropical forest fragmentation. 
Nature 554, 519–522 (2018).

14.	 Gatti, L. V. et al. Amazonia as a carbon source linked to 
deforestation and climate change. Nature 595, 388–393 (2021).

15.	 Boulton, C. A., Lenton, T. M. & Boers, N. Pronounced loss of 
Amazon rainforest resilience since the early 2000s. Nat. Clim. 
Change 12, 271–278 (2022).

16.	 Tsonis, A. A. & Roebber, P. J. The architecture of the climate 
network. Physica A 333, 497–504 (2004).

17.	 Ludescher, J. et al. Improved El Niño forecasting by cooperativity 
detection. Proc. Natl Acad. Sci. USA 110, 11742–11745 (2013).

18.	 Boers, N. et al. Complex networks reveal global pattern of 
extreme-rainfall teleconnections. Nature 566, 373–377 (2019).

19.	 Fan, J. et al. Network-based approach and climate change 
benefits for forecasting the amount of Indian monsoon rainfall. J. 
Climate 35, 1009–1020 (2022).

20.	 Mheen, Mvd et al. Interaction network based early warning 
indicators for the Atlantic MOC collapse. Geophys. Res. Lett. 40, 
2714–2719 (2013).

21.	 Feng, Q. Y. & Dijkstra, H. Are North Atlantic multidecadal SST 
anomalies westward propagating? Geophys. Res. Lett. 41, 
541–546 (2014).

22.	 Fan, J. et al. Statistical physics approaches to the complex Earth 
system. Phys. Rep. 896, 1–84 (2021).

23.	 Yao, T. et al. Recent third pole’s rapid warming accompanies 
cryospheric melt and water cycle intensification and interactions 
between monsoon and environment: multidisciplinary approach 
with observations, modeling, and analysis. Bull. Am. Meteorol. 
Soc. 100, 423–444 (2019).

24.	 Cai, W. et al. Climate impacts of the El Niño-Southern Oscillation 
on South America. Nat. Rev. Earth Environ. 1, 215–231 (2020).

25.	 Liu, Z. & Alexander, M. Atmospheric bridge, oceanic tunnel, 
and global climatic teleconnections. Rev. Geophys. https://doi.
org/10.1029/2005RG000172 (2007).

http://www.nature.com/natureclimatechange
https://doi.org/10.1038/s41558-022-01558-4
https://doi.org/10.1029/2005RG000172
https://doi.org/10.1029/2005RG000172


Nature Climate Change | Volume 13 | January 2023 | 67–74 74

Article https://doi.org/10.1038/s41558-022-01558-4

26.	 Zhou, D., Gozolchiani, A., Ashkenazy, Y. & Havlin, S. 
Teleconnection paths via climate network direct link detection. 
Phys. Rev. Lett. 115, 268501 (2015).

27.	 Leduc, R. & Gervais, R. Connaître la Météorologie (PUQ, 1984).
28.	 Nicholson, S. E. The ITCZ and the seasonal cycle over Equatorial 

Africa. Bull. Am. Meteorol. Soc. 99, 337–348 (2018).
29.	 Kong, W. & Chiang, J. C. H. Interaction of the westerlies with the 

Tibetan Plateau in determining the Mei-Yu Termination. J. Clim. 
33, 339–363 (2020).

30.	 Meredith, M. et al. in IPCC Special Report on the Ocean and 
Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) Ch. 3 
(IPCC, 2019).

31.	 Kim, G. et al. Assessment of MME methods for seasonal prediction 
using WMO LC-LRFMME hindcast dataset. Int. J. Climatol. 41, 
E2462–E2481 (2021).

32.	 You, Q. et al. Tibetan Plateau amplification of climate extremes 
under global warming of 1.5 ∘C, 2 ∘C and 3 ∘C. Glob. Planet. Change 
192, 103261 (2020).

33.	 Dahe, Q., Shiyin, L. & Peiji, L. Snow cover distribution, variability, 
and response to climate change in western China. J. Clim. 19, 
1820–1833 (2006).

34.	 Ditlevsen, P. D. & Johnsen, S. J. Tipping points: early warning and 
wishful thinking. Geophys. Res. Lett. 37, L19703 (2010).

35.	 Held, H. & Kleinen, T. Detection of climate system bifurcations 
by degenerate fingerprinting. Geophys. Res. Lett. https://doi.
org/10.1029/2004GL020972 (2004).

36.	 Peng, C., Havlin, S., Stanley, H. E. & Goldberger, A. L. 
Quantification of scaling exponents and crossover phenomena in 
nonstationary heartbeat time series. Chaos 5, 82–87 (1995).

37.	 Livina, V. N. & Lenton, T. M. A modified method for detecting 
incipient bifurcations in a dynamical system. Geophy. Res. Lett. 
https://doi.org/10.1029/2006GL028672 (2007).

38.	 Dakos, V. et al. Slowing down as an early warning signal  
for abrupt climate change. Proc. Natl Acad. Sci. USA 105, 
14308–14312 (2008).

39.	 Carleton, T. A. & Hsiang, S. M. Social and economic impacts of 
climate. Science 353, aad9837 (2016).

40.	 Morone, F. The k-core as a predictor of structural collapse in 
mutualistic ecosystems. Nat. Phys. 15, 95–102 (2019).

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons license and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2023

http://www.nature.com/natureclimatechange
https://doi.org/10.1029/2004GL020972
https://doi.org/10.1029/2004GL020972
https://doi.org/10.1029/2006GL028672
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Nature Climate Change

Article https://doi.org/10.1038/s41558-022-01558-4

Methods
Data
Our climate network is based on the global hourly near-surface 
(1,000 hPa) air temperature data from the ERA5 reanalysis dataset41 
produced by the European Centre for Medium-Range Weather Fore-
cast. The reason we focus on the surface temperature field is that it is 
the most commonly used for global warming-related discussions. The 
original spatial resolution of the ERA5 dataset is 0.25∘ × 0.25∘. We then 
transform the dataset to a resolution of 1∘ × 1∘ by taking one value out of 
every four original data points and select the temperature at 00:00 as 
the daily temperature value, resulting in 365 measurements for each of 
the resulting 360 × 181 = 65,160 nodes for every year (in leap years we 
exclude 29 February, thus all years have the same length). The dataset 
spans the time period from January 1979 to December 2019. To avoid 
the strong effect of seasonality, we subtract the calendar day’s mean 
from the time series of each node. The analysis of influence patterns of 
the ARA is based on a sequence of networks, each constructed from a 
time series that spans one year (the data in 2019 has been used for the 
time lag of the correlation calculation, so the networks cover 40 yr, 
from 1979 to 2018).

To test whether the optimal pathway is independent of the specific 
dataset, we also use surface air temperature reanalysis data from ERA5, 
1,000 hPa air temperature reanalysis data (2.5∘ × 2.5∘) from NCEP/NCAR 
and surface temperature reanalysis data (2.5∘ × 2.5∘) from NCEP/NCAR. 
These datasets span the time period from January 1979 to December 
2019.

We use a large set of climate models simulations from CMIP6 and 
CMIP5 to test the robustness of the teleconnection pathway. Because 
of the different model resolutions, we apply a bilinear interpolation 
method to obtain new datasets with the same resolution of 2.5∘ × 2.5∘. 
The outputs from CMIP5 were forced by representative concentra-
tion pathway 8.5 (RCP8.5), covering a period from 2006 to 2100. The 
outputs from CMIP6 were forced by SSP 5–8.5, covering a period from 
2016 to 2100. The variables of ta (air temperature) and tas (near-surface 
atmospheric temperature) are used here. The detailed information of 
these datasets can be found in Supplementary Tables 1 and 2.

Climate network construction
The nodes are divided into two subsets. One subset includes the nodes 
within the ARA (1,374 nodes) and the other the nodes outside the ARA 
(63,786 nodes). The links are constructed from the cross-correlation 
between two nodes from the different subsets. The cross-correlation 
values between the two time series of 365 d are defined by:

Cy
ij(σ) =

⟨Ti(d)Tj(d + σ)⟩ − ⟨Ti(d)⟩⟨Tj(d + σ)⟩

√⟨(Ti(d) − ⟨Ti(d)⟩)
2⟩ ×√⟨(Tj(d + σ) − ⟨Tj(d + σ)⟩)2⟩

(1)

where σ ∈ [0, σmax] is the time lag, with σmax = 200 d, y represents the 
starting year of this time series and Cy

i,j(−σ) ≡ Cy
j,i(σ). Therefore, we can 

achieve 2σmax + 1 different cross-correlation values for every two nodes 
in one year. We then identify the maximum absolute value of this 
cross-correlation function and denote the corresponding time lag of 
this value as [σ0]

y
i,j. The direction of each link is decided by the sign of 

σ0. When the time lag is positive ([σ0]
y
i,j > 0), the direction of the link is 

from i to j; when the time lag is negative, however, the direction is from 
j to i. The link weights are determined by Cy

i,j(σ0) and we can also define 
the strength of the link Wy

i,j as:

Wy
i,j =

Cy
i,j(σ0) − mean(Cy

i,j(σ))
std (Cy

i,j(σ))
(2)

where ‘mean’ and ‘std’ are the mean and s.d. of the cross-correlation 
function, respectively. We construct networks based on both Cy

i,j(σ0) 
and Wy

i,j.

The in- and out-degree of each node can be calculated by Iyj = ∑iA
y
i,j, 

Oy
j = ∑iA

y
j,i, respectively. The adjacency matrix of this network is 

Ay
i,j and it is defined as:

Ay
i,j = (1 − δi,j)H([σ0]

y
i,j) (3)

where H(x) is the Heaviside step function (H(x ≥ 0) = 1 and H(x < 0) = 0). 
Furthermore, to describe the impact of the ARA on the global, we define 
the total in-degree of the node j outside the ARA as the number of its 
in-links, the in-weights as the sum of the weights of its in-links and the 
in-link strength as the sum of the strengths of its in-links:

IN(Ny
j ) = ∑

i∈ARA
Ay
i,j, (4)

IN(Cy
j ) = ∑

i∈ARA
Ay
i,jC

y
i,j(σ0), (5)

IN(Wy
j ) = ∑

i∈ARA
Ay
i,jW

y
i,j. (6)

The spatial distributions of IN (Cy
j ) and IN (Wy

j ) show the influence pattern 
of the ARA on the globe for a regarded year. Larger (smaller) positive 
(negative) values reflect stronger (weaker) warming (cooling) due to 
the impact of the ARA. In the same way, we can define out-degree, 
out-weights and out-strength to describe the impact of the outside 
world for the nodes in ARA:

OUT(Ny
i ) = ∑

j∉ARA
Ay
j,i, (7)

OUT(Cy
i ) = ∑

j∉ARA
Ay
j,iC

y
j,i(σ0), (8)

OUT(Wy
i ) = ∑

j∉ARA
Ay
j,iW

y
j,i. (9)

Filtering nodes from the network
To extract the stable influenced region in the past 40 yr, we removed 
low-intensity nodes from the network. Since ENSO causes variation 
in the influence intensity, the links in a normal year are commonly 
weaker than those in an ENSO year. For this reason, a fixed threshold 
will remove most of the nodes in normal years. Therefore, we set an 
annually changing threshold, determined by the top 10% of signal 
intensity distribution in the current year. Besides, the nodes near the 
ARA always have a high positive link-weight, which will offer us trivial 
results after filtering. To avoid this, we focus on finding the regions 
with stable negative teleconnection to the ARA.

According to the sign of IN (Cy
j ), we divide the nodes outside the 

ARA into two subgroups: one subset includes the nodes with positive 
IN (Cy

j ), assigned as Ny
+; another subset includes the nodes with negative 

IN (Cy
j ), assigned as Ny

−. To find remarkable negatively influenced nodes, 
we set a threshold to select:

Ty
j,− = {

1, abs(IN(Cy
j )) ≥ abs(Cy

−)

0, abs(IN(Cy
j )) < abs(Cy

−)
(10)

where Cy
− is determined by the intensity of IN (Cy

j ) in the top 10% negative 
strength part in this year. T

y
j,− = 1 means that the intensity of the negative 

connection between node j and ARA is stronger than of 90% of negatively 
influenced nodes in this year. Therefore, we can count the number of 
years for the node j with top 10% negative in-weight during the past 40 yr:
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F(Cj) = ∑
y
Ty
j,−. (11)

Similarity, F(Wj) can be obtained from the negative part of IN (Wy
j ). Value 

IN (Ny
j ) is a positive number defined as the in-degree of node j, which 

cannot be divided into a positive part and a negative part. Therefore, 
F(Ny

j ) is obtained from the top 10% of the entire IN (Ny
j ). The distributions 

of F(Nj), F(Cj) and F(Wj) reflect the spatial distribution for the nodes that 
suffered persistent impact from the ARA.

Optimal path finding
We perform the shortest path method of complex networks to iden-
tify the optimal paths in our climate networks. We select 726 nodes 
from the dataset to construct cross-correlation climate networks 
and thus all nodes can approximately equally cover the globe. The 
distance between neighbouring nodes is around 830 km. The cost 
value for each link is defined as 1/|Wy

i,j| to make sure the optimal path 
will prefer to pass the link with high significance26. The Dijkstra 
algorithm42 was used to determine the directed optimal path between 
nodes i and j with the following constraints: (1) the distance for  
every step is shorter than 1,000 km and (2) link time delay σ0 ≥ 0.  
The first constraint is used to identify the significant long-distance 
connections and the second constraint ensures that all steps have 
the same directions.

Critical slowing down analysis
Our CSD analysis for the TP is based on a long-term advanced very high 
resolution radiometer snow cover extent dataset43 from the Northwest 
Institute of Eco-Environment and Resources, Chinese Academy of Sci-
ences. The dataset has a spatial resolution of 5 km and a daily temporal 
resolution. Here, we consider the data of the period from 1990 to 2020. 
To focus on changes in the snow cover of the whole TP, we use the time 
series of SCF to measure the CSD indicators. The SCF of the whole TP 
is calculated by:

rtp(t) =
nsc(t)
n0

, (12)

where n0 = 98,549 and nsc(t) are the number of grid boxes and the num-
ber of snow-covered grid boxes in the TP, respectively.

To avoid false alarms, we use the STL method to filter out long-term 
trends and achieve stationarity4,38. An STL function from Python has 
been used in this research to split rtp(t) into three parts, an overall 
trend, a repeating annual cycle and a remaining residual. The remain-
ing residual (shown in Supplementary Fig. 17) is used in our analysis.

The lag-1 autocorrelation. The AR(1) is a robust indicator for providing 
an early warning signal for impending bifurcation-induced transitions 
and has been widely used7,15. We measure our AR(1) coefficients on the 
basis of the residual component of the decomposed snow cover daily 
time series. To decrease the noise fluctuations, 30 d average is applied. 
The time series of the AR(1) coefficient is obtained by a sliding time 
window with a length of 10 yr.

Detrended fluctuation analysis. The DFA is another widely used tool 
for detecting the increase in memory caused by the CSD37, which can 
provide a useful cross-check of AR(1) (ref. 4). For a time series with 
long-range temporal correlations, its fluctuation function, F(n), can 
be characterized by a scaling exponent36

F(n) ∼ nα (13)

where n is the window length and α is the DFA scaling exponent. Here, 

F(n) = √
1
n
∑n

t=1 (Xt − Yzt )
2, where Xt = ∑t

i=1(xi − ⟨x⟩) is the cumulative sum 

of the time series and Yzt  is the fitted polynomial function, z stands 
for the polynomial order (here, we chose z = 2). F(n) is obtained by 
dividing the time series into [L/n] non-overlapping time intervals of 
length n. The DFA exponent α is calculated as the slope of the linear 
fit to the log–log graph of F(n) versus n, for 10 ≤ n ≤ 1,000. The time 
series of DFA exponent α is obtained by a sliding time window with 
length 10 yr.

We calculate the temporal trends of AR(1) coefficient and DFA 
exponent α by estimating the non-parametric Kendall rank correlation 
(τ). Kendall τ is a statistical tool to measure the association between the 
variable and time. The τ = 1 or −1 implies that the time series is always 
increasing or decreasing; τ = 0 means no overall trend. To test the 
robustness of the AR(1) and DFA analysis, we also vary the length of the 
sliding time window. The result with an alternatively 8 yr time window 
is shown in Supplementary Fig. 18 and we still see the same increase in 
AR(1) coefficient and DFA exponent.

Data availability
The ERA5 reanalysis data used here are publicly available at https://cds.
climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels. 
The NCEP/NCAR reanalysis data are publicly available at https://psl.
noaa.gov/data/gridded/data.ncep.reanalysis.html. The CMIP5 data are 
publicly available at https://esgf-node.llnl.gov/projects/cmip5/. The 
CMIP6 data are publicly available at https://esgf-node.llnl.gov/projects/
cmip6/. The snow cover extent product over China are publicly avail-
able at https://data.tpdc.ac.cn/en/data/44ddd191-4123-427d-8170-de-
435fab01f8/. All other data that support the plots within this paper and 
other findings of this study are available from the corresponding author 
upon reasonable request. Source data are provided with this paper.

Code availability
The Python codes used for the analysis is available on GitHub 
(https://github.com/fanjingfang/Tipping) and Zenodo (https://doi.
org/10.5281/zenodo.7314785)44.
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