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The impact of solvation and dissociation on the transport
parameters of liquid electrolytes: Continuum modeling and

numerical study
Wolfgang Dreyer, Clemens Guhlke, Rüdiger Müller

Abstract

Electro-thermodynamics provides a consistent framework to derive continuum models for
electrochemical systems. For the application to a specific experimental system, the general model
must be equipped with two additional ingredients: a free energy model to calculate the chemical
potentials and a kinetic model for the kinetic coefficients. Suitable free energy models for liquid
electrolytes incorporating ion-solvent interaction, finite ion sizes and solvation already exist and
have been validated against experimental measurements. In this work, we focus on the modeling
of the mobility coefficients based on Maxwell–Stefan setting and incorporate them into the general
electro-thermodynamic framework. Moreover, we discuss the impact of model parameter on
conductivity, transference numbers and salt diffusion coefficient. In particular, the focus is set on
the solvation of ions and incomplete dissociation of a non-dilute electrolyte.

1 Introduction

Continuum models are an indispensable tool to study electrochemical phenomena on the device level.
Recently, a general modeling framework was derived in the context of electro-thermodynamics for
electrochemical systems [DGM13, DGM18]. The ingredients of the models are chemical potentials,
derived from a free energy density, and kinetic parameters like mobilities for ion diffusion. A suitable
free energy model for liquid electrolytes, which is capable to handle solvent-ion interaction, finite ion
size and solvation, is developed in [DGM13, DGL14]. The model is validated against experimental
measurements of differential capacitance of single crystal surfaces and electrocapillarity curves for
aqueous electrolytes [LGD16, DGLM18]. The main scope of this paper is the modeling of the kinetic
parameters, i.e. the mobility coefficients, and an evaluation of the resulting transport properties of the
electrolyte. In particular, we study the dependence of the transport parameters on ion solvation and
dissociation reaction.

We apply Maxwell–Stefan setting for multicomponent transport diffusion laws for the derivation of the
mobility coefficients, cf. [STK79, TK93, BD15, SN68]. However, instead of the mobility coefficients, often
other transport parameters are more useful for the interpretation of measurements. In the context of
energy conversion systems, the electric conductivity of electrolytes has naturally attracted most interest.
Further relevant parameters are the transference numbers and diffusion coefficients. In contrast to
the equilibrium properties some of these mentioned transport properties depend on a combination of
chemical potentials and kinetic coefficients, while others depend solely on the kinetic coefficients.

In the literature two distinct transport theories are commonly used, one for dilute solutions and one for
concentrated solutions, see e.g. [NTA04, Mon14]. The dilute solution theory is based on Nernst–Planck
theory, whereas in the concentrated solution case Maxwell–Stefan theory is applied. However, there
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was some controversy about discrepancies between these two theories, cf. [Ram16]. As pointed out in
[BHM16] this discrepancy is only apparent and can be attributed to the use of different potentials in
the two settings. In this paper, we present one general framework to cover concentrated and strongly
diluted solutions in the same setting.

We perform a numerical assessment of the obtained continuum model. The applied electrolyte model
for liquid electrolytes contains solvated ions, i.e. complexes build from a center ion and a solvation shell
containing a certain number solvent molecules. We study the impact of the solvation on the transport
parameters. In a non-dilute solution, the neutral salt in general will dissociate only partially into anions
and cations. Therefore, we also investigate transport coefficients for electrolytic mixtures that contain
the undissociated salt as an additional constituent.

Outline. We start by summarizing a general continuum model for electrolytes in Sect. 2. Sect. 3
contains the constitutive modeling of a liquid electrolyte. We summarize a bulk free energy model and
derive a framework for the mobility coefficients. In Sect. 4, we discuss the dilute solution limit and
electroneutral bulk transport. The numerical evaluation of the model is done in Sect. 5. We start with a
numerical study for a binary electrolyte with a completely dissociated salt, where explicit expressions for
the transport parameters can be derived. Next, we extend the model to study the transport parameters
of an electrolyte with partially dissociated salt. The work closes with conclusions and outlook Sect. 6.

2 Electro-Thermodynamics

The following model is derived from a general continuum model for magnetizable, polarizable, elastic,
viscous, heat conducting, reactive mixtures [DGM18]. To simplify the model, we are only interested in
electrostatic and isothermal processes. In consequence, the magnetic field can be ignored whereas
the temperature T still appears in the equations, but only as a constant parameter.

Constituents and chemical reactions. The electrolyte is modeled as a mixture ofN+1 constituents
Aα indexed by α ∈ {0, 1, 2, · · · , N}. Each of constituent Aα is characterized by the (atomic) mass
mα and its atomic charge zαe0, where the positive constant e0 is the elementary charge and zα is the
charge number of the constituent.

There may be M ≥ 0 chemical reactions in the mixture, where the reactions may be written in the
general form

N∑
α=0

akαAα −−⇀↽−−
N∑
α=0

bkαAα for k ∈ {1, · · · ,M} . (2.1)

The constants akα, bkα are positive integers and νkα := bkα − akα denote the stoichiometric coefficients of
the reactions. Since both charge and mass are conserved in each single reaction, we have

N∑
α=0

zαν
k
α = 0 and

N∑
α=0

mαν
k
α = 0 for k ∈ {1, · · · ,M} . (2.2)

Thermodynamic state. In the isothermal electrostatic setting the electro-thermodynamic state of
the mixture, occupying a region Ω ⊂ R3 at any time t is described by the number densities nα, the
barycentric velocity υ and the electrostatic potential ϕ.
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Solvation and dissociation in liquid electrolytes 3

Multiplication of the number densities nα by mα gives the partial mass densities

ρα = mαnα . (2.3)

The total number density, the (total) mass density and the free charge density are defined by

n =
N∑
α=0

nα , ρ =
N∑
α=0

mαnα , nF = e0

N∑
α=0

zαnα . (2.4)

The partial velocities of the species Aα are denoted by υα and uα = υα − υ is the diffusion velocity
with respect to the barycentric velocity. The barycentric velocity and the diffusion fluxes of constituents
Aα are related to the partial and relative velocities by

υ = 1
ρ

N∑
α=0

ραυα , Jα = ραuα . (2.5)

These definitions imply the important constraint

N∑
α=0

Jα = 0 . (2.6)

2.1 Balance equations of mass, momentum and Poisson equation

In the electrostatic approximation of Maxwell’s equations the magnetic contributions vanish and only
the electric fieldE = −∇ϕ remains. In this case Maxwell’s equations reduce to the Poisson equation
for the electrostatic potential ϕ. Moreover the continuum model for ρα and υ relies on the balance
equations of partial masses and on the balance of momentum,

− div((1 + χ)ε0∇ϕ) = nF . (2.7a)

∂tρα + div(ραυ + Jα) =
M∑
k=1

νkαmαR
k , for α = 0, . . . , N , (2.7b)

∂tρυ + div(ρυ ⊗ υ −Σ) = ρb . (2.7c)

HereRk is the net reaction rate of the k-th chemical reaction, Σ is the total stress tensor1. The dielectric
constant is ε0 and the dielectric susceptibility is χ. The force density, ρb, due to gravitation will be
ignored.

Conservation of mass. The sum of partial mass balances implies the conservation of the total mass.
By (2.2) and (2.6) we obtain

∂tρ+ div(ρυ) = 0 . (2.8)

1The total stress tensor consists of the Cauchy and the Maxwell stress tensor. We refer to [DGM13, DGM18] for more
details.
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Conservation of electric charge. The balance equations of partial masses yields the conservation
of free electric charge

∂tn
F + div(nFυ + JF) = 0 , (2.9)

where the free electric current density JF is defined by

JF =
N∑
α=0

zαe0

mα

Jα . (2.10)

2.2 General constitutive equations

The balance equations are complemented by constitutive equations for the diffusion fluxes Jα, the
reaction rates Rk and the total stress tensor Σ. The constitutive equations are restricted by the second
law of thermodynamics and some symmetry principles [Mül85, DGM18, BD15]. In [DGM18] general
constitutive equation for a magnetizable, polarizable, elastic, viscous, heat conducting, reactive mixtures
are compatible to the second law of thermodynamics and the Galilean symmetry principle are derived.
In the isothermal and electrostatic setting these constitutive equations reduce to2

Jα = −
N∑
β=1

Mαβ

(
∇
(µβ
T
− µ0

T

)
+ 1
T

(zβe0

mβ

− z0e0

m0

)
∇ϕ
)
, for α = 1, . . . , N , (2.11a)

Σ = −p1 + (1 + χ)ε0
(
− 1

2 |∇ϕ|
21 + (∇ϕ⊗∇ϕ)

)
+ ηb div(υ)1 + ηs

(
∇υ + (∇υ)T

)
,

(2.11b)

Rk = Rk
0

(
exp

(
− βk

kBT

N∑
α=0

νkαmαµα

)
− exp

(
(1−βk)
kBT

N∑
α=0

νkαmαµα

))
. (2.11c)

Here µα are the chemical potentials3 and p is the material pressure. Both are defined in terms of a free
energy function ρψ = ρψ̃(T, ρ0, . . . , ρN) + 1

2χε0|E|2,

µα = ∂ρψ

∂ρα
, p = −ρψ̃ +

N∑
α=0

ραµα . (2.12)

For simplicity we assume that the dielectric susceptibility χ is constant. The kinetic coefficients, i.e.
mobilities Mαβ , bulk viscosity ηb, shear viscosity ηs and rate Rk

0 , are restricted by the second law of
thermodynamics such that the entropy production is non-negative,

Mαβ pos. def. , ηs > 0 , ηb + 2
3ηs > 0 , Rk

0 > 0 . (2.13)

Thus the second law of thermodynamnics restricts only the sign of the kinetic coefficients, they still may
be functions of the thermodynamic fields and their derivatives.

Our approach (2.11c) for the reaction rates is widely used in electrochemistry for surface reactions
[DGM16]. The constants βk are called symmetry factor, which fosters either the forward or backward
reaction. From a thermodynamic point of view there is no restriction on βk, usually β ∈ (0, 1) is chosen.
We will not focus on the viscosity in this paper, therefore we assume that ηb, ηs are constants.

2Note, only N diffusion fluxes are specified by constitutive relations. The flux J0 is determined by the constraint (2.6).
3The chemical potentials are defined with respect to the mass densities, therefore their physical unit is J/kg . In

electrochemistry it is common to define the chemical potentials with respect to the number densities and to use the physical
unit J/mol.
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2.3 Transference numbers and ionic conductivity

Insertion of the constitutive equations (2.11a) for the diffusion fluxes into the relation (2.10) of the
electric current density yields the representation

JF = −σ∇ϕ−
N∑
β=1

σ tβ
mβ

zβe0
∇
(
µβ − µ0

)
, (2.14)

where we the conductivity σ and the transference numbers tβ are defined by

σ =
N∑
α=1

N∑
β=1

zαe0
mα

Mαβ

T

zβe0
mβ

, tβ = 1
σ

N∑
α=1

zαe0
mα

Mαβ

T

zβe0
mβ

. (2.15)

Since the mobility matrix Mαβ is positive definite, the conductivity is non-negative, i.e. σ ≥ 0 and
the definition of the transference numbers implies

∑N
β=1 tβ = 1. The relation (2.14) can be used to

replace the electric potential by the electric current density within the diffusion fluxes (2.11a),4

Jα = −
N∑
β=1

(
Mαβ

T
− σ mα

zαe0

mβ
zβe0

tαtβ

)
∇
(
µβ − µ0

)
+ mα

zαe0
tαJ

F α = 1, . . . , N . (2.16)

In the absence of chemical potential gradients the transference number tα describes the fraction of
the current due to the diffusion flux Jα of species Aα. Recall that the diffusion fluxes Jα are definied
with respect to the barycentric velocity υ. Thus the above defined transference numbers are related
to the barycentric velocity. Other definitions of different transference numbers are possible, e.g. the
use of transference numbers t0α with respect to the solvent velocity υ0 is quite common, cf. [NTA04,
Sect. 12.3].

3 Specific constitutive modeling for liquid electrolytes

Two additional ingredients must be added to the model of the preceding Section in order to obtain a
complete model. These are: i) a free energy model and ii) a constitutive model for the kinetic coefficients.

3.1 Bulk free energy model

A suitable free energy model for liquid electrolytes in the bulk is derived and analyzed in [DGM13,
DGL14, LGD16, DGLM18]. Here we give only a brief summery of its characteristic features.

The free energy density consists of three contributions: reference energies, entropy of mixing and
elasticity

ρψ̃ = ρψref + ρψmix + ρψmech . (3.1)

We consider an ideal mixture, i.e.

ρψref(T, ρ0, . . . , ρN) =
N∑
α=0

ραψ
ref
α , (3.2a)

ρψmix(T, ρ0, . . . , ρN) = kBT

N∑
α=0

nα ln
(nα
n

)
. (3.2b)

4This representation can also formally be used if some zα = 0.
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The mechanical part of the free energy is represented by an isotropic eleastic reponse of a volume
change,

ρψmech(T, ρ0, . . . , ρN) = (pref −K)(nH − 1) +K nH ln(nH) with nH =
N∑
α=0

υref
α nα .

(3.3)

The reference energy is composed of the reference free energies ψref
α of each individual constituent of

the mixture. In general these reference values depend on temperature, but in the isothermal setting they
are assumed to be constants. The entropy of mixing accounts for the number of possible arrangements
of the constituents that give rise to the same macroscopic state. In statistical thermodynamics it is
determined by means of the Boltzmann formula. The mechanical part of the free energy density is
chosen such that from (2.12) a simple linear constitutive relation for the pressure p results, viz.

p = pref +K(nH − 1) . (3.4)

The function H is the mean specific volume of the mixture and accounts for volume changes due to a
local variation of the mixtures composition.

In the incomressible limit, i.e. K � pref , the pressure p is an independent variable of the system and
from (3.4) we obtain the constraint,

K/pref →∞ :
N∑
α=0

υref
α nα = 1 , (3.5)

where υref
α denotes the partial specific volume of the constituent Aα under the reference pressure

pref and reference temperature T ref . For more details on the limiting procedure we refer to [DGM13,
DGL14, LGD16].

From the free energy density we obtain the chemical potentials of the constituents of the mixture,

K/pref →∞ : µα = 1
mα
ψref
α + υref

α

mα
p+ kBT

mα
ln
(nα
n

)
. (3.6)

3.2 Diffusion coefficients

The second law of thermodynamics requires the matrix of the mobility coefficients Mαβ to be positive
definite, but it does not provide any dependency on partial mass densities or other thermodynamic
fields. Moreover it is not obvious how to model the mobilities with a theory on a finer scale. In the
literature, diffusion of multi-component systems is often alternatively described by constitutive equations
of Maxwell–Stefan type, cf. e.g. [SN68, TK93, NTA04, DV10, Mon14]. Relying on kinetic theory it has
been observed that the dependence on the partial mass densities is much simpler for the Maxwell–
Stefan diffusivities than for the mobilities. For this reason we consider in this section the Maxwell–Stefan
approach to derive the mobilities Mαβ .

Alternative constitutive equations. The formulation of constitutive equations is based on a specific
representation of the entropy production and the requirement of non-negative entropy production in
each diffusive mechanism, cf. [DGM18]. Based on the balance equations of the previous section and
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an appropriate choice of the entropy density function, the entropy production due to diffusion can be
represented as

0 ≤ ξdiff = −
N∑
α=0

Jα · ∇(µ
e
α

T
) (2.5)= −

N∑
α=0

ρα∇(µ
e
α

T
) · uα , (3.7)

where the electrochemical potentials are defined as

µeα = µα + zαe0
mα

ϕ . (3.8)

Next we define

Aα = ρα
(
∇µeα

T
+ Λ

)
with ρΛ =

N∑
α=0

ρα∇(µ
e
α

T
) . (3.9)

This definition implies the constraint
∑N

α=0Aα = 0 and, together with the constraint (2.6), the entropy
production due to diffusion can be rewritten as

0 ≤ ξdiff = −
N∑
α=1

Aα · (uα − u0) . (3.10)

We choose linear relations between the corresponding binary factors of the entropy production,
cf. [dGM62, BD15, DGM18]. and obtain the constitutive equations5

Aα = −
N∑
β=1

ταβ (uβ − u0) , α = 1, . . . , N . (3.11)

The entropy production is non-negative if the kinetic coefficients ταβ define a positive definite N ×N
matrix.

Relations between kinetic coefficients. Because the Fick mobility matrix with the coefficients Mαβ

is positive definite, there is in particular a unique inverse matrix that is also positive definite. We denote
the coefficients of this inverse matrix by Bαβ . Thus, we can rewrite (2.11a) as

N∑
β=1

BαβJβ = −∇ (µ
e
α

T
− µe0

T
) , α = 1, . . . , N (3.12)

Next we determine the coefficients Bαβ as function of ταβ , for this purpose we define for α, β =
1, . . . , N

τ̃αβ := ταβ , τ̃α0 := −
N∑
β=1

ταβ , τ̃0β := −
N∑
α=1

ταβ , τ̃00 :=
N∑

α,β=1

ταβ . (3.13)

The definition directly implies the constraint

N∑
β=0

τ̃αβ = 0 , (3.14)

5The form (2.11a) of the diffusive fluxes Jα was analogously obtained from the first expression for ξdiff in (3.7) by
applying the constraint (2.6) and linear relations between the binary factors.
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and we can rewrite the constitutive equation (3.11) as

Aα
(3.13)= −

N∑
β=0

τ̃αβ uβ = −
N∑
β=0

τ̃αβ
ρβ
Jβ , α = 0, . . . , N . (3.15)

Subtracting the equation for α = 0 from the remaining equations, we obtain

∇
(µeα
T
− µe0

T

) (3.9)= Aα

ρα
− A0

ρ0

= −
N∑
β=0

( τ̃αβ
ραρβ

− τ̃0β

ρ0ρβ

)
Jβ

(3.13)= −
N∑
β=1

( τ̃αβ
ραρβ

− τ̃0β

ρ0ρβ
− τ̃α0

ραρ0
+ τ̃00

ρ0ρ0

)
Jβ .

(3.16)

By comparison with (3.12) we identify

Bαβ = τ̃αβ
ραρβ

− τ̃0β

ρ0ρβ
− τ̃α0

ραρ0
+ τ̃00

ρ0ρ0
. (3.17)

Maxwell–Stefan setting. Maxwell–Stefan diffusion laws are most commonly written in the form6

ρα (∇µeα
T
−Λ) =

N∑
β=0

τ̃αβ (uα − uβ) , (3.18)

which follows from (3.15) by applying (3.9) and (3.13). The constitutive modeling now consists in
specifying how the coefficients τ̃αβ for α 6= β depend on ρα for α = 0, . . . , N . In the Maxwell–Stefan
theory, it is assumed that τ̃αβ is approximately proportional to the mass densities ρα and ρβ . We
introduce so called friction factors fαβ and the Maxwell–Stefan diffusivities Dαβ as follows,

τ̃αβ = −fαβ ραρβ = −kB
n

nαnβ
Dαβ

for α 6= β . (3.19)

In the following we assume constant Maxwell–Stefan diffusivities Dαβ . The friction factors and the
Maxwell–Stefan diffusivities are related by

fαβ = kB
n

1
mβmα

1
Dαβ

for α 6= β . (3.20)

The specific dependency on the number densities of τ̃αβ implies that τ̃αβ is symmetric, see [Tru62,
BD15]. The symmetry of the mobility matrix Mαβ and its inverse matrix Bαβ then follows by (3.17).
Starting from (3.10) and (3.11) and applying (3.13) multiple times, we obtain for the entropy production
due to diffusion, cf. [BD15],

0 < ξdiff =
N∑
α=1

N∑
β=1

ταβ (uβ − u0) · (uα − u0)

=
N∑
β=1

(uβ − u0) ·
N∑
α=0

τ̃αβ uα =
N∑
α=0

uα ·
N∑
β=0

τ̃αβ uβ

= −1
2

N∑
α=0

N∑
β=0

τ̃αβ(uα − uβ)2. (3.21)

6Considering only the quasi-equilibrium of the momentum balance (2.7c), i.e.∇p = −nF∇ϕ, implies for an isothermal

process ρΛ =
∑N
α=0 ρα∇

µeα
T = 0. Then, (3.18) coincides with the textbook literature, cf. e.g. [NTA04, eq. (12.1)].
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Positivity of ξdiff for all possible uα and uβ thus requires τ̃αβ < 0 for α, β = 0, . . . , N with α 6= β.
This, together with the symmetry of τ̃αβ , implies for the friction factors fαβ and the Maxwell–Stefan
diffusivities Dαβ

fαβ = fβα > 0 for α 6= β or equivalently Dαβ = Dβα > 0 for α 6= β . (3.22)

Mobility coefficients. Applying the definition (3.13) and the Maxwell–Stefan form (3.19) of the
coefficients τ̃αβ , we obtain for α = 1, . . . , N

Bαα = τ̃αα
ραρα

− τ̃0α

ρ0ρα
− τ̃α0

ραρ0
+ τ̃00

ρ0ρ0

= −
∑
γ 6=α

τγα
ραρα

− 2 τ0α

ρ0ρα
−
∑
γ 6=0

τ0γ

ρ0ρ0

= kB
n

(∑
γ 6=α

ργ
ρα

1
mγmαDγα

+ 2 1
m0mαD0α

+
∑
γ 6=0

ργ
ρ0

1
m0mγD0γ

)
= kB

n

(ρ0

ρα

(1 + ρα
ρ0

)2

m0mαD0α
+
∑
γ 6=0,α

ργ
ρα

1
mγmαDγα

+ ργ
ρ0

1
m0mγD0γ

)
, (3.23a)

and for α 6= β we have

Bαβ = τ̃αβ
ραρβ

− τ̃0β

ρ0ρβ
− τ̃α0

ραρ0
+ τ̃00

ρ0ρ0

= ταβ
ραρβ

− τ0β

ρ0ρβ
− τα0

ραρ0
−
∑
γ 6=0

τ0γ

ρ0ρ0

= kB
n

(
− 1
mαmβDαβ

+ 1
m0mβD0β

+ 1
mαm0Dα0

+
∑
γ 6=0

ργ
ρ0

1
m0mγD0γ

)
. (3.23b)

4 Discussion of two limiting cases

For further characterization of the continuum model and to relate it to the literature, we discuss two
limiting situations. Let us consider an incompressible mixture, where A0 denotes the uncharged solvent
of the mixture, i.e. zα = 0. Insertion of the chemical potentials (3.6) into the diffufluxes (2.11a) yields
an explicit expression for the diffusion fluxes

Jα = −kBT mα

N∑
β=1

Mαβ

Tmαmβnβ

(
∇nβ + nβ

zβe0

kBT
∇ϕ (4.1)

+ nβ
n0

[
− mβ

m0
∇n0 −

n0

n

(
1− mβ

m0

)
∇n+ n0

kBT

(
vref
β −

mβ

m0
vref

0

)
∇p
])

.

Compared to the standard Nernst–Planck model, cf. [BF00, NTA04], there are three additional terms
highlighted here in blue. The first term represents the solvent-ion interaction, the second one takes into
account the different size of the constituents and the third term represents the coupling of pressure and
diffusion fluxes.
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4.1 Dilute solution theory

In the dilute solution limit the number density of the solvent is assumed to be large compared to those
of all remaining species, i.e. nα � n0 for α = 1, . . . , N .

Mobility matrix. To study the mobility matrix Mαβ in the dilute solution limit, we first analyze the
dependency of the inverse matrix on the species densities. We infer from (3.23) that in the strong
dilution limit the diagonal elements grow proportional to number densities of the respective constituents,
whereas the non-diagonal elements stay bounded, i.e.

ρα
ρ0
Bαα →

kB
n

1
m0mαD0α

for
ρα
ρ0
→ 0 (4.2a)

ρα
ρ0
Bαβ → 0 for α 6= β (4.2b)

and conclude for the mobility matrix

Mαα → nα
n

n0

m2
αD0α

kB
for

nα
n0
→ 0 (4.3a)

Mαβ → 0 for α 6= β . (4.3b)

In the dilution limit the mobility matrix is diagonal and thus cross diffusion is negligible in this regime.

Nernst–Planck fluxes. Since n→ n0 for nα
n0
→ 0, the diagonal entries in (4.3) simplify to

Mαα → nα
m2
αD0α

kB
for

nα
n0
→ 0 . (4.4)

Insertion of the mobility matrix (4.4) into the diffusion fluxes (4.1), then directly yields the classical
Nernst–Planck fluxes

Jα = −mαD0α

(
∇nα + nα

zαe0
kBT
∇ϕ
)
. (4.5)

We conclude that under strong dilution conditions a volume exclusion mechanism is not required in an
electrolyte model. However, if the Nernst-Plack flux is inappropriately applied inside electrochemical
double layers, then the absence of such a volume exclusion mechanism allows unphysical, almost
infinite accumulation of ions, as it is well known for the classical Poisson-Nernst–Planck model, cf. e.g.
[KBA07, DGM13].

Conductivity and transference numbers. In the dilute solution limit conductivity and transference
numbers reduce to

σ =
N∑
α=1

(zαe0)2nαD0α

kBT
, tα = (zαe0)2

σ

nαD0α

kBT
. (4.6)

We conclude that in dilute solutions the transference numbers are always positive.
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4.2 Electroneutral bulk transport

Writing the Poisson equation (2.7a) in dimensionless form with ϕ = kBT
e0

ϕ̃ and nF = e0n
ref ñF yields

−λ2∆ϕ̃ = ñF with λLref =

√
(1 + χ)ε0kBT

e2
0n

ref . (4.7)

Here Lref and nref denote reference values for the size of the considered system and the electrolyte
concentration, respectively. Given typical values Lref = 1cm, nref = 1mol/L, we find that λ ≈ 10−9

is an extremely small parameter. Except for the very narrow electrochemical double layers, thus the
electrolyte can be considered as electroneutral, replacing the Poisson equation by the constraint
nF = 0.

Mechanical quasi-equilibrium. For simplicity we consider a quasi-equilibrium version of the momen-
tum balance (2.7c),

vanishing viscosity: ∇p = −nF∇ϕ . (4.8)

The term on the right hand side is the electrostatic approximation of the Lorentz force. In the electrical
double layer, where charge accumulates and electric potential drops in the order of several volts per
nm, a large pressure gradient is generated. But in the electroneutral bulk region, the pressure gradient
vanishes and we can set

p = pref in the bulk with nF = 0 . (4.9)

Bulk diffusion flux of concentrated solutions. In the bulk, the diffusion fluxes (4.1) simplify to

Jα = −kBT mα

N∑
β=1

Mαβ

Tmαmβnβ

(
∇nβ + nβ

zβe0
kBT
∇ϕ− mβ

m0

nβ
n0
∇n0 −

(
1− mβ

m0

)nβ
n
∇n
)
,

(4.10)

where the blue terms describe the non-ideality of a concentrated solution in an explicit way.

5 Transport coefficients of concentrated solutions

Bulk transport properties for concentrated solutions are well described in [NTA04, Sec. 12]. In this
section, we investigate how the transport parameters are influenced by

� solvation of ions,

� incomplete dissociation of the neutral salt.

We consider an electrolyte that is prepared by dissolving some neutral salt AE in a neutral solvent
A0, such that the salt dissociates into anions and cations. Many solvents, in particular in water, have
a molecular structure that gives rise to microscopic dipoles. These dipoles cause a microscopic
electrostatic interaction between solvent and charged ions. This interaction leads to clustering of solvent
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Figure 1: Partial dissociation of a salt with υref
E = 2υref

0 and υref
± = (κ+ 1)υref

0 . Dissociation degree
for different values of the dissociation energy ∆g and no solvation of ions, i.e. κ = 0 (left) and solvated
ions with κ− = κ+ = κ = 4 (middle). Right: dissociation degree for fixed ∆g = 3kBT and varying κ.

molecules around a center ion, which is known as solvation. The solvation has a profound impact on the
mixing entropy within the electrolyte model [DGL14]. Solvent molecules that are bounded by an ion do
not participate in the entropic interaction with the other constituents of the electrolytic mixture. Therefore
we choose as the constituents of the mixture the solvated ions consisting of the center ion and its
solvation shell and refer to the solvated anions and cations as A− and A+, respectively. Moreover,
bounded solvent molecules move with the velocity of the center ion and contribute mass to the ionic
constituent. Both effects have an impact on the barycentric velocity.

The dissociation reaction is accompanied by a solvation reaction and we write the net reaction as

AE + (ν−κ− + ν+κ+)A0 −−⇀↽−− ν−A− + ν+A+ , (5.1)

where κ− and κ+ are the numbers of solvent molecules in the solvation shell of A− and A+, respec-
tively. The total amount of salt molecules within the electrolyte is given by the salt concentration,

c = nE + 1
2
(n+

ν+
+ n−
ν−

)
. (5.2)

We assume fast dissociation and study the limit R0 →∞, such that the reaction is in local equilibrium.
From the constitutive equation (2.11c) we get

mEµE + (ν−κ− + ν+κ+)m0µ0 = ν−m−µ− + ν+m+µ+ . (5.3)

The chemical potentials are given by (3.6). The amount of dissociated salt is controlled by the dissocia-
tion energy

∆g =
∑

α∈{0,+,−,E}

να(ψref
α + vref

α pref ) . (5.4)

Equation (5.3) implies for ∆g → −∞ the salt is completely dissociated, see Fig. 1.

We ignore the viscosity, i.e. ηb = 0 and ηs = 0, such that the momentum balance reduce to (4.8).
Since we are only interested in ion transport within the bulk away from charged boundaries, we assume
that the electrolyte is locally electroneutral,

z−n− + z+n+ = 0 . (5.5)

Electroneutrality of the reaction (5.1) implies

z−ν− + z+ν+ = 0 and with (5.5)
n−
ν−

= n+

ν+
. (5.6)

According to Sect. 4.2, the pressure is constant in the bulk and is determined by the outer pressure
such that p = pref .
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5.1 Electrolyte with completely dissociated salt

Assuming complete dissociation, we consider the electrolyte consisting of A0 and the solvated ions A+
and A−, but there is no remaining undissociated neutral salt AE . We define the salt mass fraction as

ω∞ = 1
ρ

(
ρ− + ρ+

)
. (5.7)

The constraints of local electroneutrality (5.5) and incompressiblity (3.5) allow to express the partial
mass densities ρα and the chemical potentials as functions of the salt mass fraction ω∞,

ρα = ρ̂α(ω∞) , µα = µ̂α(ω∞) , for α ∈ {+,−, 0} . (5.8)

From the balance equations of mass (2.7b) together with the diffusion fluxes (2.16) we obtain a balance
equation for the salt mass fraction

ρ
(
∂tω∞ + υ · ∇ω∞

)
= div

(
ρD∇ω∞

)
− ν−m−+ν+m+

ν+z+e0
JF · ∇t+ , (5.9)

where the salt diffusion coefficient is defined by

D = 1
ρ

∑
α,β∈{+,−}

(Mαβ

T
− σ mα

zαe0

mβ
zβe0

tαtβ
)d(µβ−µ0)

dω∞
. (5.10)

The introduction of the salt mass fraction has the advantage that for an electrolytic solution, where i)
the total mass density is almost constant, ii) the barycentric velocity vanishes and iii) no electric current
flows, the equation (5.9) reduces to a simple diffusion equation for the salt concentration,

∂tc = div(D∇c) . (5.11)

In experimental studies this diffusion equation is used to determine the salt diffusion coefficient D.

Motivated by (5.3), we define the chemical potential of the neutral salt as

mEµE = ν−m−µ− + ν+m+µ+ − (ν−κ− + ν+κ+)m0µ0 . (5.12)

From the structure of the chemical potential (3.6), the Gibbs–Duhem relation (2.12)right and the vanishing
pressure gradient∇p = 0, we obtain relations between the chemical potentials

dm±µ±
dω∞

= n0
(ν++ν−)n0+(ν+κ++ν−κ−)(n++n−)

dmEµE
dω∞

, (5.13a)

dm0µ0

dω∞
= − (n++n−)

(ν++ν−)n0+(ν−κ++ν+κ−)(n++n−)
dmEµE
dω∞

. (5.13b)

A direct calculation then yields for the salt diffusion coefficient

D =(z+ − z−)F ρ2z+e
2
0

m2
−m

2
+ρ

2
0n−

kB det(M)
Tσ

, with (5.14)

F = ρ2
0(ρ+ + ρ−)
ρ3m−m0

(m+ +m−)z−ρ0 +m−(z−m+ − z+m−)(n+ + n−)
(ν+ + ν−)n0 + (ν+κ+ + ν−κ−)(n+ + n−)

1
kBT

dmEµE
dω∞

.

Here the so-called thermodynamic factor F is introduced, which is independent of the Maxwell–Stefan
diffusivities. Finally, we use the representations (3.23) for the inverse of the mobility matrix to obtain
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explicit representations for the transference number, conductivity and salt diffusion coefficient in terms
of the Maxwell–Stefan diffusivities,

t+ = ρ0

ρ

z+D0+

z+D0+ − z−D0−
+ ρ−

ρ
, (5.15a)

D = n

n0
F
(D0+D0−(z+ − z−)
z+D0+ − z−D0−

)
, (5.15b)

1
σ

= kBT

−z−z+e2
0

1
n

( 1
D+−

+ n0

n−

z+

z+D0+ − z−D0−

)
. (5.15c)

The conductivity σ, transference number t+ are expectable in full agreement with [NTA04, Sect. 12]
because they do not directly depend on the free energy model, i.e. on the chemical potentials. Also
the dependence of D on the Maxwell–Stefan diffusivities in (5.15b) agrees with [NTA04, Sect. 12], but
the coincidence of the thermodynamic factor is not obvious and depends on the considered potentials.
We observe in (5.15) that at any salt concentration the three Maxwell–Stefan diffusivities D0+, D0−
and D+− can be uniquely determined from the three transport parameters t+ , D and σ, but only the
conductivity depends on the coefficient D+−. In the dilute solution limit this dependence of σ on the
ion-ion interaction vanishes.

To study the transport parameters (5.15), we introduce a mean value D̄ of the Maxwell–Stefan diffusion
coefficients and the molar conductivity Λ as

D̄ := z+D0+ − z−D0−

z+ − z−
Λ := e2

0
kBT

∑
α=+,−

z2
αναD0α . (5.16)

Then the salt diffusion coefficient and the conductivity are normalized with respect to D̄ and Λ,
respectively. Thus, the normalized quantities depend only on the fractions D+−/D̄ and D0±/D̄. We
use the material parameters defined in Tab. 1 to describe a monovalent binary electrolyte. We assume
that cations and anions are solvated by the same number κ of solvent molecules.

Table 1: Material parameters used in the numerical examples.

z+ = 1 z− = −1 ν± = 1
υref

0 = 0.0182 L
mol υref

− = (κ+ 1) vref
0 υref

+ = (κ+ 1) vref
0

υref
E = 2υref

0 m− = (κ+ 1)m0 m+ = (κ+ 1)m0

Electrolytes without ion solvation. To describe electrolytes consisting only of free solvent molecules
and unsolvated ions, we set in (5.1) κ− = κ+ = 0. Keeping D̄ and Λ fixed, we observe in Fig. 2 that
the conductivity σ is – as expected from (5.15c) with fixed D̄ – independent of the ratio D0+ and D0−
and monotone increasing with the salt concentration c. For low salt concentrations σ is already fully
determined by Λ, while for higher salt concentrations the influence of D+− increases, leading to a less
than linear growth of σ with respect to c, if D+− < D̄, see Fig. 3.

Increasing the ratio D0+/D0− leads to a larger fraction of the current being carried by the cations.
Thus the transference number changes proportional to D0+/D0−. We observe only a small impact of
the salt concentration on the transference numbers.7 For increasing c, the transference numbers tend
to limit value 1/2.

7 The transference number t0+ with respect to the solvent velocity is independent of the salt concentration and is given by
the values of t+ for c = 0.
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Figure 2: Transport parameters for different ratios of D0−/D0+ and fixed D̄. Conductivity σ (left),
cation transference number t+ (middle), and salt diffusion coefficient (right) with respect to the salt
concentration c. The remaining parameters are κ = 0 and D+− = D̄/10.

Figure 3: Impact of D+− on the conductivity σ for κ = 0.

For the given choice of parameters the diffusion coefficient D shows almost no dependence on the salt
concentration. A variation of D0+/D0− leads to a shift of D, whereby the largest value is obtained for
equal diffusivities D0+ = D0−.

Keeping D0+ and D0− fixed and varying D+−, the resulting curves of t+ and D are unchanged as in
Fig. 2 only the conductivity depends on D+− as shown in Fig. 3, as expected from (5.15).

Impact of solvation number κ. Ion solvation leads to an increase of the specific volume and molar
mass of the ionic species, compared to the unsolvated ions. As a simple approximation we assume
that κ+ = κ− = κ and the mass and the specific volume of the solvated ions are given by

mα = (zακ+ 1)m0 , υref
α = (zακ+ 1)υref

0 (5.17)

for α ∈ {+,−}. In a mixture where the constituents are solvated ions, the total number density n
is lower than in the corresponding cases, where the ionic species are represented by center ions
without the solvation shell. Therefore, increasing the solvation number κ decreases the total number
density n. According to (5.15) we have to expect an influence of the solvation number κ on all transport
parameters.8

Nevertheless, the salt diffusion coefficient is almost constant D ≈ D̄ as before and almost unaffected
by the solvation number. However, the conductivity depends strongly on the solvation number for high
salt concentrations, see Fig. 4left. Larger values of κ lowers the conductivity. In particular, for κ > 2,
the conductivity becomes non-monotone with respect to c, leading to the well-known parabolic shape
of σ for aqueous electrolytes [Wed04]. A reduction of the ion-ion diffusion coefficient D+− leads to a
further decrease of the conductivity and the maximum is attained at lower salt concentration, shown in

8See footnote 7.
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Figure 4: Impact solvation solvation number κ on the conductivity σ (left) and transference number
t+ (middle) for fixed D+− = D̄/10. Conductivity for fixed κ = 4 and variation of D+− (right). The
remaining parameter is D0− = D0+/10.

Fig. 4right. For unequal ion-solvent diffusion coefficients the transference numbers are almost linear and
for larger solvation numbers t+ increases its slope, see Fig. 4middle.

5.2 Electrolyte with incomplete dissociated salt

To describe incomplete dissociation, we consider a mixture of four constituents: the solvent A0, the pos-
sibly solvated ions A+ and A− and the neutral salt AE . Thus, in addition to the three diffusivities D0+,
D0− and D+−, three further diffusivities occur, denoted by DE+, DE− and DE0. Nevertheless, in the
fast dissociation regime the imposed constraints of local electroneutrality (5.5) and of incompressiblity
(3.5) still allow a characterization of the electrolyte by the three transport parameter conductivity σ and
transference number t+ according to (2.15) and a salt diffusion coefficient D defined below in (5.22).

Similar to the case of complete dissociation, we define the salt mass fraction as

ωe = 1
ρ

(
ρ− + ρ+ + ν−m−+ν+m+

mE
ρE
)
. (5.18)

Again, the local electroneutrality (5.5), the incompressiblity constraint (3.5), and in addition now the fast
reaction assumption (5.3) allow to express all number densities ρα and chemical potentials as functions
of the salt mass fraction ωe. Moreover, from the mass balance equations (2.7b) we obtain a balance
equation for the salt mass fraction ωe,

ρ
(
∂tωe + υ · ∇ωe

)
+ div

( ∑
α∈{+,−},E

δαJα
)

= 0 , (5.19)

where δα is defined as

δα =
{

1 for α ∈ {+,−}
ν−m−+ν+m+

mE
for α = E

. (5.20)

Inserting the diffusion fluxes (2.16) yields

ρ
(
∂tωe + υ · ∇ωe

)
= div

(
ρD∇ωe

)
−
( ∑
α∈{+,−,E}

δαmα
zαe0
∇tα

)
JF , (5.21)

where the salt diffusion coefficient D is defined as

D = 1
ρ

∑
α,β∈{+,−,E}

δα
(Mαβ

T
− σ mα

zαe0

mβ
zβe0

tαtβ
)d(µβ−µ0)

dωe
. (5.22)
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Figure 5: Impact of dissociation energy ∆g on the conductivity for an electrolyte without solvation
(κ = 0), D0± = DE± = D̄ and D+− = DE0 = D̄/10.

As before the balance equation (5.21) reduces to the simple diffusion equation (5.11) for the salt
concentration, given that the mass density ρ is almost constant, the barycentric velocity vanishes and
no electric current flows.

With the definition (2.15) in terms of the mobility matrix Mαβ in mind, it might seem at first glance, that
σ and t+ are the same for complete and incomplete dissociation. Similarly, it might seem that (5.22) just
adds some terms to (5.10). However, due to the rather complex relation between the Maxwell–Stefan
coefficients and the mobility matrix according to (3.17) and (3.13), the newly introduced coefficients
DE+, DE− and DE0 also contribute to the mobilities Mαβ for α, β ∈ {+,−}. Therefore, the explicit
representations (5.15) are not valid in the context of incomplete dissociation and the derivation of such
explicit relations for incomplete dissociation does not appear promising. In the following parameter
study we thus take the Maxwell–Stefan diffusivities to compute Bαβ according to (3.17) and (3.19) and
then determine the mobility matrix Mαβ by numerical inversion of the matrix with coefficients Bαβ .

Impact of dissociation energy ∆g. The dissociation energy ∆g controls at given salt concentration
c the amount of ions in the solution, i.e. the dissociation degree n+/c, cf. Fig. 1. Larger values of
the dissociation energy thus decrease the conductivity of the electrolyte, see Fig. 5 for electrolytes
without solvation. In contrast to complete dissociation, the salt diffusion coefficient D can now change
significantly over the range of salt concentrations, depending on the diffusivity coefficients DE+,DE−
and DE0, as studied below in more detail. Deviations from the complete dissociation case with a
constant value of D get stronger as ∆g increases. Similarly, the diffusivity coefficients DE+,DE−
and DE0 also have influence on the transference number of an incompletely dissociated electrolyte at
higher salt concentrations, as studied below.

In the following we keep the dissociation energy fixed at ∆g = 3kBT .

Impact of the salt-solvent and salt-ion diffusion coefficients. The salt-ion diffusivities have a
strong impact on all three transport parameters, see Fig. 6 and 7. In particular, they can change the
qualitative behavior of the conductivity curves. If both salt-ion diffusivities are small,DE+ = DE− < D̄,
the conductivity is lower than for complete dissociation and can even become non-monotone function
of the salt concentration.

In contrast to the complete dissociation, the transfer number t+ does in general not approach 1/2 for
high salt concentrations. Even more, ifD0+ = D0− then t+ deviates from 1/2 if the salt-ion diffusivities
DE+ and DE− differ from each other, see Fig. 7.

The salt-ion diffusivities also influence the salt diffusion coefficient, where the reduction of D is more
pronounced DE+,DE− < D̄ than the increase of D for DE+,DE− > D̄, see Fig. 6. The salt-solvent
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Figure 6: Impact of DE± on the transport parameters when DE+ = DE−. Plots for conductivity (left),
transference number (middle) and salt diffusion coefficient (right). The remaining parameters are κ = 0,
∆g = 3kBT , D0± = D̄ and DE0 = D+− = D̄/10.

Figure 7: Impact of DE± on the transport parameters when DE+DE− = D̄2. Plots for conductivity
(left), transference number (middle) and salt diffusion coefficient (right). The remaining parameters are
κ = 0, ∆g = 3kBT , D0± = D̄ and DE0 = D+− = D̄/10.

diffusivityDE0 expectable only influences the salt diffusion coefficient, as illustrated in Fig. 8 for varying
salt concentration. We observe that D can be monotone increasing if DE0 comparable or larger than
D̄. Conductivity and transference number are not significantly affected by variation of DE0.

Figure 8: Impact of DE0 on the salt diffusion coefficient D. The remaining parameters are κ = 0,
∆g = 3kBT and D0− = D0+/10, DE± = D̄ and D+− = D̄/10.

Impact of solvation number κ. We choose small values for the salt-ion and salt-solvent diffusivities,
i.e. DE± = DE0 = D̄/10 and study in Fig. 9 the variation of the transport parameters in dependence
of the solvation number κ. Increasing the solvation number amplifies the influence of DE± and DE0
and thus decreases the conductivity and the salt diffusion coefficient. Most notably, all conductivity
curves are monotone, in contrast to Fig. 4 for complete dissociation.

Taking a fixed value κ = 4 for the solvation number, we study the impact of the salt-ion and salt-solvent
diffusivities Comparison of Fig. 7left and Fig. 10left shows that ion solvation reduces the conductivity
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Figure 9: Impact of the solvation number κ on conductivity (left), transference number (middle) and
salt diffusion coefficient (right) for D0− = D0+/10 and D+− = DE± = DE0 = D̄/10. Dissociation
energy is ∆g = 3kBT .

Figure 10: Impact of salt-ion and salt-solvent diffusivities for fixed solvation number κ = 4. Left:
dependence of the conductivity on variation of DE+ with the remaining parameters as in Fig. 6. Right:
salt diffusion coefficient when varying DE0 and the remaining parameters as in Fig. 8.

σ and non-monotonicity can already be observed for larger values of DE+. Compared to Fig. 8, the
ion solvation decreases the salt diffusion coefficient at higher salt concentrations see Fig. 10right. As
a consequence, all curves of D are monotone decreasing for larger salt concentrations and we only
observe an initial increasing behavior of the salt diffusion coefficient in the non-monotone curve for
DE0 = 2D̄.

6 Discussion and conclusion

The transport parameters of electrolytes combine in a rather complex way different effects which are
related to the free energy and to the kinetic coefficients. These two ingredients are modeled with
theories of different origin and thus one has to take care that the transport parameters combined them
in a consistent way.

Thermodynamic consistency. At several places in the literature, the thermodynamic consistency
of the concentrated solution transport theory is discussed. A particular issue in the context of thermo-
dynamic consistency is the admissibility of negative transference numbers. Based on experimental
measurements, negative cation transference numbers t+ have been reported for several polymer
electrolytes [MDF+95, DES+00], but also for liquid electrolytes containing some zinc-halides [SL46].

To guarantee a non-negative entropy production the authors of [MDF+95] impose on the Maxwell–
Stefan diffusivities Dij for electrolytes with a complete dissociated salt the constraints (written in the
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notation of the current paper)

[MDF+95, p. 1866]:
nα
Dαγ

+ nβ
Dαβ

≥ 0 , nγ
nαDγβ + nβDαγ

+ 1
Dαβ

≥ 0 , (6.1)

and conclude [MDF+95, p. 1866]: ”these two conditions place no limit on the sign or magnitude of the
transference number”. In [MD13], the condition required for thermodynamic consistency is formulated
in our notation as

[MD13, p. 650] τ̃αβ is symmetric and positive semi-definite, (6.2)

where the definition of τ̃αβ is identical to (3.19). The authors conclude [MD13, p. 650]: "Be aware that
... this does not in principle restrict all the Maxwell–Stefan coefficients to be positive" and moreover
[MD13, p. 655]: ”the transference number t0− (or t0+ ) can take any real value”.

However, as stated before in [BD15], (3.21) imposes on the coefficients τ̃αβ in addition to (6.2) also the
condition

τ̃αβ ≤ 0 implying Dαβ ≥ 0 for α 6= β . (6.3)

in order to guarantee a non-negative entropy production. In the case of an binary electrolyte with
completely dissociated salt this also implies non-negativity of t+, according to (5.15a). For dilute
solutions we have due to (4.6), cf. [NTA04, Sect. 11],

(dilute solution limit) tα = (zαe0)2

σ

nαD0α

kBT
≥ 0 for α = 0, . . . , N , (6.4)

This is in full agreement with the reported experimental results of [MDF+95, DES+00, SL46] mentioned
above, since for low salt concentrations the transference numbers are positive and only become
negative for high salt concentration.

The occurrence of negative t+ necessarily requires the application of more complex models for mixtures
consisting of more than three constituents. For electrolyte mixtures containing a partially dissociated
salt, we were not able to adjust the parameters in a way that a negative transference number would
result. This does not guarantee the non-negativity of t+ in general, although we see no reason to
expect t+ < 0 in this setting if Dαβ ≥ 0 for α 6= β. If more complex mixtures containing more
than two charged species are considered, negative transference number might appear at finite salt
concentrations.

Transport parameters. The transport in an electrolyte resulting from dissociation of a single neutral
salt into anions and cations in a neutral solvent is controlled by the three transport parameters
conductivity σ, transference number t+ and salt diffusion coefficient D. This holds independent
of whether the salt dissociation is complete or incomplete. Maxwell–Stefan theory for a mixture of
four constituents provides six independent diffusivity coefficients to determine these three transport
parameters in dependence of the salt concentration. In the case of complete dissociation, only three
constituents and three independent diffusivity coefficients remain and they already uniquely determine
the transport parameters over the full range of salt concentrations.

From the numerical study we draw the following conclusions:

� The conductivity strongly depends on the number of available ions in the electrolyte and the mean
value D̄ of the ion-solvent diffusivities, but not on the ratio D0+/D0−. Therefore, we observe a
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monotone growth of the conductivity with respect to the salt concentration in a large parameter
range. There are two exceptions: (i) in the case of complete dissociation, solvation causes for
increasing salt concentration a strong decrease of the solvent number density, such that the
impact of the ion-ion diffusivity D+− becomes dominant. If D+− � D̄, then the conductivity
becomes non-monotone with respect to salt concentration. (ii) for incomplete dissociation, low
salt-ion diffusivities DE± � D̄ reduces the ion mobility and thereby can cause non-monotone
conductivity with respect to the salt concentration.

In case of non-monotone conductivity, the maximum of the conductivity is attained at lower salt
concentrations when increasing the solvation number or decreasing the salt-ion diffusivities.

� The transference number t+ at low salt concentrations is determined by the ratio D0+/D0−.
For complete dissociation t+ tends to 1/2 for large salt concentrations. whereas for incomplete
dissociation, a transition to a different value can be observed, if the ratio DE+/DE− is suffi-
ciently different fromD0+/D0−. Generally, ion solvation fosters these transition processes, most
pronounced in the case of complete dissociation.

� For complete dissociation, the salt diffusion coefficient D depends only on D0+ and D0− and
is almost independent of the salt concentration. Thus, the thermodynamic factor is F ≈ n0/n,
independent of the salt concentration. Remarkably, this also holds for solvated ions with large
solvation number where the considered salt concentration reaches close to the saturation limit.
When the dissociation is incomplete, D is also influenced by DE± and DE0, and this influence
gets stronger, the more salt remains undissociated. Thus, when DE± and DE0 are sufficiently
different from D̄, the salt diffusion coefficient varies considerably with the salt concentration,
often in a monotone way.

For solvated ions, a non-monotone salt diffusion coefficient can be observed if the salt-solvent
diffusion coefficient DE0 > D̄ ≈ DE±.

Extensions of the continuum model. In order to limit the complexity of the model, we considered in
this work only an isotherm electrostatic setting. However, the continuum model applied here is derived
within a much more general framework of coupled bulk-surface electro-thermdoynamics [DGM18].
Therefore, an extended model containing the energy balance and the full set of Maxwell’s equation
can be thermodynamic consistently derived from the same framework. Moreover, the framework allows
the continuum model applied here to be easily adapted to different electrolytes like solid and polymer
electrolytes. Such an adaption only requires the derivation of suitable free energy models for solid or
polymer electrolytes to replace the free energy model for liquid electrolytes defined in Sect. 3.1. Then,
the impact on mechanical stresses within the crystal lattice in solids or the length of the polymer chains
on the transport parameters can be studied.
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