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Abstra
tFor a quantitative theoreti
al des
ription of phase separation and 
oarsening reliable dataof sti�ness 
onstants and the so 
alled Higher Gradient Coe�
ients (HGCs) are required. Forthat reason pair potentials of the Lennard-Jones type were used in [1℄ to provide a theoreti
altool for their quantitative determination. Following up on this work these quantities are now
al
ulated by means of the Embedded-Atom Method (EAM), a re
ently developed approa
hto des
ribe interatomi
 potentials in metals. This is done, �rst, to a
hieve a better agreementbetween predi
ted and experimentally observed sti�ness data as well as to avoid artifa
ts,su
h as the Cau
hy paradox, and, se
ond, to in
rease the trustworthiness of the HGCs forwhi
h experimental data are rarely available. After an introdu
tion to the fundamentalsof EAM it is outlined how it 
an be used for 
al
ulating sti�ness 
onstants and HGCs. Inparti
ular, Johnson's modi�
ation of EAM for nearest neighbor intera
tions [3℄ is appliedto present expli
it numeri
al results for a 
ase study alloy, Ag-Cu, whi
h has a �simplefa
e-
entered-
ubi
 
rystal stru
ture and where it is 
omparatively easy to obtain all the requiredanalysis data from the literature and to experimentally 
ompare the predi
tions of me
hani
aldata.1 Introdu
tionThe theoreti
al des
ription of phase separation as a 
onsequen
e of spinodal de
omposition ornu
leation and subsequent 
oarsening (Ostwald ripening) is a widely spread and ongoing resear
harea. Originally this form of solid-solid phase transformation was e�e
tively des
ribed in theseminal papers of Cahn and Hilliard [6℄ and Cahn [7℄. They used so 
alled phase �eld theoriesand derived a di�usion equation that, for the �rst time, allowed a qualitative des
ription of phaseseparation phenomena (�uphill� di�usion). Sin
e then phase �eld theories were the obje
ts ofnumerous resear
h groups and investigated from di�erent points of view (e.g., [8℄, [9℄ or [10℄).In [2℄ Dreyer and Müller presented an approa
h for the theoreti
al des
ription of phase separationin binary alloys triggered by spinodal de
omposition and followed by 
oarsening. It is based on theevaluation of the dissipation inequality by methods of Rational Thermodynami
s. As a result oftheir 
onsiderations an extended di�usion equation was formulated representing a generalizationof the well-known Cahn-Hilliard equation [11℄. It reads:
ρ0
∂c

∂t
+
∂Ji
∂Xi

= 0 (mass balance). (1)Here c = c̃(Xi, t) represents the mass 
on
entration in the material as a fun
tion of referen
eposition Xi and time t. Furthermore ρ0 is the mass density of the alloy in its (liquid) referen
estate. The (extended) di�usion �ux Ji 
ombines the in�uen
es of 
on
entration gradients, surfa
e
1



tensions, and me
hani
al strains and 
an be written as follows (
f., Appendix A):
Ji = − ρ0Mij

∂

∂Xj

(

∂ψ0

∂c
− 2Akl

∂2c

∂Xk∂Xl
− ∂Akl

∂c

∂c

∂Xk

∂c

∂Xl

− 2
∂Akl
∂εmn

∂c

∂Xk

∂εmn
∂Xl

− ∂2akl
∂εop∂εmn

∂εop
∂Xk

∂εmn
∂Xl

− ∂akl
∂εmn

∂2εmn
∂Xk∂Xl

)

. (2)The symbolMij denotes the mobility matrix and 
an be linked to di�usion 
oe�
ients 
ommonlyused in Fi
k's �rst law, ψ0 = ψ̃0(c, T, εkl) stands for the Gibbs free energy of an equivalenthomogeneous system with mass 
on
entration c, and akl = ãkl(c, T, εkl), bkl = b̃kl(c, T, εkl), and
Akl = ∂akl

∂c + bkl being the so-
alled Higher Gradient Coe�
ients (HGCs) taking 
on
entrationgradients into a

ount.For a quantitative assessment of the di�usion pro
ess realisti
 material data are required, i.e.,in parti
ular the material parameters of the binary mixture ρ0, Mij, ψ0, Akl, akl, bkl and Cklmnmust be spe
i�ed. Note that, for a pres
ribed external load, the sti�ness 
onstants Cklmn are, inthe simplest 
ase, 
ombined with the strains εkl a

ording to Hooke's law.In the present paper we 
onsider a binary alloy A-B
PSfrag repla
ements
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Figure 1: Spinodal de
omposition in eu-te
ti
 Ag-Cu after various heat treatmentsat 1000 K; a) 0h, b) 5h, 
) 20h and d) 40h;dark: Cu-ri
h (β), light: Ag-ri
h (α), s
ale:1:1000

below its 
riti
al temperature (melting point). Usu-ally su
h systems 
onsist of two or more phases, whi
hdi�er in their 
omposition, i.e., in the 
on
entrationsof the 
omponents cA or cB = (1 − cA), respe
tively.For instan
e in pure solid mixtures below the eute
-ti
 temperature one 
an observe two di�erent phases,the α-phase (A-ri
h) with the equilibrium 
on
entra-tion cα and the β-phase (B-ri
h) with cβ , 
f., Figure 1.Furthermore phase �eld theories are 
hara
terized by�smoothïnterfa
es between the α- and β-phases (in 
on-tradi
tion to sharp interfa
es), i.e., a phase boundaryallowing for a 
ontinuous 
hange between the equilib-rium 
on
entrations cα and cβ . Therefore it is reason-able to 
on
entrate on the material data of, �rst, the
α-phase, se
ond, the β-phase and, third, of the phaseboundary.The aim of this paper is providing a theoreti
al ap-proa
h for the determination of the sti�ness Cklmn andthe higher gradient 
oe�
ients akl, bkl and Akl of thedi�erent phases in binary alloys below Teut. This isparti
ularly useful in the 
ase of the HGCs sin
e there is a 
onsiderable la
k of data in literature.The approa
h is based on the evaluation of interatomi
 potentials and allows for a quantitative
al
ulation of these material data in order to perform 
omputer simulations based on the equa-tions (1-2). With respe
t to the material data within the phase boundary a linear interpolationas follows:

Ξ(c) = Θ(c)Ξα +
(
1 − Θ(c)

)
Ξβ , Θ(c) =

cβ − c

cβ − cα
(shape function) , (3)between the material data Ξα = {Cαklmn, Aαkl, aαkl} and Ξβ = {Cβklmn, A

β
kl, a

β
kl} of the equilibriumphases 
an be performed. Consequently it only remains to spe
ify Ξα/β . However, this linear2



approa
h represents only a �rst approximation, and it is more desirable to �nd the generaldependen
e Ξ = Ξ̃(c). Then the interpolation of Eq (3) be
omes redundant.Atomisti
 arguments for the 
al
ulation of sti�ness 
oe�
ients as well as higher gradient 
oef-�
ients of Ag-Cu have already been presented by Dreyer and Müller in [1℄. However, problemsarose already during the predi
tion of the sti�ness 
onstants of the pure substan
es, CAg
klmn and

CCu
klmn, respe
tively. Due to the use of pair potentials (Lennard-Jones potentials) the Cau
hyparadox (C1122 = C2323) 
ould a priori not be avoided and, 
onsequently, the deviation fromexperimental data was 
onsiderable. Moreover, for alloys showing a higher degree of anisotropythan 
ubi
 
rystal stru
ture (e.g., Sn-Pb, BCT-stru
ture) negative shear moduli were obtained,[1℄.Consequently the predi
ted HGCs seemed also questionable and alternative atomisti
 methodsshould be used that avoid the aforementioned short
omings. The Embedded-Atom Method(EAM) is su
h a te
hnique. It is a powerful, semi-empiri
al approa
h that allows to 
apture thestate of energy of an atomi
 system reasonably well. It was developed in the eighties by Daw andBaskes, [12℄ and [13℄, and 
onsiderably improves the quality of data when predi
ting physi
alproperties of alloys, espe
ially for those of the FCC type.In the following se
tion we want to give a brief introdu
tion to the general idea of EAM and tothe underlying assumptions. After that we 
on
entrate on the analyti
 EAM-model proposed byJohnson, [3℄, whi
h holds for nearest neighbor intera
tions. It is shown how the expression forthe energy 
an be evaluated for binary alloys to obtain atomisti
 relations for the sti�ness andthe higher gradient 
oe�
ients. In the last part of the paper we 
onsider the brazing binary alloyAg-Cu, whi
h has a simple FCC-stru
ture. In parti
ular, we illustrate the �tting pro
edure andpresent results with respe
t to the elasti
 
onstants and HGCs. Finally we 
onstru
t the solidpart of the phase diagram in order to emphasize the trustworthiness of the predi
ted values.2 Introdu
tion to EAM2.1 Basi
 
on
epts of EAMThe prin
iple of EAM is illustrated in Figure 2. If e�e
ts of latti
e dynami
s are ignored theenergy of a solid is ex
lusively given by stati
 atomi
 intera
tions. Unlike during the use ofpair-potentials1 the mathemati
al key to EAM 
onsists of introdu
ing a nonlinear fun
tion Fα =

F̃α(ρ̄α) in the energy expression for atom α, in addition to the pairwise-intera
tion term:
Eα =

1

2

∑

β

(β 6=α)

φαβ(rαβ) + Fα(ρ̄α) where ρ̄α =
∑

β

(β 6=α)

ρβ(r
αβ). (4)

Fα is known as the embedding fun
tion and ρ̄α is the (
onstant) ele
tron density at the position
rαi of atom α due to all neighbors β. The �rst term in (4)1 refers to intera
tions between the nu
leiand the se
ond to atom-ele
tron intera
tions. This type of separation was proposed by Daw andBaskes and 
an be justi�ed by quantum-me
hani
al arguments [12, 13℄. The 
ontribution to theele
tron density by the neighbor β, ρβ , is a fun
tion of the s
alar distan
e rαβ between atom α1Here the energy Eα of an parti
le (atom) α is given by Eα = 1

2

P

β(α6=β) ϕαβ(rαβ), where ϕαβ denotes thepairwise intera
tion potential between the atoms α and β and depends only upon the radial distan
e rαβ between
α and β. 3



and the nu
leus of β. Summation of the 
ontributions from all neighbors yields ρ̄α, whi
h 
anbe interpreted as a 
onstant ba
kground ele
tron density of a homogeneous ele
tron gas. Thus
ρ̄α denotes the resulting ele
tron density, whi
h is �felt� by atom α due to the presen
e of itsneighbors β.
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Figure 2: The general prin
iple of the EAM as proposed by Daw and Baskes [12, 13℄The embedding fun
tion, Fα(ρ̄α), 
an be interpreted as the energy required to in
orporate anatom α in a homogeneous ele
tron gas with the 
onstant ele
tron density ρ̄α. Note that thefun
tional form of Fα depends only on the type of the (embedded) atom α and the argument of
Fα refers to the ele
tron density of the medium in whi
h atom α is embedded.
φαβ = φ̃αβ(rαβ) 
hara
terizes the (purely repulsive) intera
tions between the nu
lei of atom αand β. It depends on the s
alar distan
e rαβ between α and β and is, a

ording to [3℄, a positive,monotoni
ally de
reasing fun
tion. 4



In summary we may say that in order to determine the energy Eα of a parti
le α in a binary alloyA-B it is required to know the following quantities: FA, FB, ρA, ρB, φAA, φBB, and φAB. Withthe ex
eption of φAB all of these fun
tions 
an easily be related to (ma
ros
opi
) me
hani
al and
alorimetri
 data of the pure substan
es A and B. In order to obtain φAB a model will be usedthat relates this quantity to the intera
tions φAA and φBB of the pure substan
es.In the following se
tions it is assumed that every atom in the solid intera
ts only with its nearestneighbors (�rst shell). This assumption leads to a spe
ial modi�
ation of EAM introdu
ed byJohnson in [3℄.2.2 Johnson's analyti
 nearest-neighbor modelConsider Figure 3 and re
all that in an FCC-latti
e an arbitrary atom α is surrounded byexa
tly twelve nearest neighbors from whi
h it is separated by the distan
e rαβ ≡ r = a/
√

2 (or,in equilibrium, R = ae/
√

2), where a denotes the latti
e parameter.
8
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Figure 3: The nearest neighbors for an arbitrary atom α in a FCC-latti
eIn order to obtain Eα in Eq (4) it is ne
essary to spe
ify φαβ , Fα and ρβ (⇒ ρ̄α). More spe
i�
allywe have to 
hoose a suitable fun
tional form. In parti
ular for a binary alloy A-B the fun
tions
FA, FB, ρA, ρB, φAA, φBB, and φAB must be spe
i�ed. For that reason Johnson proposed in [3℄to use the following form2 for ρA/B and φAA/BB (where the indi
es A and B of the two atomspe
ies have been omitted for simpli
ity):

ρ(r) = ρe exp
[

−β
( r

R
− 1
)]

, φ(r) = φe exp
[

−γ
( r

R
− 1
)]

. (5)The four parameters ρe, φe, β, and γ depend on the type of the atom and will be determined usinginformation from both pure substan
es, A and B. Furthermore the nearest neighbor distan
e Rmust be known or 
al
ulated from the latti
e parameter ae as indi
ated before.For the intera
tion φAB between nu
lei of di�erent atom types Johnson used the following form:
φAB(r) =

1

2

[
ρB(r)

ρA(r)
φAA(r) +

ρA(r)

ρB(r)
φBB(r)

]

. (6)2Espe
ially the form of the atomi
 ele
tron density ρ is borrowed from atoms with isotropi
 s-orbitals. This(for spe
ial 
ases) unrealisti
 assumption is later 
orre
ted by the �tting pro
edure.5



This relation 
an easily be quanti�ed using data for the pure substan
es A and B.Finally it remains to spe
ify FA and FB. For this purpose a universal fun
tion of state is used assuggested by Rose et al. [14℄. A

ording to them the parti
le-spe
i�
 energy for a broad rangeof materials 
an be approximated by:
E(a) = −Esub

[
1 + a∗(a)

]
e−a

∗(a) , a∗(a) =

(
a

ae
− 1

)(
Esub

9κΩ0

)− 1
2

, (7)where Esub denotes the sublimation energy per atom of the material, κ is the 
ompressibilityand Ω0 is the volume o

upied by an atom in the latti
e at equilibrium. Hen
e Ω0 is a fun
tionof ae and, for an FCC-latti
e, 
an be obtained from:
Ω0 =

a3
e

4
, (8)be
ause there are four atoms in the unit 
ell (8 × 1
8 atoms in the 
orner; 6 × 1

2 atoms on thefa
es). All quantities in Eq (7) 
an be found in the literature or databases, e.g., [15℄.By 
ombining the relation E(a) = Eα with Eq (4) and substituting a = r
√

2 and ae = R
√

2 bythe inverse relation resulting from Eq (5), namely:
ln

ρ̄

ρ̄e = −β
( r

R
− 1
)

,
φ

φe =

(
ρ̄

ρ̄e) γ
β (9)the following form is obtained for F :

F (ρ̄) = −Esub

[

1 − α

β
ln

(
ρ̄

ρ̄e

)](
ρ̄

ρ̄e

)α
β

− 6φe

(
ρ̄

ρ̄e

) γ
β

and α = 3

(
κΩ0

Esub

)1
2

. (10)For this result the relations:
ρ̄(r) =

∑

β

ρ(r) = 12ρ(r) ,
1

2

∑

β

φ(r) =
1

2
12φ(r) = 6φ(r) (11)were used whi
h hold for FCC 
rystals and nearest-neighbor-intera
tions. Note that the expli
itform of F = F̃ (ρ̄) only arises be
ause of the spe
ial fun
tional forms in Eq (5), whi
h allow aninversion from r to ρ̄.In order to determine all relevant fun
tions for a binary alloy in Eq (4) it is ne
essary to know thevarious material parameters introdu
ed in Eqns (5) and (10), namely α, β, γ, φe, and ρ̄e = 12ρefor the pure substan
es A and B. How to obtain these quantities through a �tting pro
edure willbe explained in one of the following se
tions.3 Evaluation of the EAM energy expression3.1 Latti
e deformation and strain measuresWe 
onsider an arbitrary latti
e, where the equilibrium state is denoted by the undeformed(referen
e) 
on�guration. In this 
ase the position of an arbitrary atom α is given by its referen
eposition ve
tor Xα

i . Analogously the atom of the deformed latti
e 
on�guration beyond the6



equilibrium is 
hara
terized by the 
urrent position ve
tor xαi = Xα
i + ξαi , where ξαi denotesthe displa
ement of atom α from his referen
e position. In the same manner all latti
e atoms

β, γ, δ, . . . are 
hara
terized, i.e., the 
onglomerate of all referen
e positions (Xα
i ,X

β
i ,X

γ
i , . . .)and 
urrent positions (xαi , x

β
i , x

γ
i , . . .) 
ontains the whole information about the undeformed ordeformed latti
e, respe
tively. Moreover, the distan
e between two arbitrary atoms α and β iswritten as Rαβi ≡ Xβ

i − Xα
i or rαβi ≡ xβi − xαi (also note Figure 4 for an illustration of thesituation. Consequently the following relations 
an easily be obtained:
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Figure 4: The di�erent latti
e ve
tors and their notation
xαi = Xα

i + ξαi , xβi = Xβ
i + ξβi , (12)

rαβi = xβi − xαi = Xβ
i −Xα

i + ξβi − ξαi = Rαβi + ξβi − ξαi . (13)By performing the so 
alled mean �eld limit , i.e., by introdu
ing a 
ontinuous displa
ementfun
tion ui = ũi(X
α
j ) instead of the dis
rete displa
ements ξαi , a Taylor expansion [1℄ yields:
ξαi = ui(X

α
j ) ≡ ui(Xj), (14)

ξβi = ui(X
β
j ) = ui(X

α
j +Rαβj ) = ui(Xj) +

∂ui
∂Xj

Rαβj + . . . , (15)
⇒ rαβi = Rαβi +

∂ui
∂Xj

Rαβj = (δij +Hij)R
αβ
j ≡ FijR

αβ
j . (16)Here Fij = δij +Hij denotes the 
oe�
ients of the deformation gradient and Hij = ∂ui

∂Xj
standsfor 
oe�
ients of the displa
ement gradient.In order to identify the elasti
 
onstants in atomisti
 theories numerous publi
ations based oninteratomi
 intera
tions (e.g., two-body atom-atom intera
tions) 
an be found, e.g., [4, 5℄. Usu-ally the authors 
onsider the total energy of the N (deformed) latti
e bonds, Φ(r1i , . . . , r
N
i ), asa fun
tion of the 
urrent distan
e ve
tor between the atoms and expand the energy in a Taylorseries as follows, [4℄:

Φ(r1i , . . . , r
N
i ) = Φ(R1

i +HijR
1
j , . . . , R

N
i +HijR

N
j )

= Φ(R1
i , . . . , R

N
i ) +

∑

b

∂Φ

∂rbj

∣
∣
∣
∣
∣
Rb

j

ϑbj +
1

2

∑

b

∂2Φ

∂rbk∂r
b
l

∣
∣
∣
∣
∣
Rb

k
,Rb

l

ϑbkϑ
b
l + . . . . (17)In this equation the index b identi�es the bond between the di�erent atoms α and β and thesymbol ϑbi denotes the 
oe�
ients of the di�eren
e ve
tor of the displa
ements of α and β, namely7



ξβi − ξαi ≈ ∂ui

∂Xj
Rαβj a

ording to ϑαβi in Figure 4. Thus Eq (17) 
an be reformulated as:

Φ(r1i , . . . , r
N
i ) = Φ(R1

i , . . . , R
N
i ) +

+Hij

∑

b

∂Φ

∂rαβi

∣
∣
∣
∣
∣
Rαβ

i

Rαβj +
1

2
HijHkl

∑

b

∂2Φ

∂rαβj ∂rαβl

∣
∣
∣
∣
∣
Rαβ

j ,Rαβ
l

Rαβi Rαβk . (18)The �rst derivatives of Φ vanish at equilibrium. Therefore the total elasti
 energy of the latti
eis represented by the se
ond-derivative-term of Eq (18). Substituting Hij by its symmetri
 part,the 
oe�
ients of the strain tensor εij , this term 
an be linked to the sti�ness 
oe�
ients Cijkl,[5℄.Unfortunately we 
ould not �nd a 
ompletely 
onvin
ing argument justifying the substitution
Hij → εij and hen
e we want to use another strain measure in order to avoid further irritationsand misunderstandings. For this purpose we 
onsider the square of Eq (16):

rαβ
2

= rαβi rαβi = FijFikR
αβ
j Rαβk = CjkR

αβ
j Rαβk = Rαβ

2
+ (Cjk − δjk)R

αβ
j Rαβk

= Rαβ
2
+ 2GjkR

αβ
j Rαβk , (19)where Cjk = FijFik ≡ F

T ·F stands for the right Cau
hy-Green tensor and Gjk = 1
2 (Cjk−δjk) ≡

1
2(C − I) for Green's strain tensor. By means of Gjk we 
an write for the energy of a latti
e:

Φ(rαβ
2
) = Φ(Rαβ

2
+ 2GjkR

αβ
j Rαβk ) = Φ(Rαβ

2
)+

+2Gij
∑

b

∂Φ

∂rαβ
2

∣
∣
∣
∣
∣
Rαβ2

Rαβi Rαβj +
4

2
GijGkl

∑

b

∂2Φ

∂rαβ
2
∂rαβ

2

∣
∣
∣
∣
∣
Rαβ2

Rαβi Rαβj Rαβk Rαβl + . . . . (20)This equation 
an be linked to the sti�ness 
oe�
ients without any further substitutions. How-ever, the underlying interatomi
 potentials have to be reformulated in terms of rαβ2.3.2 Equilibrium 
ondition and sti�ness 
oe�
ientsA

ording to Se
tion 2 the EAM energy expression of the whole system is given by the sum ofthe energies of all atoms in the system, Etot =
∑

αEα, where Eα is given by Eq (4). Be
ause
φαβ, ρβ and ρ̄α only depend on the s
alar distan
e rαβ between α and β it is also possible touse rαβ2 for the argument. The 
orresponding fun
tions are φ̂ =

˜̂
φ(rαβ

2
) and ρ̂β = ˜̂ρβ(r

αβ2
) andone 
an write:

Etot =
∑

α

Eα =
1

2

∑

α,β

(β 6=α)

φ̂αβ(rαβ
2
) +

∑

α

F̂α(ˆ̄ρα) and ˆ̄ρα =
∑

β

(β 6=α)

ρ̂β(r
αβ2

). (4a)For 
onvenien
e we will omit the 
ir
um�exes ˆ in the following se
tions. φαβ, ρβ and ρ̄α areimpli
itly referred to the argument rαβ2. The individual energy 
ontributions of Eq (4a) 
an beexpanded in a Taylor series at equilibrium (undeformed state). The following steps seem worthmentioning:
φαβ(rαβ

2
) = φαβ(Rαβ

2
+ 2GijR

αβ
i Rαβj ) =

= φαβ(Rαβ
2
) + 2φαβ

′
(Rαβ

2
)GijR

αβ
i Rαβj + 2φαβ

′′
(Rαβ

2
)GijGklR

αβ
i Rαβj Rαβk Rαβl . (21)8



In an analogous manner one obtains:
ρβ(r

αβ2
) = ρβ(R

αβ2
) + 2ρ′β(R

αβ2
)GijR

αβ
j Rαβj + 2ρ′′β(R

αβ2
)GijGklR

αβ
i Rαβj Rαβk Rαβl . (22)Here the abbreviations (⋄)′(Rαβ2

) and (⋄)′′(Rαβ2
) represent the derivatives of (⋄) with respe
tto its argument rαβ2 evaluated at Rαβ2. Furthermore Eq (22) is of the form ρβ(r

αβ2
) = Aβ +

BβXαβ+ 1
2CβX 2

αβ with Aβ = ρβ(R
αβ2

), Bβ = ρ′β(R
αβ2

), Cβ = ρ′′β(R
αβ2

) and Xαβ = 2GijR
αβ
i Rαβj .Consequently a Taylor expansion of Fα(ρ̄α) at Aβ 
an be performed as follows:

Fα

(
∑

β

ρβ(r
αβ2

)

)

= Fα

(
∑

β

[

Aβ + BβXαβ +
1

2
CβX 2

αβ

])

=

= Fα

(
∑

β

Aβ

)

+
∑

β

∂Fα
∂Xαβ

∣
∣
∣
∣
Xαβ=0

Xαβ +
1

2

∑

β,γ

∂2Fα
∂Xαβ∂Xαγ

∣
∣
∣
∣
Xαβ=Xαγ=0

XαβXαγ . (23)Introdu
ing:
Aαij =

∑

β

φαβ
′
(Rαβ

2
)Rαβi Rαβj , Bα

ijkl =
∑

β

φαβ
′′
(Rαβ

2
)Rαβi Rαβj Rαβk Rαβl , (24)

V α
ij =

∑

β

ρ′β(R
αβ2

)Rαβi Rαβj , Wα
ijkl =

∑

β

ρ′′β(R
αβ2

)Rαβi Rαβj Rαβk Rαβl (25)one 
an �nd the following important relation for the energy of an arbitrary atom α:
Eα =

1

2

∑

β

φαβ(Rαβ
2
) + Fα

(
ρ̄0
α

)
+Gij

[

Aαij + 2F ′
α

(
ρ̄0
α

)
V α
ij

]

+

+ GijGkl

[

Bα
ijkl + 2F ′

α

(
ρ̄0
α

)
Wα
ijkl + 2F ′′

α

(
ρ̄0
α

)
V α
ij V

α
kl

]

, (26)where F ′
α(ρ̄0

α) and F ′′
α(ρ̄0

α) refer the derivatives with respe
t to the argument at ρ̄0
α =

∑

β Aβ =
∑

β ρβ(R
αβ2

). Note that in order to derive Eq (26) the 
hain rule was applied as follows:
∂Fα
∂Xαβ

∣
∣
∣
∣
Xαβ=0

= F ′
α

(
∑

β

Aβ

)

·
∑

β

Bβ , (27)
∂2Fα

∂Xαβ∂Xαγ

∣
∣
∣
∣
Xαβ=Xαγ=0

= F ′′
α

(
∑

β

Aβ

)

·
∑

β,γ

BβBγ + F ′
α

(
∑

β

Aβ

)

·
∑

β

Cβ . (28)Eq (26) represents an important relation for the energy of atom α. It is valid in pure substan
esas well as in solid mixtures. In the 
ase of solid mixtures one 
an �nd di�erent types of atomsin the latti
e, and we have to spe
ify the type of α and of its neighbors β in more detail.Moreover, negle
ting thermal expansion, it is reasonable to postulate that Eα assumes a minimumat equilibrium. Thus in Eq (26) the �rst bra
ket on the right hand side must vanish and we �ndfor the equilibrium 
ondition:
Aαij + 2F ′

α

(
ρ̄0
α

)
V α
ij = 0 . (29)Furthermore it holds Eelast/V = 1

2GijCijklGkl (law of Saint-Venant-Kir
hho�), [16℄. De�ning
Ωα

0 as the volume o

upied by an atom α we obtain for the sti�ness 
oe�
ients from Eq (26):
Cαijkl =

1

Ωα
0

[

2Bα
ijkl + 4F ′

α

(
ρ̄0
α

)
Wα
ijkl + 4F ′′

α

(
ρ̄0
α

)
V α
ij V

α
kl

]

. (30)9



At this point it should be pointed out that the underlying potentials of Eqns (29,30) dependon the argument Rαβ2. Taking into a

ount the 
hain rule and, in parti
ular, the relations
φ̂αβ

′

(Rαβ
2
) = φαβ ′

(Rαβ)
2Rαβ , ρ̂′β(Rαβ2

) =
ρ′

β
(Rαβ)

2Rαβ , φ̂αβ′′

(Rαβ
2
) = 1

4(φ
αβ ′′

(Rαβ)

Rαβ2 − φαβ ′
(Rαβ)

Rαβ3 ), and
ρ̂′′β(R

αβ2
) = 1

4(
ρ′′

β
(Rαβ)

Rαβ2 − ρ′
β
(Rαβ)

Rαβ3 ), Eqns (29,30) are in agreement with the a

epted results 
om-muni
ated by Daw and Baskes in [13℄.We already indi
ated the importan
e of Eqns (26,29,30) for solid mixtures. More spe
i�
ally thequestion arises, how to spe
ify these equations for di�erent types of atoms. In the next se
tionwe want to turn the attention to binary alloys and present a pro
edure yielding all 
orrespondingequations for binary mixtures.4 EAM for binary alloys4.1 Spe
i�
ation of the energy-expression: DPC operator and higher gradi-entsIn 
ontext with Eq (26) the question arises, how to exploit this energy expression for binaryalloys or, in other words, how additional information about the di�erent types of atoms 
anbe in
orporated in this equation. In the 
ase of a binary alloy A-B three di�erent forms ofintera
tions 
an be distinguished: A↔A, B↔B and A↔B intera
tions. In order to in
lude theseintera
tion terms in Eq (26) one 
an use a so 
alled Dis
rete Parti
le Con
entration (DPC)operator, introdu
ed for example by de Fontaine, [17℄.
ŷγ =

{

0 , γ = A
1 , γ = B . (31)We now have to detail the following expressions of Eq (26): φαβ , ρ̄0

α, Fα, Aαij, Bα
ijkl, F ′

αV
α
ij ,

F ′′
αV

α
ij V

α
kl and F ′

αW
α
ijkl. For this purpose we begin the analysis with the de
omposition of φαβand ρ̄0

α in the following manner:
φαβ = (1 − ŷα) (1 − ŷβ)φ

AA + ŷαŷβφ
BB +

[
(1 − ŷα) ŷβ + (1 − ŷβ) ŷα

]
φAB

= φAA +
[
ŷα + (1 − 2ŷα) ŷβ

]
φ+ (ŷα + ŷβ) φ̃ , (32)

ρ̄0
α =

∑

β

[
(1 − ŷβ) ρA + ŷβρB] =

∑

β

[
ŷβ (ρB − ρA) + ρA] (33)with the de�nitions φ = φAB − 1

2

(
φAA + φBB) and φ̃ = 1

2

(
φBB − φAA). Obviously the DCPoperator a
t as a �sele
tor� whi
h �
hooses� the 
orresponding intera
tion depending on whattypes of atoms are 
onsidered. If for example α and β are two A-atoms, ŷα as well as ŷβ are zeroand only the terms φAA and ρ̄0A =

∑

β ρA remain in Eq (32) and (33). In a same manner one
an obtain φBB, φAB and ρ̄0B.Moreover the DCP operator 
an be repla
ed by its 
ontinuous 
ounterpart applying the mean
10



�eld limit. Thus a Taylor expansion results in:
ŷα = y(Xα

i ) ≡ y(Xi), (34)
ŷβ = y(Xβ

i ) = y(Xi +Rαβi ) = y(Xi) +
∂y

∂Xi
︸︷︷︸

=∇iy

Rαβi +
1

2

∂2y

∂Xi∂Xj
︸ ︷︷ ︸

=∇2
ijy

Rαβi Rαβj + . . . . (35)The symbols ∇iy and ∇2
ijy are referred to as higher gradients and are 
hara
teristi
 of phase�eld theories. After a straightforward 
al
ulation we �nd:

φαβ = φAA + 2y(1 − y)φ+ 2yφ̃+ ∇iy
[
(1 − 2y)φ+ φ̃

]
Rαβi +

1

2
∇2
ijy
[
(1 − 2y)φ+ φ̃

]
Rαβi Rαβj ,(36)

ρ̄0
α =

∑

β

ρA + y
∑

β

(ρB − ρA) + ∇iy
∑

β

(ρB − ρA)Rαβi +
1

2
∇2
ijy
∑

β

(ρB − ρA)Rαβi Rαβj (37)
= ρ̄A + yρ̄△ + (∇iy)ρ̄

△
i +

1

2
(∇2

ijy)ρ̄
△
ij (38)with the de�nitions ρ̄A =

∑

β ρA; ρ̄△ =
∑

β(ρB − ρA); ρ̄△i =
∑

β(ρB − ρA)Rαβi and ρ̄△ij =
∑

β(ρB − ρA)Rαβi Rαβj . At this point it is important to mention that for any s
alar fun
tion
f(Rαβ) depending only on the radial distan
e Rαβ between atom α and β the following sumvanishes: ∑

β

f(Rαβ
2
)Rαβi1 . . . RαβiN = 0 , (∀N = odd number). (39)This relation stems from the fa
t that in an arbitrary latti
e, due to its periodi
 arrangement,for all ve
tors Rαβi a ve
tor −Rαβi in opposite dire
tion 
an be found (if boundary e�e
ts arenegle
ted). Thus Eqns (36,38) results in:

φαβ = φAA + 2y(1 − y)φ+ 2yφ̃+
1

2
∇2
ijy
[
(1 − 2y)φ+ φ̃

]
Rαβi Rαβj , (40)

ρ̄0
α = ρ̄A + yρ̄△ +

1

2
(∇2

ijy)ρ̄
△
ij . (41)Using Eq (38) the embedding fun
tion Fα(ρ̄0

α) 
an be also expanded into a Taylor series evaluatedat a weighted average ele
tron density ρ̄av = ρ̄A + yρ̄△ = (1 − y)ρ̄A + yρ̄B:
Fα(ρ̄0

α) = Fα

(

ρ̄A + yρ̄△
︸ ︷︷ ︸

=ρ̄av

+
1

2
(∇2

ijy)ρ̄
△
ij

)

= Fα
(
ρ̄av) +

1

2
F ′
α

(
ρ̄av
)
ρ̄△ij (∇2

ijy) + . . . . (42)Note that gradient terms of higher than se
ond order were assumed not to 
ontribute to theenergy of the system. Moreover, Fα itself is also de
omposed analogously to Eq (33) and wewrite:
Fα(ρ̄0

α) = (1 − y)FA + yFB , (43)
FA = FA(ρ̄av)+

1

2
F ′A(ρ̄av)ρ̄△ij (∇2

ijy) . . . , FB = FB(ρ̄av)+
1

2
F ′B(ρ̄av)ρ̄△ij (∇2

ijy) . . . . (44)So the �rst two terms of the right hand side of Eq (26) are spe
i�ed in terms of 
on
entrationgradients by Eqns (36) and (43-44). 11



In what follows we want to investigate the symbols Aαij , Bα
ijkl, F ′

αV
α
ij , F ′′

αV
α
ij V

α
kl and F ′

αW
α
ijklof Eq (26). Here it is worth mentioning that the produ
ts of the last three expressions F ′

αV
α
ij ,

F ′′
αV

α
ij V

α
kl and F ′

αW
α
ijkl 
annot be separated and evaluated separately sin
e they are 
oupled bythe same index α. Hen
e the de
omposition by means of the DCP-operator must be applied tothe 
omplete produ
t.The �rst two abbreviations, Aαij and Bα

ijkl, 
an be written in the same manner as in Eq (36):
Aαij = AA

ij + 2y(1 − y)Aφij + 2yAφ̃ij +
1

2
∇2
kly
[

(1 − 2y)Aφijkl +Aφ̃ijkl

]

, (45)
Bα
ijkl = BA

ijkl + 2y(1 − y)Bφ
ijkl + 2yBφ̃

ijkl +
1

2
∇2
mny

[

(1 − 2y)Bφ
ijklmn +Bφ̃

ijklmn

] (46)with the de�nitions:
AA
ij =

∑

β

φAA′
(Rαβ

2
)Rαβi Rαβj , Aφijkl =

∑

β

φ′(Rαβ
2
)Rαβi Rαβj Rαβk Rαβl , (47)

Aφ̃ijkl =
∑

β

φ̃′(Rαβ
2
)Rαβi Rαβj Rαβk Rαβl , BA

ijkl =
∑

β

φAA′′
(Rαβ

2
)Rαβi Rαβj Rαβk Rαβl ,(48)

Bφ
ijklmn =

∑

β

φ′′(Rαβ
2
)Rαβi . . . Rαβn , Bφ̃

ijklmn =
∑

β

φ̃′′(Rαβ
2
)Rαβi . . . Rαβn . (49)Analogously to Eq (43) the following relations hold:

F ′
α(ρ̄

0
α)V α

ij = (1 − y)F ′A V α
ij

∣
∣
∣
α=A + yF ′B V α

ij

∣
∣
∣
α=B , (50)

F ′
α(ρ̄0

α)Wα
ijkl = (1 − y)F ′A Wα

ijkl

∣
∣
∣
α=A + yF ′B Wα

ijkl

∣
∣
∣
α=B , (51)

F ′′
α (ρ̄0

α)V α
ij V

α
kl = (1 − y)F ′′A V α

ij V
α
kl

∣
∣
∣
α=A + yF ′′B V α

ij V
α
kl

∣
∣
∣
α=B . (52)The derivatives F ′

α and F ′′
α 
an be 
al
ulated analogously to Eqns (44). We simply in
rease theorder of derivatives in these equations:
F ′A/B = F ′A/B(ρ̄av)+

1

2
F ′′A/B(ρ̄av)ρ̄△ij (∇2

ijy) , (53)
F ′′A/B = F ′′A/B(ρ̄av)+

1

2
F ′′′A/B(ρ̄av)ρ̄△ij (∇2

ijy) . (54)By 
ombination of Eqns (25) and (41) we �nally �nd (α = {A,B}):
V α
ij = V A

ij + yV △
ij +

1

2
(∇2

kly)V
△
ijkl , (55)

Wα
ijkl = WA

ijkl + yW△
ijkl +

1

2
(∇2

mny)W
△
ijklmn (56)with the abbreviations:

V A
ij =

∑

β

ρ′A(Rαβ
2
)Rαβi Rαβj , V △

i1,...,in
=
∑

β

[

ρ′B(Rαβ
2
) − ρ′A(Rαβ

2
)
]

Rαβi1 . . . Rαβin ,(57)
WA
ijkl =

∑

β

ρ′′A(Rαβ
2
)Rαβi . . . Rαβl , W△

i1,...,in
=
∑

β

[

ρ′′B(Rαβ
2
) − ρ′′A(Rαβ

2
)
]

Rαβi1 . . . Rαβin (58)and all terms of Eq (26) are now spe
i�ed for a binary alloy A-B. In the following se
tion itis shown how these 
umbersome equations 
an be stru
tured in order to obtain informationregarding the equilibrium 
ondition, the sti�ness and the higher gradient 
oe�
ients.12



4.2 Equilibrium 
ondition, sti�ness and higher gradient 
oe�
ientsBy 
ombination of Eq (26) with Eqns (40, 43, 44, 45, 46, 50-56) and by means of the de�nitions:
gAA =

∑

β

φAA , gφ =
∑

β

φ , gφ̃ =
∑

β

φ̃ , (59)
gφij =

∑

β

φRαβi Rαβj , gφ̃ij =
∑

β

φ̃Rαβi Rαβj . (60)we obtain for the energy of atom α:
Eα =

1

2
gAA + y(1 − y)gφ + ygφ̃ +

1

4
(∇2

ijy)
[

(1 − 2y)gφij + gφ̃ij

]

+

+FA + y
(

FB − FA)+
1

2
(∇2

ijy) ρ̄
△
ij

[

F ′A + y
(

F ′B − F ′A)]+

+Gij

{

AA
ij + 2y(1 − y)Aφij + 2yAφ̃ij +

1

2
(∇2

kly)
[

(1 − 2y)Aφijkl +Aφ̃ijkl

]

+

+2
(

V A
ij + yV △

ij

)(

F ′A + y(F ′B − F ′A)
)

+

+(∇2
kly)

[

V △
ijkl

(

F ′A + y(F ′B − F ′A)
)

+ ρ̄△kl

(

V A
ij + yV △

ij

)(

F ′′A + y(F ′′B − F ′′A)
)]
}

+

+
1

2
GijGkl

{

2BA
ijkl + 4y(1 − y)Bφ

ijkl + 4yBφ̃
ijkl + (∇2

mny)
[

(1 − 2y)Bφ
ijklmn +Bφ̃

ijklmn

]

+

+4
(

WA
ijkl + yW△

ijkl

)(

F ′A + y(F ′B − F ′A)
)

+

+2(∇2
mny)

[

W△
ijklmn

(

F ′A + y(F ′B − F ′A)
)

+ ρ̄△mn

(

WA
ijkl + yW△

ijkl

)(

F ′′A + y(F ′′B − F ′′A)
)]

+

+4
(

V A
ij + yV △

ij

)(

V A
kl + yV △

kl

)(

F ′′A + y(F ′′B − F ′′A)
)

+

+2(∇2
mny)

[

V △
klmn

(

V A
ij + yV △

ij

)(

F ′′A + y(F ′′B − F ′′A)
)

+ V △
ijmn

(

V A
kl + yV △

kl

)

×

×
(

F ′′A + y(F ′′B − F ′′A)
)

+ ρ̄△mn

(

V A
ij + yV △

ij

)(

V A
kl + yV △

kl

)(

F ′′′A + y(F ′′′B − F ′′′A )
)]
} (61)where FA/B and all derivatives of FA/B depend on the argument ρ̄av !!!Following Cahn and Hilliard in [6℄ and Dreyer and Müller in [2, 11℄ the Gibbs free energy density

ψ of a two-
omponent system with an inhomogeneous mass-
on
entration pro�le c(xi, t) 
an be
hara
terized by the equation (without eigenstrains and thermal expansion):
ψ = ψ
onf(c,Gij) − akl(c,Gij)∇2

klc+ bkl(c,Gij)(∇kc)(∇lc) . (62)The �rst term denotes the 
on�gurational part of ψ and represents the Gibbs free energy den-sity of the 
orresponding system with a homogeneous 
on
entration pro�le. It also in
ludes an�elasti
� energy, ψelast, as re�e
ted by the strains Gkl. Therefore one 
an split ψ
onf into two13



parts:
ψ
onf(c,Gij) = ψ0(c) +

1

2
Gij Cijkl(c) Gkl
︸ ︷︷ ︸

=ψelast , (63)where the �rst part stands for the energy density without elasti
 energy 
ontributions. Moreoverit is important to mention that ψelast does not 
ontain higher gradients and, 
onsequently, it isreasonable to re-arrange Eq (61) as follows:
Eα =

1

2
gAA + y(1 − y)gφ + ygφ̃ + FA + y

(

FB − FA)
+

1

2
GijGkl

{

2BA
ijkl + 4y(1 − y)Bφ

ijkl + 4yBφ̃
ijkl + 4

(

WA
ijkl + yW△

ijkl

)(

F ′A + y(F ′B − F ′A)
)

+ 4
(

V A
ij + yV △

ij

)(

V A
kl + yV △

kl

)(

F ′′A + y(F ′′B − F ′′A)
)
}

+ (∇2
mny)

{

1

4

(

(1 − 2y)gφmn + gφ̃mn

)

+
1

2
ρ̄△mn

(

F ′A + y(F ′B − F ′A)
)

+
1

2
Gij

[

(1 − 2y)Aφijmn +Aφ̃ijmn + 2V △
ijmn

(

F ′A + y(F ′B − F ′A)
)

+ 2ρ̄△mn

(

V A
ij + yV △

ij

)(

F ′′A + y(F ′′B − F ′′A)
)]

+
1

2
GijGkl

[

(1 − 2y)Bφ
ijklmn +Bφ̃

ijklmn

+ 2W△
ijklmn

(

F ′A + y(F ′B − F ′A)
)

+ 2ρ̄△mn

(

WA
ijkl + yW△

ijkl

)(

F ′′A + y(F ′′B − F ′′A)
)

+ 2V △
klmn

(

V A
ij + yV △

ij

)(

F ′′A + y(F ′′B − F ′′A)
)

+ 2V △
ijmn

(

V A
kl + yV △

kl

)

×

×
(

F ′′A + y(F ′′B − F ′′A)
)

+ 2ρ̄△mn

(

V A
ij + yV △

ij

)(

V A
kl + yV △

kl

)(

F ′′′A + y(F ′′′B − F ′′′A )
)]
}

+ Gij

{

AA
ij + 2y(1 − y)Aφij + 2yAφ̃ij + 2

(

V A
ij + yV △

ij

)(

F ′A + y(F ′B − F ′A)
)
}

. (64)Equation (64) 
onsists of four parts (1st row; 2nd and 3rd row; 4th-10th row; last row).
• The �rst part represents the energy of an atom α in an undeformed, homogeneous (i.e.,without 
on
entration gradients) solid, a

ording to ψ0 in Eq (63).
• The se
ond part denotes the elasti
 energy ψelast of a mixture with parti
le 
on
entration
y.

• The third part 
an be related to the HGCs. Note that in Eq (64) only derivatives ∇2
klyo

ur. A substitution to ∇2

klc will later allow the identi�
ation of akl and bkl of Eq (62).
• The last part stands for the equilibrium 
ondition of a binary mixture A-B (minimum ofenergy), namely ∂Eα/∂Gij ∣∣Gij=0,y=yeq = 0 ⇒ AA

ij+2y(1−y)Aφij+2yAφ̃ij+2(V A
ij +yV △

ij )(F ′A+14



y(F ′B−F ′A)) = 0. By knowing the equilibrium 
on
entration yeq this 
ondition 
an be usedto obtain the equilibrium nearest neighbor distan
e R in the di�erent equilibrium phases.At this point it should be mentioned that all atomisti
 
onsiderations are performed with respe
tto the parti
le 
on
entration y. In order to identify the quantities in Eq (2) we have to swit
hto mass 
on
entrations c. Following the arguments of Appendix B we �nally �nd:
♦ equilibrium 
ondition:

AA
ij + 2y(c)(1 − y(c))Aφij + 2y(c)Aφ̃ij + 2

(

V A
ij + y(c)V △

ij

)(

F ′A + y(c)(F ′B − F ′A)
)

= 0 (65)
♦ Sti�ness 
oe�
ients:

Cijkl(c) =
1

Ωα
0

[

2BA
ijkl + 4y(c)(1 − y(c))Bφ

ijkl + 4y(c)Bφ̃
ijkl + 4

(

WA
ijkl + y(c)W△

ijkl

)

×

×
(

F ′A + y(c)(F ′B − F ′A)
)

+ 4
(

V A
ij + y(c)V △

ij

)(

V A
kl + y(c)V △

kl

)(

F ′′A + y(c)(F ′′B − F ′′A)
)] (66)

♦ Higher gradient 
oe�
ients:
amn(c,Gpq) = −δ(c) M(2)(c) Hmn(c,Gpq) , (67)
bmn(c,Gpq) = δ(c) M(1)(c) Hmn(c,Gpq) , (68)
Amn(c,Gpq) =

∂amn(c,Gpq)

∂c
+ bmn(c,Gpq) (69)with

δ(c) =
ρ0

µ0M(c)
, M(1)(c) =

2MAMB(MB −MA)

[MB − (MB −MA)c]3
, M(2)(c) =

MAMB
[MB − (MB −MA)c]2

, (70)
Hmn(c,Gpq) =

1

4

(

(1 − 2y(c))gφmn + gφ̃mn

)

+
1

2
ρ̄△mn

(

F ′A + y(c)(F ′B − F ′A)
)

+
1

2
Gij

[

(1 − 2y(c))Aφijmn +Aφ̃ijmn + 2V △
ijmn

(

F ′A + y(c)(F ′B − F ′A)
)

+ 2ρ̄△mn

(

V A
ij + y(c)V △

ij

)(

F ′′A + y(c)(F ′′B − F ′′A)
)]

+
1

2
GijGkl

[

(1 − 2y(c))Bφ
ijklmn +Bφ̃

ijklmn

+ 2W△
ijklmn

(

F ′A + y(c)(F ′B − F ′A)
)

+ 2ρ̄△mn

(

WA
ijkl + y(c)W△

ijkl

)(

F ′′A + y(c)(F ′′B − F ′′A)
)

+ 2V △
klmn

(

V A
ij + y(c)V △

ij

)(

F ′′A + y(c)(F ′′B − F ′′A)
)

+ 2V △
ijmn

(

V A
kl + y(c)V △

kl

)

×

×
(

F ′′A + y(c)(F ′′B − F ′′A)
)

+ 2ρ̄△mn

(

V A
ij + y(c)V △

ij

)(

V A
kl + y(c)V △

kl

)(

F ′′′A + y(c)(F ′′′B − F ′′′A )
)]

.(71)Re
all that all atomisti
 quantities refer to arguments Rαβ2 and ρ̄av , respe
tively. In the followingse
tion we 
onsider a spe
i�
 binary alloy and will expli
itly determine the sti�ness and the highergradient 
oe�
ients. 15



5 Appli
ation to the Ag-Cu systemAs a 
ase study we 
hoose y ≡ yCu (c ≡ cCu) and 
onsider the solid eute
ti
 binary alloy Ag-Cuat 1000 Kelvin (yeut = 0.41, ceut = 0.29, Teut ≈ 1052 Kelvin) whi
h, from a te
hnologi
al pointof view, serves as a brazing material. Two di�erent equilibrium phases are observed, the α- andthe β-phase, with the equilibrium 
on
entrations cα and cβ , respe
tively (
f., Fig. 1). Fig. 5shows the spe
i�
 Gibbs free 
urve, ψ(c), at 1000 Kelvin. It was obtained from a 
ommer
ialdatabase, [18℄. By means of the 
ommon tangent rule 
onstru
tion the following equilibrium
on
entrations cα/β were determined:
cα = 0.063 ⇔ yα = 0.102 , (72)
cβ = 0.945 ⇔ yβ = 0.967 . (73)Moreover both spe
ies Ag and Cu as well as the alloy Ag-Cu form a simple Fa
e-Centered-Cubi
 (FCC) latti
e so that this material is parti
ularly suited for our atomisti
 investigationsperformed at the two equilibrium 
on
entrations, cα/β . Before we turn to the �tting pro
eduresome remarks, assumptions, and interpretations in 
ontext with Eq (64) will be made whi
h arerequired for further investigations.1. Eα stands for the energy of an atom α in a binary latti
e, where two types of atoms (Aand B) and three types of intera
tions (A-A, B-B, A-B) are possible.2. Independent of these di�erent intera
tions and atom-types it is assumed that only oneequilibrium distan
e R to the nearest neighbors 
an be found in the latti
e3.3. All quantities of the right hand side of Eq (64): gAA/φ/φ̃, BA/φ/φ̃

ijkl , FA/B, F ′A/B, F ′′A/B, F ′′′A/B,
V

A/△
ij ,WA/△

ijkl , et
., 
an be 
al
ulated from the pure substan
es A and B. The �
ombination�of these quantities a

ording to Eq (64) in terms of y, (1− y), ∇2
mny, et
. is interpreted asa suitable average des
ribing the energy of an arbitrary parti
le in the mixture A-B.The se
ond bullet point gives rise to the question

0 0.2 0.4 0.6 0.8 1

cCu

-7

-6.5

-6

-5.5

Ψ
Hc
L
@G

J
�m

3
D

Figure 5: The Gibbs free energy density ψ(c)for the Ag-Cu system at 1000 Kelvin.

of how to �nd the equilibrium nearest neighbor dis-tan
e of a given phase (mixture) with the equilib-rium 
on
entration ceq. In this 
ontext we 
an re-vert to the equilibrium 
ondition given by Eq (65),provided that ceq is known (e.g., from experiments).For the sake of transparen
y we will now give anoverview of the further pro
edures required to ob-tain the di�erent EAM potentials, the sti�ness andthe higher gradient 
oe�
ients. (1) The EAM po-tentials for the pure substan
es Ag and Cu are �ttedin terms of Rαβ2. (2) We 
al
ulate the sti�ness 
o-e�
ients for the pure substan
es and 
ompare themwith experimental results (for the purpose of 
he
k-ing). (3) An exploitation of the equilibrium 
ondition is performed in order to determine thenearest neighbor distan
es of the α- and β-phase in Ag-Cu at 1000 K. (4) The sti�ness 
oe�
ientsof the di�erent phases Cα/βijkl are determined and the pure-substan
e-limit (i.e., Ag: lim cα/β = 03This assumption 
an be interpreted as an �e�e
tive� latti
e, owing the same total 
ohesive energy as an latti
e,where three di�erent nearest neighbor distan
es o

ur, depending on the three di�erent intera
tions.16



and Cu: lim cα/β = 1) is performed. (5) The HGCs in the α- and β-phases are 
al
ulated forthe strain-free 
ase (for 
onvenien
e). (6) The phase-diagram of Ag-Cu is 
onstru
ted and theresults are 
ompared with measurements in order to emphasize the �quality� of the predi
tedHGCs.5.1 The �tting pro
edure for Ag and CuRe
all the advantages of the use of potentials in terms of rαβ2 or Rαβ2, respe
tively as outlinedin Subse
tion 3.1. For this reason we modify Johnson's fun
tional representation from Eq (5) asfollows:
ρ(r2) = ρe exp

[

−β
(
r2

R2
− 1

)]

, φ(r2) = φe exp

[

−γ
(
r2

R2
− 1

)]

. (74)The symbols r and R denote the nearest neighbor distan
e in the deformed and in the undeformedlatti
e and, in an FCC ensemble, are given by a√2 or ae√2 (
f., Fig 3). Moreover the followingrelations hold:
ρ̄(r2) = 12ρ(r2) , ρ̄e = 12ρe ,

1

2

∑

β

φ(r2) = 6φ(r2) , 6φe ≡ Φe. (75)In order to arrive at an expli
it relation for the embedding fun
tion F (ρ̄) analogously to Eq (10)we follow the strategy explained in Se
tion 2.2 and use the following inversions:
r

R
=

√

1 − 1

β
ln

ρ̄

ρ̄e ,
φ

φe =

(
ρ̄

ρ̄e) γ
β

. (76)By means of the universal fun
tion of state E(a) from Se
tion 2.2 and Eq (76) the followingresult is obtained:
F (ρ̄) = −Esub [1 + α

(√

1 − 1

β
ln

ρ̄

ρ̄e − 1

)]

exp

[

−α
(√

1 − 1

β
ln

ρ̄

ρ̄e − 1

)]

− Φe( ρ̄

ρ̄e) γ
β

. (77)with α = 3
√

κΩ0
Esub .In what follows we fo
us on the pure substan
es Ag and Cu as well as on the binary alloy Ag-Cu(silver-
opper). In the 
ase of the pure materials the following fun
tions must be determined:

φAgAg, φCuCu, ρAg (= 1/12ρ̄Ag), ρCu (= 1/12ρ̄Cu), FAg(ρ̄Ag), and FCu(ρ̄Cu). Thus for both pure
omponents �ve parameters must be �tted, namely α, β, γ, φe, ρe. Consequently ten parametersare unknown. Note that the intera
tion between an Ag and a Cu nu
leus, i.e., φAgCu, followsdire
tly from 
onsidering the pure spe
ies Ag and Cu (
f., Eq (6)). For the �tting pro
edure thefollowing ten experimental parameters of both substan
es are used:1. Voigt average of the shear modulus G2. 
ompressibility κ3. sublimation energy Esub (with respe
t to one parti
le)4. (unrelaxed) va
an
y formation energy Euvf5. (equilibrium) latti
e parameter ae
α is already given by Eq (10)2, i.e., it only remains to determine β, γ, φe, and ρe.17



Determination of φe and ρe Following Johnson in [19℄ the sublimation energy per atom(i.e., the 
ohesive energy) of an arbitrary atom is represented by the nu
lei-nu
lei intera
tionswith its neighbors: Esub = 1
2 · 12 · φ(r2). Hen
e it follows for equilibrium:

φe =
Esub

6
. (78)From the physi
al point of view it is plausible to establish that ρe ∝ 1/Ω0 and ρe ∝ Esub and,
onsequently, we write:

ρe =
Esub
Ω0

. (79)The last two equations represent two relations for the unknown material parameters φe und ρe.Determination of β and γ The starting point to obtain these quantities are the equationsfor the unrelaxed va
an
y formation energy Euvf and the Voigt average of the shear modulus
G:

Euvf = −1

2

12∑

β=1

φ(r2) −
12∑

β=1

F
[
12ρ(r2)

]
+

12∑

β=1

F
[
11ρ(r2)

]
, (80)

G =
1

5
(3C2323 + 2C∗) , C∗ =

1

2
(C1111 − C1122) (81)where C1111, C1122, and C2323 denote the elasti
 
onstants of the forth order sti�ness matrix.These 
onstants are 
hara
terized by derivatives of the energy expression of a solid (Eq. (4)).Re
all that for the sti�ness Cijkl of a pure substan
e A (
f., Eq (30)) we have:

CA
ijkl =

1

ΩA
0

[

2BAA
ijkl + 4F ′A(ρ̄0A)WA

ijkl + 4F ′′A(ρ̄0A)V A
ij V

A
kl

] (30a)with the de�nitions:
ρ̄0A =

∑

β

ρA(Rαβ
2
) , BAA

ijkl =
∑

β

φAA′′
(Rαβ

2
)Rαβi Rαβj Rαβk Rαβl , (82)

V A
ij =

∑

β

ρ′A(Rαβ
2
)Rαβi Rαβj , WA

ijkl =
∑

β

ρ′′A(Rαβ
2
)Rαβi Rαβj Rαβk Rαβl , (83)

F ′A =
∂FA
∂ρ̄A ∣∣∣∣ρ̄A=ρ̄0A , F ′′A =

∂2FA
∂ρ̄2A ∣∣∣∣ρ̄A=ρ̄0A , φAA′′

=
∂2φAA
∂(rαβ

2
)
2

∣
∣
∣
∣
rαβ2=Rαβ2

, (84)
ρ′A =

∂ρA
∂rαβ

2

∣
∣
∣
∣
rαβ2=Rαβ2

, ρ′′A =
∂2ρA

∂(rαβ
2
)
2

∣
∣
∣
∣
rαβ2=Rαβ2

, (85)where rαβ2 or Rαβ2 represent the distan
e between the atoms α and β and 
an be identi�ed with
r2 or R2 in the nearest neighbor model.Relation (30a) for the elasti
 
onstants 
an be used in Eq (81)1,2. Then together with theparameterizations (74,75,77) it follows that (
f., Appendix C):

G =
8

5

γ(γ − β)

Ω0
. (86)18



In a similar manner it is possible to approximate the unrelaxed va
an
y formation energy Euvfin Eq (80) by (
f., Appendix C):
Euvf ≈ 15

4

GΩ0

γβ
= 6φe γ − β

β
. (87)The last two relations represent two equations for β and γ. As input we use the Voigt averageof the shear modulus and the unrelaxed va
an
y formation energy. Using now Eqs (10)2, (78),(79), (86), and (87), we 
an determine all parameters for Ag and Cu. The experimental datarequired during this pro
edure are 
ompiled in Table 1, [19℄:Table 1: Experimental data for Ag and Cutype of Inputatom Ω0 in 3 Esub in eV Euvf in eV Ω0κ in eV Ω0G in eVAg 17.10 2.85 1.10 11.10 3.61Cu 11.81 3.54 1.30 10.17 4.05In parti
ular the following values 
an be used to obtain the se
ond 
olumn of Table 1:

aAg = 4.09 Å , RAg = 2.89 Å , RAg2
= 8.36 Å2 (88)

aCu = 3.61 Å , RCu = 2.56 Å , RCu2
= 6.53 Å2 (89)From this data the parameters and 
orresponding fun
tions shown in Table 2 and in Figure 6were obtained. Table 2: Cal
ulated parameters for Ag and Cuatom α β γ φe in eV ρe in eV/3 ρ̄e in eV/3Ag 5.9205 2.9799 4.1300 0.4750 0.1672 2.0064Cu 5.0849 2.9232 3.9966 0.5900 0.2998 3.5971

nu
leus-nul
eus intera
tions between atoms ofthe same type nu
leus-nul
eus intera
tions between atoms ofdi�erent type
19



atomi
 ele
tron-density for a silver and a
opper atom embedding fun
tion for a silver and a 
opperatom

atomi
 energy for a silver and a 
opper atom Figure 6: Various fun
tions relevant in Eq (74,77)and the resulting atomi
 energy Eα for Ag and Cu.Note that in the upper right pi
ture holds φAgCu =
φCuAg.5.2 The elasti
 
onstants of Ag and CuWith the �tted and illustrated fun
tions from the last se
tion it be
omes possible to 
al
ulatethe elasti
 
onstants for pure Ag and Cu a

ording to Eq (30a). The results are 
ompiled inTable 3.In 
omparison with the results obtained by means of pair potentials [1℄ the dis
repan
y be-tween experimental data and theoreti
ally predi
ted values is visibly redu
ed and the agreementis reasonably good, the error ranging between 4.1% (CAg

1122) and 9.4% (CCu
1111). Moreover theCau
hy-Paradox (C1122 = C2323) no longer exists whi
h is a 
onsiderable improvement.5.3 The alloy Ag-Cu I: Evaluation of the equilibrium 
onditionIn this se
tion we investigate the equilibrium 
ondition shown in Eq (65). We 
hoose A=Agand B=Cu and the 
orresponding equilibrium 
on
entrations cα = 0.063 and cβ = 0.945 at1000 K. Eq (65) has a nontrivial solution only for the index-pair i = j sin
e in an FCC latti
ethe following relation holds for an arbitrary s
alar fun
tion f : ∑ f(R2)RiRj = 0, (i 6= j) and

∑
f(R2)RiRi = 
onst, (∀i, j = {1, 2, 3}). Consequently we may plot the left side (for the index

11) of Eq (65) as shown in Figure 7, left. The point of interse
tion with the abs
issa de�nes thenearest neighbor distan
es in equilibrium of a 
rystal 
onsisting of α or β phase, respe
tively.On the other side it is possible to vary the 
on
entration in the equilibrium 
ondition (65) anddetermine the nearest neighbor distan
e in equilibrium as a fun
tion of the 
on
entration c. The20



Table 3: Elasti
 
onstants for Ag and Cu in GPa. The values in parentheses are from experiments [20℄.
C

Ag
ijkl kl 11 22 33 23 31 12 C

Cu
ijkl kl 11 22 33 23 31 12

ij ij11 132.6 90.2 90.2 0 0 0 11 183.7 115.1 115.1 0 0 0(124) (94) (94) (168) (121) (121)22 90.2 132.6 90.2 0 0 0 22 115.1 183.7 115.1 0 0 0(94) (124) (94) (121) (168) (121)33 90.2 90.2 132.6 0 0 0 33 115.1 115.1 183.7 0 0 0(94) (94) (124) (121) (121) (168)23 0 0 0 42.4 0 0 23 0 0 0 68.7 0 0(46) (75)31 0 0 0 0 42.4 0 31 0 0 0 0 68.7 0(46) (75)12 0 0 0 0 0 42.4 12 0 0 0 0 0 68.7(46) (75)
orresponding points of interse
tion were determined for various dis
rete 
on
entrations c = 0,0.05, 0.10, . . . , 0.90, 0.95, 1, 
f., Figure 7, right. As one 
an see the obtained values of R are ingood agreement with the weighed average R = (1 − c)RAg + cRCu whi
h is represented by the
ontinuous line in Figure 7, right. Espe
ially for the α− and β-phase we 
an 
on
lude:
Rα =

√
8.202 Å = 2.864 Å , Rβ =

√
6.631 Å = 2.575 Å , (90)

Ωα
0 = 16.61 Å3

, Ωβ
0 = 12.07 Å3

. (91)

The equilibrium 
ondition for the α- and
β-phase (i = j) Equilibrium nearest neighbor distan
es fordi�erent 
on
entrations c.Figure 7: Illustration of the di�erent results followed from the exploitation of the equilibrium 
ondition(65).

21



5.4 The alloy Ag-Cu II: The sti�ness 
oe�
ientsEquation (66) allows us to obtain the sti�ness 
oe�
ients as a fun
tion of the mass 
on
entration
c. Note that for every value of c one must �rst evaluate the equilibrium 
ondition in order to�nd the nearest neighbor distan
e R in equilibrium. If R is determined for a 
ertain value of
c the unit 
ell volume Ωα

0 o

upied by an atom α 
an be 
al
ulated. In order to investigatethe sti�ness of the di�erent phases in Ag-Cu we 
onsider the equilibrium 
on
entrations cα and
cβ and analyze Eq (66) at the distan
es Rα and Rβ presented in the previous se
tion. Theresults are 
ompiled in Table 4. On the other hand one 
an ask for the sti�ness of the alloyTable 4: Elasti
 
onstants in GPa predi
ted for the α- and β-phases in an Ag-Cu system at 1000 K.
C
α
ijkl kl 11 22 33 23 31 12 C

β
ijkl kl 11 22 33 23 31 12

ij ij11 135.3 92.2 92.2 0 0 0 11 181.3 115.2 115.2 0 0 022 92.2 135.3 92.2 0 0 0 22 115.2 181.3 115.2 0 0 033 92.2 92.2 135.3 0 0 0 33 115.2 115.2 181.3 0 0 023 0 0 0 43.1 0 0 23 0 0 0 66.0 0 031 0 0 0 0 43.1 0 31 0 0 0 0 66.0 012 0 0 0 0 0 43.1 12 0 0 0 0 0 66.0with an arbitrary mass 
on
entration c. This question is equivalent to a somewhat hypotheti
alexperiment in whi
h the atoms of a pure Ag latti
e are su

essively repla
ed by Cu atoms. Forthis purpose we use the 
al
ulated equilibrium distan
es R illustrated in Figure 7, right, and the
orresponding 
on
entrations values. The (dis
rete) values of the 
al
ulated sti�ness 
oe�
ientsare shown as bullets in Figure 8. Obviously the pure-substan
e-limit is exa
tly ful�lled, i.e.,

the elasti
 
onstants lead to CAg
ijkl and CCu

ijkl for c = 0 or c = 1, respe
tively.5.5 The alloy Ag-Cu III: The higher gradient 
oe�
ientsIn order to 
al
ulate the higher gradient 
oe�
ients for the strain-free 
ase (G = 0, for simpli
ity)we use the redu
ed form of Eq (71):
Hmn(c,Gij = 0) =

1

4

[(

1 − 2y(c)
)

gφmn + gφ̃mn

]

+
1

2
ρ̄△mn

[

F ′A + y(c)
(

F ′B − F ′A)]. (92)22



Figure 8: The 
al
ulated elasti
 
onstants for Ag-Cu as a fun
tion of the mass 
on
entration c. The
ontinuous line represent the linear interpolationbetween the values of pure Ag and Cu.Furthermore the following data 
an be 
ompiled for eute
ti
 Ag-Cu:
ρAg = 10490

kgm3
, ρCu = 8920

kgm3
, ρ0 = 9980.57

kgm3
, δ(c) =

ρ0

µ0M(c)
. (93)By applying cα/β and Rα/β in Eqns (67,68,92,934) one 
an determine the higher gradient 
oe�-
ients aij and bij for the α- and β-phase (
f., Table 5). Moreover, together with the 
al
ulatednearest neighbor distan
es in equilibrium whi
h depend on c (Figure 7, right) we 
al
ulate aij(c)and bij(c) (
f., Figure 9). Note that for an FCC 
rystal we have aij = bij = 0 for i 6= j and

a11 = a22 = a33 or b11 = b22 = b33, respe
tively.Table 5: Cal
ulated higher gradient 
oe�
ients for the di�erent α- and β-phases in eute
ti
 Ag-Cu.phase a11 [N℄ b11 [N℄ A11 [N℄ ∂A11/∂c [N℄
α 4.59 · 10−11 6.14 · 10−11 1.55 · 10−10 7.34 · 10−11

β 1.23 · 10−10 1.03 · 10−10 1.88 · 10−10 2.86 · 10−11For the determination of Aα/βij or (more generally) Aij(c) and the 
orresponding derivative onehas to �nd a 
losed form for the equilibrium distan
e Rα/β = R(cα/β) or R = R(c), respe
tively,�rst. Note that the derivatives ∂aij/∂c, ∂2aij/∂c
2 and ∂bij/∂c must be 
al
ulated and evaluatedat the equilibrium distan
es R whi
h also depends on c. Here we want to use the numeri
allyobtained results from Se
tion 5.3, i.e.,

R(c) ≈ (1 − c)RAg + cRCu . (94)Now we 
an evaluate Aα/βij (
f., Table 5) as well as Aij(c) (
f., Figure 7) and the 
orrespondingderivatives with respe
t to c. Analogously we have for FCC 
rystals Aij = 0 for i 6= j and
A11 = A22 = A33 for i = j.6 Constru
tion of the phase diagramIn order to point out the reliability of the predi
ted sti�ness 
oe�
ients and the HGCs we wantto 
al
ulate �nally the equilibrium parti
le 
on
entrations yα/β for di�erent temperatures usingthe EAM and 
ompare them with experimental data. The resulting phase diagram representsthe 
oexisting phases in the binary alloy at di�erent temperatures.23



Figure 9: Higher gradient 
oe�
ients 
al
ulatedfor Ag-Cu as a fun
tion of the mass 
on
entration
c.From (phenomenologi
al) thermodynami
s of mixtures it is well-known that the equilibrium
on
entrations of a binary mixture 
an be 
onstru
ted from the Gibbs free energy g(y, T ),(pressure p =
onst) for a given temperature performing the Maxwell tangent 
onstru
tion.Here the derivatives of the g(y, T )-
urve at the equilibrium 
on
entrations yα/β must be identi
alto the slope of the 
ommon tangent.Starting from the atomisti
 point of view the Gibbs free energy g(y, T ) per atom 
an be identi�eda

ording to Eq (64) as follows:

g(y, T ) ≡ Eα − Ts =
1

2
gAA + y(1 − y)gφ + ygφ̃ + FA + y(FB − FA) − Ts

= (1 − y)
(

6φAA(R2) + FA(ρ̄av(R2)
))

+ y
(

6φBB(R2) + FB(ρ̄av(R2)
))

+

+12y(1 − y)gφ(R2) + kBT(y ln y + (1 − y) ln(1 − y)
)

. (95)Here the temperature-dependen
e of g(y, T ) is only 
hara
terized by the entropi
 part, namelyby −Ts. Furthermore the Maxwell tangent 
onstru
tion reads:
∂g(y, T )

∂y

∣
∣
∣
y=yα

=
∂g(y, T )

∂y

∣
∣
∣
y=yβ

=
g(yβ , T ) − g(yα, T )

yβ − yα
. (96)Note that in Eq (95) all terms, i.e., gAA, gφ, gφ̃ and FA/B depend on the equilibrium nearestneighbor distan
e R2 whi
h is a fun
tion of the mass 
on
entration c (
.f., Eq (94)). In order to�nd R = R(y) one 
an use the inverse relation c = c(y) of Eq (113):

cCu ≡ c =
mCu

mCu +mAg
=

yMCu

yMCu + (1 − y)MAg
. (97)24



In a same manner one 
an analyze the Gibbs free energy density ψ(c, T ) = g(y(c), T )/δ(c)as a fun
tion of the mass 
on
entration c. Then the resulting equilibrium 
on
entrations arerepresented by cα/β in the phase diagram. Both approa
hes are equivalent and y 
an be trans-ferred to c through Eq (97). Here we want to investigate g(y, T ) and 
al
ulate the equilibrium
on
entrations yα/β as well as the a

ording phase diagram due to a better 
omparison withexperimental/literature data.Figure 10 shows the parti
le-spe
i�
 Gibbs free energy for the temperature 1000 Kelvin followingfrom Eq. (95) and the a

ording ψ-
urve (1st row) as well as the relation R(y) (2nd row).

Figure 10: 1st row: The theoreti
al 
urvesof g(y, T ) and ψ(c, T ) for 1000 Kelvin in
ludingMaxwell's tangent (dashed line) and the 
on-stru
ted equilibrium points (�lled dots). 2nd row:The equilibrium nearest neighbor distan
e R(y) andits deviation from the linear interpolation (dashedline).Note that the ψ-
urves of Figure 5 and Figure 10 
an not be dire
tly 
ompared due to di�erentzero points on the energy s
ale.Evaluating Eq (95) for di�erent temperatures, in parti
ular for 700, 800, 900, and 1000 Kelvinyields the 
urves illustrated in Figure 11 (1st row). Here Maxwell's tangent is removed fromthe values of g. Thus the minima of these fun
tions represent the equilibrium 
on
entrationsfor the a

ording temperature. Note that there are also minima on the �right side� of the
urve, pointed out by the zoomed right pi
ture. Furthermore the 
al
ulated and experimentalequilibrium 
on
entrations yα/β and cα/β are 
onfronted in Table 6. The resulting (theoreti
allydetermined) phase diagram one 
an �nd in Figure 11 (2st row, left). The full diagram on theright side is the a

ording one obtained from MTdataTM, [18℄. A 
omparison of the values inTable 6 as well as the theoreti
al and experimental phase diagram shows that the theoreti
allypredi
ted equilibrium 
on
entrations have qualitatively the same tenden
y as the experimentalones. Furthermore the absolute values of the α-phase (left part of the phase diagram) are ingood agreement but, nevertheless, the values of the β-phase are poorly reprodu
ed.Let us abbreviate the di�eren
e of Gibbs free energy g(y, T ) and Maxwells's tangent with g∗(y, T )25



Table 6: Cal
ulated and experimental equilibrium 
on
entrations for Ag-Cu at di�erent temperatures.The experimental data for 700, 800, 900 Kelvin are from [22℄ and for 1000 Kelvin from [15℄.Temp. predi
ted by EAM experimental datain Kelvin yα yβ cα cβ yα yβ cα cβ700 0.024 0.999999 0.014 0.999999 0.015 0.993 0.0089 0.9882800 0.039 0.999996 0.023 0.999994 0.033 0.986 0.0197 0.9765900 0.056 0.999986 0.033 0.999976 0.063 0.976 0.0381 0.95991000 0.075 0.999957 0.045 0.999928 0.102 0.967 0.0627 0.9452

(
f., Figure 11, 1st row) and the a

ording values of ψ(c, T ) with ψ∗(c, T ). For the investigationof the sour
e of deviation between the experimental and 
al
ulated equilibrium 
on
entrationsone 
an now 
ompare g∗(y, T = 1000K) as well as ψ∗(c, T = 1000K) following from the atomisti

al
ulations and from the MTdataTM database. Moreover, it is also possible to 
al
ulate theso-
alled Ex
ess-enthalpy gex, the non-ideal heat of mixing, whi
h 
an be obtained from thefollowing relation:
g(y, T ) = yg(y = 0, T ) + (1 − y)g(y = 1, T )+

+kBT(y ln y + (1 − y) ln(1 − y)
)

+ gex(y, T ). (98)Figure 12 shows the 
onfronted 
urves for 1000 Kelvin. Obviously the 
ru
ial value that deter-mines the quality of the 
al
ulated phase diagram is the ex
ess enthalpy gex. In parti
ular, itsasymmetry is the sour
e of the asymmetry in the phase diagram related to the solid state andits absolute values 
ompete with the entropi
 part −Ts and determines the horizontal positionof the minima of gmix. Thus values of gex that are too large lead to a shift of the minima (and,
onsequently, of the equilibrium 
on
entrations) in the vi
inity of y = 0 or y = 1, respe
tively.This fa
t is observable in our theoreti
al 
al
ulations, where the 
al
ulated gex is 
onsiderablylarger than the experimental 
urve, but, nevertheless, have the same magnitude and the samefun
tional 
hara
teristi
s (asymmetry) as the other 
urves. The sour
e of the deviation of gexis due to the use of the 
al
ulated nearest neighbor distan
e R in equilibrium, a measure forthe relaxation of the latti
e 
aused by di�erent atom-types. This value 
an only be as realisti
as the (�tted) EAM potentials, be
ause they enter the equilibrium 
ondition used to �nd R.In spite of these short
omings our phase diagram 
al
ulations, �rst, qualitatively reprodu
e theexperimental values and, se
ond, are of the same magnitude as the literature data.26



Figure 11: 1st row: The 
al
ulated Gibbs free energy g(y, T ) for the di�erent temperatures 700, 800,900, 1000 Kelvin. 2nd row, left : The 
al
ulated solid part of the phase diagram of Ag-Cu (�lled andjoined dots) vs. experimental data (un�lled dots). Right: The phase diagram generated by MTdataTM.

7 Con
lusion and OutlookA 
ompa
t theory was presented whi
h allows for an atomisti
 identi�
ation of me
hani
al,thermodynami
al as well as thermo-me
hani
al material parameters in binary alloys. It is basedon EAM potentials and results in an energy expression for an arbitrary atom α, given by Eq(64). Undoubtedly this equation represents the 
entral element in the outlined pro
edure and isgenerally valid, i.e., it does not depend on the fun
tional form of the EAM-fun
tions.By 
onsidering a binary (multiphase) mixture the equilibrium (atomi
) nearest neighbor distan
e
R, the sti�ness 
oe�
ients, the higher gradient 
oe�
ients, and the (temperature-depending)equilibrium 
on
entrations of the di�erent phases 
an easily be 
al
ulated. Moreover it is alsopossible to determine these quantities as (
ontinuous) fun
tions of mass or parti
le 
on
entrations
c and y, respe
tively. Furthermore the equilibrium 
ondition following from Eq (64) represents theenergy-minimization-prin
iple and provides a theoreti
al tool for an estimate of latti
e relaxationsdue to di�erent atom-types in the latti
e.However, the main fo
us of this paper was the theoreti
al des
ription of the HGCs, sin
e sofar the 
ommuni
ated data are mostly estimated or their origin is not 
lear. That is why theexisting data are questionable. In order to substantiate the reliability of the predi
ted HGCs we27



Figure 12: A 
omparison of the 
al
ulated
g∗(y, T = 1000K), ψ∗(c, T = 1000K), and
gex(y, T = 1000K) fun
tions with the a

ordingfun
tions obtained from MTdataTM (dashed line).also determined the sti�ness 
oe�
ients and 
onstru
ted the solid part of the phase diagram.Espe
ially we 
hose the binary alloy Ag-Cu for the illustration of the theoreti
al determinationof the above mentioned parameters.For the whole investigation the nearest neighbor model as proposed by Johnson [3℄ was used.This spe
ial form 
onsiders a very simple fun
tional dependen
e for the EAM fun
tions, assum-ing only nearest neighbor intera
tions and s-orbitals for the ele
tron sheath. Nevertheless, thedetermined quantities, for instan
e the sti�ness 
oe�
ients, are in in good agreement with theexperimental data. Only the 
al
ulated equilibrium 
on
entrations in the phase diagram par-tially ina

urately reprodu
e the experimental values. It seems that Johnson's parametrizationonly allows a qualitative 
al
ulation of phase diagram data. Here one 
ould use other fun
tionalforms or extensions of Johnson's model. One possibility is to 
onsider more neighboring atomsas suggested by Daw and Baskes in [13℄.Moreover new modi�
ations of EAM were developed in the last years in order to apply thismethod to other than FCC latti
es [24, 25℄. As an example the Modi�ed Embedded-AtomMethod (MEAM) allows the investigation of BCC-metals, for instan
e Fe. HCP stru
tures werealso investigated su

essfully with EAM [26℄. Therefore, in prin
iple, it is possible to determinethe HGCs of more 
omplex latti
e stru
tures using EAM/MEAM. Other appli
ations of theEAM, whi
h 
ould be interesting in the future are simulations and investigations of fra
ture,plasti
ity behavior, impurities, surfa
es or grain boundaries.In summary one 
an say that the predi
ted HGCs originated from a mi
ros
opi
 theory based oninteratomi
 intera
tions are reliable as indi
ated by the quality of the sti�ness 
oe�
ients and(despite of some deviations) by the phase diagram 
onstru
tion. Indeed, the value of Aij is 
loseto those found in literature (e.g., [27℄, Aij = 2 · 10−10δij N). An investigation of the in�uen
e ofthe 
al
ulated HGCs on phase separation and the 
oarsening pro
esses in binary alloys a

ordingto Eq (2) is 
urrently underway and will be published in a subsequent paper.Appendix A. The extended di�usion equationIn the Appendix of [2℄ Dreyer and Müller presented a derivation of an extended di�usion equa-tion by means of Rational Thermodynami
s. They started from the 
lassi
al (5 �eld) partialbalan
e equation of mass, momentum, and internal energy using a Lagrangeian des
ription.Furthermore they 
hose the following state spa
e Z:

Z =

{

T, c,
∂c

∂Xi
,

∂2c

∂Xi∂Xj
, εij

} (99)28



by means of whi
h all 
onstitutive quantities (e.g., di�usion �ux Ji, heat �ux Qk, and �rst orse
ond Piola-Kir
hhoff stress tensor, tik or Tik) follow. The balan
e equations be
ome �eldequations if the 
onstitutive equations are inserted, whi
h link the elements of the state spa
e tothe 
onstitutive quantities in a material-dependent manner. In order to take the se
ond law ofthermodynami
s into a

ount Dreyer and Müller applied Liu's method [21℄. The lo
al entropyinequality
ρ0
dsdt +

∂φk
∂Xk

= Σ ≥ 0 (100)(s being the entropy, φk the entropy �ux, and Σ the (positive) entropy produ
tion density)holds for all pro
esses that are solutions to the �eld equations. If the balan
e equations areinterpreted as 
onstraints, i.e., multiplied by Lagrange fa
tors Λc, Λvi , Λu and added to Eq(100) the inequality is then valid for arbitrary �elds and 
an be exploited. This pro
edure leadsto following extended di�usion equation [2℄:
ρ0
∂c

∂t
+
∂Ji
∂Xi

= 0 and Ji = −ρ0Mij
∂Λc

∂Xj
. (101)Here Λc refers to the mass balan
e and 
an be identi�ed with the 
hemi
al potential µ. Moreoverit holds in a

ordan
e with the se
ond law of thermodynami
s, [11℄ we �nd that:

Λc ≡ µ =
∂ψ

∂c
− ∂

∂Xm

(
∂ψ

∂(∂c/∂Xm)

)

+
∂2

∂Xm∂Xn

(
∂ψ

∂(∂2c/∂Xm∂Xn)

) (102)where ψ represents the Gibbs free energy density. Following Cahn and Hilliard on p. 259 in [6℄a system with an inhomogeneous mass-
on
entration pro�le c(Xi, t) 
an be 
hara
terized by theequation:
ψ = ψ
onf(c, εij) − akl(c, εij)

∂2c

∂Xk∂Xl
+ bkl(c, εij)

∂c

∂Xk

∂c

∂Xl
. (103)The last term of the right side of Eq (103) was negle
ted by Dreyer and Müller as well as invarious other publi
ations and represents a more general 
ase. Finally the �rst term ψ
onf(c, εij)is the 
ontribution of a solution with a homogeneous 
on
entration pro�le and 
onsists of twoparts:

ψ
onf(c, εij) = ψ0(c) +
1

2
(εij − ε∗ij)Cijkl(εkl − ε∗kl), (104)where ψelast = 1/2(εij − ε∗ij)Cijkl(εkl − ε∗kl) denotes the energy density due to elasti
, eigen- andthermal strains.In order to obtain the extended di�usion equation (2) we have to 
al
ulate the expressions ∂ψ/∂c,

−∂ψ/∂(∂c/∂Xm), and ∂ψ/∂(∂2c/∂Xm∂Xn) in Eq (102) using ψ as given by (103):
∂ψ

∂c
=
∂ψ
onf(c, εij)

∂c
− ∂akl(c, εij)

∂c

∂2c

∂Xk∂Xl
+
∂bkl(c, εij)

∂c

∂c

∂Xk

∂c

∂Xl
, (105)

− ∂ψ

∂(∂c/∂Xm)
= −2bml

∂c

∂Xl
,

∂ψ

∂(∂2c/∂Xm∂Xn)
= −akl. (106)

29



Consequently it follows by means of the 
hain rule:
− ∂

∂Xm

(
∂ψ

∂(∂c/∂Xm)

)

= −2

(
∂bml
∂c

∂c

∂Xm

∂c

∂Xl
+
∂bml
∂εrs

∂εrs
∂Xm

∂c

∂Xl
+ bml

∂2c

∂Xm∂Xl

)

, (107)
∂2

∂Xm∂Xn

(
∂ψ

∂(∂2c/∂Xm∂Xn)

)

= −
(
∂2amn
∂c2

∂c

∂Xm

∂c

∂Xn
+
amn
∂c

∂2c

∂Xm∂Xn
+

+2
∂2amn
∂c∂εrs

∂εrs
∂Xm

∂c

∂Xn
+
∂2amn
∂εopεrs

∂εop
∂Xm

∂εrs
∂Xn

+
∂amn
∂εrs

∂2εrs
∂Xm∂Xn

) (108)By applying the results of Eqns (105-108) as well as the de�nition:
Aij =

∂aij
∂c

+ bij (109)to Eq (102) the following relation is obtained:
µ =

∂ψ
onf
∂c

− 2Akl
∂2c

∂Xk∂Xl
− ∂Akl

∂c

∂c

∂Xk

∂c

∂Xl

−2
∂Akl
∂εmn

∂c

∂Xk

∂εmn
∂Xl

− ∂2akl
∂εopεmn

∂εop
∂Xk

∂εmn
∂Xl

− ∂akl
∂εmn

∂2εmn
∂Xk∂Xl

. (110)The 
ombination of Eq (110) and Eq (101)2 results in Eq (2). The quantities aij , bij and Aijare 
alled Higher Gradient Coe�
ients (HGCs) and 
an be identi�ed with the quantities −κ1,
κ2 and κ introdu
ed by Cahn and Hilliard in [6℄ on p. 259.Appendix B. Conversion of parti
le to mass 
on
entrationThe total Gibbs free energy of an equilibrium phase γ follows by summation from Eq (64):

Gγ =
∑

α∈γ

Eα − TSγ , Sγ = −kB∑
α∈γ

[y ln y + (1 − y) ln(1 − y)] ,

Eα
(64)
=

1

2
gAA + y(1 − y)gφ + ygφ̃ + FA + y(FB − FA) +

+
1

2
GijGkl

{
. . .
}

ijkl
(y) + (∇2

mny)
{
. . .
}

mn
(y) , (111)where {. . .}ijkl and {. . .}mn represent the expressions within the bra
kets of the se
ond and thirdblo
k in Eq (64). Furthermore kB denotes Boltzmann's 
onstant and TSγ the entropi
 part of

Gγ . Moreover, the sum is 
arried out with respe
t to all parti
les α of the phase γ, and Eαrepresents the energy of a parti
le due to its intera
tions with the neighbors β. The quantities
gAA, gφ, gφ̃, FA, FB, {. . .}ijkl, and {. . .}mn are de�ned by means of the EAM potentials (
f., Eq(64)) determined by the distan
e Rαβ2 between atom α and β. In order to obtain the sti�ness
oe�
ients and the HGCs as fun
tions of c the following pro
edure is performed:1. Relate the �ma
ros
opi
� Gibbs free energy density ψ to the mi
ros
opi
 equation (111).2. Substitute the derivatives of the parti
le 
on
entration y for terms of the mass 
on
entration

c. Here one 
an use the relation:
cB = (1 − cA) ≡ c =

mB
mB +mA =

yBMB
yBMB + (1 − yB)MA (112)

⇒ yB = (1 − yA) ≡ y = ỹ(c) =
cMA

MB − c(MB −MA)
, (113)30



where MA/B is the mole
ular weight of the 
omponents A/B, and cB is the mass 
on
en-tration of B.3. Compare the resulting equations with the ma
ros
opi
 equations (62,63) and identify theHGCs and sti�ness 
oe�
ients.We re
all the following thermodynami
al relations for one Mole:
Ĝ = NA(Eα − Ts) , ψ = ρ0

Ĝ

m
, m = NAµ0M(c) , (114)

⇒ ψ = δ(c)(Eα − Ts) with δ(c) =
1

Ω0(c)
=

ρ0

µ0M(c)
and 1

ρ0
=

c0
ρCu +

1 − c0
ρAg . (115)

Ĝ stands for the Gibbs free energy per one Mole, NA = 6.0237 ·1023 is the number of parti
les inone Mole (Avogadro's 
onstant) and s = −kB[y ln y + (1− y) ln(1− y)] represents the entropywith respe
t to one parti
le. Furthermore m denotes the total mass, ρ0 identi�es the mass densityof the alloy in the homogeneous referen
e state with the (homogeneous) 
on
entration c0 and
µ0 = 1.66 · 10−27kg stands for 1

12 of the weight of a Carbon 12 atom. The symbol M(c) denotesan averaged mole
ular weight of the binary alloy A-B and 
an be obtained from the mole
ularweights of the pure 
omponents through the relation M = M̃(c) = y(c)MB + [1 − y(c)]MA.The symbol δ identi�es the re
ipro
al volume o

upied by an atom and yields the followingexpression:
1

δ(c)
ψ =

1

2
gAA + y(1 − y)gφ + ygφ̃ + FA + y(FB − FA) +

+
1

2
GijGkl

{
. . .
}

ijkl
(y) + (∇2

mny)
{
. . .
}

mn
(y) + kBT [y ln y + (1 − y) ln(1 − y)] .(116)Considering the fun
tion ỹ(c) in Eq (113) and applying the 
hain rule one 
an repla
e ∇2

mnywith the following relation:
∇2
mny =

∂2y

∂c2
∂c

∂Xm

∂c

∂Xn
+
∂y

∂c

∂2c

∂Xm∂Xn

=
2MAMB(MB −MA)

[MB − (MB −MA)c]3
(∇mc)(∇nc) +

MAMB
[MB − (MB −MA)c]2

∇2
mnc (117)

≡ M(c) · Dmn(c) , (118)with the symboli
 notation for the ve
tor M(c) and for the ve
torial di�erential operator Dmn(⋄)as follows:
M(c) =

( M(1)(c)M(2)(c)

)

=

(
2MAMB(MB−MA)
[MB−(MB−MA)c]3

MAMB
[MB−(MB−MA)c]2

) and
Dmn(⋄) =

(

D(1)
mn

D(2)
mn

)

=

(
∇m(⋄)∇n(⋄)

∇2
mn(⋄)

)

. (119)
31



A 
ombination of the relations (113,117) with Eq (116) yields the following expressions:
ψ0(c)

δ(c)
=

1

2
gAA + y(c)(1 − y(c))gφ + y(c)gφ̃ + FA + y(c)(FB − FA) , (120)
ψelast(c)
δ(c)

= Eαelast =
Ωα

0

2
Gij Cijkl(c) Gkl , (121)

amn(c,Gpq)

δ(c)
= −M(2)(c) Hmn(c,Gpq) , (122)

bmn(c,Gpq)

δ(c)
= M(1)(c) Hmn(c,Gpq) , (123)

Cijkl(c) =
1

Ωα
0

[

2BA
ijkl + 4y(c)(1 − y(c))Bφ

ijkl + 4y(c)Bφ̃
ijkl + 4

(

WA
ijkl + y(c)W△

ijkl

)

×

×
(

F ′A + y(c)(F ′B − F ′A)
)

+ 4
(

V A
ij + y(c)V △

ij

)(

V A
kl + y(c)V △

kl

)(

F ′′A + y(c)(F ′′B − F ′′A)
)]

,(124)
Hmn(c,Gpq) =

1

4

(

(1 − 2y(c))gφmn + gφ̃mn

)

+
1

2
ρ̄△mn

(

F ′A + y(c)(F ′B − F ′A)
)

+
1

2
Gij

[

(1 − 2y(c))Aφijmn +Aφ̃ijmn + 2V △
ijmn

(

F ′A + y(c)(F ′B − F ′A)
)

+ 2ρ̄△mn

(

V A
ij + y(c)V △

ij

)(

F ′′A + y(c)(F ′′B − F ′′A)
)]

+
1

2
GijGkl

[

(1 − 2y(c))Bφ
ijklmn +Bφ̃

ijklmn

+ 2W△
ijklmn

(

F ′A + y(c)(F ′B − F ′A)
)

+ 2ρ̄△mn

(

WA
ijkl + y(c)W△

ijkl

)(

F ′′A + y(c)(F ′′B − F ′′A)
)

+ 2V △
klmn

(

V A
ij + y(c)V △

ij

)(

F ′′A + y(c)(F ′′B − F ′′A)
)

+ 2V △
ijmn

(

V A
kl + y(c)V △

kl

)

×

×
(

F ′′A + y(c)(F ′′B − F ′′A)
)

+ 2ρ̄△mn

(

V A
ij + y(c)V △

ij

)(

V A
kl + y(c)V △

kl

)(

F ′′′A + y(c)(F ′′′B − F ′′′A )
)]

.(125)The HGCs Akl 
an dire
tly be 
al
ulated from (122) and (123) by means of the relation Akl =
∂akl

∂c + bkl. Moreover it should be mentioned that Eqns (120-123) hold for a equilibrium phase
onsisting of two 
omponents in whi
h the 
omposition is 
hara
terized by the mass 
on
entration
c ≡ cB.Appendix C. Two equations for G and for EuvfWe 
onsider the Eqns (81) and (30a) together with the de�nitions shown in Eqns (82-85). Inorder to determine the 
oe�
ients C1111, C1122, and C2323 we �rst 
al
ulate all the required
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derivatives:
ρ′(R2) = −β ρe

R2
, ρ′′(R2) = β2 ρe

R4
, φ′(R2) = −γ φe

R2
, φ′′(R2) = γ2 φe

R4
(126)

F ′(ρ̄e) = −6
γφe
βρ̄e , F ′′(ρ̄e) =

Esubα2 + 24γφe(β − γ)

4β2ρ̄2e . (127)Due to nearest neighbor intera
tions all neighbors of an atom α are separated by the samedistan
e R. Thus the derivatives ρ′, ρ′′, and φ′′ do not depend on the sum and one 
an write fora pure substan
e:
Cijkl =

1

Ω0

[

2φ′′
(∑

β

RiRjRkRl

)

+ 4F ′ρ′′
(∑

β

RiRjRkRl

)

+ 4F ′′ρ′ρ′
(∑

β

RiRj

)(∑

β

RkRl

)](128)Note that for an FCC 
rystal the following relations hold: ∑R4
1 = 8(a/2)4, ∑R2

1 =
∑
R2

2 =
8(a/2)2, ∑R2

2R
2
3 = 4(a/2)2(a/2)2, and ∑R2R3 = 0, 
f., Figure 13. Therefore one 
an �nally
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Figure 13: The number of atoms with a 
ontribution in x1, x2 and x3 dire
tion (the un�lled atoms haveno 
ontribution in the 
onsidered dire
tion).�nd for the elasti
 
onstants:
C111 = Ξa + Ξb , C1122 =

1

2
Ξa + Ξb , C2323 =

1

2
Ξa (129)with the de�nitions:

Ξa =
a4

Ω0

[
φ′′(R2) + 2F ′(ρ̄e)ρ′′(R2)

]
, Ξb = 16

a4

Ω0
F ′′(ρ̄e)ρ′(R2)ρ′(R2). (130)In the 
ase of the average of the Voigt shear modulus it follows (a4 = 4R4) that:

G =
2

5
Ξa =

2a4

5Ω0

[
φ′′(R2) + 2F ′(ρ̄e)ρ′′(R2)

]
=

8

5

φeγ(γ − β)

Ω0
(131)or:

G =
24

15

Φeγ(γ − β)

Ω0
. (132)In the same manner one 
an show for the 
ompressibility: κ = 2

3Ξa + Ξb.33



We now 
onsider the va
an
y formation energy Euvf. For this purpose we want to follow thestrategy of R.A. Johnson in [3℄ and note a

ording to Eq (80) for equilibrium:
Euvf = −6φe − 12F (ρ̄e) + 12F (

11

12
ρ̄e) =

(77)
= −Φe + 12(Esub + Φe) − 12Esub [1 + h

(
11

12

)]

exp

[

−h
(

11

12

)]

− 12Φe(11

12

) γ
β (133)with h(x) = α

(√

1 − 1
β lnx− 1

). Performing a Taylor-expansion of the form:
h(x) = −1

2

α

β
(x− 1) +

1

4

α

β

(

1 − 1

2β

)

(x− 1)2 + . . . , (134)
exp[−h(x)] = 1 +

1

2

α

β
(x− 1) − 1

4

α

β

(

1 − 1

2β
− α

2β

)

(x− 1)2 + . . . , (135)
x

γ
β = 1 +

γ

β
(x− 1) +

1

2

γ

β

(
γ

β
− 1

)

(x− 1)2 + . . . . (136)An evaluation of these series at x = 11
12 results in:

Euvf =
Esub
24

(
α

β

)2 [ 337

1152
+

1

2304
β2

(
1

2
+
a

2

)]

+ Φe(γ − β

β

)(

1 − 1

24

γ

β

)

. (137)The various 
ontributions in this equation 
an be also investigated by means of quantum me-
hani
al methods. Following Johnson in [3℄ the leading term of Eq (137) is Φe(γ−ββ ). Thereforeit is reasonable to 
onsider the approximation:
Euvf ∼= Φe(γ − β

β

)

. (138)A
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