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Abstract

For a quantitative theoretical description of phase separation and coarsening reliable data
of stiffness constants and the so called Higher Gradient Coefficients (HGCs) are required. For
that reason pair potentials of the Lennard-Jones type were used in [1] to provide a theoretical
tool for their quantitative determination. Following up on this work these quantities are now
calculated by means of the Embedded-Atom Method (EAM), a recently developed approach
to describe interatomic potentials in metals. This is done, first, to achieve a better agreement
between predicted and experimentally observed stiffness data as well as to avoid artifacts,
such as the Cauchy paradox, and, second, to increase the trustworthiness of the HGCs for
which experimental data are rarely available. After an introduction to the fundamentals
of EAM it is outlined how it can be used for calculating stiffness constants and HGCs. In
particular, Johnson’s modification of EAM for nearest neighbor interactions [3] is applied
to present explicit numerical results for a case study alloy, Ag-Cu, which has a “simpleface-
centered-cubic crystal structure and where it is comparatively easy to obtain all the required
analysis data from the literature and to experimentally compare the predictions of mechanical
data.

1 Introduction

The theoretical description of phase separation as a consequence of spinodal decomposition or
nucleation and subsequent coarsening (Ostwald ripening) is a widely spread and ongoing research
area. Originally this form of solid-solid phase transformation was effectively described in the
seminal papers of Cahn and Hilliard [6] and Cahn |7]. They used so called phase field theories
and derived a diffusion equation that, for the first time, allowed a qualitative description of phase
separation phenomena (“uphill” diffusion). Since then phase field theories were the objects of
numerous research groups and investigated from different points of view (e.g., [8], [9] or [10]).

In |2] Dreyer and Miiller presented an approach for the theoretical description of phase separation
in binary alloys triggered by spinodal decomposition and followed by coarsening. It is based on the
evaluation of the dissipation inequality by methods of Rational Thermodynamics. As a result of
their considerations an extended diffusion equation was formulated representing a generalization
of the well-known Cahn-Hilliard equation [11]. It reads:
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0 (mass balance). (1)

Here ¢ = ¢(X;,t) represents the mass concentration in the material as a function of reference
position X; and time ¢. Furthermore pg is the mass density of the alloy in its (liquid) reference
state. The (extended) diffusion flux J; combines the influences of concentration gradients, surface



tensions, and mechanical strains and can be written as follows (cf., Appendix A):
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The symbol M;; denotes the mobility matrix and can be linked to diffusion coefficients commonly
used in Fick’s first law, ¢y = 1/30(0, T,ey;) stands for the Gibbs free energy of an equivalent
homogeneous system with mass concentration ¢, and ag; = ag(c, T, e), bg = ZN)kl(c, T, ek), and
A = 6;21 + by being the so-called Higher Gradient Coefficients (HGCs) taking concentration
gradients into account.

For a quantitative assessment of the diffusion process realistic material data are required, i.e.,
in particular the material parameters of the binary mizture po, M;;, Vo, Ak, ag, by and Chmn,
must be specified. Note that, for a prescribed external load, the stiffness constants Cjpny, are, in
the simplest case, combined with the strains €j; according to Hooke’s law.

In the present paper we consider a binary alloy A-B
below its critical temperature (melting point). Usu-
ally such systems consist of two or more phases, which
differ in their composition, i.e., in the concentrations
of the components cp or cg = (1 — ca), respectively.
For instance in pure solid mixtures below the eutec-
tic temperature one can observe two different phases,
the a-phase (A-rich) with the equilibrium concentra-
tion ¢, and the B-phase (B-rich) with cg, cf., Figure 1.
Furthermore phase field theories are characterized by
“smoothinterfaces between the a- and 3-phases (in con-
tradiction to sharp interfaces), i.e., a phase boundary
allowing for a continuous change between the equilib-
rium concentrations ¢, and cg. Therefore it is reason-
able to concentrate on the material data of, first, the

a-phase, second, the (-phase and, third, of the phase
boundary. Figure 1: Spinodal decomposition in eu-

tectic Ag-Cu after various heat treatments
The aim of this paper is providing a theoretical ap- 4t 1000 K; a) Oh, b) 5h, ¢) 20h and d) 40h;
proach for the determination of the stiffness Cpmy and — dark: Cu-rich (3), light: Ag-rich (), scale:

the higher gradient coefficients ay;, by and Ag; of the 1:1000

different phases in binary alloys below Tgy. This is

particularly useful in the case of the HGCs since there is a considerable lack of data in literature.
The approach is based on the evaluation of interatomic potentials and allows for a quantitative
calculation of these material data in order to perform computer simulations based on the equa-
tions (1-2). With respect to the material data within the phase boundary a linear interpolation
as follows:

cg—c
2(c) = O(c)Ba + (1—O(c))Z5 , ©O(c) = ——— (shape function) | (3)

c3 — Ca
between the material data =, = {C}, .., A%y, ay} and =g = {C,’flmn, Afl, afl of the equilibrium
phases can be performed. Consequently it only remains to specify =,/3. However, this linear



approach represents only a first approximation, and it is more desirable to find the general

dependence E = =(c). Then the interpolation of Eq (3) becomes redundant.

Atomistic arguments for the calculation of stiffness coefficients as well as higher gradient coef-
ficients of Ag-Cu have already been presented by Dreyer and Miiller in [1]. However, problems
arose already during the prediction of the stiffness constants of the pure substances, C?lfnn and
C’Elgm, respectively. Due to the use of pair potentials (Lennard-Jones potentials) the Cauchy
paradox (Ch122 = Casa3) could a priori not be avoided and, consequently, the deviation from
experimental data was considerable. Moreover, for alloys showing a higher degree of anisotropy

than cubic crystal structure (e.g., Sn-Pb, BCT-structure) negative shear moduli were obtained,
[1].

Consequently the predicted HGCs seemed also questionable and alternative atomistic methods
should be used that avoid the aforementioned shortcomings. The Embedded-Atom Method
(EAM) is such a technique. It is a powerful, semi-empirical approach that allows to capture the
state of energy of an atomic system reasonably well. It was developed in the eighties by Daw and
Baskes, [12] and [13], and considerably improves the quality of data when predicting physical
properties of alloys, especially for those of the FCC type.

In the following section we want to give a brief introduction to the general idea of EAM and to
the underlying assumptions. After that we concentrate on the analytic EAM-model proposed by
Johnson, [3|, which holds for nearest neighbor interactions. It is shown how the expression for
the energy can be evaluated for binary alloys to obtain atomistic relations for the stiffness and
the higher gradient coefficients. In the last part of the paper we consider the brazing binary alloy
Ag-Cu, which has a simple FCC-structure. In particular, we illustrate the fitting procedure and
present results with respect to the elastic constants and HGCs. Finally we construct the solid
part of the phase diagram in order to emphasize the trustworthiness of the predicted values.

2 Introduction to EAM

2.1 Basic concepts of EAM

The principle of EAM is illustrated in Figure 2. If effects of lattice dynamics are ignored the
energy of a solid is exclusively given by static atomic interactions. Unlike during the use of
pair-potentials’ the mathematical key to EAM consists of introducing a nonlinear function F,, =

F,(pa) in the energy expression for atom «, in addition to the pairwise-interaction term:

1

Ea=g >, #*70%) + Falpa) where pa= D ps(r*?). (4)

s s
(B#a) (B#a)

F, is known as the embedding function and p, is the (constant) electron density at the position
r¢ of atom a due to all neighbors 3. The first term in (4); refers to interactions between the nuclei
and the second to atom-electron interactions. This type of separation was proposed by Daw and
Baskes and can be justified by quantum-mechanical arguments |12, 13|. The contribution to the
electron density by the neighbor 3, pg, is a function of the scalar distance % between atom o

'Here the energy F, of an particle (atom) « is given by E, = %Zﬁ(a;ﬁﬁ) @B (r*P), where ¢*# denotes the

pairwise interaction potential between the atoms « and (3 and depends only upon the radial distance r*% between
«a and (.



and the nucleus of 3. Summation of the contributions from all neighbors yields p,, which can
be interpreted as a constant background electron density of a homogeneous electron gas. Thus
Po denotes the resulting electron density, which is “felt” by atom « due to the presence of its

neighbors (.

a Question:

Which "components" of a
solid interact with atom « ?

EAM:
"closer look"
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Figure 2: The general principle of the EAM as proposed by Daw and Baskes [12, 13]

The embedding function, F,(p,), can be interpreted as the energy required to incorporate an
atom « in a homogeneous electron gas with the constant electron density p,. Note that the
functional form of F, depends only on the type of the (embedded) atom a and the argument of
F,, refers to the electron density of the medium in which atom « is embedded.

¢*B = &aﬁ(ro‘ﬁ) characterizes the (purely repulsive) interactions between the nuclei of atom «
and 3. It depends on the scalar distance r®? between o and 8 and is, according to [3], a positive,
monotonically decreasing function.



In summary we may say that in order to determine the energy F,, of a particle a in a binary alloy
A-B it is required to know the following quantities: Fa, Fg, pa, pg, #**, #PB, and ¢AB. With
the exception of ¢*P all of these functions can easily be related to (macroscopic) mechanical and
calorimetric data of the pure substances A and B. In order to obtain ¢*B a model will be used
that relates this quantity to the interactions ¢** and ¢PB of the pure substances.

In the following sections it is assumed that every atom in the solid interacts only with its nearest
neighbors (first shell). This assumption leads to a special modification of EAM introduced by
Johnson in [3].

2.2 Johnson’s analytic nearest-neighbor model

Consider Figure 3 and recall that in an FCC-lattice an arbitrary atom « is surrounded by
exactly twelve nearest neighbors from which it is separated by the distance r®? = r = a/Vv?2 (or,
in equilibrium, R = ae/\/§), where a denotes the lattice parameter.

Figure 3: The nearest neighbors for an arbitrary atom « in a FCC-lattice

In order to obtain E, in Eq (4) it is necessary to specify ¢*?, F,, and ps (= pa). More specifically
we have to choose a suitable functional form. In particular for a binary alloy A-B the functions
Fa, Fi, pa, pB, ¢, ¢PB, and ¢*B must be specified. For that reason Johnson proposed in 3]
to use the following form? for pa/B and pAA/BB (where the indices A and B of the two atom

species have been omitted for simplicity):

r

p(r) = peexp [—ﬂ (E - 1)} , @(r) = ¢e exp [—7 (% - 1)] : (5)

The four parameters pe, o, 3, and v depend on the type of the atom and will be determined using
information from both pure substances, A and B. Furthermore the nearest neighbor distance R
must be known or calculated from the lattice parameter a, as indicated before.

For the interaction ¢*B between nuclei of different atom types Johnson used the following form:
1 [pB(r) aa PA(T) BB
¢>AB7~=—[ R e LR I (6)
D=5 [ O i

2Especially the form of the atomic electron density p is borrowed from atoms with isotropic s-orbitals. This
(for special cases) unrealistic assumption is later corrected by the fitting procedure.




This relation can easily be quantified using data for the pure substances A and B.

Finally it remains to specify Fia and Fg. For this purpose a universal function of state is used as
suggested by Rose et al. [14]. According to them the particle-specific energy for a broad range
of materials can be approximated by:

E(a) = —Eap[1+a*(@)]e @ | a*(a) = (ﬁ - 1) < 925‘;)_ , (7)

where Fg,, denotes the sublimation energy per atom of the material, s is the compressibility
and g is the volume occupied by an atom in the lattice at equilibrium. Hence €2y is a function
of ae and, for an FCC-lattice, can be obtained from:

3
Qg
Q0 = Z) (8)

because there are four atoms in the unit cell (8 x % atoms in the corner; 6 x % atoms on the
faces). All quantities in Eq (7) can be found in the literature or databases, e.g., [15].

By combining the relation E(a) = E, with Eq (4) and substituting a = 7v/2 and a, = Rv/2 by
the inverse relation resulting from Eq (5), namely:

wEeGo) 2

the following form is obtained for F':

ro=-ufp- 30 (2))2)

For this result the relations:
Z p(r) =12p(r) |

were used which hold for FCC crystals and nearest-neighbor-interactions. Note that the explicit
form of F' = F(p) only arises because of the special functional forms in Eq (5), which allow an
inversion from 7 to p.
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In order to determine all relevant functions for a binary alloy in Eq (4) it is necessary to know the
various material parameters introduced in Eqns (5) and (10), namely «, 3, 7, ¢o, and pe = 12p,
for the pure substances A and B. How to obtain these quantities through a fitting procedure will
be explained in one of the following sections.

3 Evaluation of the EAM energy expression

3.1 Lattice deformation and strain measures

We consider an arbitrary lattice, where the equilibrium state is denoted by the undeformed
(reference) configuration. In this case the position of an arbitrary atom « is given by its reference
position vector X&. Analogously the atom of the deformed lattice configuration beyond the



equilibrium is characterized by the current position vector zf = X + £, where £ denotes
the displacement of atom « from his reference position. In the same manner all lattice atoms

B,7,9,... are characterized, i.e., the conglomerate of all reference positions (X;’,Xf,XZ, oY)

and current positions (:Ef‘,:bf,xz, ...) contains the whole information about the undeformed or

deformed lattice, respectively. Moreover, the distance between two arbitrary atoms « and (3 is

written as R;lﬁ = Xiﬁ — X or r?ﬁ = :E;B — x¢ (also note Figure 4 for an illustration of the

situation. Consequently the following relations can easily be obtained:

onequ‘\‘b“um :
(de(ormedV [

! equilibrium
{undeformed)

Figure 4: The different lattice vectors and their notation

= XP+er o) =x+¢), (12)
PP = af = XP o Xp 4 e =R 4P g (13)

)

By performing the so called mean field limit | i.e., by introducing a continuous displacement
function u; = ﬂi(XJQ‘) instead of the discrete displacements £, a Taylor expansion [1] yields:

& = u,(X]a) = u;(X;), (14)
& = wi(X)) = uw(X+ RYY) = ui(X;) + 2 Oui R +. (15)
7 J 8X
= = R4 g;? RY? = (8 + Hyj) RY® = FyR;’. (16)

Here Fj; = d;; + H;j denotes the coefficients of the deformation gradient and H;; = g% stands
J
for coefficients of the displacement gradient.

In order to identify the elastic constants in atomistic theories numerous publications based on
interatomic interactions (e.g., two-body atom-atom interactions) can be found, e.g., [4, 5]. Usu-
ally the authors consider the total energy of the N (deformed) lattice bonds, ®(r},...,7Y), as
a function of the current distance vector between the atoms and expand the energy in a Taylor

series as follows, [4]:

o(rk,...,rN) = <I>(R}+HUR1-,...,RZN+HZ-]-RN)

1 0*d
— ®(R!,...,R +Z b Zb— R+ (17)
orborb
] Rb k l Rb R?

In this equation the index b identifies the bond between the different atoms « and 3 and the
symbol 192? denotes the coefficients of the difference vector of the displacements of « and 3, namely



5f — &= g—;gR?‘ﬁ according to 19;16 in Figure 4. Thus Eq (17) can be reformulated as:

o(rl,...,rN) = ®RL...,RV)+

0P
J Eb: 87’?'6

The first derivatives of ® vanish at equilibrium. Therefore the total elastic energy of the lattice
is represented by the second-derivative-term of Eq (18). Substituting H;; by its symmetric part,
the coefficients of the strain tensor ;;, this term can be linked to the stiffness coefficients Cjjx,

[5].
Unfortunately we could not find a completely convincing argument justifying the substitution
H;; — &;; and hence we want to use another strain measure in order to avoid further irritations

RYPRYP.(18)

1 0*°®
R?ﬁ + —HinklZ
2 b 8 Raﬁ Raﬁ
j o

(07 (0%
RO rjﬁarl g

and misunderstandings. For this purpose we consider the square of Eq (16):
Pt = O = PR R R = C R RY = RO 4 (Chy — o) RS R
= R 12GuRY°RY (19)

where Oy, = Fj; Fy, = FT.F stands for the right Cauchy-Green tensor and Gjr = %(Cj — k) =

%(C —I) for Green’s strain tensor. By means of G, we can write for the energy of a lattice:

&(r°%%) = &(R + 26, RVRY’) = (R4
>’
draB?gras?

oo a8 o 4
+2G,’j e 5 RZ- BR]-B + §G,’ijl Z

p OT RoB2 b

af paf paf pal
RR"RTRT A (20)
RaB?
This equation can be linked to the stiffness coefficients without any further substitutions. How-
ever, the underlying interatomic potentials have to be reformulated in terms of roB?

3.2 Equilibrium condition and stiffness coefficients

According to Section 2 the EAM energy expression of the whole system is given by the sum of
the energies of all atoms in the system, Eio = Y Eo, where E, is given by Eq (4). Because
s pg and p, only depend on the scalar distance % bhetween « and f it is also possible to

use 78 for the argument. The corresponding functions are ¢ = <;AS(TO‘52) and pg = ﬁg(ro‘ﬁ2) and
one can write:

Fo=Y Fa=g 3 0% + Y Falpe) and pa= 3 psr°®). (4

a,B B
(B#a) (B#a)

For convenience we will omit the circumflexes " in the following sections. ¢*?, pg and p, are

implicitly referred to the argument 8% The individual energy contributions of Eq (4a) can be
expanded in a Taylor series at equilibrium (undeformed state). The following steps seem worth
mentioning:

aB/ aB2 a3 B2 a3 ~af
afB ([ paf o3 B2 aff paf o3 B2 aff pof paf paf



In an analogous manner one obtains:
2 2 2 2
pa(r®®7) = pa(R™P") + 20 (R*P7) Gy RV RS + 20(R*) Gy GuRI RSP R RY . (22)

Here the abbreviations (<>)/(Raﬁ2) and (<>)”(R°‘52) represent the derivatives of (¢) with respect
to its argument ro8? evaluated at Ro‘ﬁz. Furthermore Eq (22) is of the form pg(ro‘ﬁ2) = Ag +
BsXos +1CaX25 with Ag = ps(R*?), Bs = p,(R*7*), C5 = pl}(R**) and X,p = 2GRV RY”.
Consequently a Taylor expansion of F,,(pa) at Ag can be performed as follows:

Fa(Z pﬁ(ram)) = Fau < Eﬁ: [-Aﬁ + BgXag + %cﬁxgﬁb =

1 O*F,
A5> + Xa5+— — XopgXary - (23)
Introducing:
a aB' s paB2\ pa « B aB" / paB2\ po a a a
AG =3¢ (RP)RRY . Boy = Z¢ P(RPHYRRYRYRY . (24)
3
(07 Y6 2 Q Q Y6 2 Cl{ QL (0% (0%
Ve =3 p(ROHRPRYT L Wy, = Zp (R )R R RYP R (25)
3

one can find the following important relation for the energy of an arbitrary atom a:

B — %Z ¢ (R 4 Fu(00) + Gy [A?} +2F, (ﬁg)vi?] +
5

+ Gz’ijl |:qujkl + 2F(; (/ﬂ)wmkl + 2F, (pa) VaVkl:| , (26)

where F! (p2) and F"(p%) refer the derivatives with respect to the argument at p2 = dsAs =
>5 pg(Raﬁ2). Note that in order to derive Eq (26) the chain rule was applied as follows:

OF,
o - F(;( Aﬁ> > Bg, (27)
aXaﬁ aﬁ =0 zﬁ: Zﬁ:
’F,
_OF, _ FQZ(Z«%)'ZBﬁBﬁFé(ZAﬁ)‘ZCﬁ‘ (28)
aXO&ﬁaxaﬁf Xaﬁz-XaWZO B Byy s p

Eq (26) represents an important relation for the energy of atom «. It is valid in pure substances
as well as in solid mixtures. In the case of solid mixtures one can find different types of atoms
in the lattice, and we have to specify the type of « and of its neighbors 8 in more detail.

Moreover, neglecting thermal expansion, it is reasonable to postulate that £, assumes a minimum
at equilibrium. Thus in Eq (26) the first bracket on the right hand side must vanish and we find
for the equilibrium condition:

A%+ 2F () VS =0. (29)
Furthermore it holds Fepast/V = GijCijlekl (law of Saint-Venant-Kirchhoff), [16]. Defining
Qf as the volume occupied by an atom a we obtain for the stiffness coefficients from Eq (26):

o 1

ikl = o 2B + AF (p0) Wiy + AF)) (pa)vavkl} ' (30)



At this point it should be pointed out that the underlying potentials of Eqns (29,30) depend
on the argument RoB?, Taking into account the chain rule and, in particular, the relations

~oar 2 apf’(paB . 2 Pl (R % 2 aB’ (R apf’(paB
§P (Ro9) = ST (o) = CUTD o (gos?) = LD D) g
PYR)  ply(RY)

ﬁg(Raﬁz) = i( T T R ), Equs (29,30) are in agreement with the accepted results com-

municated by Daw and Baskes in [13].

We already indicated the importance of Eqns (26,29,30) for solid mixtures. More specifically the
question arises, how to specify these equations for different types of atoms. In the next section
we want to turn the attention to binary alloys and present a procedure yielding all corresponding
equations for binary mixtures.

4 EAM for binary alloys

4.1 Specification of the energy-expression: DPC operator and higher gradi-
ents

In context with Eq (26) the question arises, how to exploit this energy expression for binary
alloys or, in other words, how additional information about the different types of atoms can
be incorporated in this equation. In the case of a binary alloy A-B three different forms of
interactions can be distinguished: A«>A, BB and A« B interactions. In order to include these
interaction terms in Eq (26) one can use a so called Discrete Particle Concentration (DPC)
operator, introduced for example by de Fontaine, [17].

0, vy=A
0. = . 31
Yy {17 ~=B (31)

We now have to detail the following expressions of Eq (26): ¢, o0, F,, A% Skl F've,

77 aVije

F”V‘J‘Vkl and W5, For this purpose we begin the analysis with the decomposmon of ¢

a Vij
and p2 in the following manner:

o™ = (1 9a) (1= 95) ¢™ + 90050 + [ (1 — 9a) U5 + (1 — Up) Ga) ™"
= "+ [fa+ (1 —200) 98]0+ (o +9p) & , (32)
Py = > [(L—g8)pa+sen] =Y [is (o8 — pa) + pa] (33)
B B8

with the definitions ¢ = ¢AB — 1 (A + ¢BB) and ¢ = 1 (¢BP — ¢**). Obviously the DCP
operator act as a “selector” which “chooses” the corresponding interaction depending on what
types of atoms are considered. If for example o and 3 are two A-atoms, 7, as well as g are zero
and only the terms ¢** and pQ = >_ppa remain in Eq (32) and (33). In a same manner one
can obtain ¢PB, ¢AB and ,6%.

Moreover the DCP operator can be replaced by its continuous counterpart applying the mean

10



field limit. Thus a Taylor expansion results in:

Jo = y(X7) =y(X), (34)

Ys y(X) = y(Xi + R{7) = y(Xy) X, +2aan PRY 4. (35)
\/-’ H,_/
=Viy :ngy

The symbols V;y and V?jy are referred to as higher gradients and are characteristic of phase
field theories. After a straightforward calculation we find:

67 = oM 12yl —y)o+ 26 + Viy[(1 - 2y)¢ + S| R + VUyK 2y)¢ + ¢ R RS,
(36)

Y opa+yY (s —pa)+Viy Z(pB — o) B+ 5 V2 yz ps — pa) RYPRST(37)
5 5

= M +yp® + (Vay)ps + (V”y)pm (38)

. .- _ _ _A\ AN
with the definitions p* = Y 5pa1 0% = Ygps — pa)i i = Yglps — pa) R and pf; =
> s(pn — pA)Rf‘ﬁR?ﬁ. At this point it is important to mention that for any scalar function

f(RY®) depending only on the radial distance R*? between atom « and £ the following sum
vanishes:

Zf(ROﬁQ)R?lﬁ . Rf‘}f =0 , (VN =odd number). (39)

This relation stems from the fact that in an arbitrary lattice, due to its periodic arrangement,
for all vectors Rf‘ﬁ a vector —Rf‘ﬁ in opposite direction can be found (if boundary effects are
neglected). Thus Eqns (36,38) results in:

o = ¢AA+2y<1— )b+ 2y + = va[<1—2y)¢+¢3]R?ﬁR§‘ﬁ, (40)
po = P Fup”+5 (wa)pw- (41)

Using Eq (38) the embedding function Fy,(p2) can be also expanded into a Taylor series evaluated
at a weighted average electron density pg, = p™ + yp*= = (1 —y)pa +yps:

Fo(pa) = Fa <p +yp” += (wa)pw> =F, (pav)+2F (Pav) 753 (V) + ... . (42)

=Pav

Note that gradient terms of higher than second order were assumed not to contribute to the
energy of the system. Moreover, F, itself is also decomposed analogously to Eq (33) and we
write:

Fol(po) = (1= y)Fa +yFg, (43)

1 1
Fa =Fa (IOG«U) + 2FA (pav)p” (Vljy) , Fs=1Fg ('O‘w) + 2FB (p[w)’oij (va) : (44)

So the first two terms of the right hand side of Eq (26) are specified in terms of concentration
gradients by Eqns (36) and (43-44).
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In what follows we want to investigate the symbols A%, Bg,,. F Vi$, FAVSVE and FoWS,

of Eq (26). Here it is worth mentioning that the products of the last three expressions F’ Vi
F(;’VZ?VM and F! Wik
the same inder . Hence the decomposition by means of the DCP-operator must be applied to

the complete product.

; cannot be separated and evaluated separately since they are coupled by

The first two abbreviations, A" and By, can be written in the same manner as in Eq (36):

A% = A% +2y(1 — )A¢> + 2yA¢ + V,dy[( 2y)Azykl +Amkl} , (45)
Bfiy = Bl + 2y(1 — y)BY,, + 2yBY, + vmny[( 29) B + Bijpan|  (46)
with the definitions:
! pap?y pas pa af2y\ po afl paf po
A =D "N (RTIRVRY X%MZE:dmﬁ)&ﬁ@ﬂ%ﬁyﬁ, (47)
B
5 x afB2\ paB paB paB po 1", B2y 5B aB a8 Ha
A =D JRIIRRIRIRY . Bl = Z¢>AA (RO RPRORYORS® (45)
p s
aB2 R « 7 aB2\ po «
B = SO R B, = SO R (0

Analogously to Eq (43) the following relations hold:

FL(pOVG = (1—y)F4 ‘/i? N yFg Vs g’ (50)
FL (o)W = (1 —y)F) Wﬁkl‘ LT yEy Wijkl‘ wp’ (51)
Fg(ﬁa)vavkl (1—y)Fx Vavkl AT yFy Vasz (52)

The derivatives F, and F can be calculated analogously to Eqns (44). We simply increase the
order of derivatives in these equations:

1

FA/B - FA/B (ﬁav) + _FX/B (ﬁav)ﬁﬁ(vij) ’ (53)
1

Fip = F\p(Pav) + FX,/B (ﬁau)/)zj (Viy). (54)

By combination of Eqns (25) and (41) we finally find (o = {A,B}):

Vii = ViA + yV +5 (Vkly)‘/z]kl ) (55)
o JAN
Wi = Wi + yW]kl + 5 (Vgnny)vvijklmn (56)
with the abbreviations:
B2\ pa 1o A aB2 B2 «Q Q
w_zfmmm%ﬁ,mmzzwwﬁ%A@“HﬂJﬁW)
g
B2 a af2 a2 a a
zykl ZP R 6 --Rlﬁ ) W“Azn = Z [P%(R g )_PZ(R 7 )} Rilﬁ”‘Rinﬁ(58)
B

and all terms of Eq (26) are now specified for a binary alloy A-B. In the following section it
is shown how these cumbersome equations can be structured in order to obtain information
regarding the equilibrium condition, the stiffness and the higher gradient coefficients.
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4.2 Equilibrium condition, stiffness and higher gradient coefficients
By combination of Eq (26) with Eqns (40, 43, 44, 45, 46, 50-56) and by means of the definitions:
A=Z¢>AA 0 => 0, ¢*=> 0 , (59)
B B

g9 = Z oRYRY gl = RYRS (60)
5

we obtain for the energy of atom «:

1 i
o= 59" +y(1 - y)g +yg” + (wa) [(1 ~ g + géﬂ "

+Fa + y<F}3 - FA) (Vuy) Pij [FA + y(F FA>]

+Gij {A +2y(1 — )Afj + 2yA?j (szy) {( 2y)Afjkl + A?jkl} +

+2(Vi} +yvi5) (Fh +y(Fh - FR)) +

+(Viy) [Viﬁl(Fuy% = F0) + o (Vi + v ) (FX + (P FZ())]}+
GGl 2BA 4 ay(1 — ) BS, +ayBS + (V2 o[- 2)BY, 4 B +
9 Y Kl ijkl Y ijkl Y ijkl mn¥Y Y ijklmn ijklmn

+4<W]kl + yW]kl) (fo +y(Fg — F//x)) +
A FAN A A " 1" "
+2(Vi,.9) [ ikimn <FA +y(Fg FA)) + Pin <Wijkl + sz‘jkl) (FA +y(Fg — FA)):| +
+4(Viy + VS ) (Vki‘ + Vi) (PR + (% - FX)) +
(Vi

A A
x (P4 + (P - FX)) + o (Vi + Vi) (Vé? + Vi) (FR + y(F — F))} } (61)
where F g and all derivatives of Fy ;g depend on the argument pg, !!!

Following Cahn and Hilliard in [6] and Dreyer and Miiller in |2, 11| the Gibbs free energy density
Y of a two-component system with an inhomogeneous mass-concentration profile ¢(z;,t) can be
characterized by the equation (without eigenstrains and thermal expansion):

¥ = Yeont(c, Gij) — ar(c, Gij) Ve + bri(e, Gi)(Vie) (Vi) . (62)

The first term denotes the configurational part of ¢ and represents the Gibbs free energy den-
sity of the corresponding system with a homogeneous concentration profile. It also includes an
“elastic” energy, telast, as reflected by the strains Gy;. Therefore one can split ¥eons into two
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parts:

Yeant(€: Gig) = to(e) + 3Gl Ciga(€) Gt (63)

=Velast

where the first part stands for the energy density without elastic energy contributions. Moreover
it is important to mention that a5t does not contain higher gradients and, consequently, it is
reasonable to re-arrange Eq (61) as follows:

1 ~
E, = 59“‘ +y(1 —y)g® +yg® + Fa + y<FB —~ FA)

1 b A
+ §Giijl {2331@1 +4y(1 — y)B?}kz + 43/3?;%1 + 4( O+ yWijkl) (Fz,k +y(Fg — F//%))

(Ve ) (Vid + vid ) (B - 1) }

1 5N 1
+  (Viay) {Z (1= 20)980 + 9n ) + 5050 (FA +y(Fh — F3))

1 ~
+ §Gij [(1 — 2 AL+ Af}mn + 2V¢]‘Amn <F//x +y(Fp — F//x))

ymn
2080 (Vi + V) (3 ot~ F)]

¢
ijklmn + Bijklmn

1
+ §Giijl [(1 —2y)B;
_ A
+ 2W2‘]A'klmn (lex + y(Fé - F/&)) + 2/)7%71 (Wz?kl + yWijkl> <FX + y(F]IB/ - FX))

A A
+ 2V (Vi + Vi) (FL 4y = D) + 2V, (Vi + Vi)

< (FX +y(Fg = FR) ) + 20 (Vi + 9V ) (Vi +9Vi0) (X + (B — m)] }

+ Gij{AzAj +2y(1 = y) A + 2945 + 2V} + 95 ) (Fh + y(F - FA))} : (64)

Equation (64) consists of four parts (15 row; 2°4 and 3™ row; 4"-10" row; last row).

e The first part represents the energy of an atom « in an undeformed, homogeneous (i.e.,
without concentration gradients) solid, according to 9y in Eq (63).

e The second part denotes the elastic energy elast 0f a mixture with particle concentration
.

e The third part can be related to the HGCs. Note that in Eq (64) only derivatives V2,y
occur. A substitution to V%lc will later allow the identification of ay; and by of Eq (62).

e The last part stands for the equilibrium condition of a binary mixture A-B (minimum of
b A
= 0= Aj+2y(L-y) A7 +2y AT +2(V3+y V7 ) (Fo+

energy), namely 0F, /0G;; Gy =0,y
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y(F}, — F})) = 0. By knowing the equilibrium concentration y*® this condition can be used
to obtain the equilibrium nearest neighbor distance R in the different equilibrium phases.

At this point it should be mentioned that all atomistic considerations are performed with respect
to the particle concentration y. In order to identify the quantities in Eq (2) we have to switch

to mass concentrations c¢. Following the arguments of Appendix B we finally find:

O equilibrium condition:

S+ 2y(0)(1 —y()AG + 2904, + 2(Vi +y(e)Vi ) (Fa+y(e)(Fh — F4)) =0 (63)

O Stiffness coefficients:
1 b A
Cijn(c) = {235}-“ + 4y(e) (1 = y(0) Bl + 4y(Q) By, + AWk + y(e) Wi, ) x
0

% (Fa+ @) (Fh — FO) +4(Vi + y(@v) (Vid + eV ) (X + w(o (B — Fﬁ())} (66)

O Higher gradient coefficients:

amn (¢, Gpq) = —06(¢) MP)(¢) Hypn(e, Gpy) (67)
bn (¢, Gpg) = 6(c) M (€) Hypp (e, Gpy) (68)
A (€, Gpg) = %‘;’G”q)mmn(g%) (69)
with
5(0) = —20 M) = 2MAMBOMy —MA) -y Madhy (70)

oM (c) [Mp — (Mg — Ma)c]®’ (Mg — (Mg — Ma)c]?

1 ; 1_
Hn (€, Gpg) = 5 (1= 20(0)) g + 9inn ) + 5500 (FA + 9(0)(Fh — )

1
3G (1= 20O)AG A4 2 (Fh 40O — )
#2050 (Vi + 00V ) (R -+ v(O(F — 1))

¢
ijklmn + Bijklmn

+ 3GuiGu| (1~ 200 B}

- 2W s (FA + 5O — L)) + 20, (Wi + w(@OW ) (FX + w(0)(F — FY))

2V (Vi +9(@Vi) (FR + w0 (= FO) + 25, (VS + 50V %

< (FX 4+ 5 (Fh — FR)) + 20, (Vi + (@Vi5) (Vid + (Vi) (FA + (o) (P g”))} .
(1)

Recall that all atomistic quantities refer to arguments R and Pav, respectively. In the following
section we consider a specific binary alloy and will explicitly determine the stiffness and the higher
gradient coefficients.
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5 Application to the Ag-Cu system

As a case study we choose y = ycoy (¢ = ccy) and consider the solid eutectic binary alloy Ag-Cu
at 1000 Kelvin (yeut = 0.41, cent = 0.29, Toyt ~ 1052 Kelvin) which, from a technological point
of view, serves as a brazing material. Two different equilibrium phases are observed, the a- and
the (-phase, with the equilibrium concentrations ¢, and cg, respectively (cf., Fig. 1). Fig. 5
shows the specific Gibbs free curve, ¥(c), at 1000 Kelvin. It was obtained from a commercial
database, [18]. By means of the common tangent rule construction the following equilibrium
concentrations ¢®/? were determined:

¢ = 0063 < y*=0.102, (72)
A= 0945 = ¥ =0.967. (73)

Moreover both species Ag and Cu as well as the alloy Ag-Cu form a simple Face-Centered-
Cubic (FCC) lattice so that this material is particularly suited for our atomistic investigations
performed at the two equilibrium concentrations, ¢®/#. Before we turn to the fitting procedure
some remarks, assumptions, and interpretations in context with Eq (64) will be made which are
required for further investigations.

1. E, stands for the energy of an atom « in a binary lattice, where two types of atoms (A
and B) and three types of interactions (A-A, B-B, A-B) are possible.

2. Independent of these different interactions and atom-types it is assumed that only one
equilibrium distance R to the nearest neighbors can be found in the lattice?.

3. All quantities of the right hand side of Eq (64): g**/%/%, BYY®, Fy . Fy g, FY . Fil,

Vi?/A, Wi%lA, etc., can be calculated from the pure substances A and B. The “combination”

of these quantities according to Eq (64) in terms of y, (1 —%), V2,9, etc. is interpreted as
a suitable average describing the energy of an arbitrary particle in the mixture A-B.

The second bullet point gives rise to the question
of how to find the equilibrium nearest neighbor dis-
tance of a given phase (mixture) with the equilib-

=55

rium concentration ¢*d. In this context we can re- mE
vert to the equilibrium condition given by Eq (65), 5 -6
provided that ¢*@ is known (e.g., from experiments). = 65
o —0O.

For the sake of transparency we will now give an s

overview of the further procedures required to ob- =7
tain the different EAM potentials, the stiffness and

the higher gradient coefficients. (1) The EAM po-

tentials for the pure substances Ag and Cu are fitted

in terms of R*5%. (2) We calculate the stiffness co- Figure 5: The Gibbs free energy density (c)
efficients for the pure substances and compare them for the Ag-Cu system at 1000 Kelvin.

with experimental results (for the purpose of check-

ing). (3) An exploitation of the equilibrium condition is performed in order to determine the
nearest neighbor distances of the a- and -phase in Ag-Cu at 1000 K. (4) The stiffness coefficients

of the different phases Co;{j are determined and the pure-substance-limit (i.e., Ag: lim ¢®/? = 0

1,

0 0.2 0.4 0.6 0.8 1
CCu

#This assumption can be interpreted as an “effective” lattice, owing the same total cohesive energy as an lattice,
where three different nearest neighbor distances occur, depending on the three different interactions.
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and Cu: lim¢®/# = 1) is performed. (5) The HGCs in the a- and SB-phases are calculated for
the strain-free case (for convenience). (6) The phase-diagram of Ag-Cu is constructed and the
results are compared with measurements in order to emphasize the “quality” of the predicted

HGCs.

5.1 The fitting procedure for Ag and Cu

Recall the advantages of the use of potentials in terms of roB% or Ra52, respectively as outlined
in Subsection 3.1. For this reason we modify Johnson’s functional representation from Eq (5) as

follows: ) = s [—ﬁ <;_22 B 1)] , B(r%) = deexp [—7 <;_22 — 1)] . (74)

The symbols » and R denote the nearest neighbor distance in the deformed and in the undeformed
lattice and, in an FCC ensemble, are given by av/2 or aev/2 (cf., Fig 3). Moreover the following
relations hold:

pU%) =1200%) | pe=120 . 53607 =66(7) | Gou =i (75)
B

In order to arrive at an explicit relation for the embedding function F'(p) analogously to Eq (10)
we follow the strategy explained in Section 2.2 and use the following inversions:

N
r 1.p ¢ < p > p
oot 2 (Y 76

R B pe be Pe ( )
By means of the universal function of state E(a) from Section 2.2 and Eq (76) the following

result is obtained:
N

F(p) = — o [1+a< 1—%111%—1)]@@ [—a (,/1—%111%—1)] _ B, (i)ﬁ. (77)

: _ rQo
with o = 3 T

In what follows we focus on the pure substances Ag and Cu as well as on the binary alloy Ag-Cu
(silver-copper). In the case of the pure materials the following functions must be determined:

pheAs  pCuCu pag (=1/12pag), pcu (= 1/12pcu), Fag(pag), and Fou(pcu). Thus for both pure
components five parameters must be fitted, namely «, 3, v, ¢, pe. Consequently ten parameters
are unknown. Note that the interaction between an Ag and a Cu nucleus, i.e., ¢*8C1 follows
directly from considering the pure species Ag and Cu (cf., Eq (6)). For the fitting procedure the
following ten experimental parameters of both substances are used:

1. VOIGT average of the shear modulus G

2. compressibility &

3. sublimation energy Fg,}, (with respect to one particle)
4. (unrelaxed) vacancy formation energy Ef

5. (equilibrium) lattice parameter a,

« is already given by Eq (10)9, i.e., it only remains to determine 3, 7, ¢e, and pe.
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Determination of ¢, and p, Following Johnson in [19] the sublimation energy per atom
(i.e., the cohesive energy) of an arbitrary atom is represented by the nuclei-nuclei interactions
with its neighbors: Egu, = % 12 - ¢(r?). Hence it follows for equilibrium:

Esub

: (79)

¢e =
From the physical point of view it is plausible to establish that pe o< 1/Qy and pe < Egyp and,

consequently, we write:
Esub

pe: QO .

The last two equations represent two relations for the unknown material parameters ¢, und pe.

(79)

Determination of 3 and ~ The starting point to obtain these quantities are the equations
for the unrelaxed vacancy formation energy F,yf and the VOIGT average of the shear modulus

G-

12 12

But=—7 Z o(r’) =Y F[12p(r*)] + > F[11p(r?)], (80)
B=1 B=1

G = 5(36’2323 +2C%) , C*= %(01111 — Ch122) (81)

where C111, C1r122, and Cagasz denote the elastic constants of the forth order stiffness matrix.
These constants are characterized by derivatives of the energy expression of a solid (Eq. (4)).
Recall that for the stiffness Cjji; of a pure substance A (cf., Eq (30)) we have:

Ciin = o [ B+ AF5 (X)W + 4FX (p )VAVkﬂ (30a)
with the definitions:
2 2
/ﬁ _ ZpA(Raﬁ ), zykl Z¢AA// RoB )RaﬁRaﬁRaﬁRaﬁ 7 (82)
B B
2 2
V=Y PARPIRCRY . Wiy =Y o (RORPRRRY . (83)
B B
F\ = 9F Fl = @ AAT w (84)
0P =7, P pA=P} 8(raﬁ2)2 raf?=pRes?
Ipa & pa
/ /!
PA = s PA= T3 ; (85)
AT ras? raf?_Rap? A 8(7“0‘52)2 raf?=Rap?

where 8% or R5? represent the distance between the atoms « and 3 and can be identified with
r2 or R? in the nearest neighbor model.

Relation (30a) for the elastic constants can be used in Eq (81);2. Then together with the
parameterizations (74,75,77) it follows that (cf., Appendix C):

_89(v—5)
G = o (86)
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In a similar manner it is possible to approzimate the unrelaxed vacancy formation energy Fyy¢
in Eq (80) by (cf., Appendix C):

15 GQo ~y—28
Wi & — = 6¢e . 87
Sl o 3 (87)

The last two relations represent two equations for § and . As input we use the VOIGT average
of the shear modulus and the unrelaxed vacancy formation energy. Using now Eqs (10)9, (78),
(79), (86), and (87), we can determine all parameters for Ag and Cu. The experimental data

required during this procedure are compiled in Table 1, [19]:

E,

Table 1: Experimental data for Ag and Cu

type of Input
atom Qgin3 FEgup in €V FE,yt in eV Qok in eV QoG in eV
Ag 17.10 2.85 1.10 11.10 3.61
Cu 11.81 3.54 1.30 10.17 4.05

In particular the following values can be used to obtain the second column of Table 1:

™8 = 409A ., RM—9289A ., R —g836A° (88)
" = 361A , ROM=256A , R —653A° (89)

From this data the parameters and corresponding functions shown in Table 2 and in Figure 6

were obtained.

Table 2: Calculated parameters for Ag and Cu

atom « 16} ~ ¢e in eV pe in eV /3 e in eV /3
Ag 5.9205 2.9799 4.1300 0.4750 0.1672 2.0064
Cu 5.0849 2.9232 3.9966 0.5900 0.2998 3.5971
1
a0 \ -0 \
5 2 \
= \ = 2
S 20 \ 2 a0 \
% 15— 3 15 \
' ES
7 10 ki 10 b,
t 5 - \‘Ag\ 5 \\.
""'E::;}‘__ _ 0 [ ]
. 0 5 4 5 2 0 12 0 2 4 B g 10 12
r rin A

nucleus-nulceus interactions between atoms of  nucleus-nulceus interactions between atoms of
the same type different type
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Note that in the upper right picture holds ¢*&°" =
atomic energy for a silver and a copper atom — ¢CUAB.

5.2 The elastic constants of Ag and Cu

With the fitted and illustrated functions from the last section it becomes possible to calculate

the elastic constants for pure Ag and Cu according to Eq (30a). The results are compiled in
Table 3.

In comparison with the results obtained by means of pair potentials [1] the discrepancy be-
tween experimental data and theoretically predicted values is visibly reduced and the agreement
is reasonably good, the error ranging between 4.1% (Cﬁ%z) and 9.4% (C{4;). Moreover the
CAucHYy-Paradox (Cy122 = Ca323) no longer exists which is a considerable improvement.

5.3 The alloy Ag-Cu I: Evaluation of the equilibrium condition

In this section we investigate the equilibrium condition shown in Eq (65). We choose A=Ag
and B=Cu and the corresponding equilibrium concentrations ¢® = 0.063 and ¢® = 0.945 at
1000 K. Eq (65) has a nontrivial solution only for the index-pair ¢ = j since in an FCC lattice
the following relation holds for an arbitrary scalar function f: > f(R*)R;R; = 0, (i # j) and
S F(RH)R;R; = const, (Vi,j = {1,2,3}). Consequently we may plot the left side (for the index
11) of Eq (65) as shown in Figure 7, left. The point of intersection with the abscissa defines the
nearest neighbor distances in equilibrium of a crystal consisting of « or § phase, respectively.

On the other side it is possible to vary the concentration in the equilibrium condition (65) and
determine the nearest neighbor distance in equilibrium as a function of the concentration c¢. The
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Table 3: Elastic constants for Ag and Cu in GPa. The values in parentheses are from experiments [20].

Co% kl[11 22 33 23 31 12 |[CSy k|11 22 33 23 31 12
ij ij
11 1326902 902 0 0 0 11 1837115111510 0 0
(124) (94) (94) (168) (121) (121)
22 90.2 1326902 0 0 0 22 1151 183.711510 0 0
(94) (124) (94) (121) (168) (121)
33 90.2 90.2 13260 0 0 33 1151115118370 0 0
(94) (94) (124) (121) (121) (168)
23 0 0 0 4240 0 23 0 0 0 6870 0
(46) (75)
31 0 0 0 0 424 0 31 0 0 0 0 687 0
(46) (75)
12 0 0 0 0 0 @ 424] 12 0 0 0 0 0 687
(46) (75)

corresponding points of intersection were determined for various discrete concentrations ¢ = 0,
0.05, 0.10, ..., 0.90, 0.95, 1, cf., Figure 7, right. As one can see the obtained values of R are in
good agreement with the weighed average R = (1 — ¢)R*® 4 ¢cR®" which is represented by the
continuous line in Figure 7, right. Especially for the a— and (-phase we can conclude:

R*=+8.202 A =2864 A , R =V6.631A=2575A | (90)
@ —16.61 A : 0f =12.07 A% (91)

,G—phasez’ P
2 . e 2.85 R*=3888
= ; -
= . S 28 R™=7 556
o [ =~
w | /G--phase \}_—":‘ =L 275
S0 L £
2 ! / 27
Nl 285
E= f
£ | /
-2 | 26
r |
5 10 15 20 25 255
. 0 02 04 0.6 08 1
in A Eeu
The equilibrium condition for the a- and Equilibrium nearest neighbor distances for
B-phase (i =7) different concentrations c.

Figure 7: Illustration of the different results followed from the exploitation of the equilibrium condition
(65).
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5.4 The alloy Ag-Cu II: The stiffness coeflicients

Equation (66) allows us to obtain the stiffness coefficients as a function of the mass concentration
c. Note that for every value of ¢ one must first evaluate the equilibrium condition in order to
find the nearest neighbor distance R in equilibrium. If R is determined for a certain value of
c¢ the unit cell volume f occupied by an atom « can be calculated. In order to investigate
the stiffness of the different phases in Ag-Cu we consider the equilibrium concentrations ¢ and
¢ and analyze Eq (66) at the distances R® and RP presented in the previous section. The
results are compiled in Table 4. On the other hand one can ask for the stiffness of the alloy

Table 4: Elastic constants in GPa predicted for the a- and (-phases in an Ag-Cu system at 1000 K.

Cy k|11 22 33 23 31 12 ijkl kKl |11 22 33 23 31 12
ij 1j
11 135.392.2 922 0 0 0 11 181.3 115.2 1152 0 0 0
22 92.2 135.392.2 0 0 0 22 115.2 181.3 1152 0 0 0
33 92.2 922 13530 0 0 33 115.2 115.2 181.3 0 0 0
23 0 0 0 43.1 0 0 23 0 0 0 66.0 0 0
31 0 0 0 0 431 0 31 0 0 0 0 66.0 0
12 0 0 0 0 0 43.1 12 0 0 0 0 0 66.0

with an arbitrary mass concentration c. This question is equivalent to a somewhat hypothetical
experiment in which the atoms of a pure Ag lattice are successively replaced by Cu atoms. For
this purpose we use the calculated equilibrium distances R illustrated in Figure 7, right, and the
corresponding concentrations values. The (discrete) values of the calculated stiffness coefficients
are shown as bullets in Figure 8.  Obviously the pure-substance-limit is exactly fulfilled, i.e.,

0 115 F
170 noy
& &
= 180 = 105
= g
F 150 S0
140 %y
an t
0 0.2 04 06 0.8 1 0 0.2 04 06 0.8 1

Ccu Ccu

the elastic constants lead to C;;,%l and ngl for ¢ =0 or ¢ = 1, respectively.

5.5 The alloy Ag-Cu III: The higher gradient coefficients

In order to calculate the higher gradient coefficients for the strain-free case (G = 0, for simplicity)
we use the reduced form of Eq (71):

Hypn(c, Gij = 0) = % [(1 - 2y(c)>g;‘;n + gi’m} + %ﬁﬁm [Fg +y(e) (F]g - F/g)] . (92)
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Figure 8: The calculated elastic constants for Ag-
Cu as a function of the mass concentration c. The
continuous line represent the linear interpolation
between the values of pure Ag and Cu.

45 |

Furthermore the following data can be compiled for eutectic Ag-Cu:

kg kg kg Po
= 10490 — = 8920 = 9980.57 d(c) = . 93
PAg ms PCu ms £o ms (C) /LOM(C) ( )

By applying ¢®/# and R*/# in Eqns (67,68,92,93,) one can determine the higher gradient coeffi-
cients a;; and b;; for the - and (-phase (cf., Table 5). Moreover, together with the calculated
nearest neighbor distances in equilibrium which depend on ¢ (Figure 7, right) we calculate a;;(c)

and b;;(c) (cf., Figure 9). Note that for an FCC crystal we have a;; = b;; = 0 for i # j and
a11 = ag2 = aszz or by = bay = b3z, respectively.

Table 5: Calculated higher gradient coefficients for the different a- and §-phases in eutectic Ag-Cu.

phase aq; [N] b1 [N] A11 |N] 0A1/0c N]
a 45910711 6.14- 1011 1.55-10710 7.34-10~ 1
I&; 1.23-10710 1.03-10710 1.88 10710 2.86- 10~ 1

For the determination of A%/ﬁ or (more generally) A;;(c) and the corresponding derivative one
has to find a closed form for the equilibrium distance R*? = R(c*/?) or R = R(c), respectively,
first. Note that the derivatives da;;/dc, 9*a;;/0c* and db;;/Oc must be calculated and evaluated
at the equilibrium distances R which also depends on c¢. Here we want to use the numerically
obtained results from Section 5.3, i.e.,

R(c) = (1 — ¢)R™® + cR“" . (94)

Now we can evaluate A?;-/ﬁ (cf., Table 5) as well as A;;(c) (cf., Figure 7) and the corresponding
derivatives with respect to c. Analogously we have for FCC crystals A;; = 0 for ¢ # j and
All = A22 = A33 for ¢ :j.

6 Construction of the phase diagram

In order to point out the reliability of the predicted stiffness coefficients and the HGCs we want
to calculate finally the equilibrium particle concentrations y®/? for different temperatures using
the EAM and compare them with experimental data. The resulting phase diagram represents
the coexisting phases in the binary alloy at different temperatures.
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for Ag-Cu as a function of the mass concentration
c.

From (phenomenological) thermodynamics of mixtures it is well-known that the equilibrium
concentrations of a binary mixture can be constructed from the GiBBS free energy ¢(y,T),
(pressure p =const) for a given temperature performing the MAXWELL tangent construction.
Here the derivatives of the g(y, T')-curve at the equilibrium concentrations y*/P must be identical
to the slope of the common tangent.

Starting from the atomistic point of view the GIBBS free energy g(y,T") per atom can be identified
according to Eq (64) as follows:

9. T)=E,~Ts = %QAA oyl —4)g® +yg® + Fa +y(Fis — Fa) — T's
= (1= 9)(66" (B) + Fa(pan () ) + /(66" (R?) + Fa (punl(BY)) ) +
+12y(1 — y)g¢(R2) + kBT<y Iny+ (1 —y)In(l — y)) (95)

Here the temperature-dependence of g(y,T') is only characterized by the entropic part, namely
by —T's. Furthermore the MAXWELL tangent construction reads:

= . 96
oy ly=ye dy 9

y=yb yd — gy

dg(y,T) dg(y,T) ‘ 9’ T) — g(y*,T)

Note that in Eq (95) all terms, i.e., g, g2, gq3 and F /g depend on the equilibrium nearest
neighbor distance R? which is a function of the mass concentration ¢ (c.f., Eq (94)). In order to
find R = R(y) one can use the inverse relation ¢ = ¢(y) of Eq (113):

Mcy yMcu

CCu=cC= = )
b mcu + Mag yMcy + (1 - y)MAg

(97)
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In a same manner one can analyze the GIBBS free energy density ¥(c,T) = g(y(c),T)/d(c)
as a function of the mass concentration c¢. Then the resulting equilibrium concentrations are
represented by ¢®# in the phase diagram. Both approaches are equivalent and y can be trans-
ferred to ¢ through Eq (97). Here we want to investigate g(y,T) and calculate the equilibrium
concentrations y*/? as well as the according phase diagram due to a better comparison with
experimental/literature data.

Figure 10 shows the particle-specific GIBBS free energy for the temperature 1000 Kelvin following
from Eq. (95) and the according ¢-curve (15° row) as well as the relation R(y) (2" row).
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= Figure 10: 1°° row: The theoretical curves

= of g(y,T) and (¢, T) for 1000 Kelvin including
285 MAXWELL’s tangent (dashed line) and the con-
26 structed equilibrium points (filled dots). 2°¢ row:
g The equilibrium nearest neighbor distance R(y) and

its deviation from the linear interpolation (dashed
line).

Note that the ¢-curves of Figure 5 and Figure 10 can not be directly compared due to different
zero points on the energy scale.

Evaluating Eq (95) for different temperatures, in particular for 700, 800, 900, and 1000 Kelvin
yields the curves illustrated in Figure 11 (15 row). Here MAXWELL’s tangent is removed from
the values of g. Thus the minima of these functions represent the equilibrium concentrations
for the according temperature. Note that there are also minima on the “right side” of the
curve, pointed out by the zoomed right picture. Furthermore the calculated and experimental
equilibrium concentrations y,/3 and ¢,/g are confronted in Table 6. The resulting (theoretically
determined) phase diagram one can find in Figure 11 (2 row, left). The full diagram on the
right side is the according one obtained from MTdata™, [18]. A comparison of the values in
Table 6 as well as the theoretical and experimental phase diagram shows that the theoretically
predicted equilibrium concentrations have qualitatively the same tendency as the experimental
ones. Furthermore the absolute values of the a-phase (left part of the phase diagram) are in
good agreement but, nevertheless, the values of the §-phase are poorly reproduced.

Let us abbreviate the difference of GI1BBS free energy g(y, T) and Maxwells’s tangent with g*(y, T')
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Table 6: Calculated and experimental equilibrium concentrations for Ag-Cu at different temperatures.
The experimental data for 700, 800, 900 Kelvin are from [22] and for 1000 Kelvin from [15].

Temp. predicted by EAM experimental data
in Kelvin | y, Yg Ca cp Yo Yg Ca cs
700 0.024 0.999999 0.014 0.999999 | 0.015 0.993 0.0089 0.9882
800 0.039 0.999996 0.023 0.999994 | 0.033 0.986 0.0197 0.9765
900 0.056 0.999986 0.033 0.999976 | 0.063 0.976 0.0381 0.9599
1000 0.075 0.999957 0.045 0.999928 | 0.102 0.967 0.0627 0.9452

oor 0012
i

. 0.06 % 001
S 008 2

= = 0008
£ 004 ©

) %" 0.006
= 003 5

% 0.02 E 0.004

0o 2 0.002

0 0

0 02 04 06 08 1 08399 089992 009994 099996 099998 1
Yo Yicu

(cf., Figure 11, 1°* row) and the according values of 1(c, T') with 1)*(¢,T). For the investigation
of the source of deviation between the experimental and calculated equilibrium concentrations
one can now compare g*(y, T = 1000K) as well as ¢*(c¢, T = 1000K) following from the atomistic
calculations and from the MTdata™ database. Moreover, it is also possible to calculate the
so-called Excess-enthalpy ¢®*, the non-ideal heat of mixing, which can be obtained from the
following relation:

9y, T) =yg(y=0,7) + (1 —y)gly = 1,T)+
+kBT(y Iny+(1—-y)n(l - y)) + 9%y, T). (98)

Figure 12 shows the confronted curves for 1000 Kelvin. Obviously the crucial value that deter-
mines the quality of the calculated phase diagram is the excess enthalpy ¢®*. In particular, its
asymmetry is the source of the asymmetry in the phase diagram related to the solid state and
its absolute values compete with the entropic part —7's and determines the horizontal position
of the minima of ¢g™*. Thus values of ¢g°* that are too large lead to a shift of the minima (and,
consequently, of the equilibrium concentrations) in the vicinity of y = 0 or y = 1, respectively.
This fact is observable in our theoretical calculations, where the calculated ¢®* is considerably
larger than the experimental curve, but, nevertheless, have the same magnitude and the same
functional characteristics (asymmetry) as the other curves. The source of the deviation of ¢g*™*
is due to the use of the calculated nearest neighbor distance R in equilibrium, a measure for
the relaxation of the lattice caused by different atom-types. This value can only be as realistic
as the (fitted) EAM potentials, because they enter the equilibrium condition used to find R.
In spite of these shortcomings our phase diagram calculations, first, qualitatively reproduce the
experimental values and, second, are of the same magnitude as the literature data.
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Figure 11: 1% row: The calculated GIBBS free energy g(y,T) for the different temperatures 700, 800,
900, 1000 Kelvin. 2°¢ row, left : The calculated solid part of the phase diagram of Ag-Cu (filled and
joined dots) vs. experimental data (unfilled dots). Right: The phase diagram generated by MTdata™.
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7 Conclusion and Outlook

A compact theory was presented which allows for an atomistic identification of mechanical,
thermodynamical as well as thermo-mechanical material parameters in binary alloys. It is based
on EAM potentials and results in an energy expression for an arbitrary atom «, given by Eq
(64). Undoubtedly this equation represents the central element in the outlined procedure and is
generally valid, i.e., it does not depend on the functional form of the EAM-functions.

By considering a binary (multiphase) mixture the equilibrium (atomic) nearest neighbor distance
R, the stiffness coefficients, the higher gradient coefficients, and the (temperature-depending)
equilibrium concentrations of the different phases can easily be calculated. Moreover it is also
possible to determine these quantities as (continuous) functions of mass or particle concentrations
c and y, respectively. Furthermore the equilibrium condition following from Eq (64) represents the
energy-minimization-principle and provides a theoretical tool for an estimate of lattice relaxations
due to different atom-types in the lattice.

However, the main focus of this paper was the theoretical description of the HGCs, since so
far the communicated data are mostly estimated or their origin is not clear. That is why the
existing data are questionable. In order to substantiate the reliability of the predicted HGCs we
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also determined the stiffness coefficients and constructed the solid part of the phase diagram.
Especially we chose the binary alloy Ag-Cu for the illustration of the theoretical determination
of the above mentioned parameters.

For the whole investigation the nearest neighbor model as proposed by Johnson [3] was used.
This special form considers a very simple functional dependence for the EAM functions, assum-
ing only nearest neighbor interactions and s-orbitals for the electron sheath. Nevertheless, the
determined quantities, for instance the stiffness coefficients, are in in good agreement with the
experimental data. Only the calculated equilibrium concentrations in the phase diagram par-
tially inaccurately reproduce the experimental values. It seems that Johnson’s parametrization
only allows a qualitative calculation of phase diagram data. Here one could use other functional
forms or extensions of Johnson’s model. One possibility is to consider more neighboring atoms
as suggested by Daw and Baskes in [13].

Moreover new modifications of EAM were developed in the last years in order to apply this
method to other than FCC lattices |24, 25|. As an example the Modified Embedded-Atom
Method (MEAM) allows the investigation of BCC-metals, for instance Fe. HCP structures were
also investigated successfully with EAM [26]. Therefore, in principle, it is possible to determine
the HGCs of more complex lattice structures using EAM/MEAM. Other applications of the
EAM, which could be interesting in the future are simulations and investigations of fracture,
plasticity behavior, impurities, surfaces or grain boundaries.

In summary one can say that the predicted HGCs originated from a microscopic theory based on
interatomic interactions are reliable as indicated by the quality of the stiffness coefficients and
(despite of some deviations) by the phase diagram construction. Indeed, the value of A;; is close
to those found in literature (e.g., [27], 4;; = 2-107195;; N). An investigation of the influence of
the calculated HGCs on phase separation and the coarsening processes in binary alloys according
to Eq (2) is currently underway and will be published in a subsequent paper.

Appendix A. The extended diffusion equation

In the Appendix of [2] Dreyer and Miiller presented a derivation of an extended diffusion equa-
tion by means of Rational Thermodynamics. They started from the classical (5 field) partial
balance equation of mass, momentum, and internal energy using a LAGRANGEian description.
Furthermore they chose the following state space Z:

oc 9%
7z = {T’C’Q—Xi’m’gij} (99)
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by means of which all constitutive quantities (e.g., diffusion flux J;, heat flux Q, and first or
second P1OLA-KIRCHHOFF stress tensor, t;; or Tj) follow. The balance equations become field
equations if the constitutive equations are inserted, which link the elements of the state space to
the constitutive quantities in a material-dependent manner. In order to take the second law of
thermodynamics into account Dreyer and Miiller applied Liu’s method [21]. The local entropy
inequality

ds  0¢y
—+—=%X2>0 100
PO + 9X, > (100)
(s being the entropy, ¢ the entropy flux, and X the (positive) entropy production density)
holds for all processes that are solutions to the field equations. If the balance equations are
interpreted as constraints, i.e., multiplied by LAGRANGE factors A, A?, A" and added to Eq
(100) the inequality is then valid for arbitrary fields and can be exploited. This procedure leads

to following extended diffusion equation [2]:
dc  0J; OA°

—+ =0 and J;, = —poM;;——. 101
poat X, i Po Zjan ( )

Here A€ refers to the mass balance and can be identified with the chemical potential u. Moreover
it holds in accordance with the second law of thermodynamics, [11] we find that:

TR o o B¢
A=n=5 " ox, <a(ac/axm)> T 9X,.0%, <8(82c/6Xm3Xn)> o

where 1) represents the GIBBS free energy density. Following Cahn and Hilliard on p. 259 in [6]
a system with an inhomogeneous mass-concentration profile ¢(X;,t) can be characterized by the
equation:

d9?c 4 b ) dJc Oc
— CEii) o -
0x0X, T ax, 0x,
The last term of the right side of Eq (103) was neglected by Dreyer and Miiller as well as in

various other publications and represents a more general case. Finally the first term t)cone(c, €i5)
is the contribution of a solution with a homogeneous concentration profile and consists of two

Y = Yeont(c, €55) — agi(c, €4) (103)

parts:
1 * *
Weont(¢, i) = Yo(e) + 5 (eij — £55) Cignilen — €k, (104)

where Vst = 1/2(g45 — 6;‘]-)C',~jkl(6kl — g5,;) denotes the energy density due to elastic, eigen- and
thermal strains.

In order to obtain the extended diffusion equation (2) we have to calculate the expressions 9 /dc,
—0)0(0c/0Xy,), and O /0(0%c/0X,0X,,) in Eq (102) using v as given by (103):

O Oeont(c,€ij)  Oag(c, i) d%c Obyi(c,e45) Oc Oc

de Oc Oc 0X,,0X; Oc 0X;, 0X; "’ (105)
o oc oY
v _ = —au. 1
BOc/ox,) - OnEX, B jox,ax,) | M (106)
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Consequently it follows by means of the chain rule:

) o - Ob,y Oc Oc  Obyy Ocps Oc d%c
i <a( >__2< + + by > (107)

0c/0X ) Oc 0X,,0X; 0Oeps 0X,, 0X; 0X,,0X
9?2 o o Zay,, Oc Oc n amn ~ O0%c N
0X0X, \0(02¢/0X,0X,) ) oc2 09X, 0X, Jc 0X,,0X,
ay,, Ocrs Oc % am, Ocop Ocrs Ot D%e,s
+ + (108)
0cOers 0Xy 0X,,  Ogopers 0Xp, 0X), Oers 0X,,0X,,
By applying the results of Eqns (105-108) as well as the definition:
8ai i
Aij = a—cj + by (109)
to Eq (102) the following relation is obtained:
87/}conf _ 94 (926 _ 8Akl dc Oc
de "OXL0X, 0 09Xy, 0X,
2 2
_2i%4kl Jc 6€mn 0 Aol 6€m)6€mn aam 19} Emn (110)

Oemn OXy 0X;  Ocopemn 0Xp 0X;  Oemm 0Xp0X;

The combination of Eq (110) and Eq (101)2 results in Eq (2). The quantities a;; , b;; and A;;
are called Higher Gradient Coefficients (HGCs) and can be identified with the quantities —kq,
ko and k introduced by Cahn and Hilliard in [6] on p. 259.

Appendix B. Conversion of particle to mass concentration

The total Gibbs free energy of an equilibrium phase « follows by summation from Eq (64):

G = EIEQ—TS7 , ST = —kBZ[ylny—l—(l—y)ln(l—y)] ,
acy acy
64) 1 an & s
Eo =" 59°" +y(1—y)g” +yg” + Fa +y(Fp — Fa) +
1

where {...};ji and {...},,, represent the expressions within the brackets of the second and third
block in Eq (64). Furthermore kg denotes Boltzmann’s constant and 7'S? the entropic part of
G7. Moreover, the sum is carried out with respect to all particles « of the phase v, and FE,
represents the energy of a particle due to its interactions with the neighbors 3. The quantities
g™, g%, g%, Fa, Fs, {.. .}iju, and {.. .}, are defined by means of the EAM potentials (cf., Eq
(64)) determined by the distance R between atom a and (. In order to obtain the stiffness
coefficients and the HGCs as functions of ¢ the following procedure is performed:

1. Relate the “macroscopic” Gibbs free energy density ¢ to the microscopic equation (111).

2. Substitute the derivatives of the particle concentration y for terms of the mass concentration
c. Here one can use the relation:
mp ysMp
mp+ma  ysMp + (1 — yg)Ma
cMa

=>yB=(1—yA)Ey=17(C)=MB_C(MB_MA)7 (113)

cg=1—-ca)=c= (112)
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where My /g is the molecular weight of the components A/B, and cg is the mass concen-
tration of B.

3. Compare the resulting equations with the macroscopic equations (62,63) and identify the
HGCs and stiffness coefficients.

We recall the following thermodynamical relations for one Mole:

R G
G:NA(EQ_TS) ) ¢:pOE ) m:NA/LOM(C) ) (114)
. 1 Po 1 Co 1-— Co
=1 =06(c)(E, —Ts) with d(c) = = and — = + . 115
¥ =3 ) (©) Qo(c)  poM(c) PO PCu  PAg (115)

G stands for the Gibbs free energy per one Mole, Np = 6.0237-1023 is the number of particles in
one Mole (AVOGADRO’s constant) and s = —kg[yIny + (1 — y) In(1 — y)] represents the entropy
with respect to one particle. Furthermore m denotes the total mass, pg identifies the mass density
of the alloy in the homogeneous reference state with the (homogeneous) concentration ¢p and
o = 1.66 - 10~2"kg stands for % of the weight of a Carbon 12 atom. The symbol M (c) denotes
an averaged molecular weight of the binary alloy A-B and can be obtained from the molecular
weights of the pure components through the relation M = M(c) = y(c)Mg + [1 — y(c)]|Ma.
The symbol ¢ identifies the reciprocal volume occupied by an atom and yields the following

expression:
1 1 5
5o = 59" (1= y)g” +yg” + Fa +y(Fs — Fa) +

565Gk} ®) + (o) -} @) + EsTlyIny + (1 - ) (1~ y)16)

Considering the function §(c) in Eq (113) and applying the chain rule one can replace V2, vy
with the following relation:

0%y dc  Oc oy 0%
2 _ - I < -
VimY = 520X, 90X, T dc 90X, 0X.

2MaMg(Mp — Mpy)
[Mp — (Mg — My)c]3

(Vime)(Vype) +

= M(c) - Dpn(c) (118)

with the symbolic notation for the vector M(c) and for the vectorial differential operator Dy, ()
as follows:

M(l)(c) ) 2MAMB(MB—MA2
M(c) = = | [Mp=(Mp—Ma)c] and
“ < M®) (c) [MB—%\J/‘I/:’ABA{?\JA)CP

(1) R
o (8)(ET). e
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A combination of the relations (113,117) with Eq (116) yields the following expressions:
Yole) _

- 5™ 51— y(D)g® +y(e)g® + Fa+y(e)(Fs — Fr) (120)
wela(“)(c) =E%. = ?Gij Cijri(c) G (121)
amn(g?c)(; ) _ _M(Q) (C) Hmn(ca qu) , (122)
bmn((;(:,c)qu) = MO () Hyn(c, Gpo) (123)

A
Cijri(c) = QO‘ |:2B7,]kl +4y(c)(1 y(c))BZ]kl + 4y(c )Bj;kz + 4<Wi?kl + y(c)Wijkl) x

(B v — 1) +4(2 0@V ) (Vi + w0l ) (R wer - 1) |
(124)

1 7 1_
Hnn (¢, Gp) = 7 (1 = 20(0) gl + Ginn ) + 37mn (Fh +y(0) (5% — FL))

1
5G|~ 20O A4 2V, (PR -+ 0(OF — FR)
#2082 (Vi + V) (R4 vl - 7))

—I—B

ijklmn ijklmn

+ 5GuiGu| (1~ 200 B}
2 un (A + (@) (Fh = FL)) + 205, (Wit + y(@W ) (FX + (o) (Fh — FY)
2V (Vi +9(@Vi) (FR + 9@ (= FO) + 2, (Vi + 90V %
(B a0 = FD) + 280 (V2 +0(@VE) (- 90V ) (P2 + st = ).
(125)

The HGCs Ay; can directly be calculated from (122) and (123) by means of the relation Ay =
aa’“’ + bg;. Moreover it should be mentioned that Eqns (120-123) hold for a equilibrium phase
consmtmg of two components in which the composition is characterized by the mass concentration
C=CBg.

Appendix C. Two equations for G and for F\¢

We consider the Eqns (81) and (30a) together with the definitions shown in Eqns (82-85). In
order to determine the coefficients Ci111, Ci122, and Cazog we first calculate all the required
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derivatives:

PR)=-BL5 . FR)=FL . SR =gy . S®) =T (120)
e 1= Esu 2 24 e -
F(p) =63 F(p) — D TEI0ZY) (127

Due to nearest neighbor interactions all neighbors of an atom « are separated by the same
distance R. Thus the derivatives p/, p”, and ¢” do not depend on the sum and one can write for
a pure substance:

Ciju = Qio [2¢” ( 3 RiRijRl) FAF ( 3 RiRijRl) AR ( 3 RiRj) (Z Rle)}
B B B B

(128)
Note that for an FCC crystal the following relations hold: >~ Rf = 8(a/2)*, Y. R? = Y R3 =
8(a/2)?, S R3R3 = 4(a/2)*(a/2)?, and > RoR3 = 0, cf., Figure 13. Therefore one can finally

510

Figure 13: The number of atoms with a contribution in x1, x2 and x5 direction (the unfilled atoms have
no contribution in the considered direction).

find for the elastic constants:

- — 1_ - 1_
Cii1 =2+ 5 ; Cri22 = 5=a +Z, , Cozz= 55 (129)
with the definitions:
— a4 /11 2 =\ I/ p2 —_ a4 Ne= N\ 17 DP2\ /D2
Eo = Q_o[(b (R*) +2F'(pe)p"(R®)] , Ep= 169—0F (Pe)p' (R)p'(R7). (130)

In the case of the average of the VOIGT shear modulus it follows (a* = 4R*) that:

_ 2: _2a4 1" 2 1=\ M2 _8¢e'7(')’_5)
G = fEa= 5—90[¢ (R®) +2F"(pe)p" (R*)] = 5 0y (131)

or:

24 D.y(y - )

(1]
>

In the same manner one can show for the compressibility: x = %Ea +
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We now consider the vacancy formation energy FE,.¢. For this purpose we want to follow the
strategy of R.A. Johnson in [3| and note according to Eq (80) for equilibrium:

11
Byt = ~6¢e — 12F(pe) + 12F (1) =

5
11 11 11\ 7
(7:7) —q)e + 12(Esub + q)e) - 12Esub |:1 + h <E>:| exp |:—h <E>:| - 12q)e <E> (133)

with h(z) = « <, /1— %lnx - 1). Performing a TAYLOR-expansion of the form:

1 1 1
h(z) = —5%@—1)4-1% <1—%> (x—12%+..., (134)
exp|-h(z)] = 1+ %%(m —1) - i% <1 - % - %) (z—1)2%+..., (135)
P 1+%(m—1)+%%<%—1>(w—1)2+.... (136)
An evaluation of these series at x = % results in:

Eew [(a\? ] 337 1 (1 a v—p 1y
E = — (= —_—+ — -+ = Q| — | (1 —==]. 137
vt 24 (5) 152 23045 2 g)| T B 24 3 (137)
The various contributions in this equation can be also investigated by means of quantum me-

chanical methods. Following Johnson in [3] the leading term of Eq (137) is @e(%). Therefore
it is reasonable to consider the approximation:

Euvf = q)e <%> . (138)
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