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Abstract. This contribution studies the influence of the pressure on the velocity error in finite

element discretisations of the Navier-Stokes equations. Three simple benchmark problems that are
all close to real-world applications convey that the pressure can be comparably large and is not

to be underestimated. For widely used finite element methods like the Taylor-Hood finite element

method, such relatively large pressures can lead to spurious oscillations and arbitrarily large errors
in the velocity, even if the exact velocity is in the ansatz space. Only mixed finite element methods,

whose velocity error is pressure-independent, like the Scott-Vogelius finite element method can avoid

this influence.

1. Introduction

Often, spurious velocity oscillations in discretisations of the incompressible Navier–Stokes equa-
tions are attributed to dominant convection at high Reynolds numbers, like in the case of scalar
singularly perturbed advection-diffusion equations. However, spurious velocity oscillations can also
be excited by a different mechanism, which can only appear in vector equations: the lack of L2-
orthogonality of (only) discretely divergence-free vector fields and large gradient fields in the Navier–
Stokes momentum balance [Lin14]. This lack of L2-orthogonality makes the velocity error of mixed fi-
nite elements like the Taylor–Hood element for the incompressible (Navier–)Stokes equations pressure-
dependent, i.e. C2 “ 1 in

(1) ‖∇pu´ uhq‖0 ď C1 inf
wPV pT q

‖∇pu´whq‖0 `
C2

ν
inf

qhPQpT q
‖p´ qh‖0,

which can be found in textbooks like [GR86, BF91]. Although mixed finite elements like the Scott–
Vogelius element exist, whose velocity error is pressure-independent (C2 “ 0), traditionally the 
pressure-dependence of the velocity error of many flow discretisations seems to be regarded of second-
ary importance. More or less, common belief in the numerical analysis community is that convergence 
of asymptotically optimal order would be sufficient for potential success in real-world flow problems. 

However, we want to emphasize in this contribution that there is an assumption hidden in this 
belief: the pressure has to be comparably small and may not be too complicated, since otherwise 
the pressure-dependent part of the velocity error would be dominant and the constant C2{ν in error 
estimate (1) could be arbitrarily large, depending on the flow problem. In order to practically 
demonstrate that the assumption of a small and simple pressure is generally wrong in real-world 
applications, we present three simple benchmarks, where the pressure is large w.r.t. the velocity and 
the velocity will be an (at most) linear vector field. In the first benchmark, a buoyancy force exactly 
balances the pressure gradient (momentum balance: ∇p “ f), yielding a hydrostatic situation. In the 
second benchmark, a strong y-dependent Coriolis force balances the pressure gradient (momentum 
balance: 2ω ˆ u ` ∇p “ 0), as it appears in large-scale flows in the so-called β-plane approximation 
in meteorology [Ped92]. In the third benchmark, the nonlinear convection term pu ¨ ∇qu is balanced 
by the pressure gradient in a rigid-body-rotation (momentum balance: pu ¨ ∇qu ` ∇p “ 0). These 
examples demonstrate that the error contribution Cν

2 infqhPQpT q‖p ´ qh‖0 appears in all kinds of 
incompressible flows and can have a major influence on the velocity error. In fact, in all three
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examples, this error contribution is the only error source, since the continuous velocity solution lies
in the discrete velocity space.

Since the pressure is in all three examples comparably large, low-order mixed finite element meth-
ods on unstructured grids like the Taylor–Hood finite element method will heavily suffer from spurious
velocity oscillations. Instead, the Scott–Vogelius finite element method or novel modified finite ele-
ment methods such as [Lin14, LMT14, BLMS15], whose velocity errors are pressure-independent, i.e.
C2 “ 0 in (1), will be able to deliver the exact velocity solution.

The third example, where the nonlinear convection term balances the pressure gradient, is es-
pecially important. In this example, spurious velocity oscillations are excited, when the Reynolds
number becomes large, though they are not excited by dominant advection. We remind the reader
that even unstable Galerkin discretisations for singularly perturbed advection-diffusion equations de-
liver the exact solution, whenever it lies in the discrete trial space. Moreover, spurious oscillations
due to dominant convection are only excited in the presence of (interior or boundary) layers, which
our example does not have. Therefore, the third benchmark delivers a simple and highly didactic
example demonstrating that the nonlinear convection term excites two different kinds of spurious
velocity oscillations at high Reynolds numbers. This argument was made recently in [Lin09], but
it does not seem to be widely acknowledged by the CFD community, though its importance for the
discretisation of the nonlinear convection term is potentially high.

2. The Navier-Stokes Model Problem and its Discretisation

This section recalls the Navier-Stokes equations with Coriolis force and its discretisation with finite
element methods.

2.1. The Navier-Stokes Equations. The Navier-Stokes equations with angular velocity ω, right-
hand side f and Dirichlet data uD for some d P t2, 3u dimensional bounded Lipschitz domain Ω with
polygonal boundary BΩ read

´ν∆u` pu ¨∇qu`∇p` 2ω ˆ u “ f, ∇ ¨ u “ 0, u “ uD along BΩ.(2)

The weak formulation employs the multilinear forms

apu, ~vq :“

ż

T
ν∇u : ∇v dx , bpu, qq :“ ´

ż

Ω

q∇ ¨ u dx ,

cpu, qq :“

ż

Ω

p2ω ˆ uq ¨ v dx , dpa,u,vq :“

ż

Ω

ppa ¨∇quq ¨ v dx ,

F pvq :“

ż

Ω

f ¨ v dx

and characterises weak solutions pu, pq P H1pΩ;Rdq ˆ L2
0pΩq of (2) by u “ uD along BΩ and

apu,vq ` dpu,u,vq ` bpv, pq ` cpu,vq “ F pvq for all vh P V :“ H1
0 pΩ;Rdq,

bpu, qq “ 0 for all qh P Q :“ L2
0pΩq.

(3)

2.2. Taylor-Hood and Scott-Vogelius Finite Element Method. The finite element discretisa-
tions below employ a regular triangulation T of the domain Ω into triangles (d “ 2) or tetrahedra
(d “ 3) and replace V and Q in (3) by discrete subspaces V pT q and QpT q that satisfy the inf-sup
stability condition

0 ă β :“ inf
qhPQpT qzt0u

sup
vhPV pT qzt0u

bpvh, qhq

‖∇vh‖0‖qh‖0
.(4)

To ensure antisymmetry of the nonlinear term when tested with discrete test functions, the trilinear-
form d is replaced by

dhpa,u,vq :“

ˆ
ż

Ω

ppa ¨∇hquq ¨ v dx ´

ż

Ω

ppa ¨∇hqvq ¨ u dx

˙

{2.
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Figure 1. Example meshes for the unit square (left) and the unit disk (right).

Then, the finite element method seeks uh P V pT q and ph P QpT q such that u “ uD along BΩ and

ahpuh,vhq ` dhpuh,uh,vhq ` bhpvh, phq ` chpuh,vhq “ F pvhq for all vh P V pT q XH1
0 pΩq,

bhpuh, qhq “ 0 for all qh P QpT q.
(5)

The test function spaces for the Taylor-Hood finite element method read

V pT q :“ THpT ;Rdq :“ P2pT ;Rdq XH1pΩ;Rdq,

QpT q :“

"

qh P P1pT q XH1pΩq :

ż

Ω

ph dx “ 0

*

.

The test function spaces for the Scott-Vogelius finite element method read

V pT q :“ SVpT ;Rdq :“ PdpTB ;Rdq XH1pΩ;Rdq,

QpT q :“

"

qh P Pd´1pTBq :

ż

Ω

ph dx “ 0

*

.

Here, TB denotes a barycentric refinement of the triangulation that ensures inf-sup stability of V pT q
and QpT q in case of the Scott-Vogelius finite element method [Qin94, Zha05]. Unfortunately, this
makes the Scott-Vogelius finite element method expensive. On the other hand the property ∇¨V pT q Ď
QpT q implies that the Scott-Vogelius solution uh P THpT ;Rdq is divergence-free, while the discrete
solution uh P THpT ;Rdq of the Taylor-Hood finite element method is in general not divergence-free.

3. Real-World Benchmark Examples

The following three examples study (simplified) real-world situations where realistic pressures lead
to significant velocity oscillations in the discrete solution of classical mixed finite element methods,
although the exact solution is in the velocity ansatz space. Figure 1 displays typical meshes used in
the examples.

3.1. Hydrostatic Situation. The first example studies a buoyancy force f “ ∇p that exactly
balances the gradient of the pressure ppx, yq :“ y2 ´ 1{3 for Ω :“ p0, 1q2 and ν “ 1, yielding a
hydrostatic situation with u ” 0. Such a flow arises in the Oberbeck–Boussinesq approximation
of thermally-driven flows [Ped92], whenever the Rayleigh-number is comparably small. Here, the
buoyancy forcing fpx, yq “ p0, 2yqT appears when the temperature distribution in the flow obeys
T px, yq “ y.

Tables 1 and 2 show that the Scott-Vogelius finite element method (with C2 “ 0!) computes the
exact velocity solution, while the Taylor-Hood finite element method shows errors in the velocity on
unstructured meshes although u P V pT q. This is due to the pressure contribution in the a priori error
estimates. Moreover, the errors can be made arbitrarily large by reducing the viscosity parameter ν
as shown in Figure 2.
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ndof ‖u´ uh‖0 ‖∇pu´ uhq‖0 ‖p´ ph‖0 ‖∇ ¨ uh‖0
186 2.1564e-15 1.9151e-14 9.2128e-03 7.1148e-15
664 1.1571e-15 1.1767e-14 2.6854e-03 4.7025e-15

2712 1.0178e-15 9.5467e-15 6.1131e-04 4.0432e-15
10397 9.9598e-16 8.9622e-15 1.5570e-04 3.8523e-15

order - - 2.0163 -

Table 1. Results for Scott-Vogelius FEM in Section 3.1.

ndof ‖u´ uh‖0 ‖∇pu´ uhq‖0 ‖p´ ph‖0 ‖∇ ¨ uh‖0
178 9.6944e-05 1.9391e-03 5.6969e-03 1.6500e-03
650 1.8501e-05 6.7852e-04 1.3821e-03 6.4252e-04

2361 2.4460e-06 1.7847e-04 3.5466e-04 1.6629e-04
9280 3.3253e-07 4.7348e-05 9.1917e-05 4.4571e-05

order 2.9704 1.9829 2.0085 1.9761

Table 2. Results for Taylor-Hood FEM in Section 3.1 for ν “ 1.
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Figure 2. Convergence history of the L2 velocity error (left) and the velocity gradi-
ent error (right) of the Taylor-Hood finite element method versus the number of
degrees of freedom in Section 3.1 for different values of ν.

ndof ‖u´ uh‖0 ‖∇pu´ uhq‖0 ‖p´ ph‖0 ‖∇ ¨ uh‖0
186 2.2287e-15 2.4318e-14 9.2128e-03 9.5907e-15
664 1.3990e-15 2.3625e-14 2.6854e-03 9.0401e-15

2712 8.9699e-16 2.6682e-14 6.1131e-04 1.0068e-14
10397 2.2350e-15 4.8028e-14 1.5570e-04 1.9672e-14

order - - 1.9572 -

Table 3. Results for Scott-Vogelius FEM in Section 3.2.

3.2. Position-Dependent Coriolis Force. This example considers the Stokes equations on the unit
square Ω :“ p0, 1q2 with Coriolis force and vanishing right-hand side f ” 0 for the constant inflow
u :“ p1, 0q (a simple “west wind”). The y-dependency of the angular velocity ωpx, yq :“ p0, 0, β0yq
requires the quadratic pressure p :“ β0py

2 ´ 1{3q to obtain ∇p ` 2ω ˆ u “ 0. Tables 3 and 4 show
the numerical results for β0 “ ν “ 1. Again, the Scott-Vogelius finite element is able to produce the
exact velocity solution, while the velocity of the Taylor-Hood finite element method is polluted by
the pressure error. Figure 3 shows the increase of the velocity error for ν Ñ 0.

3.3. Nonlinear Convection in Rigid Body Rotation. This example considers the Navier-Stokes
equations on the unit disk Ω :“ tpx, yq P R2 : x2 ` y2 ď 1u without Coriolis force and vanishing
right-hand side f ” 0 for the circular flow upx, yq :“ p´y, xq. These conditions lead to the quadratic
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ndof ‖u´ uh‖0 ‖∇pu´ uhq‖0 ‖p´ ph‖0 ‖∇ ¨ uh‖0
178 9.6948e-05 1.9391e-03 5.6970e-03 1.6501e-03
650 1.8501e-05 6.7852e-04 1.3821e-03 6.4252e-04

2361 2.4460e-06 1.7847e-04 3.5466e-04 1.6629e-04
9280 3.3253e-07 4.7348e-05 9.1917e-05 4.4571e-05

order 3.0493 2.0244 2.0442 2.0246

Table 4. Results for Taylor-Hood FEM in Section 3.2 for ν “ 1.
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Figure 3. Convergence history of the L2 velocity error (left) and the velocity gradi-
ent error (right) of the Taylor-Hood finite element method versus the number of
degrees of freedom in Section 3.2 for different values of ν.

ndof ‖u´ uh‖0 ‖∇pu´ uhq‖0 ‖p´ ph‖0 ‖∇ ¨ uh‖0
893 2.5245e-14 4.4558e-13 2.1032e-02 1.3410e-13

3399 1.4493e-13 4.4160e-12 5.4896e-03 1.0879e-12
12638 1.5208e-14 9.9279e-13 1.3949e-03 2.5477e-13
52469 9.2076e-15 8.1960e-13 3.4659e-04 2.2274e-13

order - - 2.0291 -

Table 5. Results for Scott-Vogelius FEM in Section 3.3.

ndof ‖u´ uh‖0 ‖∇pu´ uhq‖0 ‖p´ ph‖0 ‖∇ ¨ uh‖0
791 7.8827e-05 1.7420e-03 6.3646e-03 1.6602e-03

2835 1.1488e-05 4.8856e-04 1.6382e-03 4.7153e-04
11451 1.3543e-06 1.1763e-04 4.0255e-04 1.1368e-04
45256 1.7825e-07 3.0921e-05 1.0175e-04 2.9842e-05

order 2.9961 2.0015 2.0096 2.0006

Table 6. Results for Taylor-Hood FEM in Section 3.3 for ν “ 1.

pressure p :“ px2 ` y2q{2 ´ 1{4 that balances the nonlinear term, i.e. ∇p ` pu ¨∇qu “ 0. Tables 5
and 6 show the numerical results for ν “ 1. Also in this example, the Scott-Vogelius finite element
computes the exact velocity solution, while the Taylor-Hood finite element method does not. Figure 4
shows the increase of the velocity error for ν Ñ 0.
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Figure 4. Convergence history of the L2 velocity error (left) and the velocity gradi-
ent error (right) of the Taylor-Hood finite element method versus the number of
degrees of freedom in Section 3.3 for different values of ν.
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