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In this snapshot, we will first give an introduction to
hyperbolic geometry and we will then show how cer-
tain matrix groups of a number-theoretic origin give
rise to a large variety of interesting tessellations of
3-dimensional hyperbolic space. Many of the building
blocks of these tessellations exhibit beautiful sym-
metry and have inspired the design of 3D printed
jewellery.

1 The axiom of parallels

Some of the most influential books on mathematics in history were written by
Euclid around 300 B.C., and are called the “Elements”. For an online translation
of these see [1].

With the Elements, Euclid set out to put geometry on a solid footing. This
amounted to a huge endeavour. The first task was to find as few azioms upon
which to base the theory of geometry as possible, where an axiom is a statement
or proposition that is regarded as being self-evidently true. The second task
was to deduce all the known geometric theorems from those axioms.

In modern parlance, we can state the axioms to which he reduced the whole
theory as follows ([1], p.7):

1. Each pair of points can be joined by one and only one straight line segment.
2. Any straight line segment can be indefinitely extended in either direction.
3. There is exactly one circle of any given radius with any given center.



Figure 1: From an Italian translation of Euclid’s Elements.

4. All right angles are congruent to one another.
5. Through any point not lying on a straight line there passes one and only one
straight line that does not intersect the given line.

Of such a set of axioms one needs to make sure in particular that they do not
lead to a contradiction, that is, they are consistent, and that none of the axioms
can be deduced from one or more of the others, in other words, that they are
independent. The fifth axiom, the axiom of parallel lines, was even in Euclid’s
time considered something of an enigma, as it seemed superfluous, yet nobody
was able to deduce it from the other axioms. The following question naturally
arose: Is the fifth axiom independent of the others? The importance of Fuclid’s
Elements and this somewhat nagging issue for the foundations of mathematics,
in that the possible redundance of the fifth axiom was presumably felt to be a
blot on the perceived elegance of the axiomatic setting, spurred many attempts
over the centuries to deduce the fifth axiom from the other four.

Surprisingly, the solution to this longstanding conundrum was found when
(presumably independent) flashes of genius struck at least five people at around
the start of the nineteenth century. Most famously, these mathematicians
include Janos Bolyai (1802-1860), Nikolai Lobachevsky (1792-1856) and Carl
Friedrich Gauss (1777-1855), but also Ferdinand Karl Schweikart (1780-1859)
and his nephew Franz Taurinus (1794-1874) corresponded with Gauss about
the problem. Each of them showed, in their own way, that one can replace the
fifth axiom in two fundamentally different ways and still obtain a consistent
geometry. Roughly speaking, we can replace the parallel postulate with either
of the following versions:



5a. Through any point not lying on a straight line there are no straight lines
that do not intersect the given line.

5b. Through any point not lying on a straight line there are at least two
straight lines that do not intersect the given line.

The first of these options gives rise to what is called spherical geometry,
which we can think of as geometry on the surface of a sphere. Here the straight
lines are great circles, which are the intersections of the sphere with planes that
pass through the centre of the sphere. In this snapshot we are interested in
the second option, having more than one parallel line through a given point,
which gives rise to hyperbolic geometry. Fortunately one can picture this kind of
geometry using intuition from the spaces we are used to, that is, the Fuclidean
spaces, albeit with some of the “rules” changed. Here we list some of the
consequences of allowing more than one parallel line:

e The angle sum in a triangle is strictly smaller than 7 (as opposed to the
equality we are used to from Euclidean geometry).

e If two triangles are similar (that is, have the same angles), then they also
have the same side lengths (that is, they are congruent), as opposed to
the Euclidean case where one has infinitely many non-congruent similar
triangles.

e The area of a triangle with angles a, 8 and + is equal to 7 — (a + 5 + ), in
other words, the area of a hyperbolic triangle can be read off directly from
its angles.

e There are (non-empty) triangles with all angles being zero! These triangles,
which are called ideal, have all of their vertices on the boundary of hyperbolic
space, and they have maximal area.

e The “hyperbolic Pythagoras” rule—in a right-angled triangle (which still
means with one angle equal to 7/2) with sides of length a, b and hypotenuse
c one has

cosh(a) cosh(b) = cosh(c) .

2 First glance at hyperbolic geometry

How can we picture such a strange geometry? There are several rather different
models in which one can view it, here we will use the upper half-plane model
H? = {z + iy € C | x € R,y > 0}, the upper half of the complex plane. One
can view the real line (embedded in C) as part of the boundary of H?, which
we denote by OH?. Apart from the real line, there is one more point (“the
point at infinity”) that is considered to be part of the boundary. Altogether,
OH? = RU{oo}, and it can be identified with the real projective line in projective



geometry. Think stereographic projection from the north pole of a circle to
the line which is tangent to the south pole—in our picture the north pole plays
the role of the point at infinity and the tangent to the south pole is identified
with R.

This model ought to be familiar for those readers who have seen Mdbius
transformations in complex analysis. Recall that these are maps of the form

az+b
cz+d

with a,b,c,d € C, and most of them map the complex plane, together with the
point at infinity, into itself. We can also use matrix notation to denote such
maps, where we simply collect the coefficients into a 2 x 2 matrix:

a b
=0 0)

We can consider in particular those Mébius transformations which preserve
H? (that is, which map the upper half-plane onto itself). These transformations
are the ones with coefficients a, b, ¢, d that are real numbers with ad — bc > 0.
We are even more interested in the transformations that not only map the upper
half plane onto itself, but also preserve the underlying “geometry” of the space.
In other words, they do not change the distance between points or the angles

in a geometric shape. Maps of a metric space with this property are called
isometries. We have the following fact:

Fact: Any isometry of H? is captured by some matrix A as above with a, b, c,d €
R and ad — be = 1. The set of all such matrices is called SL2(R).

Let us see some examples:

1-24+2

o241 = #12. Thisis a translation

1 2
0 1) encodes the map z —
of the complex plane, it simply shifts each point to the right by two units.

1. The matrix (

. (0 -1 . .
2. The matrix (1 0 ) encodes the map z +— —%. A simple calculation shows
—a+ib
a2+b2 )
preserves HZ2. It can be seen geometrically as first a reflection in the unit
circle (by which we mean each point a + ib outside the unit circle gets

mapped to the point ;;ji; inside the circle on the same (Euclidean) straight

that this sends the number a + ¢b to the number

and so it again

See https://en.wikipedia.org/wiki/Stereographic_ projection
A metric space is a set of points along with a function that determines a notion of distance
between the points. For more details see https://en.wikipedia.org/wiki/Metric_ space.
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line from the origin which is at the same hyperbolic distance from the circle),
and then a reflection in the imaginary axis, sending a to —a.

To proceed further we need to introduce the notion of group. A group G is a
set together with a binary operation (often denoted by multiplication -) that
satisfies the following rules:

Closure: for all g,h € G, we have g - h € G.
Associativity: for all f,g,h € G, we have f-(g-h)=(f-g) - h.
Identity: there is a particular element e € G which satisfies g-e=e-g=g
for all g € G.
e Inverses: for each g € G, there exists an element ¢g~! which satisfies the

property that g- g ' =g 1 -g=e.

One obvious example is the set of non-zero real numbers with ordinary
multiplication. Then the identity is 1, and the inverse of every number a is
1/a. The matrices SLy(R) also form a group, with the operation of matrix
multiplication. It is easy to check that the closure and associativity properties
are satisfied. The identity in SLo(RR) is given by the 2 x 2 matrix

1 0
= (g 7).

and for the inverses, we have that

a b\ ' 1 d —b\ [ d -b
c d T ad—bc\ —c a “\ —c a ‘

A subgroup of a group is a subset of the set G which is also a group under
the same operation. For example, the set of matrices in SLy(R) with entries
a,b, ¢, d that are all integers is a subgroup, which we call SLy(Z). A (sub)group
is said to be generated by a set of elements in G if every element of the group
can be written as a finite product of those elements.

The two matrices given as examples 1 and 2 above generate a subgroup of
SLo(Z) which we shall call T'. We shall use this subgroup T to illustrate various
of the notions that we will need later. First of all, we want to have an idea
of the “size” of a subgroup inside a group. This is done using the cosets with
respect to I' which are defined to be the sets

g ={g-h:heTl}, foreachged.

For the group I as a subgroup of SLy(Z), it is an interesting exercise to compute
these cosets, and show that there are precisely three of them. We say that I is
of index 3 in SLy(Z). That means that three copies of I' are enough to “cover”



the group SL2(Z). In that sense we think of I' as being a large subgroup. Let
us also note that T' is an example of an “arithmetic” group, as is SLy(Z) itself;
such groups play an important role in number theory.

Fix now a number z € H2. The set of all image points {g(z) : g € I'} is called
the T'-orbit of the point z. We would like to find a subset of H? that contains
exactly one element of the I'-orbit of each point in H?. A one-dimensional
analogue would be the set of all translates of a point x € R under the group
of integers with addition: {...,xz — 2,2 — 1L,z,x + 1,2+ 2,...}. Then a set
containing precisely one of these translates for each € R would be the half-
open interval [0,1). Note that this is not the only possible choice, but it is (in
some sense) a natural one.

If we can find such a set for a subgroup, such as the subgroup I' of SLs(R),
and the set is also “connected” (that is, it is in one piece, like the interval
example above), we call it a fundamental domain for the action of T' on H?2.

Now each point in H? has a I-translate in the half-strip {z + iy | -1 <z <
1, y > 0}: for each zg = x + iy simply add or subtract integer multiples of 2
from zp so that it lands between —1 and 1 (in terms of the maps, this means
applying the map z +— z + 2 or its inverse z — z — 2 repeatedly until the point
is moved to the strip).

Furthermore, since the second matrix, corresponding to the map z — —1/z,
maps elements from inside the unit circle to the outside, it seems plausible that
a fundamental domain is the region shown in Figure 2 (this is to be thought
as extended to the “point at infinity” where the two vertical boundary lines
“meet”).

-2 -1 0 1

Figure 2: Fundamental domain for the group I' (it is unbounded in the y-
direction).



Indeed, it turns out that this is essentially the correct picture, except that
one needs to be a bit more careful at the boundary (only “half” the points are
to be counted in, so that there is no overlap).

Note that this fundamental domain is a (hyperbolic) triangle in H? with all
vertices at the boundary: (—1,0), (1,0) and the point at infinity. In particular,
the angles in the triangle, which are calculated by finding the angles between
the straight lines tangent to the sides, are all equal to zero. Therefore, this is an
example of an ideal triangle, as mentioned above. Let us also mention here that
the geodesics, or straight lines, in H? are the half-circles (and as a limiting case
also the straight lines, which can be imagined as circles with infinite radius)
orthogonal to the real line, thought of as the boundary OH?Z.

Once a fundamental domain for a given arithmetic group is found, its
translates will determine a “tessellation” of the original space. Simply take
all its translates under the group (typically one allows for overlaps along the
boundaries, so one is more casual about the boundary of the fundamental
domain). For the group I, this tessellation is shown in Figure 3, where the
black and white colours are only to make the triangles easier to see.

Figure 3: Tessellation of the hyperbolic plane.

Moreover, one can view this picture in a different model of the hyperbolic
plane, the disc model D? := {z € C : |z| < 1}, the inside of the unit disc in the
complex plane. We can send one model to the other by using, for example, the
map

H*> — D?
z—1
z+1

z —

and the tessellation in this case is shown in Figure 4. In this model it is perhaps



easier to see that each of the fundamental domains is indeed a triangle with
vertices on the boundary, which here is the unit circle S' := {z € C : |z| = 1}.

Figure 4: A hyperbolic tessellation of the unit disc model. Each (curved)
triangle has the same hyperbolic area.

3 From 2D to 3D

We obtain an analogous picture when we pass from 2D to 3D, that is, from the
hyperbolic plane to the hyperbolic space. It is often depicted as the “upper half”
of the usual (Euclidean) space R3, consisting of those points (x,y,2) € R? for
which z > 0, and it is denoted H3. A beautiful introductory text, including
historical information on this topic, was written by Milnor [4]; here we briefly
describe some of the features of H?>.

e Its boundary OH? is given by the xy-plane (consisting of the points (z,y, 2) €
R3 for which z = 0) together with a point at infinity. This gives topologically
a “l-point compactification” of the plane, and geometrically we obtain a
sphere.

e Its geodesics are again certain half-circles; in this 3-dimensional case they
must be orthogonal to the boundary plane. As a limiting case, if a half-circle
passes through the point at infinity, it becomes a straight line in H?. Again,
think stereographic projection from the north pole, this time of a sphere to
the plane which is tangent to the south pole—in our picture the north pole
plays the role of the point at infinity and the tangent plane to the south
pole is identified with the plane “underneath” the upper half-space.



e The hyperplanes in H? are half-spheres, again orthogonal to the boundary
plane (a limiting case being half-spheres through co which are planes that
intersect this boundary plane at a right angle).

e Isometries now are encoded by elements in SLo(C), rather than the group
SLo(R) of isometries of the hyperbolic plane. Hence we are looking for
interesting subgroups of the matrix group SLy(C).

4 Tessellations in hyperbolic space

Let us consider a couple of examples. Perhaps the simplest 3-dimensional
example of a tessellation in hyperbolic space arises from the group SLa(Z[i])
where Z[i] C C denote the Gaussian integers, that is, the set of complex numbers
{a+1ib:a,be Z}. We illustrate it in Figure 5. The actual fundamental domain
is slightly more complicated, but if one passes to a subgroup (of index 4) of
SLo(Z[i]), which corresponds to gluing 4 copies of the fundamental domain
together, then one obtains a nice octahedron with all six vertices at the boundary.
You can think of the octahedron as two square pyramids glued together along
the base, and a fundamental domain for the full group SLo(Z]i]) is given as half
of such a square pyramid.

Plan:

Figure 5: Tessellation of hyperbolic 3-space using SLs(Z][4]).

A second example is given by SLo(Z[v/—2]), where Z[/—2] refers to set of
elements a + by/—2 where a and b are integers, and the picture is as in Figure
6. We note also that similar projection pictures of a number of cases can be
found in [3].
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Figure 6: Tessellation of the hyperbolic 3-space using SLa(Z[v/—2]).

How should we interpret these pictures? In both Figures 5 and 6, the image
on the left shows (parts of) hyperplanes in H?. In Figure 6, four of them are
vertical, whilst the other 10 of them are half-spheres. The interior of this figure
gives a polyhedron which is essentially a fundamental domain arising from the
action of SLy(Z[v/—2]), or, more precisely, a suitably large subgroup (recall
that this means a subgroup of small index). The right hand picture shows a
projection of this polyhedron from the point “at infinity” to the plane below.

It is reasonably straightforward to picture parts of the tessellation of H?
arising from this fundamental domain via simple translates using the matrices

1 . . . . o
(0 (11) with ¢ an integer or, say, an integer multiple of v/—2. However, it is

considerably harder to picture the image under the “inversion” z — —1/z, and
moreover some of the faces become quite small. In any case, from this point on
we are more interested in the fundamental domains themselves and what can
be done with them.

A schematic 3D-picture, produced using the computing software Mathemat-
ica, of the half-spheres bounding the polyhedron is shown in Figure 7 (the
polyhedron itself consists of the points above those half-spheres).

If we push the vertex “at infinity” down to a finite point, we can see a
compact approximation of the polyhedron (with the same combinatorial data).
This is shown on the left-hand side of Figure 8. Then we can try to recognise it
as a more familiar polyhedron, at least after straightening out the faces. Indeed
we find its Euclidean counterpart to be a cuboctahedron, as shown on the
right-hand side of Figure 8.
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Figure 8: Approximate ideal fundamental domain arising from SLo(Z[v/—2]),
and, on the right, a “straightened” version.

5 Further arithmetic examples

There are a dozen further arithmetic examples known, elaborated upon in [2],
all of which arise from SLy(Z[v/—d]) (or at least a closely related such matrix
group; the mathematically precise notion is for it to be “commensurable”) for
some small positive integer d.

Two groups are called commensurable if their intersection is a subgroup of finite index in
each of the two groups (that is, if their intersection constitutes a “large” part of each group).
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5.1 The case d = 6.

It turns out that the case d = 6 is one of the rare cases where we can find a
fundamental domain which is a single convex polyhedron in its own right (rather
than a union of such polyhedra). More precisely, one obtains a rhombicubocta-
hedron, which we depict as a 2-dimensional projection from the point at infinity
on the left and in its Euclidean avatar on the right, as shown in Figure 9. We
suggest that the reader try the following visualisation challenge: Can you “see”
that the left hand image is combinatorially, that is, not taking into account
distances, a projection of the right-hand image from one of its vertices?

Figure 9: A polyhedron tessellating hyperbolic 3-space, projected to the Eu-
clidean plane from one of its vertices (left), and a “straightened”
version of that polyhedron in Euclidean space (right).

6 Hyperbolic polyhedra for decoration and jewellery

We can apply the same procedure to groups closely related to SLo(Z[v/—d]) for
many integers d > 0, and it turns out that in a good number of cases one finds
interesting looking yet rather skewed polyhedra. Several students in Durham
working on summer research projects have been toying around with these over
the years and found ways to depict them (M. Spencer) and to exhibit their
symmetry better by “spherifying” them with suitable affine transformations
(J. Inoue).

These pictures triggered a desire to realise the polyhedra as models, and
other students were able to produce the first such models via 3D-printing
(E. Woodhouse, J. Inoue). There are plenty of computer aided design (CAD)
programs like OpenSCAD and Rhino3D which allow the manipulation of the
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Figure 10: Pictures of polyhedra arising from an ideal tessellation of hyperbolic

3-space from a group commensurable with SLy(Z[v/—d]) with d =
3606 and d = 226, respectively.

data which encode the vertices, edges and faces of the models. Moreover, one
has the option to produce files from the ensuing models that can be uploaded
to the web page of a 3D printing service who in turn print and ship the results—
in a good variety of materials—to their customers. Our first such trial runs
produced wireframe models of those polyhedra in plastics, and in steel materials
like Bronze Steel or Gold Steel; examples of the latter are the following rather
decorative models (arising from d = 3606 and d = 226, respectively), shown
in Figure 10. In Figures 11 and 12, we show some of the 3D-printed results,
adapted in some cases to produce jewellery.

Figure 11: Pictures of 3D-printed wireframe models of the polyhedra shown
in Figure 10 in Polished Bronze Steel and Polished Gold Steel,
respectively.
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Figure 12: Pictures of polyhedra in Polished Bronze, Rhodium plated and
Rose Gold plated, respectively, arising from an ideal tessellation of
hyperbolic 3-space for d = 34, d = 11782 and d = 1409, respectively.

It is surprising how nicely poised many of the ensuing polyhedra emerge,
as there does not seem to be a compelling reason a priori that the vertices of
such a polyhedron (given as the simultaneous integer solutions of a linear and a
quadratic Diophantine equation®) should have such a rich (hidden) symmetry
at all. It is a pleasing empirical observation that many polyhedra arising in this
way turn out to be combinatorially different—this is in notable contrast to a
different tessellation procedure for closely related groups given by Yasaki [5]
where only nine combinatorially different polyhedra appear to occur. In fact,
the maximal number of vertices for our polyhedra might even grow indefinitely
with increasing d (the current record: for d = 20009 we find a polyhedron with
2496 vertices).

A Diophantine equation is a polynomial equation in two or more variables in which only
integer solutions are allowed.
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Figure 1 From the Folger Shakespeare Library, under license CC BY-SA 4.0.

Figure 3 Created by the editor.

Figure 4 Licensed under Creative Commons Attribution-Share Alike 3.0 via
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