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KILLING TENSORS ON TORI

KONSTANTIN HEIL, ANDREI MOROIANU, UWE SEMMELMANN

ABSTRACT. We show that Killing tensors on conformally flat n-dimensional tori whose con-
formal factor only depends on one variable, are polynomials in the metric and in the Killing
vector fields. In other words, every first integral of the geodesic flow polynomial in the
momenta on the sphere bundle of such a torus is linear in the momenta.

2010 Mathematics Subject Classification: Primary: 53C25, 53C27, 53C40, 53D25
Keywords: Killing tensors, geodesic flow, integrable systems.

1. INTRODUCTION

Killing tensors are symmetric p-tensors with vanishing symmetrized covariant derivative
and correspond to Killing vector fields for p = 1. Originally, Killing tensors were studied
in the physics literature since they define first integrals (polynomial in the momenta) of the
equation of motion, and thus functions constant on geodesics. This property makes Killing
tensors very important in the theory of integrable systems.

First integrals of the geodesic flow on the 2-dimensional torus is an intensively studied topic.
The description of metrics with linear first integrals, i.e. Killing vector fields, is obvious. There
also is a classification of metrics with quadratic first integrals, i.e. with Killing (non-parallel)
2-tensors. These metrics turn out to be of Liouville type, i.e. in conformal coordinates the
metric can be written as § = (f(z)? + g(y)?)(da? + dy?) cf. [4]. Surprisingly, the existence of
first integrals of degree > 3 independent of those of degree 1 and 2 on a 2-torus is a completely
open problem. The conjecture is that there are no such first integrals cf. [2]. During the last
thirty years many partial results were proved supporting this conjecture cf. [1], [6], [5].

It follows from the theory of integrable systems that besides the metric, it is not possible
to have two other functional independent first integrals on the 2-torus cf. [7]. Indeed, in this
situation the geodesic flow would be superintegrable. Then its trajectories would lie in the
intersection of three level sets, one of which is the compact sphere bundle. One can conclude
that all geodesics have to be closed. Then the manifold has the homology ring of a rank one
symmetric space, which is not the case for the torus.

In particular this means that if the metric g on T? carries a Killing vector field, then any
Killing tensor of higher degree is functional dependent of it, i.e. it is expressible as polynomial
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in the Killing vector field and the metric. Since every metric § on 7 is conformal to the flat
metric g, and has a Killing vector field if and only if the conformal factor only depends on one
coordinate of T2, the above fact can be equivalently stated as follows: Every Killing tensor
on the torus T? equipped with a metric of the form § = e*’W)(dz? + dy?) is a polynomial in
the Killing vector field 5% and in the metric tensor g.

In our article we generalize this fact to the n-dimensional torus. Our main result is

Theorem 1.1. Let K be a Killing tensor on the torus T equipped with a metric of the form
G =@ (da? .. . +da?). Then K is a polynomial in the Killing vector fields 6%1, R

7 0xp—1

and in the metric tensor g.

The idea of the proof is as follows. We first translate the Killing equation on the flat torus.
Next, using the formalism developed in [3], we show that the components of any Killing tensor
with respect to the flat metric are constant functions in zq,...,x, 1. The Killing equation
then reduces to a system of ordinary differential equations with polynomial solutions, which
translated back to the metric g yields the result.

Note that for dimensional reasons, the result above cannot be proved by the above argu-
ments from the theory of integrable systems for n > 3. Indeed, assuming that K is a Killing
tensor on (7", g), functionally independent on the Killing vector fields &;,...,&,_1 and on
the metric tensor g, then one would obtain n + 1 first integrals of the geodesic flow on the
tangent bundle of (7™, §), but this no longer implies superintegrability since n +1 < 2n — 1
for n > 3.

ACKNOWLEDGMENTS. This work was initiated during a “Research in Pairs” stay at the
Mathematisches Forschungsinstitut, Oberwolfach, Germany and partially supported by the
Procope Project No. 32977YJ. We also thank Vladimir Matveev for very useful comments.

2. PRELIMINARIES

We will use the formalism introduced in our article [3]. For the convenience of the reader,
we recall here the standard definitions and formulas which are relevant in the sequel.

Let (TM,g) be the tangent bundle of a n-dimensional Riemannian manifold (M, g). We
denote with Sym” TM C TM®? the p-fold symmetric tensor product of TM. The elements
of Sym” TM are linear combinations of symmetrized tensor products

Vit en. s Up 1= Z Us(1) & ... & Vg(p)
o€Sp
where vy, ..., v, are tangent vectors in TM.

Let {e;} denote from now on a local orthonormal frame of (TM,g). Using the metric g,
we will identify TM with T*M and thus Sym® T*M ~ Sym? TM. Under this identification
we view the metric tensor as a symmetric 2-tensor L := 29 = > ¢; - ¢;. The scalar product g
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induces a scalar product, also denoted by g, on Sym?” TM defined by
glur - v wy s wy) = Z (v, we)) - - - - G(Vp, Wo(p)) -
o€Sp

Using this scalar product, every element K of Sym” TM can be identified with a polynomial
map of degree p on TM, defined by the formula K(vy,...,v,) = g(K,v1 - ... v,). The
metric adjoint of the bundle homomorphism v- : Sym? TM — Sym?™ TM, K +— v - K is the
contraction map v : Sym?™ TM — Sym? TM, K +— vJ K, defined by

(vaK)(v1,...,vp1) = K(v,v1,...,05-1) .

The metric adjoint of L- : Sym? TM — Sym?™? TM is the bundle homomorphism
A SymPP* TM — Sym? TM, K +— Z€iJ€Z’JK .

The following commutator formulas are straightforward:

(1) (A, v-] = 2vy, [va,L] =20, [Avi] =0=][Lv].

For later use, let us state the following formula which holds for any vector v € TM and
symmetric tensor K € Sym?(TM):

@) (L K)(0, . 0) = (g +2)(q + DK (v, 0)[of
Indeed, using (1) repeatedly we may write

(L-K)(v,...,v) = (L- K07 = (K, Av??) = (¢ +2)(q + 1){K,v")|v|* .

We denote by Sym?TM := ker(A : Sym? TM — Sym? 2TM) the space of trace-free
symmetric p-tensors. The bundle of symmetric tensors splits as
Sym? TM 2 Sym{TM @ Sym) *TM @ ...,

where the last summand in the decomposition is the trivial rank one bundle for p even and
the tangent bundle TM for p odd. Correspondingly we have for any K € Sym” TM the
decomposition

K:K0+LK1—|—L2K2+

with K; € Symg*% TM, ie. AK; =0, which is called the standard decomposition of K. For
any v € TM and K € Sym} TM the following projection formula holds (cf. Eq. (3) in [3]):

(3) (U'K)0:U~K—mL(UJK).
On sections of Sym” TM we define two first order differential operators, the differential
d:T(Sym? TM) — ['(Sym?™ TM), K Zei -V, K,

and the formal adjoint of d, the divergence operator ¢:

§: D(Sym”™ TM) — I'(Sym” TM), K+ =Y e uV K,
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An important property of d is that it acts as derivation on symmetric products. Moreover, d
commutes with L- and for a section K of Sym{ TM the projection of dK onto the trace-free
part is given by the following formula (cf. [3], Lemma 2.2):

(4) (dK)y = dK + LK .

n+2(p 1)

A symmetric tensor K € T'(Sym? TM) is called conformal Killing tensorif there exists some
symmetric tensor & € I'(Sym?™' TM) with dK = L-k. It is called Killing tensorif dK = 0 or
equivalently if the symmetrized covariant derivative of K vanishes or if (VxK)(X,..., X) =0
holds for all vector fields X. A Killing tensor is in particular a conformal Killing tensor.

The defining equation for conformal Killing tensors is conformally invariant, i.e. a section
K of Sym? TM is a conformal Killing tensor with respect to the metric g, if and only if it is
a conformal Killing tensor with respect to every conformally related metric § = e2/g. Indeed
(cf. [3], Lemma 3.3), the differential d with respect to the metric § is related to d by

(5) dK = e (dK + L-df 1K) .

3. PROOF OF THE THEOREM 1.1

We consider the n-dimensional torus 7" with the flat metric ¢ := dz? + ... + dz? and a
conformally related metric § := €2/g such that f = f(z,) only depends on the last variable.
Let K € I'(Sym”T'M) be a Killing tensor on M := (T",3). By (5), the Killing equation
dK = 0 translates into the equation
(6) dK = —-L-(df J K)
with respect to the conformally equivalent flat metric g = e=2/§.

We denote by §; = a%j the vector fields dual to dz;, which form a global orthonormal
frame on the flat torus (7", g). In particular we have L = 3°7 | & Forj=1,...,n—1,§
are Killing vector fields with respect to g and parallel with respect to the flat metric g.

In (6) we use the standard decomposition K = 37 (I/K; with K; € T'(Symg TM),
together with the fact that d commutes with L and that df 2 L = 2df, to obtain

Y VdK; = —Ldfuy U-K; = =LY (2jdf -V K; + LV -df 1K)
j=0 j=0 Jj=0
= =) (L df K; + LT df LK) .
Jj=>0

Using (4) and (5) in the equation above and comparing the trace-free coefficients of L7 for
every j yields the System

(7) dK; + L-6K; + 2j(df - K; L-df S K;)

n+2(p 25—1)

= —5}( R <1+(3—‘1?> df oK;-1 .

n+2(p—2j+1) n+2(p—2j5+1)

n+2(p 25—1)
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Here j goes from 0 to ng, where we set as usual K_; = KLBJH = 0. In particular, for
2

j =0, we obtain as first equation

dKo + ;o L 0Ko = 0.

Thus K is a trace-free conformal Killing tensor with respect to g and hence parallel because
of Proposition 6.6 from [3].

Lemma 3.1. Let & be a linear combination with constant coefficients of the g-parallel vector
fields &, ..., &—1. We denote by’ the derivative in direction of &,. Then the following holds

(1) VeK = 0 and VeK; = 0 forall j
(i) df = ', Vedf = 0
(1)) dK =&, - Ve, K, 0K ==&, 1V, K
(iv) K(&,...,6,&). = 0 at all points x € T™ where f'(x) #0 .

Proof. (i) Since VKy =0, V€ =0 and
(8) Le=Ve— (V). =V,

it follows L¢ Ky = 0. The Lie derivative L¢ preserves the space of trace-free tensors as well
as that of Killing tensors and of course LcL = 0. Hence, taking the Lie derivative in the
standard decomposition K = ) >0 L/ K, we obtain that the standard decomposition of the
Killing tensor LK is -

9) LK = Lo (LK) +L- LKy +...) .

The operator L- is injective and commutes with differential d. Thus a symmetric tensor () is
Killing if and only if L - @ is Killing. From (9), we conclude that LKy + L - LKy + ... s
Killing with trace-free part £:K;. Repeating the argument above we get E?K 1 = 0. Taking
the scalar product with K; and integrating over (T, g) yields:

0= / 9(£§K1, Ki)dp = 55(9(55K17K1)) - g<££K17££Kl>dﬂ = —/ ’£§K1|2d/i

since, & being parallel, the integral over M of £(1)) vanishes for every function ¢ by the Stokes
formula. This shows that LK = 0. By immediate induction using (9) we obtain L:K; =0
for all j and finally also LK = 0. We conclude using (8) again.

(79) The function f only depends on the last coordinate x,, i.e. df = f'(z,)&,. Thus
Vedf = f'(2,)Ve&n = 0.

(1) is a direct consequence of (i) and (ii).

(tv) Using (zii) and (6) we get (&, - Ve, K)(&, ..., &) = —(L- f'& oK), ..., §). Since &,
is orthogonal to &, we obtain by (2) that 0 = —p(p + 1)f'K(¢,...,&, &) and the statement
follows. O
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We now introduce the functions

Q1= Kj(f? B 7€7§n) - g(Kj7§p_2j_1 : g?’b)u

for 0 <j < [p%lJ, where £ is as above a linear combination with constant coefficients of the
g-parallel vector fields &1, ...,&,_1. For convenience we assume £ to have constant length one.
Note that ag is constant since K is parallel. We want to show that all o;; have to vanish.
First we find that

BENE - 18) = — (6 Ve K)E....6) = —a.

Since £ is orthogonal to &, we have

Taking the scalar product with £&7~2*! in (7) and using (2) we obtain for 0 < j < |21 ]

(=21 0)0=2§) 1 . 2(p-20+0)®-2)) pr . 1 ) n2-2j g
(10) T @ + T [ % = s T oaseia Qi1

From this system of ODE’s it will follow that the functions a; are polynomials in e~/ of

degree j. Indeed we have

Lemma 3.2. Let {b;,c; |0 <j <} be real constants and let {f,a; |0 <7 <I} be a set
of smooth real valued functions on an open interval I C R satisfying following system of
differential equations

Oé;- + 2] f/Oéj = bj O“/jfl + Cj f,Oéj_l .
Assume moreover that ap is a constant. Then every o is either identically zero or a polyno-
mial in e=% of degree j.

Proof. The statement is proved by induction. It is true for j = 0 since «q is constant. We
set p = e*/. Assume the statement to be true for all k£ with 0 <k < j —1 <. Multiplying
the equation for a; with ¢7 and using 2f'¢ = ¢’ we get

(11) (Pay)" = bipla_y + c;f' o

By assumption, either «;_; = 0, or there is a polynomial P of degree (j—1) with ¢/~ ta;_4 =
P(p). In the first case, (11) implies that ¢/«; is constant and thus the induction hypothesis
follows. Otherwise we have

Tl = 20 P'(p) — 20 - 1) P(e) = f'Q(p),
where () is a polynomial of degree (j — 1). Substituting this into (11) we arrive at
(Pay)" = 3Qe) ¢ + §P(p) ¢

Finally, integrating this equation shows that ¢’«; is polynomial of degree j in ¢, proving the
induction hypothesis for every j <. O
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An easy calculation shows that A(€F - &,) = k(k — 1)¢872 . &, for k > 2 and therefore
g7 - K, &7 &) = djg(K;, 627571 ¢,)

for 0 <j < Lp%lj, where d; := (p(f;jl_)ll)!. Moreover, g(L? - K;,&P71 - &,) = 0 if p is even and
j = &. Taking the scalar product with &Pt . &, in the standard decomposition K = Y [/ K;

thus yields
175

K(E....6&) =Y djo;.
§=0

By Lemma 3.1 (iv), the left hand side vanishes on the open set of points with f* # 0. Since by
(10) and Lemma 3.2, each «; is either zero or a polynomial in e~/ of degree j, this equation
can only hold if all o; vanish identically. This shows that

(12) K6 66 =0 vis|IH

on the open set where f’ #£ 0.

Next we expand K in powers of §,, i.e. Ky = ijo & - P;, where every P; is a polynomial
of degree p — j in the vector fields &i,...,&,-1. Moreover P, = 0 by (12). Applying the
contraction A to the expansion of Ky leads to the following relation of polynomials

= AKy = Y A& -P) = APy + Y jj—1& P + & AP, .

§>0 j>2

Comparing the coefficients of &, this implies by immediate induction that P; = 0 for every
odd j with 1 < j < p. Hence Kj is a polynomial in &, ...,&, 1 and 2. The same argument
applies for all tensors K from the standard decomposition K = ) >0 L’ - K;. Hence we can

write K; = Zkzo Pj. €28 where Pj;, are polynomials in &, ... &, 1 of degree p — 25 — 2k.

By Lemma 3.1 (i), the coefficients of Pj;, are constant in the variables zy,...,z,_;. We now
rewrite
n—
CENEN S DL R R DRIV NI Iyt
3,k>0 3,k>0 a=1 k>0
where L = ¢ 2/T, and @ is a polynomial in 51, R 1 whose coefficients are constant in

T1,...,%,—1 but may depend on x,. Since Vg, L= —2f’L we compute from (13):
(14) Ve K = ) (=26 f'LF-Qp + LF- Ve, Qi) = Y LF- (Ve,Qu — 2k /' Q) -

k>0 k>0

On the other side, since &, 1L = 2e72/¢,,, we have

(15) df oK = f&aK =) 2kfe g L@

k>0
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Now, the original equation (6) together with Lemma 3.1 yields
€n Ve, K =dK = —e¥L-df UK
and taking (13)-(15) into account, this leads to

Ear Y LF (Ve Qu—2kf' Q) = =) 2k f &L Q.
k>0 k>0
It follows that &, - 3., L* - Ve, Qr = 0 and thus 3,., L% - Ve, Qp = 0. Since Q. are
polynomials in &, ...,&, 1, this leads to V¢, Qr = 0 for all k, i.e. Qj are polynomials in
&1, ..., &1 with constant coefficients. It follows that K itself is a polynomial in &;,...,&, 1
and L with constant coefficients on any connected component of the open set where f’ # 0.
But since the Killing equation is of finite type, two Killing tensors which coincide on some
non-empty open set must coincide everywhere. This proves the statement of Theorem 1.1. O
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