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Abstract

Quantum systems which interact with their environment are often modeled by maximal
dissipative operators or so-called Pseudo-Hamiltonians. In this paper the scattering theory
for such open systems is considered. First it is assumed that a single maximal dissipative
operator AD in a Hilbert space H is used to describe an open quantum system. In this
case the minimal self-adjoint dilation K̃ of AD can be regarded as the Hamiltonian of a
closed system which contains the open system {AD,H}, but since K̃ is necessarily not
semibounded from below, this model is difficult to interpret from a physical point of view.
In the second part of the paper an open quantum system is modeled with a family {A(µ)} of
maximal dissipative operators depending on energy µ, and it is shown that the open system
can be embedded into a closed system where the Hamiltonian is semibounded. Surprisingly
it turns out that the corresponding scattering matrix can be completely recovered from
scattering matrices of single Pseudo-Hamiltonians as in the first part of the paper. The
general results are applied to a class of Sturm-Liouville operators arising in dissipative and
quantum transmitting Schrödinger-Poisson systems.
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1 Introduction

Quantum systems which interact with their environment appear naturally in various phys-
ical problems and have been intensively studied in the last decades, see e.g. the mono-
graphes [18, 21, 35]. Such an open quantum system is often modeled with the help of a
maximal dissipative operator, i.e., a closed linear operator AD in some Hilbert space H
which satisfies

=m (ADf, f) ≤ 0, f ∈ dom (AD),

and does not admit a proper extension in H with this property. The dynamics in the open
quantum system are described by the contraction semigroup e−itAD , t ≥ 0. In the physical
literature the maximal dissipative operator AD is usually called a pseudo-Hamiltonian. It
is well known that AD admits a self-adjoint dilation K̃ in a Hilbert space K which contains
H as a closed subspace, that is, K̃ is a self-adjoint operator in K and

PH

(
K̃ − λ

)−1
�H= (AD − λ)−1

holds for all λ ∈ C+ := {z ∈ C : =m (z) > 0}, cf. [36]. Since the operator K̃ is self-adjoint
it can be regarded as the Hamiltonian or so-called quasi-Hamiltonian of a closed quantum
system which contains the open quantum system {AD,H} as a subsystem.

In this paper we first assume that an open quantum system is described by a single pseudo-
Hamiltonian AD in H and that AD is an extension of a closed densely defined symmetric
operator A in H with finite equal deficiency indices. Then the self-adjoint dilation K̃ can be
realized as a self-adjoint extension of the symmetric operator A⊕G in K = H⊕L2(R,HD),
where HD is finite-dimensional and G is the symmetric operator in L2(R,HD) given by

Gg := −i d
dx

g, dom (G) =
{
g ∈W 1

2 (R,HD) : g(0) = 0
}
,

see Section 3.1. If A0 is a self-adjoint extension of A in H and G0 denotes the usual
self-adjoint momentum operator in L2(R,HD),

G0g := −i d
dx

g, dom (G) = W 1
2 (R,HD),

then the dilation K̃ can be regarded as a singular perturbation (or more precisely a finite
rank perturbation in resolvent sense) of the “unperturbed operator” K0 := A0 ⊕ G0, cf.
[7, 42]. From a physical point of view K0 describes a situation where both subsystems
{A0,H} and {G0, L

2(R,HD)} do not interact while K̃ takes into account an interaction of
the subsystems. Since the spectrum σ(G0) of the momentum operator is the whole real
axis, standard perturbation results yield σ(K̃) = σ(K0) = R and, in particular, K0 and K̃
are necessarily not semibounded from below. For this reason K0 and K̃ are often called
quasi-Hamiltonians rather than Hamiltonians.

The pair {K̃,K0} is a complete scattering system in K = H⊕L2(R,HD), that is, the wave
operators

W±(K̃,K0) := s- lim
t→±∞

eit eKe−itK0P ac(K0)
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exist and are complete, cf. [8, 13, 61, 62]. Here P ac(K0) denotes the orthogonal projection
in K onto the absolutely continuous subspace Kac(K0) of K0. The scattering operator

S(K̃,K0) := W+(K̃,K0)∗W−(K̃,K0)

of the scattering system {K̃,K0} regarded as an operator in Kac(K0) is unitary, commutes
with the absolutely continuous partKac

0 ofK0 and is unitarily equivalent to a multiplication
operator induced by a (matrix-valued) function {S̃(λ)}λ∈R in a spectral representation
L2(R, dλ,Kλ) of Kac

0 = Aac
0 ⊕ G0, cf. [13]. The family {S̃(λ)} is called the scattering

matrix of the scattering system {K̃,K0} and is one of the most important quantities in
the analysis of scattering processes.

In our setting the scattering matrix {S̃(λ)} decomposes into a 2 × 2 block matrix func-
tion in L2(R, dλ,Kλ) and it is one of our main goals in Section 3 to show that the left
upper corner in this decomposition coincides with the scattering matrix {SD(λ)} of the
dissipative scattering system {AD, A0}, cf. [55, 57, 58]. The right lower corner of {S̃(λ)}
can be interpreted as the Lax-Phillips scattering matrix {SLP (λ)} corresponding to the
Lax-Phillips scattering system {K̃,D−,D+}. Here D± := L2(R±,HD) are so-called in-
coming and outgoing subspaces for the dilation K̃, we refer to [13, 49] for details on
Lax-Phillips scattering theory. The scattering matrices {S̃(λ)}, {SD(λ)} and {SLP (λ)}
are all explicitely expressed in terms of an ”abstract” Titchmarsh-Weyl function M(·) and
a dissipative matrix D which corresponds to the maximal dissipative operator AD in H and
plays the role of an ”abstract” boundary condition. With the help of this representation
of {SLP (λ)} we easily recover the famous relation

SLP (λ) = WAD
(λ− i0)∗

found by Adamyan and Arov in [3, 4, 5, 6] between the Lax-Phillips scattering matrix
and the characteristic function WAD

(·) of the maximal dissipative operator AD, cf. Corol-
lary 3.11. We point out that M(·) and D are completely determined by the operators
A ⊂ A0 and AD from the inner system. This is interesting also from the viewpoint of
inverse problems, namely, the scattering matrix {S̃(λ)} of {K̃,K0}, in particular, the Lax-
Phillips scattering matrix {SLP (λ)} can be recovered having to disposal only the dissipative
scattering system {AD, A0}, see Theorem 3.6 and Remark 3.7.

We emphasize that this simple and somehow straightforward embedding method of an
open quantum system into a closed quantum system by choosing a self-adjoint dilation K̃
of the pseudo-Hamiltonian AD is very convenient for mathematical scattering theory, but
difficult to legitimate from a physical point of view, since the quasi-Hamiltonians K̃ and
K0 are necessarily not semibounded from below.

In the second part of the paper we investigate open quantum systems which are described
by an appropriate chosen family of maximal dissipative operators {A(µ)}, µ ∈ C+, instead
of a single pseudo-Hamiltonian AD. Similarly to the first part of the paper we assume that
the maximal dissipative operators A(µ) are extensions of a fixed symmetric operator A in
H with equal finite deficiency indices. Under suitable (rather weak) assumptions on the
family {A(µ)} there exists a symmetric operator T in a Hilbert space G and a self-adjoint
extension L̃ of L = A⊕ T in L = H⊕G such that

PH

(
L̃− µ

)−1
�H=

(
A(µ)− µ

)−1
, µ ∈ C+, (1.1)
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holds, see Section 4.2. For example, in one-dimensional models for carrier transport in
semiconductors the operators A(µ) are regular Sturm-Liouville differential operators in
L2((a, b)) with µ-dependent dissipative boundary conditions and the ”linearization” L̃ is
a singular Sturm-Liouville operator in L2(R), cf. [10, 34, 37, 46] and Section 4.4. We
remark that one can regard and interpret relation (1.1) also from an opposite point of view.
Namely, if a self-adjoint operator L̃ in a Hilbert space L is given, then the compression of
the resolvent of L̃ onto any closed subspace H of L defines a family of maximal dissipative
operators {A(µ)} via (1.1), so that each closed quantum system {L̃,L} naturally contains
open quantum subsystems {{A(µ)},H} of the type we investigate here. Nevertheless, since
from a purely mathematical point of view both approaches are equivalent we will not
explicitely discuss this second interpretation.

If A0 and T0 are self-adjoint extension of A and T in H and G, respectively, then again L̃
can be regarded as a singular perturbation of the self-adjoint operator L0 := A0 ⊕ T0 in
L. As above L0 describes a situation where the subsystems {A0,H} and {T0,G} do not
interact while L̃ takes into account a certain interaction. We note that if A and T have
finite deficiency indices, then the operator L̃ is semibounded from below if and only if A
and T are semibounded from below. Well-known results imply that the pair {L̃, L0} is a
complete scattering system in the closed quantum system and again the scattering matrix
{S̃(λ)} decomposes into a 2× 2 block matrix function which can be calculated in terms of
abstract Titchmarsh-Weyl functions.

On the other hand it can be shown that the family {A(µ)}, µ ∈ C+, admits a continuation
to R, that is, the limit A(µ+i0) exists for a.e. µ ∈ R in the strong resolvent sense and defines
a maximal dissipative operator. The family A(µ+i0), µ ∈ R, can be regarded as a family of
energy dependent pseudo-Hamiltonians in H and, in particular, each pseudo-Hamiltonian
A(µ + i0) gives rise to a quasi-Hamiltonian K̃µ in H ⊕ L2(R,Hµ), a complete scattering
system {K̃µ, A0 ⊕ −i d

dx} and a corresponding scattering matrix {S̃µ(λ)} as illustrated in
the first part of the introduction.

One of our main observations in Section 4 is that the scattering matrix {S̃(λ)} of the
scattering system {L̃, L0} in H ⊕ G is related to the scattering matrices {S̃µ(λ)} of the
systems {K̃µ, A0 ⊕−i d

dx}, µ ∈ R, in H⊕ L2(R,Hµ) via

S̃(µ) = S̃µ(µ) for a.e. µ ∈ R. (1.2)

In other words, the scattering matrix {S̃(λ)} of the scattering system {L̃, L0} can be
completely recovered from scattering matrices of scattering systems for single quasi-
Hamiltonians. Furthermore, under certain continuity properties of the abstract Titchmarsh
Weyl functions this implies S̃(λ) ≈ S̃µ(λ) for all λ in a sufficiently small neighborhood of
the fixed energy µ ∈ R, which legitimizes the concept of single quasi-Hamiltonians for small
energy ranges.

Similarly to the case of a single pseudo-Hamiltonian the diagonal entries of {S̃(µ)} or
{S̃µ(µ)} can be interpreted as scattering matrices corresponding to energy dependent dissi-
pative scattering systems and energy-dependent Lax-Phillips scattering systems. Moreover,
if {SLP

µ (λ)} is the scattering matrix of the Lax-Phillips scattering system {K̃µ, L
2(R±,Hµ)}

and WA(µ)(·) denote the characteristic functions of the maximal dissipative operators A(µ)
then an energy-dependent modification

SLP
µ (µ) = WA(µ)(µ− i0)∗
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of the classical Adamyan-Arov result holds for a.e. µ ∈ R, cf. Section 4.3.

The paper is organized as follows. In Section 2 we give a brief introduction into extension
and spectral theory of symmetric and self-adjoint operators with the help of boundary
triplets and associated Weyl functions. These concepts will play an important role
throughout the paper. Furthermore, we recall a recent result on the representation of
the scattering matrix of a scattering system consisting of two self-adjoint extensions
of a symmetric operator from [14]. Section 3 is devoted to open quantum systems
described by a single pseudo-Hamiltonian AD in H. In Theorem 3.2 a minimal self-adjoint
dilation K̃ in H ⊕ L2(R,HD) of the maximal dissipative operator AD is explicitely
constructed. Section 3.2 and Section 3.3 deal with the scattering matrix of {K̃,K0}
and the interpretation of the diagonal entries as scattering matrices of the dissipative
scattering system {AD, A0} and the Lax-Phillips scattering system {K̃, L2(R±,HD)}. In
Section 3.4 we give an example of a pseudo-Hamiltonian which arises in the theory of
dissipative Schrödinger-Poisson systems, cf. [11, 12, 43]. In Section 4 the family {A(µ)} of
maximal dissipative operators in H is introduced and, following ideas of [25], we construct
a self-adjoint operator L̃ in a Hilbert space L, H ⊂ L, such that (1.1) holds. After some
preparatory work the relation (1.2) between the scattering matrices of {L̃, L0} and the
scattering systems consisting of quasi-Hamiltonians is verified in Section 4.3. Finally, in
Section 4.4 we consider a so-called quantum transmitting Schrödinger-Poisson system as
an example for an open quantum system which consists of a family of energy-dependent
pseudo-Hamiltonians, cf. [10, 16, 19, 34, 37, 46].

Acknowledgment. The authors thank Professor Peter Lax for helpful comments and
fruitful discussions. Jussi Behrndt gratefully acknowledges support by DFG, Grant
3765/1; Hagen Neidhardt gratefully acknowledges support by DFG, Grant 1480/2.

Notations. Throughout this paper (H, (·, ·)) and (G, (·, ·)) denote separable Hilbert spaces.
The linear space of bounded linear operators defined on H with values in G will be denoted
by [H,G]. If H = G we simply write [H]. The set of closed operators in H is denoted
by C(H). The resolvent set ρ(S) of a closed linear operator S ∈ C(H) is the set of all
λ ∈ C such that (S − λ)−1 ∈ [H], the spectrum σ(S) of S is the complement of ρ(S) in C.
σp(S), σc(S), σac(S) and σr(S) stand for the point, continuous, absolutely continuous and
residual spectrum of S, respectively. The domain, kernel and range of a linear operator
are denoted by dom (·), ker(·) and ran (·), respectively.

2 Self-adjoint extensions and scattering systems

In this section we briefly review the notion of abstract boundary triplets and associated
Weyl functions in the extension theory of symmetric operators, see e.g. [27, 28, 30, 39]. For
scattering systems consisting of a pair of self-adjoint extensions of a symmetric operator
with finite deficiency indices we recall a result on the representation of the scattering matrix
in terms of a Weyl function proved in [14].
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2.1 Boundary triplets and closed extensions

Let A be a densely defined closed symmetric operator in the separable Hilbert space H with
equal deficiency indices n±(A) = dim ker(A∗ ∓ i) ≤ ∞. We use the concept of boundary
triplets for the description of the closed extensions AΘ ⊆ A∗ of A in H.

Definition 2.1 A triplet Π = {H,Γ0,Γ1} is called a boundary triplet for the adjoint
operator A∗ if H is a Hilbert space and Γ0,Γ1 : dom (A∗) → H are linear mappings such
that the ”abstract Green identity”

(A∗f, g)− (f,A∗g) = (Γ1f,Γ0g)− (Γ0f,Γ1g),

holds for all f, g ∈ dom (A∗) and the map Γ := (Γ0,Γ1)> : dom (A∗) → H×H is surjective.

We refer to [28] and [30] for a detailed study of boundary triplets and recall only some
important facts. First of all a boundary triplet Π = {H,Γ0,Γ1} for A∗ exists since the
deficiency indices n±(A) of A are assumed to be equal. Then n±(A) = dimH and A =
A∗ � ker(Γ0) ∩ ker(Γ1) holds. We note that a boundary triplet for A∗ is not unique.

In order to describe the closed extensions AΘ ⊆ A∗ of A with the help of a boundary
triplet Π = {H,Γ0,Γ1} for A∗ we have to consider the set C̃(H) of closed linear relations
in H, that is, the set of closed linear subspaces of H×H. We usually use a column vector
notation for the elements in a linear relation Θ. A closed linear operator in H is identified
with its graph, so that the set C(H) of closed linear operators in H is viewed as a subset
of C̃(H), in particular, a linear relation Θ is an operator if and only if the multivalued part
mul Θ =

{
f ′ :

(
0
f ′
)
∈ Θ

}
is trivial. For the usual definitions of the linear operations with

linear relations, the inverse, the resolvent set and the spectrum we refer to [32]. Recall
that the adjoint relation Θ∗ ∈ C̃(H) of a linear relation Θ in H is defined as

Θ∗ =
{(

k
k′

)
: (h′, k) = (h, k′) for all

(
h
h′

)
∈ Θ

}
and Θ is said to be symmetric (self-adjoint) if Θ ⊂ Θ∗ (resp. Θ = Θ∗). Notice that
this definition extends the definition of the adjoint operator. For a self-adjoint relation
Θ = Θ∗ in H the multivalued part mul Θ is the orthogonal complement of dom Θ in H.
Setting Hop := dom Θ and H∞ = mul Θ one verifies that Θ can be written as the direct
orthogonal sum of a self-adjoint operator Θop in the Hilbert space Hop and the “pure”
relation Θ∞ =

{(
0
f ′
)

: f ′ ∈ mul Θ
}

in the Hilbert space H∞.

A linear relation Θ in H is called dissipative if =m (h′, h) ≤ 0 holds for all (h, h′)> ∈ Θ and
Θ is called maximal dissipative if it is dissipative and does not admit proper dissipative
extensions in H; then Θ is necessarily closed, Θ ∈ C̃(H). We remark that a linear relation
Θ is maximal dissipative if and only if Θ is dissipative and some λ ∈ C+ (and hence every
λ ∈ C+) belongs to ρ(Θ).

A description of all closed (symmetric, self-adjoint, (maximal) dissipative) extensions of A
is given in the next proposition.

Proposition 2.2 Let A be a densely defined closed symmetric operator in H with equal
deficiency indices and let Π = {H,Γ0,Γ1} be a boundary triplet for A∗. Then the mapping

Θ 7→ AΘ := A∗ � Γ(−1)Θ = A∗ �
{
f ∈ dom (A∗) : (Γ0f,Γ1f)> ∈ Θ

}
(2.1)



2.2 Weyl functions, γ-fields and resolvents of extensions 7

establishes a bijective correspondence between the set C̃(H) and the set of closed extensions
AΘ ⊆ A∗ of A. Furthermore

(AΘ)∗ = AΘ∗

holds for any Θ ∈ C̃(H). The extension AΘ in (2.1) is symmetric (self-adjoint, dissipa-
tive, maximal dissipative) if and only if Θ is symmetric (self-adjoint, dissipative, maximal
dissipative).

It follows immediately from this proposition that if Π = {H,Γ0,Γ1} is a boundary triplet
for A∗, then the extensions

A0 := A∗ � ker(Γ0) and A1 := A∗ � ker(Γ1)

are self-adjoint. In the sequel usually the extension A0 corresponding to the boundary
mapping Γ0 is regarded as a ”fixed” self-adjoint extension. We note that the closed exten-
sion AΘ in (2.1) is disjoint with A0, that is dom (AΘ) ∩ dom (A0) = dom (A), if and only
if Θ ∈ C(H). In this case (2.1) takes the form

AΘ = A∗ � ker
(
Γ1 −ΘΓ0

)
. (2.2)

For simplicity we will often restrict ourselves to simple symmetric operators. Recall that a
symmetric operator is said to be simple if there is no nontrivial subspace which reduces it
to a self-adjoint operator. By [47] each symmetric operator A in H can be written as the
direct orthogonal sum Â⊕As of a simple symmetric operator Â in the Hilbert space

Ĥ = clospan
{
ker(A∗ − λ) : λ ∈ C\R

}
and a self-adjoint operator As in H 	 Ĥ. Here clospan{·} denotes the closed linear span.
Obviously A is simple if and only if Ĥ coincides with H. Notice that if Π = {H,Γ0,Γ1}
is a boundary triplet for the adjoint A∗ of a non-simple symmetric operator A = Â⊕ As,
then Π̂ = {H, Γ̂0, Γ̂1}, where

Γ̂0 := Γ0 � dom
(
(Â)∗

)
and Γ̂1 := Γ1 � dom

(
(Â)∗

)
,

is a boundary triplet for the simple part (Â)∗ ∈ C(Ĥ) such that the extension AΘ = Γ(−1)Θ,
Θ ∈ C̃(H), in H is given by ÂΘ ⊕ As, ÂΘ := Γ̂(−1)Θ ∈ C(Ĥ), and the Weyl functions and
γ-fields of Π = {H,Γ0,Γ1} and Π̂ = {H, Γ̂0, Γ̂1} coincide.

We say that a maximal dissipative operator is completely non-self-adjoint if there is no non-
trivial reducing subspace in which it is self-adjoint. Notice that each maximal dissipative
operator decomposes orthogonally into a self-adjoint part and a completely non-self-adjoint
part, see e.g. [36].

2.2 Weyl functions, γ-fields and resolvents of extensions

Let, as in Section 2.1, A be a densely defined closed symmetric operator in H with equal
deficiency indices. If λ ∈ C is a point of regular type of A, i.e. (A − λ)−1 is bounded,
we denote the defect subspace of A by Nλ = ker(A∗ − λ). The following definition can be
found in [27, 28, 30].
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Definition 2.3 Let Π = {H,Γ0,Γ1} be a boundary triplet for A∗. The operator valued
functions γ(·) : ρ(A0) → [H,H] and M(·) : ρ(A0) → [H] defined by

γ(λ) :=
(
Γ0 � Nλ

)−1 and M(λ) := Γ1γ(λ), λ ∈ ρ(A0), (2.3)

are called the γ-field and the Weyl function, respectively, corresponding to the boundary
triplet Π.

It follows from the identity dom (A∗) = ker(Γ0)+̇Nλ, λ ∈ ρ(A0), where as above A0 =
A∗ � ker(Γ0), that the γ-field γ(·) and the Weyl function M(·) in (2.3) are well defined.
Moreover both γ(·) and M(·) are holomorphic on ρ(A0) and the relations

γ(λ) =
(
I + (λ− µ)(A0 − λ)−1

)
γ(µ), λ, µ ∈ ρ(A0),

and
M(λ)−M(µ)∗ = (λ− µ)γ(µ)∗γ(λ), λ, µ ∈ ρ(A0), (2.4)

are valid (see [28]). The identity (2.4) yields that M(·) is a Nevanlinna function, that is,
M(·) is a ([H]-valued) holomorphic function on C\R and

M(λ) = M(λ)∗ and
=m (M(λ))
=m (λ)

≥ 0 (2.5)

hold for all λ ∈ C\R. The union of C\R and the set of all points λ ∈ R such that M can
be analytically continued to λ and the continuations from C+ and C− coincide is denoted
by h(M). Besides (2.5) it follows also from (2.4) that the Weyl function M(·) satisfies
0 ∈ ρ(=m (M(λ))) for all λ ∈ C\R; Nevanlinna functions with this additional property
are sometimes called uniformly strict, cf. [26]. Conversely, each [H]-valued Nevanlinna
function τ with the additional property 0 ∈ ρ(=m (τ(λ))) for some (and hence for all)
λ ∈ C\R can be realized as a Weyl function corresponding to some boundary triplet, we
refer to [28, 48, 50] for further details.

Let again Π = {H,Γ0,Γ1} be a boundary triplet for A∗ with corresponding γ-field γ(·)
and Weyl function M(·). The spectrum and the resolvent set of the closed (not necessarily
self-adjoint) extensions of A can be described with the help of the function M(·). More
precisely, if AΘ ⊆ A∗ is the extension corresponding to Θ ∈ C̃(H) via (2.1), then a point
λ ∈ ρ(A0) belongs to ρ(AΘ) (σi(AΘ), i = p, c, r) if and only if 0 ∈ ρ(Θ −M(λ)) (resp.
0 ∈ σi(Θ−M(λ)), i = p, c, r). Moreover, for λ ∈ ρ(A0) ∩ ρ(AΘ) the well-known resolvent
formula

(AΘ − λ)−1 = (A0 − λ)−1 + γ(λ)
(
Θ−M(λ)

)−1
γ(λ)∗ (2.6)

holds, cf. [27, 28, 30]. Formula (2.6) is a generalization of the known Krein formula for
canonical resolvents. We emphasize that it is valid for any closed extension AΘ ⊆ A∗ of A
with a nonempty resolvent set.

2.3 Self-adjoint extensions and scattering

Let A be a densely defined closed symmetric operator in the separable Hilbert space H and
assume that the deficiency indices of A coincide and are finite, i.e., n+(A) = n−(A) <∞.
Let Π = {H,Γ0,Γ1}, A0 := A∗ � ker(Γ0), be a boundary triplet for A∗ and let AΘ be a
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self-adjoint extension of A which corresponds to a self-adjoint Θ ∈ C̃(H). Since here dimH
is finite by (2.6)

(AΘ − λ)−1 − (A0 − λ)−1, λ ∈ ρ(AΘ) ∩ ρ(A0),

is a finite rank operator and therefore the pair {AΘ, A0} performs a so-called complete
scattering system, that is, the wave operators

W±(AΘ, A0) := s- lim
t→±∞

eitAΘe−itA0P ac(A0),

exist and their ranges coincide with the absolutely continuous subspace Hac(AΘ) of AΘ,
cf. [13, 45, 61, 62]. P ac(A0) denotes the orthogonal projection onto the absolutely contin-
uous subspace Hac(A0) of A0. The scattering operator S(AΘ, A0) of the scattering system
{AΘ, A0} is then defined by

S(AΘ, A0) := W+(AΘ, A0)∗W−(AΘ, A0).

If we regard the scattering operator as an operator in Hac(A0), then S(AΘ, A0) is unitary,
commutes with the absolutely continuous part

Aac
0 := A0 � dom (A0) ∩ Hac(A0)

of A0 and it follows that S(AΘ, A0) is unitarily equivalent to a multiplication operator
induced by a family {SΘ(λ)} of unitary operators in a spectral representation of Aac

0 , see
e.g. [13, Proposition 9.57]. This family is called the scattering matrix of the scattering
system {AΘ, A0} and is one of the most important quantities in the analysis of scattering
processes.

We note that if the symmetric operator A is not simple, then the Hilbert space H can be
decomposed as H = Ĥ⊕ (Ĥ)⊥ (cf. the end of Section 2.1) such that the scattering operator
is given by the orthogonal sum S(ÂΘ, Â0) ⊕ I, where AΘ = ÂΘ ⊕ As and A0 = Â0 ⊕ As,
and hence it is sufficient to consider simple symmetric operators A in the following.

Since the deficiency indices of A are finite the Weyl function M(·) corresponding to the
boundary triplet Π = {H,Γ0,Γ1} is a matrix-valued Nevanlinna function. By Fatous
theorem (see [33, 38]) then the limit

M(λ+ i0) := lim
ε→+0

M(λ+ iε) (2.7)

from the upper half-plane exists for a.e. λ ∈ R. We denote the set of real points where the
limit in (2.7) exits by ΣM and we agree to use a similar notation for arbitrary scalar and
matrix-valued Nevanlinna functions. Furthermore we will make use of the notation

HM(λ) := ran
(
=m (M(λ))

)
, λ ∈ ΣM , (2.8)

and we will in general regard HM(λ) as a subspace of H. The orthogonal projection and
restriction onto HM(λ) will be denoted by PM(λ) and �HM(λ) , respectively. Notice that
for λ ∈ ρ(A0) ∩ R the Hilbert space HM(λ) is trivial by (2.4). Again we agree to use a
notation analogous to (2.8) for arbitrary Nevanlinna functions. The family {PM(λ)}λ∈ΣM

of orthogonal projections in H onto HM(λ), λ ∈ ΣM , is measurable and defines an orthog-
onal projection in the Hilbert space L2(R, dλ,H); sometimes we write L2(R,H) instead of
L2(R, dλ,H). The range of this projection is denoted by L2(R, dλ,HM(λ)).
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Besides the Weyl function M(·) we will also make use of the function

λ 7→ NΘ(λ) :=
(
Θ−M(λ)

)−1
, λ ∈ C\R, (2.9)

where Θ ∈ C̃(H) is the self-adjoint relation corresponding to the extension AΘ via (2.1).
Since λ ∈ ρ(A0) ∩ ρ(AΘ) if and only if 0 ∈ ρ(Θ − M(λ)) the function NΘ(·) is well
defined. It is not difficult to see that NΘ(·) is an [H]-valued Nevanlinna function and hence
NΘ(λ+ i0) = limε→0NΘ(λ+ iε) exists for almost every λ ∈ R, we denote this set by ΣNΘ .
We claim that

NΘ(λ+ i0) =
(
Θ−M(λ+ i0)

)−1
, λ ∈ ΣM ∩ ΣNΘ , (2.10)

holds. In fact, if Θ is a self-adjoint matrix then (2.10) follows immediately from NΘ(λ)(Θ−
M(λ)) = (Θ−M(λ))NΘ(λ) = IH, λ ∈ C+. If Θ ∈ C̃(H) has a nontrivial multivalued part
we decompose Θ as Θ = Θop ⊕Θ∞, where Θop is a self-adjoint matrix in Hop = dom Θop

and Θ∞ is a pure relation in H∞ = H 	Hop, cf. Section 2.1, and denote the orthogonal
projection and restriction in H onto Hop by Pop and �Hop , respectively. Then we have

λ 7→ NΘ(λ) =
(
Θop − PopM(λ)�Hop

)−1
Pop, λ ∈ C\R,

(see e.g. [48, page 137]) and from NΘ(λ + i0) = (Θop − PopM(λ + i0) �Hop)
−1Pop for

all λ ∈ ΣM ∩ ΣNΘ we conclude (2.10). Notice that the set R\(ΣM ∩ ΣNΘ) has Lebesgue
measure zero.

The following representation theorem of the scattering matrix {SΘ(λ)}λ∈R of the scattering
system {AΘ, A0} is essential in the following, cf. [14, Theorem 3.8]. Since the scattering
matrix is only determined up to a set of Lebesgue measure zero we choose the representative
of the equivalence class defined on ΣM ∩ ΣNΘ .

Theorem 2.4 Let A be a densely defined closed simple symmetric operator with finite
deficiency indices in the separable Hilbert space H, let Π = {H,Γ0,Γ1} be a boundary
triplet for A∗ with corresponding Weyl function M(·) and define HM(λ), λ ∈ ΣM , as in
(2.8). Furthermore, let A0 = A∗ � ker(Γ0) and let AΘ = A∗ � Γ(−1)Θ, Θ ∈ C̃(H), be a
self-adjoint extension of A. Then the following holds.

(i) Aac
0 is unitarily equivalent to the multiplication operator with the free variable in

L2(R, dλ,HM(λ)).

(ii) In L2(R, dλ,HM(λ)) the scattering matrix {SΘ(λ)} of the complete scattering system
{AΘ, A0} is given by

SΘ(λ) = IHM(λ) + 2iPM(λ)

p
=m (M(λ))

`
Θ−M(λ)

´−1p
=m (M(λ)) �HM(λ)

for all λ ∈ ΣM ∩ ΣNΘ , where M(λ) := M(λ+ i0).

In order to show the usefulness of Theorem 2.4 and to make the reader more familiar with
the notion of boundary triplets and associated Weyl functions we calculate the scattering
matrix of the scattering system {− d2

dx2 + δ,− d2

dx2 } in the following simple example.
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Example 2.5 Let us consider the densely defined closed simple symmetric operator

(Af)(x) := −f ′′(x), dom (A) =
{
f ∈W 2

2 (R) : f(0) = 0
}
,

in L2(R), see e.g. [1]. Clearly A has deficiency indices n+(A) = n−(A) = 1 and it is
well-known that the adjoint operator A∗ is given by (A∗f)(x) = −f ′′(x),

dom (A∗) =
{
f ∈W 2

2 (R\{0}) : f(0+) = f(0−), f ′′ ∈ L2(R)
}
.

It is not difficult to verify that Π = {C,Γ0,Γ1}, where

Γ0f := f ′(0+)− f ′(0−) and Γ1f := −f(0+), f ∈ dom (A∗),

is a boundary triplet for A∗ and A0 = A∗ � ker(Γ0) coincides with the usual self-adjoint
second order differential operator defined onW 2

2 (R). Moreover the defect space ker(A∗−λ),
λ 6∈ [0,∞), is spanned by the function

x 7→ ei
√

λxχR+(x) + e−i
√

λxχR−(x), λ 6∈ [0,∞),

where the square root is defined on C with a cut along [0,∞) and fixed by =m (
√
λ) > 0

for λ 6∈ [0,∞) and by
√
λ ≥ 0 for λ ∈ [0,∞). Therefore we find that the Weyl function

M(·) corresponding to Π = {C,Γ0,Γ1} is given by

M(λ) =
Γ1fλ

Γ0fλ
=

i

2
√
λ
, fλ ∈ ker(A∗ − λ), λ 6∈ [0,∞).

Let α ∈ R\{0} and consider the self-adjoint extension A−α−1 corresponding to the param-
eter −α−1, A−α−1 = A∗ � ker(Γ1 + α−1Γ0), i.e.

(A−α−1f)(x) = −f ′′(x)
dom (A−α−1) =

{
f ∈ dom (A∗) : αf(0±) = f ′(0+)− f ′(0−)

}
.

This self-adjoint operator is often denoted by − d2

dx2 + αδ, see [1]. It follows immediately
from Theorem 2.4 that the scattering matrix {S(λ)} of the scattering system {A−α−1 , A0}
is given by

S(λ) =
2
√
λ− iα

2
√
λ+ iα

, λ > 0.

We note that scattering systems of the form {− d2

dx2 +αδ′,− d2

dx2 }, α ∈ R, can be investigated
in a similar way as above. Other examples can be found in [14].

3 Dissipative and Lax-Phillips scattering systems

In this section we regard scattering systems {AD, A0} consisting of a maximal dissipa-
tive and a self-adjoint extension of a symmetric operator A with finite deficiency in-
dices. In the theory of open quantum system the maximal dissipative operator AD is
often called a pseudo-Hamiltonian. We shall explicitely construct a dilation (or so-called
quasi-Hamiltonian) K̃ of AD and calculate the scattering matrix of the scattering system
{K̃, A0 ⊕ G0}, where G0 is a self-adjoint first order differential operator. The diagonal
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entries of the scattering matrix then turn out to be the scattering matrix of the dissipative
scattering system {AD, A0} and of a so-called Lax-Phillips scattering system, respectively.

We emphasize that this efficient and somehow straightforward method for the analysis
of scattering processes for open quantum systems has the essential disadvantage that the
quasi-Hamiltonians K̃ and A0 ⊕G0 are necessarily not semibounded from below.

3.1 Self-adjoint dilations of maximal dissipative operators

Let in the following A be a densely defined closed simple symmetric operator in the
separable Hilbert space H with equal finite deficiency indices n±(A) = n < ∞, let
Π = {H,Γ0,Γ1}, A0 = A∗ � ker(Γ0), be a boundary triplet for A∗ and let D ∈ [H] be
a dissipative n× n-matrix. Then the closed extension

AD = A∗ � ker(Γ1 −DΓ0)

of A corresponding to Θ = D via (2.1)-(2.2) is maximal dissipative and C+ belongs to
ρ(AD). Notice that here we restrict ourselves to maximal dissipative extensions AD cor-
responding to dissipative matrices D instead of maximal dissipative relations in the finite
dimensional space H. This is no essential restriction, see Remark 3.3 at the end of this
subsection. For λ ∈ ρ(AD) ∩ ρ(A0) the resolvent of the extension AD is given by

(AD − λ)−1 = (A0 − λ)−1 + γ(λ)
(
D −M(λ)

)−1
γ(λ)∗, (3.1)

cf. (2.6). Write the dissipative matrix D ∈ [H] as

D = <e (D) + i=m (D),

decompose H as the direct orthogonal sum of the finite dimensional subspaces ker(=m (D))
and HD := ran (=m (D)),

H = ker(=m (D))⊕HD, (3.2)

and denote by PD and �HD
the orthogonal projection and restriction in H onto HD. Since

=m (D) ≤ 0 the self-adjoint matrix −PD=m (D) �HD
∈ [HD] is strictly positive and the

next lemma shows how −iPD=m (D)�HD
(and iPD=m (D)�HD

) can be realized as a Weyl
function of a differential operator.

Lemma 3.1 Let G be the symmetric first order differential operator in the Hilbert space
L2(R,HD) defined by

(Gg)(x) = −ig′(x), dom (G) =
{
g ∈W 1

2 (R,HD) : g(0) = 0
}
.

Then G is simple, n±(G) = dimHD and the adjoint operator G∗g = −ig′ is defined on
dom (G∗) = W 1

2 (R−,HD)⊕W 1
2 (R+,HD). Moreover, the triplet ΠG = {HD,Υ0,Υ1}, where

Υ0g :=
1√
2

(
−PD=m (D)�HD

)− 1
2
(
g(0+)− g(0−)

)
,

Υ1g :=
i√
2

(
−PD=m (D)�HD

) 1
2
(
g(0+) + g(0−)

)
,
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g ∈ dom (G∗), is a boundary triplet for G∗ and G0 := G∗ � ker(Υ0) is the usual self-
adjoint first order differential operator in L2(R,HD) with domain dom (G0) = W 1

2 (R,HD)
and σ(G0) = R. The Weyl function τ(·) corresponding to the boundary triplet ΠG =
{HD,Υ0,Υ1} is given by

τ(λ) =

{
−iPD=m (D)�HD

, λ ∈ C+,

iPD=m (D)�HD
, λ ∈ C−.

(3.3)

Proof. Besides the assertion that ΠG = {HD,Υ0,Υ1} is a boundary triplet for G∗ with
Weyl function τ(·) given by (3.3) the statements of the lemma are well-known. We note
only that the simplicity of G follows from [2, VIII.104] and the fact that G can be written
as a finite direct orthogonal sum of first order differential operators on R− and R+.

A straightforward calculation shows that the identity

(G∗g, k)− (g,G∗k) = i(g(0+), k(0+))− i(g(0−), k(0−))
= (Υ1g,Υ0k)− (Υ0g,Υ1k)

holds for all g, k ∈ dom (G∗). Moreover the mapping (Γ0,Γ1)> is surjective. Indeed, for
an element (h, h′)> ∈ HD ×HD we choose g ∈ domG∗ such that

g(0+) =
1√
2

{(
−PD=m (D)�HD

) 1
2h− i

(
−PD=m (D)�HD

)− 1
2h′
}

and
g(0−) =

1√
2

{
−
(
−PD=m (D)�HD

) 1
2h− i

(
−PD=m (D)�HD

)− 1
2h′
}

holds. Then a simple calculation shows Υ0g = h, Υ1g = h′ and therefore ΠG =
{HD,Υ0,Υ1} is a boundary triplet for G∗. It is not difficult to check that the defect
subspace Nλ = ker(G∗ − λ) is

Nλ =

{
sp
{
x 7→ eiλxχR+(x)ξ : ξ ∈ HD

}
, λ ∈ C+,

sp
{
x 7→ eiλxχR−(x)ξ : ξ ∈ HD

}
, λ ∈ C−,

and hence we conclude that the Weyl function of ΠG = {HD,Υ0,Υ1} is given by (3.3). �

Let AD be the maximal dissipative extension of A in H from above and let G be the first
order differential operator from Lemma 3.1. Clearly K := A⊕G is a densely defined closed
simple symmetric operator in the separable Hilbert space

K := H⊕ L2(R,HD)

with equal finite deficiency indices n±(K) = n±(A) + n±(G) < ∞ and the adjoint is
K∗ = A∗ ⊕G∗. The elements in dom (K∗) = dom (A∗)⊕ dom (G∗) will be written in the
form f ⊕ g, f ∈ dom (A∗), g ∈ dom (G∗). In the next theorem we construct a self-adjoint
extension K̃ of K in K which is a minimal self-adjoint dilation of the dissipative operator
AD in H. The construction is based on the idea of the coupling method from [25]. It is
worth to mention that in the case of a (scalar) Sturm-Liouville operator with real potential
and dissipative boundary condition our construction coincides with the one proposed by
B.S. Pavlov [60], cf. Example 3.5 below.
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Theorem 3.2 Let A, Π = {H,Γ0,Γ1} and AD be as in the beginning of this section, let
G and ΠG = {HD,Υ0,Υ1} be as in Lemma 3.1 and K = A⊕G. Then

K̃ = K∗ �

f ⊕ g ∈ dom (K∗) :
PDΓ0f −Υ0g = 0,

(1− PD)(Γ1 −<e (D)Γ0)f = 0,
PD(Γ1 −<e (D)Γ0)f + Υ1g = 0

 (3.4)

is a minimal self-adjoint dilation of the maximal dissipative operator AD, that is, for all
λ ∈ C+

PH

(
K̃ − λ

)−1
�H= (AD − λ)−1

holds and the minimality condition K = clospan{(K̃ − λ)−1H : λ ∈ C\R} is satisfied.
Moreover σ(K̃) = R.

Proof. Let γ(·), ν(·) and M(·), τ(·) be the γ-fields and Weyl functions of the boundary
triplets Π = {H,Γ0,Γ1} and ΠG = {HD,Υ0,Υ1}, respectively. Then it is straightforward
to check that Π̃ = {H̃, Γ̃0, Γ̃1}, where

H̃ := H⊕HD, Γ̃0 :=
(

Γ0

Υ0

)
and Γ̃1 :=

(
Γ1 −<e (D)Γ0

Υ1

)
, (3.5)

is a boundary triplet for K∗ = A∗ ⊕ G∗ and the corresponding Weyl function M̃(·) and
γ-field γ̃(·) are given by

M̃(λ) =
(
M(λ)−<e (D) 0

0 τ(λ)

)
, λ ∈ C\R, (3.6)

and

γ̃(λ) =
(
γ(λ) 0

0 ν(λ)

)
, λ ∈ C\R, (3.7)

respectively. Notice also that K0 := K∗ � ker(Γ̃0) = A0 ⊕G0 holds.

With respect to the decomposition H̃ = ker(=m (D))⊕HD⊕HD of H̃ (cf. (3.2)) we define
the linear relation Θ̃ by

Θ̃ :=
{(

(u, v, v)>

(0,−w,w)>

)
: u ∈ ker(=m (D), v, w ∈ HD

}
∈ C̃(H̃). (3.8)

We leave it to the reader to check that Θ̃ is self-adjoint. Hence by Proposition 2.2 the
operator KeΘ = K∗ � Γ̃(−1)Θ̃ is a self-adjoint extension of the symmetric operator K =
A⊕G in K = H⊕L2(R,HD) and one verifies without difficulty that this extension coincides
with K̃ from (3.4), K̃ = KeΘ.

In order to calculate (K̃ − λ)−1, λ ∈ C\R, we use the block matrix decomposition

M(λ)−<e (D) =
(
MD

11(λ) MD
12(λ)

MD
21(λ) MD

22(λ)

)
∈
[
ker(=m (D))⊕HD

]
(3.9)

of M(λ)−<e (D) ∈ [H]. Then the definition of Θ̃ in (3.8) and (3.6) imply

(
Θ̃− M̃(λ)

)−1 =



 −MD

11(λ)u−MD
12(λ)v

−w −MD
21(λ)u−MD

22(λ)v
w − τ(λ)v


(u, v, v)>

 :
u ∈ ker(=m (D)
v, w ∈ HD


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and since every λ ∈ C\R belongs to ρ(K̃) ∩ ρ(K0), K0 = A0 ⊕ G0, it follows that (Θ̃ −
M̃(λ))−1, λ ∈ C\R, is the graph of a bounded everywhere defined operator. In order to
calculate (Θ̃− M̃(λ))−1 in a more explicit form we set

x := −MD
11(λ)u−MD

12(λ)v,
y := −w −MD

21(λ)u−MD
22(λ)v,

z := w − τ(λ)v.
(3.10)

This yields (
x

y + z

)
= −

(
MD

11(λ) MD
12(λ)

MD
21(λ) MD

22(λ) + τ(λ)

)(
u
v

)
and by (3.3) and (3.9) we have

−
(
MD

11(λ) MD
12(λ)

MD
21(λ) MD

22(λ) + τ(λ)

)
=

{
D −M(λ), λ ∈ C+,

D∗ −M(λ), λ ∈ C−
. (3.11)

Hence for λ ∈ C+ we find (
u
v

)
=
(
D −M(λ)

)−1
(

x
y + z

)
,

which implies (
u
v

)
=
(
D −M(λ)

)−1
(
x
y

)
+
(
D −M(λ)

)−1
�HD

z (3.12)

and

v = PD

(
D −M(λ)

)−1
(
x
y

)
+ PD

(
D −M(λ)

)−1
�HD

z. (3.13)

Therefore by inserting (3.10), (3.12) and (3.13) into the above expression for (Θ̃−M̃(λ))−1

we obtain (
Θ̃− M̃(λ)

)−1 =
(

(D −M(λ))−1 (D −M(λ))−1 �HD

PD(D −M(λ))−1 PD(D −M(λ))−1 �HD

)
(3.14)

for all λ ∈ C+ and by (2.6) the resolvent of the self-adjoint extension K̃ admits the
representation (

K̃ − λ
)−1 = (K0 − λ)−1 + γ̃(λ)

(
Θ̃− M̃(λ)

)−1
γ̃(λ)∗, (3.15)

λ ∈ C\R. It follows from K0 = A0 ⊕G0, (3.7) and (3.14) that for λ ∈ C+ the compressed
resolvent of K̃ onto H is given by

PH

(
K̃ − λ

)−1
� H = (A0 − λ)−1 + γ(λ)

(
D −M(λ)

)−1
γ(λ)∗,

where PH denotes the orthogonal projection in K onto H. Taking into account (3.1) we get

PH

(
K̃ − λ

)−1
� H = (AD − λ)−1, λ ∈ C+,

and hence K̃ is a self-adjoint dilation of AD. Since σ(G0) = R it follows from well-known
perturbation results and (3.15) that σ(K̃) = R holds.
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It remains to show that K̃ satisfies the minimality condition

K = H⊕ L2(R,HD) = clospan
{
(K̃ − λ)−1H : λ ∈ C\R

}
. (3.16)

First of all s-limt→+∞(−it)(K̃ − it)−1 = IK implies that H is a subset of the right hand
side of (3.16). The orthogonal projection in K onto L2(R,HD) is denoted by PL2 . Then
we conclude from (3.7), (3.14) and (3.15) that for λ ∈ C+

PL2

(
K̃ − λ

)−1
�H= ν(λ)PD

(
D −M(λ)

)−1
γ(λ)∗ (3.17)

holds and this gives

ran
(
PL2

(
K̃ − λ

)−1
�H

)
= ker(G∗ − λ), λ ∈ C+.

From (3.11) it follows that similar to the matrix representation (3.14) the left lower corner
of (Θ̃− M̃(λ))−1 is given by PD(D∗−M(λ))−1 for λ ∈ C−. Hence, the analogon of (3.17)
for λ ∈ C− implies that

ran
(
PL2

(
K̃ − λ

)−1
�H

)
= ker(G∗ − λ)

is true for λ ∈ C−. Since by Lemma 3.1 the symmetric operator G is simple it follows that

L2(R,HD) = clospan
{
ker(G∗ − λ) : λ ∈ C\R

}
holds, cf. Section 2.1, and therefore the minimality condition (3.16) holds. �

Remark 3.3 We note that also in the case where the parameter D is not a dissipative
matrix but a maximal dissipative relation in H a minimal self-adjoint dilation of AD can
be constructed in a similar way as in Theorem 3.2.

Indeed, let A and Π = {H,Γ0,Γ1} be as in the beginning of this section and let D̃ ∈ C̃(H)
be a maximal dissipative relation in H. Then D̃ can be written as the direct orthogonal
sum of a dissipative matrix D̃op in Hop := H	mul D̃ and an undetermined part or ”pure
relation” D̃∞ := {

(
0
y

)
: y ∈ mul D̃}. It follows that

B := A∗ � Γ(−1)
{(

0
y

)
: y ∈ mul D̃

}
= A∗ � Γ(−1)D̃∞

is a closed symmetric extension of A and {Hop,Γ0 �dom (B∗), PopΓ1 �dom (B∗)} is a boundary
triplet for

B∗ = A∗ �
{
f ∈ dom (A∗) : (1− Pop)Γ0f = 0

}
with A∗ � ker(Γ0) = B∗ � ker(Γ0 �dom (B∗)). In terms of this boundary triplet the maximal
dissipative extension A eD = Γ(−1)D̃ coincides with the extension

B eDop
= B∗ � ker

(
PopΓ1 �dom (B∗) −D̃opΓ0 �dom (B∗)

)
corresponding to the operator part D̃op ∈ [Hop] of D̃.
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Remark 3.4 In the special case ker(=mD) = {0} the relations (3.4) take the form

Γ0f −Υ0g = 0 and (Γ1 −<e (D)Γ0)f + Υ1g = 0,

so that K̃ is a coupling of the self-adjoint operators A0 and G0 corresponding to the
coupling of the boundary triplets ΠA = {H,Γ0,Γ1 − <e (D)Γ0} and ΠG = {H,Υ0,Υ1} in
the sense of [25]. In the case ker(=mD) 6= {0} another construction of K̃ is based on the
concept of boundary relations (see [26]).

A minimal self-adjoint dilation K̃ for a scalar Sturm-Liouville operator with a complex
(dissipative) boundary condition has originally been constructed by B.S. Pavlov in [60].
For the scalar case (n = 1) the operator in (3.20) in the following example coincides with
the one in [60].

Example 3.5 Let Q+ ∈ L1
loc(R+, [Cn]) be a matrix valued function such that Q+(·) =

Q+(·)∗, and let A be the usual minimal operator in H = L2(R+,Cn) associated to the
Sturm-Liouville differential expression − d2

dx2 +Q+,

A = − d2

dx2
+Q+, dom (A) =

{
f ∈ Dmax,+ : f(0) = f ′(0) = 0

}
,

where Dmax,+ is the maximal domain defined by

Dmax,+ =
{
f ∈L2(R+,Cn) :f, f ′∈AC(R+,Cn),−f ′′ +Q+f ∈ L2(R+,Cn)

}
.

It is well known that the adjoint operator A∗ is given by A∗ = − d2

dx2 + Q+, dom (A∗) =
Dmax,+.

In the following we assume that the limit point case prevails at +∞, so that the deficiency
indices n±(A) of A are both equal to n. In this case a boundary triplet Π = {Cn,Γ0,Γ1}
for A∗ is

Γ0f := f(0), Γ1f := f ′(0), f ∈ dom (A∗) = Dmax,+. (3.18)

For any dissipative matrix D ∈ [Cn] we consider the (maximal) dissipative extension AD

of A determined by

AD = A∗ � ker(Γ1 −DΓ0), =mD ≤ 0. (3.19)

(a) First suppose 0 ∈ ρ(=mD). Then HD = Cn and by Theorem 3.2 and Remark 3.4
the (minimal) self-adjoint dilation K̃ of the operator AD is a self-adjoint operator in K =
L2(R+,Cn)⊕ L2(R,Cn) defined by

K̃(f ⊕ g) =
(
−f ′′ +Q+f

)
⊕−ig′,

dom (K̃) =


f ∈ Dmax,+, g ∈W 1

2 (R−,Cn)⊕W 1
2 (R+,Cn)

f ′(0)−Df(0) = −i(−2=mD)1/2g(0−),
f ′(0)−D∗f(0) = −i(−2=mD)1/2g(0+)

 .
(3.20)

(b) Let now ker(=mD) 6= {0}, so that HD = ran (=mD) = Ck 6= Cn. According to
Theorem 3.2 the (minimal) self-adjoint dilation K̃ of the operator AD in K = L2(R+,Cn)⊕
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L2(R,Ck) is defined by

K̃(f ⊕ g) =
(
−f ′′ +Q+f

)
⊕−ig′,

dom (K̃) =


f ∈ Dmax,+, g ∈W 1

2 (R−,Ck)⊕W 1
2 (R+,Ck)

PD[f ′(0)−Df(0)] = −i(−2PD=m (D)�HD
)1/2g(0−),

PD[f ′(0)−D∗f(0)] = −i(−2PD=m (D)�HD
)1/2g(0+),

f ′(0)− Re (D)f(0) ∈ HD

 .

3.2 Dilations and dissipative scattering systems

Let, as in the previous section, A be a densely defined closed simple symmetric operator
in H with equal finite deficiency indices and let Π = {H,Γ0,Γ1} be a boundary triplet
for A∗, A0 = A∗ � ker Γ0, with corresponding Weyl function M(·). Let D ∈ [H] be
a dissipative matrix and let AD = A∗ � ker(Γ1 − DΓ0) be the corresponding maximal
dissipative extension in H. Since C+ 3 λ 7→M(λ)−D is a Nevanlinna function the limits

M(λ+ i0)−D = lim
ε→+0

M(λ+ i0)−D

and
ND(λ+ i0) = lim

ε→+0
ND(λ+ iε) = lim

ε→+0

(
D −M(λ+ iε)

)−1

exist for a.e. λ ∈ R. We denote these sets of real points λ by ΣM and ΣND . Then we have

ND(λ+ i0) =
(
D −M(λ+ i0)

)−1
, λ ∈ ΣM ∩ ΣND , (3.21)

cf. Section 2.3. Let G be the symmetric first order differential operator in L2(R,HD) and
let ΠG = {HD,Υ0,Υ1} be the boundary triplet from Lemma 3.1. Then G0 = G∗ � ker(Υ0)
is the usual self-adjoint differentiation operator in L2(R,HD) and K0 = A0 ⊕ G0 is self-
adjoint in K = H ⊕ L2(R,HD). In the next theorem we consider the complete scattering
system {K̃,K0}, where K̃ is the minimal self-adjoint dilation of AD in K from Theorem 3.2.

Theorem 3.6 Let A, Π = {H,Γ0,Γ1}, M(·) and AD be as above and define HM(λ),
λ ∈ ΣM , as in (2.8). Let K0 = A0 ⊕G0 and let K̃ be the minimal self-adjoint dilation of
AD from Theorem 3.2. Then the following holds.

(i) Kac
0 = Aac

0 ⊕ G0 is unitarily equivalent to the multiplication operator with the free
variable in L2(R, dλ,HM(λ) ⊕HD).

(ii) In L2(R, dλ,HM(λ) ⊕ HD) the scattering matrix {S̃(λ)} of the complete scattering
system {K̃,K0} is given by

S̃(λ) =
(
IHM(λ) 0

0 IHD

)
+ 2i

(
T̃11(λ) T̃12(λ)
T̃21(λ) T̃22(λ)

)
∈ [HM(λ) ⊕HD],



3.2 Dilations and dissipative scattering systems 19

for all λ ∈ ΣM ∩ ΣND , where

T̃11(λ) = PM(λ)

√
=m (M(λ))

(
D −M(λ)

)−1√=m (M(λ)) �HM(λ) ,

T̃12(λ) = PM(λ)

√
=m (M(λ))

(
D −M(λ)

)−1√−=m (D) �HD
,

T̃21(λ) = PD

√
−=m (D)

(
D −M(λ)

)−1√=m (M(λ)) �HM(λ) ,

T̃22(λ) = PD

√
−=m (D)

(
D −M(λ)

)−1√−=m (D) �HD

and M(λ) = M(λ+ i0).

Proof. Let K = A⊕G and let Π̃ = {H⊕HD, Γ̃0, Γ̃1} be the boundary triplet for K∗ from
(3.5). Notice that since A and G are densely defined closed simple symmetric operators
also K is a densely defined closed simple symmetric operator. Recall that for λ ∈ C+ the
Weyl function of Π̃ = {H ⊕HD, Γ̃0, Γ̃1} is given by

M̃(λ) =
(
M(λ)−<e (D) 0

0 −iPD=m (D) �HD

)
. (3.22)

Then Theorem 2.4 implies that

L2
(
R, dλ,HfM(λ)

)
, HfM(λ)

= HM(λ) ⊕HD, λ ∈ ΣM ,

performs a spectral representation of the absolutely continuous part

Kac
0 = K0 � dom (K0) ∩ Kac(K0)

= A0 ⊕G0 �
(
dom (A0) ∩ Hac(A0)

)
⊕ L2(R,HD) = Aac

0 ⊕G0

of K0 such that the scattering matrix {S̃(λ)} of the scattering system {K̃,K0} is given by

S̃(λ) = IHfM(λ)

+ 2iPfM(λ)

√
=m (M̃(λ))

(
Θ̃− M̃(λ)

)−1
√
=m (M̃(λ)) �HfM(λ)

(3.23)

for all λ ∈ ΣfM ∩ ΣN eΘ , where PfM(λ)
and �HfM(λ)

are the projection and restriction in

H̃ = H⊕HD onto HfM(λ)
. Here Θ̃ is the self-adjoint relation from (3.8) and the function

NeΘ is defined analogously to (2.9) and

NeΘ(λ+ i0) =
(
Θ̃− M̃(λ+ i0)

)−1

holds for all λ ∈ ΣfM ∩ ΣN eΘ , cf. (2.10).

By (3.22) we have√
=m (M̃(λ+ i0)) =

(√
=m (M(λ+ i0)) 0

0 PD

√
−=m (D) �HD

)
for all λ ∈ ΣfM = ΣM and (3.14) yields(

Θ̃− M̃(λ+ i0)
)−1 =

(
(D −M(λ+ i0))−1 (D −M(λ+ i0))−1 �HD

PD(D −M(λ+ i0))−1 PD(D −M(λ+ i0))−1 �HD

)
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for λ ∈ ΣM ∩ΣN eΘ . It follows that the sets ΣM ∩ΣN eΘ and ΣM ∩ΣND , see (3.21), coincide
and by inserting the above expressions into (3.23) we conclude that for each λ ∈ ΣM ∩ΣND

the scattering matrix {S̃(λ)} is a two-by-two block operator matrix with respect to the
decomposition

HfM(λ)
= HM(λ) ⊕HD, λ ∈ ΣM ∩ ΣND ,

with the entries from assertion (ii). �

Remark 3.7 It is worth to note that the scattering matrix {S̃(λ)} of the scattering system
{K̃,K0} in Theorem 3.6 depends only on the dissipative matrix D and the Weyl function
M(·) of the boundary triplet Π = {H,Γ0,Γ1} for A∗. In other words, the scattering matrix
{S̃(λ)} is completely determined by objects corresponding to the operators A,A0 and AD

in H.

Let AD and A0 be as in the beginning of this section. In the following we will focus on
the so-called dissipative scattering system {AD, A0} and we refer the reader to [22, 23, 51,
52, 53, 54, 55, 56, 57] for a detailed investigation of such scattering systems. We recall
only that the wave operators W±(AD, A0) of the dissipative scattering system {AD, A0}
are defined by

W+(AD, A0) = s- lim
t→+∞

eitA∗
De−itA0P ac(A0)

and
W−(AD, A0) = s- lim

t→+∞
e−itADeitA0P ac(A0),

where e−itAD := s-limn→∞(1 + it
nAD)−n, see e.g. [45, §IX]. The scattering operator

SD := W+(AD, A0)∗W−(AD, A0)

of the dissipative scattering system {AD, A0} will be regarded as an operator in Hac(A0).
Then SD is a contraction which in general is not unitary. Since SD and Aac

0 commute it
follows that SD is unitarily equivalent to a multiplication operator induced by a family
{SD(λ)} of contractive operators in a spectral representation of Aac

0 .

With the help of Theorem 3.6 we obtain a representation of the scattering matrix of
the dissipative scattering system {AD, A0} in terms of the Weyl function M(·) of Π =
{H,Γ0,Γ1} in the following corollary, cf. Theorem 2.4.

Corollary 3.8 Let A, Π = {H,Γ0,Γ1}, A0 = A∗ � ker(Γ0), M(·) and AD be as above and
define HM(λ), λ ∈ ΣM , as in (2.8). Then the following holds.

(i) Aac
0 is unitarily equivalent to the multiplication operator with the free variable in

L2(R, dλ,HM(λ)).

(ii) In L2(R, dλ,HM(λ)) the scattering matrix {SD(λ)} of the dissipative scattering system
{AD, A0} is given by

SD(λ) = IHM(λ) + 2iPM(λ)

p
=m (M(λ))

`
D −M(λ)

´−1p
=m (M(λ)) �HM(λ)

for all λ ∈ ΣM ∩ ΣND , where M(λ) = M(λ+ i0).
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Proof. Let K̃ be the minimal self-adjoint dilation of AD from Theorem 3.2. Since for
t ≥ 0 we have

PHe
−it eK � H = s- lim

n→∞
PH

(
1 + it

n K̃
)−n

�H= s- lim
n→∞

(
1 + it

nAD

)−n = e−itAD

it follows that the wave operators W+(AD, A0) and W−(AD, A0) coincide with

PHW+(K̃,K0) �H = s- lim
t→+∞

PHe
it eKe−itK0P ac(K0) �H

= s- lim
t→+∞

PHe
it eK �H e−itA0P ac(A0)

and

PHW−(K̃,K0) �H = s- lim
t→−∞

PHe
it eKe−itK0P ac(K0) �H

= s- lim
t→+∞

PHe
−it eK �H eitA0P ac(A0),

respectively. This implies that the scattering operator SD coincides with the compression
PHac(A0)S(K̃,K0) �Hac(A0) of the scattering operator S(K̃,K0) onto Hac(A0). Therefore
the scattering matrix SD(λ) of the dissipative scattering system is given by the upper left
corner {

IHM(λ) + 2iT̃11(λ)
}
, λ ∈ ΣM ∩ ΣND ,

of the scattering matrix {S̃(λ)} of the scattering system {K̃,K0}, see Theorem 3.6. �

3.3 Lax-Phillips scattering systems

Let again A, Π = {H,Γ0,Γ1}, {AD, A0} and G, G0, ΠG = {HD,Υ0,Υ1} be as in the
previous subsections. In Corollary 3.8 we have shown that the scattering matrix of the
dissipative scattering system {AD, A0} is the left upper corner in the block operator matrix
representation of the scattering matrix {S̃(λ)} of the scattering system {K̃,K0}, where K̃
is a minimal self-adjoint dilation of AD in K = H ⊕ L2(R,HD) and K0 = A0 ⊕ G0, cf.
Theorem 3.6.

In the following we are going to interpret the right lower corner of {S̃(λ)} as the scattering
matrix corresponding to a Lax-Phillips scattering system, see e.g. [13, 49] for further
details. To this end we decompose the space L2(R,HD) into the orthogonal sum of the
subspaces

D− := L2(R−,HD) and D+ := L2(R+,HD). (3.24)

Then clearly K = H ⊕ D− ⊕ D+ and we agree to denote the elements in K in the form
f ⊕ g−⊕ g+, f ∈ H, g± ∈ D± and g = g−⊕ g+ ∈ L2(R,HD). By J+ and J− we denote the
operators

J+ : L2(R,HD) → K, g 7→ 0⊕ 0⊕ g+,

and
J− : L2(R,HD) → K, g 7→ 0⊕ g− ⊕ 0,

respectively. Notice that J+ + J− is the embedding of L2(R,HD) into K. In the next
lemma we show that D+ and D− are so-called outgoing and incoming subspaces for the
self-adjoint dilation K̃ in K.
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Lemma 3.9 Let K̃ be the self-adjoint operator from Theorem 3.2, let D± be as in (3.24)
and A0 = A∗ � ker(Γ0) be as above. Then

e−it eK ⊆ D±, t ∈ R±, and
⋂
t∈R

e−it eKD± = {0},

and, if in addition σ(A0) is singular, then⋃
t∈R

e−it eKD+ =
⋃
t∈R

e−it eKD− = Kac(K̃). (3.25)

Proof. Let us first show that

e−it eK � D± = J±e
−itG0 � D±, t ∈ R±, (3.26)

holds. In fact, since e−itG0 is the right shift group we have

e−itG0(dom (G) ∩ D±) ⊆ dom (G) ∩ D±, t ∈ R±,

where dom (G) ∩ D± = {W 1,2(R,HD) : f(x) = 0, x ∈ R±}. Let us fix some t ∈ R± and
denote the symmetric operator A⊕G by K. Since

J±
(
dom (G) ∩ D±

)
⊂ dom (K) ⊂ dom (K̃)

the function

ft,±(s) := ei(s−t) eKJ±e−isG0 �D± f±, s ∈ R±, f± ∈ dom (G) ∩ D±,

is differentiable and

d

ds
ft,±(s) = iei(s−t) eK(K̃ − 0H ⊕G0

)
J±e

−isG0 �D± f± = 0, t ∈ R±,

holds. Hence we have ft,±(0) = ft,±(t) and together with the observation that the set
dom (G)∩D± is dense in D± this immediately implies (3.26). Then we obtain e−it eKD± ⊆
D±, t ∈ R± and ⋂

t∈R
e−it eKD± ⊆ ⋂

t∈R±

e−it eKD± =
⋂

t∈R±

J±e
−itG0D± = {0}.

Let us show (3.25). Since A has finite deficiency indices the wave operatorsW±(K̃, A0⊕G0)
exist and are complete, i.e., ran (W±(K̃, A0 ⊕ G0)) = Kac(K̃) holds. Since A0 is singular
we have

W±(K̃, A0 ⊕G0) = s- lim
t→±∞

eit eK(J+ + J−)e−itG0 �L2

and it follows from (3.26) that W±(K̃, A0⊕G0)f± = f± for f± ∈ D±, so that in particular
D± and e−itG0D± ∈ Kac(K̃) for t ∈ R±. Assume now that g ∈ L2(R,HD) vanishes
identically on some open interval (−∞, α). Then for r > 0 sufficiently large e−irG0g ∈ D+

and by (3.26) for t > r

eit eK(J+ + J−)e−i(t−r)G0e−irG0g = eir eKJ+e
−irG0g.
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Since the elements g ∈ L2(R,HD) which vanish on intervals (−∞, α) form a dense set in
L2(R,HD) and the wave operator W+(K̃, A0 ⊕G0) is complete we conclude that⋃

r∈R+

eir eKD+ (3.27)

is a dense set in Kac(K̃). A similar argument shows that the set (3.27) with R+ and D+

replaced by R− and D−, respectively, is also dense in Kac(K̃). This implies (3.25). �

According to Lemma 3.9 the system {K̃,D−,D+} is a Lax-Phillips scattering system and
in particular the Lax-Phillips wave operators

Ω± := s- lim
t→±∞

eit eKJ±e−itG0 : L2(R,HD) → K

exist, cf. [13]. We note that s-limt→±∞ J∓e
−itG0 = 0 and therefore the restrictions of

the wave operators W±(K̃,K0) of the scattering system {K̃,K0}, K0 = A0 ⊕ G0, onto
L2(R,HD),

W±(K̃,K0) �L2= s- lim
t→±∞

eit eK(J+ + J−)e−itG0 ,

coincide with the Lax-Phillips wave operators Ω±. Hence the Lax-Phillips scattering oper-
ator SLP := Ω∗+Ω− admits the representation

SLP = PL2S(K̃,K0) �L2

where S(K̃,K0) = W+(K̃,K0)∗W−(K̃,K0) is the scattering operator of the scattering sys-
tem {K̃,K0}. The Lax-Phillips scattering operator SLP is a contraction in L2(R,HD) and
commutes with the self-adjoint differential operator G0. Hence SLP is unitarily equiva-
lent to a multiplication operator induced by a family {SLP (λ)} of contractive operators in
L2(R,HD), this family is called the Lax-Phillips scattering matrix.

The above considerations together with Theorem 3.6 immediately imply the following corol-
lary on the representation of the Lax-Phillips scattering matrix.

Corollary 3.10 Let {K̃,D−,D+} be the Lax-Phillips scattering system considered in
Lemma 3.9 and let A, Π = {H,Γ0,Γ1}, AD, M(·) and G0 be as in the previous sub-
sections. Then G0 = Gac

0 is unitarily equivalent to the multiplication operator with the free
variable in L2(R,HD) = L2(R, dλ,HD) and the Lax-Phillips scattering matrix {SLP (λ)}
admits the representation

SLP (λ) = IHD
+ 2iPD

√
=m (−D)

(
D −M(λ)

)−1√=m (−D) �HD
(3.28)

for λ ∈ ΣM ∩ ΣND , where M(λ) = M(λ+ i0).

Let again AD be the maximal dissipative extension of A corresponding to the maximal
dissipative matrix D ∈ [H] and let HD = ran (=m (D)). By [29] the characteristic function
WAD

of the completely non-self-adjoint part of AD is given by

WAD
: C− → [HD]

µ 7→ IHD
− 2iPD

√
−=m (D)

(
D∗ −M(µ)

)−1√−=m (D) �HD
.

(3.29)
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Comparing (3.28) and (3.29) we obtain the famous relation between the Lax-Phillips scat-
tering matrix and the characteristic function found by Adamyan and Arov in [3, 4, 5, 6].

Corollary 3.11 Let the assumption be as in Corollary 3.10. Then the Lax-Phillips scat-
tering matrix {SLP (λ)} and the characteristic function WAD

of the maximal dissipative
operator AD are related by

SLP (λ) = WAD
(λ− i0)∗, λ ∈ ΣM ∩ ΣND .

Next we consider the special case that the spectrum σ(A0) of the self-adjoint extension A0 =
A∗ � ker(Γ0) is purely singular, Hac(A0) = {0}. As usual let M(·) be the Weyl function
corresponding to Π = {H,Γ0,Γ1}. Then we have HM(λ) = ran (=m (M(λ + i0))) = {0}
for a.e. λ ∈ ΣM , cf. [17], and if even σ(A0) = σp(A0) then HM(λ) = {0} for all λ ∈ ΣM .
Therefore Theorem 3.6 and Corollaries 3.10 and 3.11 imply the following statement.

Corollary 3.12 Let the assumption be as in Corollary 3.10, let K0 = A0⊕G0 and assume
in addition that σ(A0) is purely singular. Then the scattering matrix {S̃(λ)} of the complete
scattering system {K̃,K0} coincides with the Lax-Phillips scattering matrix {SLP (λ)} of
the Lax-Phillips scattering system {K̃,D−,D+}, that is,

S̃(λ) = SLP (λ) = WAD
(λ− i0)∗ (3.30)

for a.e. λ ∈ R. If even σ(A0) = σp(A0), then (3.30) holds for all λ ∈ ΣM ∩ ΣND .

3.4 A dissipative Schrödinger-Poisson system

In this subsection we consider an open quantum system consisting of a self-adjoint and a
maximal dissipative extension of a symmetric regular Sturm-Liouville differential operator.
Such maximal dissipative operators or pseudo-Hamiltonians are used in the description of
carrier transport in semi-conductors, see e.g. [9, 11, 34, 37, 43, 44, 46].

Assume that −∞ < xl < xr < ∞ and let V ∈ L∞((xl, xr)) be a real valued function.
Moreover let m ∈ L∞((xl, xr)) be a real function such that m > 0 and m−1 ∈ L∞((xl, xr)).
It is well-known that

(Af)(x) := −1
2
d

dx

1
m(x)

d

dx
f(x) + V (x)f(x),

dom (A) :=

f ∈ L2((xl, xr)) :
f, 1

mf
′ ∈W 1

2 ((xl, xr))
f(xl) = f(xr) = 0(

1
mf

′) (xl) =
(

1
mf

′) (xr) = 0

 ,

is a densely defined closed simple symmetric operator in the Hilbert space H := L2((xl, xr)).
The deficiency indices of A are n+(A) = n−(A) = 2 and the adjoint operator A∗ is given
by

(A∗f)(x) = −1
2
d

dx

1
m(x)

d

dx
f(x) + V (x)f(x),

dom (A∗) =
{
f ∈ H : f,

1
m
f ′ ∈W 1

2 ((xl, xr))
}
.
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It is straightforward to verify that Π = {C2,Γ0,Γ1}, where

Γ0f :=
(

f(xl)
f(xr)

)
and Γ1f :=

( (
1

2mf
′) (xl)

−
(

1
2mf

′) (xr)

)
, (3.31)

f ∈ dom (A∗), is a boundary triplet for A∗. Notice that the self-adjoint extension A0 =
A∗ � ker(Γ0) corresponds to Dirichlet boundary conditions, that is,

dom (A0) =
{
f ∈ H : f,

1
m
f ′ ∈W 1

2 ((xl, xr)), f(xl) = f(xr) = 0
}
.

It is well known that A0 is semibounded from below and that σ(A0) consists of eigen-
values accumulating to +∞. As usual we denote the Weyl function corresponding to
Π = {C2,Γ0,Γ1} by M(·). Here M(·) is a two-by-two matrix-valued function which has
poles at the eigenvalues of A0 and in particular we have

HM(λ) = ran
(
=m (M(λ))

)
= {0} for all λ ∈ ΣM . (3.32)

If ϕλ, ψλ ∈ L2((xl, xr)) are fundamental solutions of − 1
2

(
1
mf

′)′ + V f = λf satisfying the
boundary conditions

ϕλ(xl) = 1,
(

1
mϕ

′
λ

)
(xl) = 0, ψλ(xl) = 0,

(
1
mψ

′
λ

)
(xl) = 1, (3.33)

then M can be written as

M(λ) =
1

2ψλ(xr)

(
−ϕλ(xr) 1

1 −
(

1
mψ

′
λ

)
(xr)

)
, λ ∈ ρ(A0). (3.34)

We are interested in maximal dissipative extensions

AD = A∗ � ker(Γ1 −DΓ0)

of A where D ∈ [C2] has the special form

D =
(
−κl 0
0 −κr

)
, =m (κl) ≥ 0, =m (κr) ≥ 0. (3.35)

Of course, if both κl and κr are real constants then HD = ran (=m (D)) = {0} and AD

is self-adjoint. In this case AD can be identified with the self-adjoint dilation K̃ acting in
H⊕ L2(R, {0})=̃H, cf. Theorem 3.2.

Let us first consider the situation where both κl and κr have positive imaginary parts.
Then HD = C2 and the self-adjoint dilation K̃ from Theorem 3.2 is given by

K̃(f ⊕ g− ⊕ g+) =
(
− 1

2

(
1
mf

′)′ + V f
)
⊕−ig′− ⊕−ig′+,

dom K̃ =
{
f, 1

mf
′ ∈W 1

2 ((xl, xr)),
g± ∈W 1

2 (R±,C2) :
Γ0f −Υ0g = 0,

(Γ1 −<e (D)Γ0)f + Υ1g = 0

}
.

Here ΠG = {C2,Υ0,Υ1} is the boundary triplet for first order differential operator G ⊂ G∗

in L2(R,C2) from Lemma 3.1 and we have decomposed the elements f⊕g in H⊕L2(R,C2)
as agreed in the beginning of Section 3.3. Let us set

g−(0−) =
(
gl(0−)
gr(0−)

)
and g+(0+) =

(
gl(0+)
gr(0+)

)
.
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Then a straightforward calculation using the definitions of Π = {C2,Γ0,Γ1} and ΠG =
{C2,Υ0,Υ1} in (3.31) and Lemma 3.1, respectively, shows that an element f ⊕ g− ⊕ g+
belongs to dom (K̃) if and only if(

1
2mf

′)(xl) + κlf(xl) = −i
√

2=m (κl)gl(0−)(
1

2mf
′)(xl) + κlf(xl) = −i

√
2=m (κl)gl(0+)(

1
2mf

′)(xr)− κrf(xr) = i
√

2=m (κr)gr(0−)(
1

2mf
′)(xr)− κrf(xr) = i

√
2=m (κr)gr(0+)

holds. We note that this dilation K̃ is isomorph in the sense of [36, Section I.4] to those
used in [11, 12, 43, 44].

Theorem 3.6 and the fact that σ(A0) is singular (cf. (3.32)) imply that the scattering
matrix {S̃(λ)} of the scattering system {K̃,K0}, K0 = A0 ⊕G0, coincides with

SLP (λ) = IC2 + 2i
√
−=m (D)

(
D −M(λ)

)−1√−=m (D) ∈ [C2]

for all λ 6∈ σp(A0) ∩ R, where M(λ) = M(λ + i0) (cf. Corollary 3.12). By (3.35) here√
−=m (D) is a diagonal matrix with entries

√
=m (κl) and

√
=m (κr). We leave it to the

reader to compute SLP (λ) explicitely in terms of the fundamental solutions ϕλ and ψλ in
(3.33). According to Corollary 3.11 the continuation of the characteristic function WAD

of
the completely non-self-adjoint pseudo-Hamiltonian AD from C− to R\{σp(A0)} coincides
with SLP (λ)∗,

WAD
(λ− i0) = IC2 − 2i

√
−=m (D)

(
D∗ −M(λ)

)−1√−=m (D) = SLP (λ)∗.

Next we consider briefly the case where one of the entries of D in (3.35) is real. Assume
e.g. κl ∈ R. In this case HD = C=̃{0}⊕C, PD is the orthogonal projection onto the second
component in C2 and G is a first order differential operator in L2(R,C). The self-adjoint
dilation K̃ is

K̃(f ⊕ g− ⊕ g+) =
(
− 1

2

(
1
mf

′)′ + V f
)
⊕−ig′− ⊕−ig′+,

dom K̃ =

f, 1
mf

′ ∈W 1
2 ((xl, xr)),

g± ∈W 1
2 (R±,C2) :

PDΓ0f −Υ0g = 0,
(1− PD)(Γ1 −<e (D)Γ0)f = 0,
PD(Γ1 −<e (D)Γ0)f + Υ1g = 0

 ,

and explicitely this means that an element f ⊕ g− ⊕ g+ belongs to dom (K̃) if and only if(
1

2mf
)′(xr)− κrf(xr) = i

√
2=m (κr)g+(0+)(

1
2mf

)′(xr)− κrf(xr) = i
√

2=m (κr)g−(0−)(
1

2mf
)′(xl) + κlf(xl) = 0

holds. The scattering matrix of {K̃,K0} is given by

SLP (λ) = IHD
+ 2i=m (κr)PD

(
D −M(λ)

)−1
�HD

, λ ∈ ΣM ,

which is now a scalar function, and is related to the characteristic function of the maximal
dissipative operator AD by SLP (λ) = WAD

(λ− i0)∗.
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4 Energy dependent scattering systems

In this section we consider families {A−τ(λ), A0} of scattering systems, where τ(·) is a
matrix Nevanlinna function and {A−τ(λ)} is a family of maximal dissipative extensions of a
symmetric operator A with finite deficiency indices. Such scattering systems arise naturally
in the description of open quantum systems, see e.g. Section 4.4 where a simple model of a
so-called quantum transmitting Schrödinger-Poisson system is described. Following ideas
in [25] (see also [15, 20, 31, 40, 41]) the family {A−τ(λ)} is “linearized” in an abstract way,
that is, we construct a self-adjoint extension L̃ of A which acts in a larger Hilbert space
H⊕G and satisfies

PH

(
L̃− λ

)−1
�H=

(
A−τ(λ) − λ

)−1
,

so that, roughly speaking, the open quantum system is embedded into a closed system. The
corresponding Hamiltonian L̃ is semibounded if and only if A0 is semibounded and τ(·) is
holomorphic on some interval (−∞, η). The essential observation here is that the scattering
matrix of {L̃, L0}, where L0 is the direct orthogonal sum of A0 and a self-adjoint operator
connected with τ(·), pointwise coincides with the scattering matrix of a scattering system
{K̃,K0} as investigated in the previous section. From a physical point of view this in
particular justifies the use of quasi-Hamiltonians K̃ for the analysis of scattering processes
in suitable small energy ranges.

4.1 The Štraus family and its characteristic functions

Let A be a densely defined closed simple symmetric operator in the separable Hilbert
space H with equal finite deficiency indices n±(A) = n < ∞ and let Π = {H,Γ0,Γ1} be
a boundary triplet for A∗. Assume that τ(·) is an [H]-valued Nevanlinna function and
consider the family {A−τ(λ)},

A−τ(λ) := A∗ � ker
(
Γ1 + τ(λ)Γ0

)
, λ ∈ C+,

of closed extension of A. Sometimes it is convenient to consider A−τ(λ) for all λ ∈ h(τ),
that is, for all λ ∈ C\R and all real points λ where τ is holomorphic, cf. Section 2.2. Since
=m τ(λ) ≥ 0 for λ ∈ C+ it follows that each A−τ(λ), λ ∈ C+, is a maximal dissipative
extension of A in H. The family {A−τ(λ)}λ∈C+ is called the Štraus family of A associated
with τ (cf. [59] and e.g. [24, Section 3.3]) and for brevity we shall often call {A−τ(λ)}
simply Štraus family.

Since H is finite dimensional Fatous theorem (see [33, 38]) implies that the limit τ(λ+i0) =
limε→+0 τ(λ + iε) from the upper half-plane exists for a.e. λ ∈ R. As in Section 2.3 we
denote set of real points λ where this limit exists by Στ . If there is no danger of confusion
we will usually write τ(λ) instead of τ(λ+i0) for λ ∈ Στ . Obviously, the Lebesgue measure
of R\Στ is zero. Hence the Štraus family {A−τ(λ)}λ∈C+ admits a continuation to C+∪Στ

which is also denoted by {A−τ(λ)}, λ ∈ C+∪Στ . We remark that in the case =m (τ(λ)) = 0
for some λ ∈ C+ ∪ Στ the maximal dissipative operator A−τ(λ) is self-adjoint.

Let M(·) be the Weyl function of the boundary triplet Π = {H,Γ0,Γ1}. Then M(·) is an
[H]-valued Nevanlinna function and =m (M(λ)) is strictly positive for λ ∈ C+. Therefore

N−τ(λ)(λ) := −
(
τ(λ) +M(λ)

)−1
, λ ∈ C+,
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is a well-defined Nevanlinna function, see also (2.9). The set of all real λ where the limit

N−τ(λ+i0)(λ+ i0) = lim
ε→+0

−
(
τ(λ+ iε) +M(λ+ iε)

)−1

exists will for brevity be denoted by ΣN . Furthermore, for fixed λ ∈ Στ we define an
[H]-valued Nevanlinna function Q−τ(λ)(·) by

Q−τ(λ)(µ) := −
(
τ(λ) +M(µ)

)−1
, µ ∈ C+, (4.1)

and denote by ΣQλ the set of all real points µ where the limit

Q−τ(λ)(µ+ i0) = lim
ε→+0

Q−τ(λ)(µ+ iε) (4.2)

exists. Notice that the complements R \ ΣN and R \ ΣQλ are of Lebesgue measure zero.
The next lemma will be used in Section 4.3.

Lemma 4.1 Let A, Π = {H,Γ0,Γ1}, M(·) and τ(·) be as above. Then the following
assertions (i)-(iii) are true.

(i) If λ ∈ Στ and µ ∈ ΣM ∩ ΣQλ , then the operator τ(λ) +M(µ) is invertible and(
τ(λ) +M(µ)

)−1 = lim
ε→+0

(
τ(λ) +M(µ+ iε)

)−1
. (4.3)

(ii) If λ ∈ Στ ∩ ΣM ∩ ΣN , then the operator τ(λ) +M(λ) is invertible and(
τ(λ) +M(λ)

)−1 = lim
ε→+0

(
τ(λ+ iε) +M(λ+ iε)

)−1
. (4.4)

(iii) If λ ∈ Στ ∩ ΣM ∩ ΣN , then λ ∈ ΣQλ and(
τ(λ) +M(λ)

)−1 = lim
ε→+0

(
τ(λ) +M(λ+ iε)

)−1
. (4.5)

Proof. (i) If λ ∈ Στ , µ ∈ ΣM , then limε→+0(τ(λ) +M(µ+ iε)) = τ(λ) +M(µ). Since(
τ(λ) +M(µ+ iε)

)
Q−τ(λ)(µ+ iε) = Q−τ(λ)(µ+ iε)

(
τ(λ) +M(µ+ iε)

)
= −IH

for all ε > 0, we get

−IH =
(
τ(λ) +M(µ)

)
Q−τ(λ)(µ) = Q−τ(λ)(µ)

(
τ(λ) +M(µ)

)
for λ ∈ Στ and µ ∈ ΣM ∩ ΣQλ which proves (4.3).

(ii) For λ ∈ Στ ∩ ΣM clearly

lim
ε→+0

(
τ(λ+ iε) +M(λ+ iε)

)
= τ(λ) +M(λ)

exists. Since (τ(λ) + M(λ))N−τ(λ)(λ) = N−τ(λ)(λ)(τ(λ) + M(λ)) = −IH for all λ ∈ C+

we have
−IH =

(
τ(λ) +M(λ)

)
N−τ(λ)(λ) = N−τ(λ)(λ)

(
τ(λ) +M(λ)

)
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for λ ∈ Στ ∩ ΣM ∩ ΣN which verifies (4.4).

(iii) Let λ ∈ Στ ∩ ΣM ∩ ΣN . Let us show that λ ∈ ΣQλ , i.e., we have to show that
limε→+0(τ(λ)+M(λ+ iε))−1 exists. Since τ(λ)+M(λ) is boundedly invertible and τ(λ)+
M(λ + iε), ε > 0, converges in the operator norm to τ(λ) + M(λ) the family {(τ(λ) +
M(λ+ iε))−1}ε>0 is uniformly bounded. Using(

τ(λ) +M(λ+ iε)
)−1 −

(
τ(λ) +M(λ)

)−1

= −
(
τ(λ) +M(λ+ iε)

)−1(
M(λ+ iε)−M(λ)

)(
τ(λ) +M(λ)

)−1
, ε > 0,

one obtains the existence of limε→+0(τ(λ) +M(λ+ iε))−1 and (4.5). �

Let A, Π = {H,Γ0,Γ1} and M(·) be as in the beginning of this section and let as above
τ(·) be a matrix Nevanlinna function with values in [H]. For each maximal dissipative
operator from the Štraus family {A−τ(λ)}λ∈C+ the characteristic function WA−τ(λ) is given
by

WA−τ(λ) : C− → [Hτ(λ)] (4.6)

µ 7→ IHτ(λ) + 2iPτ(λ)

√
=m (τ(λ))

(
τ(λ)∗ +M(µ)

)−1√=m (τ(λ)) �Hτ(λ) ,

(see [29] and (3.29)), where we have used Hτ(λ) = ran (=m (τ(λ))), λ ∈ Στ , and denoted
the projection and restriction onto Hτ(λ) by Pτ(λ) and �Hτ(λ) , respectively.

If we regard the Štraus family {A−τ(λ)} on the larger set C+ ∪ Στ , then for λ ∈ Στ the
characteristic functionWA−τ(λ)(·) is defined as in (4.6). Notice that in the case =m (τ(λ)) =
0 for λ ∈ Στ the characteristic function of the self-adjoint extension A−τ(λ) of A is the
identity operator on the trivial space Hτ(λ) = {0}. Since the characteristic functions
WA−τ(λ)(·), λ ∈ C+ ∪ Στ , are contractive [Hτ(λ)]-valued functions in the lower half-plane,
the limits

WA−τ(λ)(µ− i0) = lim
ε→+0

WA−τ(λ)(µ− iε)

exist for a.e. µ ∈ R, cf. [36]. The next proposition is a simple consequence of Lemma 4.1.

Proposition 4.2 Let A, Π = {H,Γ0,Γ1} and M(·) be as above and let τ(·) be an [H]-
valued Nevanlinna function. Let {A−τ(λ)}λ∈C+∪Στ be the Štraus family of maximal dis-
sipative extensions of A and let WA−τ(λ)(·) be the corresponding characteristic functions.
Then the following holds.

(i) If λ ∈ Στ and µ ∈ ΣM ∩ ΣQλ , then the limit WA−τ(λ)(µ− i0) exists and

WA−τ(λ)(µ− i0) =

IHτ(λ) + 2iPτ(λ)

√
=m (τ(λ))(τ(λ)∗ +M(µ)∗)−1

√
=m (τ(λ)) �Hτ(λ) .

(ii) If λ ∈ Στ ∩ ΣM ∩ ΣN , then the limit WA−τ(λ)(λ− i0) exists and

WA−τ(λ)(λ− i0) =

IHτ(λ) + 2iPτ(λ)

√
=m (τ(λ))(τ(λ)∗ +M(λ)∗)−1

√
=m (τ(λ)) �Hτ(λ) .
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4.2 Coupling of symmetric operators and coupled scattering sys-
tems

Let, as in the previous subsection A be a densely defined closed simple symmetric operator
in H with equal finite deficiency indices and let Π = {H,Γ0,Γ1} be a boundary triplet for
A∗ with corresponding Weyl function M(·). Let τ(·) be an [H]-valued Nevanlinna function
and assume in addition that τ can be realized as the Weyl function corresponding to a
densely defined closed simple symmetric operator T in some separable Hilbert space G
and a suitable boundary triplet ΠT = {H,Υ0,Υ1} for T ∗. It is worth to note that the
Nevanlinna function τ(·) has this property if and only if =m (τ(λ)) is invertible for some
(and hence for all) λ ∈ C+ and

lim
y→∞

1
y

(
τ(iy)h, h

)
= 0 and lim

y→∞
y=m

(
τ(iy)h, h

)
= ∞ (4.7)

hold for all h ∈ H, h 6= 0, (see e.g. [48, Corollary 2.5 and Corollary 2.6] and [28, 50]).

In the following the function −τ(·) and the Štraus family

A−τ(λ) = A∗ � ker
(
Γ1 + τ(λ)Γ0

)
(4.8)

are in a certain sense the counterparts of the dissipative matrix D ∈ [H] and the corre-
sponding maximal dissipative extension AD from Section 3.1. Similarly to Theorem 3.2
we construct an ”energy dependent dilation” in Theorem 4.3 below, that is, we find a
self-adjoint operator L̃ such that

PH

(
L̃− λ)−1 �H=

(
A−τ(λ) − λ

)−1

holds.

First we fix a separable Hilbert space G, a densely defined closed simple symmetric op-
erator T ∈ C(G) and a boundary triplet ΠT = {H,Υ0,Υ1} for T ∗ such that τ(·) is the
corresponding Weyl function. We note that T and G are unique up to unitary equivalence
and the resolvent set ρ(T0) of the self-adjoint operator T0 := T ∗ � ker(Υ0) coincides with
the set h(τ) of points of holomorphy of τ , cf. Section 2.2. Since the deficiency indices of T
are n+(T ) = n−(T ) = n it follows that

L := A⊕ T, domL = domA⊕ domT,

is a densely defined closed simple symmetric operator in the separable Hilbert space L :=
H⊕G with deficiency indices n±(L) = n±(A) + n±(T ) = 2n.

The following theorem has originally been proved in [25, § 5]. For the sake of completeness
we present another proof that differs from the original one, cf. [15].

Theorem 4.3 Let A, Π = {H,Γ0,Γ1}, M(·) and τ(·) be as above, let T be a densely
defined closed simple symmetric operator in G and ΠT = {H,Υ0,Υ1} be a boundary triplet
for T ∗ with Weyl function τ(·). Then

L̃ = L∗ �

{
f ⊕ g ∈ dom (L∗) :

Γ0f −Υ0g = 0
Γ1f + Υ1g = 0

}
, (4.9)
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is a self-adjoint operator in L such that

PH

(
L̃− λ)−1 �H=

(
A−τ(λ) − λ

)−1

holds for all λ ∈ ρ(A0) ∩ h(τ) ∩ h(−(M + τ)−1) and the minimality condition

L = clospan
{(
L̃− λ

)−1
H : λ ∈ C\R

}
is satisfied. Moreover, L̃ is semibounded from below if and only if A0 is semibounded from
below and (−∞, η) ⊂ h(τ) for some η ∈ R.

Proof. It is easy to see that Π̃ = {H ⊕ H, Γ̃0, Γ̃1}, where Γ̃0 := (Γ0,Υ0)> and Γ̃1 :=
(Γ1,Υ1)>, is a boundary triplet for L∗ = A∗ ⊕ T ∗. If γ(·) and ν(·) denote the γ-fields of
Π = {H,Γ0,Γ1} and ΠT = {H,Υ0,Υ1}, respectively, then the γ-field γ̃ and Weyl function
M̃ of Π̃ = {H ⊕H, Γ̃0, Γ̃1} are given by

λ 7→ γ̃(λ) =
(
γ(λ) 0

0 ν(λ)

)
and λ 7→ M̃(λ) =

(
M(λ) 0

0 τ(λ)

)
,

λ ∈ ρ(A0)∩ ρ(T0), A0 = A∗ � ker(Γ0), T0 = T ∗ � ker(Υ0). A simple calculation shows that
the relation

Θ :=
{(

(v, v)>

(w,−w)>

)
: v, w ∈ H

}
∈ C̃(H⊕H) (4.10)

is self-adjoint in H⊕H, hence the operator LΘ = L∗ � Γ̃(−1)Θ is a self-adjoint extension of
L in L = H⊕G and LΘ coincides with L̃ in (4.9). Hence, with L0 = L∗ � ker(Γ̃0) = A0⊕T0

we have (
L̃− λ

)−1 = (L0 − λ)−1 + γ̃(λ)
(
Θ− M̃(λ)

)−1
γ̃(λ)∗, (4.11)

for all λ ∈ ρ(L̃)∩ρ(L0) by (2.6). Note that the difference of the resolvents of L̃ and L0 is a
finite rank operator and therefore by well-known perturbation results L̃ is semibounded if
and only if L0 is semibounded, that is, A0 and T0 are both semibounded. From ρ(T0) = h(τ)
we conclude that the last assertion of the theorem holds.

Similar considerations as in the proof of Theorem 3.2 show that

(
Θ− M̃(λ)

)−1 = −
(

(M(λ) + τ(λ))−1 (M(λ) + τ(λ))−1

(M(λ) + τ(λ))−1 (M(λ) + τ(λ))−1

)
(4.12)

holds for all λ ∈ ρ(L̃) ∩ ρ(L0). Therefore the compressed resolvent of L̃ has the form

PH

(
L− λ

)−1
� H = (A0 − λ)−1 − γ(λ)

(
M(λ) + τ(λ)

)−1
γ(λ)∗

and coincides with (A−τ(λ) − λ)−1 for all λ belonging to

ρ(L0) ∩ ρ(L̃) = ρ(A0) ∩ h(τ) ∩ h
(
−(M + τ)−1

)
,

see Section 2.2. The minimality condition follows from the fact that T is simple,
clospan{ker(T ∗ − λ) : λ ∈ C\R}, and (4.11) in a similar way as in the proof of Theo-
rem 3.2 �
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Example 4.4 Let A be the symmetric Sturm-Liouville operator from Example 3.5 and let
Π = {Cn,Γ0,Γ1} be the boundary triplet for A∗ defined by (3.18). Besides the operator A
we consider the minimal operator T in G = L2(R−,Cn) associated to the Sturm-Liouville
differential expression − d2

dx2 +Q−,

T = − d2

dx2
+Q−, dom (T ) =

{
g ∈ Dmax,− : g(0) = g′(0) = 0

}
.

Analogously to Example 3.5 it is assumed that Q− ∈ L1
loc(R−, [Cn]) satisfies Q−(·) =

Q−(·)∗, that the limit point case prevails at −∞ and the maximal domain Dmax,− is
defined in the same way as Dmax,+ in Example 3.5 with R+ and Q+ replaced by R− and
Q−, respectively.

It is easy to see that ΠT = {Cn,Υ0,Υ1}, where

Υ0g := g(0), Υ1g := −g′(0), g ∈ dom (T ∗) = Dmax,−, (4.13)

is a boundary triplet for T ∗. For f ∈ dom (A∗) and g ∈ dom (T ∗) the conditions Γ0f −
Υ0g = 0 and Γ1f + Υ1g = 0 in (4.9) stand for

f(0+) = g(0−) and f ′(0+) = g′(0−),

so that the operator L̃ in Theorem 4.3 is the self-adjoint Sturm-Liouville operator

L̃ = − d2

dx2
+Q, Q(x) =

{
Q+(x), x ∈ R+,

Q−(x), x ∈ R−,

in L2(R,Cn).

Let A, Π = {H,Γ0,Γ1}, M(·) and T , ΠT = {H,Υ0,Υ1}, τ(·) be as in the beginning of
this subsection. We define the families {HM(λ)}λ∈ΣM and {Hτ(λ)}λ∈Στ of Hilbert spaces
HM(λ) and Hτ(λ) by

HM(λ) = ran
(
=m (M(λ+ i0))

)
and Hτ(λ) = ran

(
=m (τ(λ+ i0))

)
(4.14)

for all real points λ belonging to ΣM and Στ , respectively, cf. Section 2.3. As usual the
projections and restrictions in H onto HM(λ) and Hτ(λ) are denoted by PM(λ), �HM(λ) and
Pτ(λ), �Hτ(λ) , respectively.

The next theorem is the counterpart of Theorem 3.6 in the present framework. We consider
the complete scattering system {L̃, L0} consisting of the self-adjoint operators L̃ from
Theorem 4.3 and

L0 := A0 ⊕ T0, A0 = A∗ � ker(Γ0), T0 = T ∗ � ker(Υ0),

and express the scattering matrix {S̃(λ)} in terms of the function M(·) and τ(·).

Theorem 4.5 Let A, Π = {H,Γ0,Γ1}, M(·) and T , ΠT = {H,Υ0,Υ1}, τ(·) be as above.
Define HM(λ), Hτ(λ) as in (4.14) and let L0 = A0⊕T0 and L̃ be as in Theorem 4.3. Then
the following holds.
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(i) Lac
0 = Aac

0 ⊕ T ac
0 is unitarily equivalent to the multiplication operator with the free

variable in L2(R, dλ,HM(λ) ⊕Hτ(λ)).

(ii) In L2(R, dλ,HM(λ) ⊕Hτ(λ)) the scattering matrix {S̃(λ)} of the complete scattering
system {L̃, L0} is given by

S̃(λ) = IHM(λ)⊕Hτ(λ) − 2i

(
T̃11(λ) T̃12(λ)
T̃21(λ) T̃22(λ)

)
∈ [HM(λ) ⊕Hτ(λ)], (4.15)

for all λ ∈ ΣM ∩ Στ ∩ ΣN , where

T̃11(λ) = PM(λ)

√
=m (M(λ))

(
M(λ) + τ(λ)

)−1√=m (M(λ)) �HM(λ) ,

T̃12(λ) = PM(λ)

√
=m (M(λ))

(
M(λ) + τ(λ)

)−1√=m (τ(λ)) �Hτ(λ) ,

T̃21(λ) = Pτ(λ)

√
=m (τ(λ))

(
M(λ) + τ(λ)

)−1√=m (M(λ)) �HM(λ) ,

T̃22(λ) = Pτ(λ)

√
=m (τ(λ))

(
M(λ) + τ(λ)

)−1√=m (τ(λ)) �Hτ(λ)

and M(λ) = M(λ+ i0), τ(λ) = τ(λ+ i0).

Proof. Let L = A ⊕ T and let Π̃ = {H ⊕H, Γ̃0, Γ̃1} be the boundary triplet for L∗ from
the proof of Theorem 4.3. The corresponding Weyl function M̃ is

λ 7→ M̃(λ) =
(
M(λ) 0

0 τ(λ)

)
, λ ∈ ρ(A0) ∩ ρ(T0), (4.16)

and since L is a densely defined closed simple symmetric operator in the separable Hilbert
space L = H⊕G we can apply Theorem 2.4. First of all we immediately conclude from

HfM(λ)
= HM(λ) ⊕Hτ(λ), λ ∈ ΣfM = ΣM ∩ Στ ,

that the absolutely continuous part Lac
0 = Aac

0 ⊕ T ac
0 of L0 is unitarily equivalent to the

multiplication operator with the free variable in the direct integral L2(R, dλ,HM(λ) ⊕
Hτ(λ)). Moreover

S̃(λ) = I eHλ
+ 2iPfM(λ)

√
=m (M̃(λ))

(
Θ− M̃(λ)

)−1
√
=m (M̃(λ)) �HfM(λ)

(4.17)

holds for λ ∈ ΣfM ∩ ΣNΘ , where Θ is the self-adjoint relation from (4.10), the set ΣNΘ is
defined as in Section 2.3 and PfM(λ)

and �HfM(λ)
denote the projection and restriction in

H⊕H onto HfM(λ)
, respectively.

For λ ∈ ΣfM ∩ ΣNΘ we have

lim
ε→+0

(
Θ− M̃(λ+ iε)

)−1 =
(
Θ− M̃(λ+ i0)

)−1

and (
Θ− M̃(λ)

)−1 = −
(

(M(λ) + τ(λ))−1 (M(λ) + τ(λ))−1

(M(λ) + τ(λ))−1 (M(λ) + τ(λ))−1

)
,
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cf. (4.12). This implies that the sets ΣfM ∩ΣNΘ and ΣM ∩Στ ∩ΣN coincide. Moreover, by
inserting the above expression for (Θ−M̃(λ))−1, λ ∈ ΣM ∩Στ ∩ΣN into (4.17) and taking
into account (4.16) we find that the scattering matrix {S̃(λ)} of the scattering system
{L̃, L0} has the form asserted in (ii). �

The following corollary, which is of similar type as Corollary 3.12, is a simple consequence
of Theorem 4.5 and Proposition 4.2.

Corollary 4.6 Let the assumptions be as in Theorem 4.5, let WA−τ(λ)(·) be the character-
istic function of the extension A−τ(λ) in (4.8) and assume in addition that σ(A0) is purely
singular. Then Lac

0 is unitarily equivalent to the multiplication operator with the free vari-
able in L2(R, dλ,Hτ(λ)) and the scattering matrix {S̃(λ)} of the complete scattering system
{L̃, L0} is given by

S̃(λ) = WA−τ(λ)(λ− i0)∗

= IHτ(λ) − 2iPτ(λ)

√
=m (τ(λ))

(
M(λ) + τ(λ)

)−1√=m (τ(λ)) �Hτ(λ)

for a.e. λ ∈ R. In the special case σ(A0) = σp(A0) this relation holds for all λ ∈ ΣM ∩
Στ ∩ ΣN .

Corollary 4.7 Let the assumptions be as in Corollary 4.6 and suppose that the defect of
A is one, n±(A) = 1. Then

S̃(λ) = WA−τ(λ)(λ− i0)∗ =
M(λ) + τ(λ)
M(λ) + τ(λ)

holds for a.e. λ ∈ R with Im τ(λ+ i0) 6= 0.

4.3 Scattering matrices of energy dependent and fixed dissipative
scattering systems

Let A, Π = {H,Γ0,Γ1}, A0 = A∗ � ker(Γ0) and τ(·) be as in the previous subsections and
let {A−τ(λ)} be the Štraus family associated with τ from (4.8). In the following we first fix
some µ ∈ C+∪Στ and consider the fixed dissipative scattering system {A−τ(µ), A0}. Notice
that if µ ∈ Στ it may happen that A−τ(µ) is self-adjoint. Let us denote by K̃µ the minimal
self-adjoint dilation of the maximal dissipative extension A−τ(µ) in H ⊕ L2(R, dλ,Hτ(µ))
constructed in Theorem 3.2. Here the fixed Hilbert spaceHτ(µ) = ran (=m (τ(µ))) coincides
with H if µ ∈ C+ or Hτ(µ) is a (possibly trivial) subspace of H if µ ∈ Στ . Furthermore,
if K0 = A0 ⊕G0, where G0 is the first order differential operator in L2(R, dλ,Hτ(µ)) from
Lemma 3.1, then according to Theorem 3.6 the absolutely continuous part Kac

0 = Aac
0 ⊕G0

of K0 is unitarily equivalent to the multiplication operator with the free variable in the
direct integral L2(R, dλ,HM(λ)⊕Hτ(µ)) and the scattering matrix {S̃µ(λ)} of the scattering
system {K̃µ,K0} is given by

S̃µ(λ) = IHM(λ)⊕Hτ(µ) − 2i

(
T̃11,µ(λ) T̃12,µ(λ)
T̃21,µ(λ) T̃22,µ(λ)

)
∈
[
HM(λ) ⊕Hτ(µ)

]
, (4.18)
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for all λ ∈ ΣM ∩ ΣQµ , where

T̃11,µ(λ) = PM(λ)

√
=m (M(λ))

(
τ(µ) +M(λ)

)−1√=m (M(λ)) �HM(λ) ,

T̃12,µ(λ) = PM(λ)

√
=m (M(λ))

(
τ(µ) +M(λ)

)−1√=m (τ(µ)) �Hτ(µ) ,

T̃21,µ(λ) = Pτ(µ)

√
=m (τ(µ))

(
τ(µ) +M(λ)

)−1√=m (M(λ)) �HM(λ) ,

T̃22,µ(λ) = Pτ(λ)

√
=m (τ(µ))

(
τ(µ) +M(λ)

)−1√=m (τ(µ)) �Hτ(µ)

and M(λ) = M(λ+ i0). Here the set ΣQµ and the corresponding function λ 7→ Q−τ(µ)(λ)
defined in (4.1)-(4.2) replace ΣND and λ 7→ (D −M(λ))−1 in Theorem 3.6, respectively.

The following theorem is one of the main results of this paper. Roughly speaking it says
that the scattering matrix of the scattering system {L̃, L0} from Theorem 4.5 pointwise
coincides with scattering matrices of scattering systems {K̃µ,K0} of the above form.

Theorem 4.8 Let A, Π = {H,Γ0,Γ1}, M(·) and T , ΠT = {H,Υ0,Υ1}, τ(·) be as in
the beginning of Section 4.2 and let L0 = A0 ⊕ T0 and L̃ be as in Theorem 4.3. For
µ ∈ Στ denote the minimal self-adjoint dilation of A−τ(µ) in H ⊕ L2(R,Hτ(µ)) by K̃µ

and let K0 = A0 ⊕ G0, where G0 is the self-adjoint first order differential operator in
L2(R,Hτ(µ)).

Then for each µ ∈ ΣM∩Στ∩ΣN the value of the scattering matrix {S̃µ(λ)} of the scattering
system {K̃µ,K0} at energy λ = µ coincides with the value of the scattering matrix {S̃(λ)}
of the scattering system {L̃, L0} at energy λ = µ, that is,

S̃(µ) = S̃µ(µ) for all µ ∈ ΣM ∩ Στ ∩ ΣN . (4.19)

Proof. According to Lemma 4.1 (iii) each real µ ∈ ΣM ∩ Στ ∩ ΣN belongs also to the set
ΣQµ . Therefore by comparing Theorem 4.5 with the scattering matrix {S̃µ(λ)} of {K̃µ,K0}
at energy λ = µ in (4.18) we conclude (4.19). �

Remark 4.9 We note that Theorem 4.8 in a certain sense justifies the use of self-adjoint
dilations (or quasi-Hamiltonians) in the analysis of scattering processes for open quantum
systems. Indeed, if we e.g. assume that the functions M(·), τ(·) and (M(·) + τ(·))−1 are
continuous on an interval I ⊂ R containing the point µ, then for λ ∈ I the scattering
matrix {S̃µ(λ)} of the scattering system {K̃µ,K0} is a ”good” approximation of the ”real”
scattering matrix {S̃(λ)}, λ ∈ I, of the scattering system {L̃, L0}.

Remark 4.10 The statements of Theorem 4.5 and Theorem 4.8 are also interesting from
the viewpoint of inverse problems. Namely, if τ(·) is a matrix Nevanlinna function, satisfy-
ing ker(=m (τ(λ))) = 0, λ ∈ C+, and the conditions (4.7), and if {A−τ(λ), A0} is a family
of energy dependent dissipative scattering systems as considered above, then in general the
Hilbert space G and the operators T ⊂ T0 are not explicitely known, and hence also the
scattering system {L̃, L0} is not explicitely known. However, according to Theorem 4.5 the
scattering matrix {S̃(λ)} can be expressed in terms of τ(·) and the Weyl function M(·), and
by Theorem 4.8 {S̃(λ)} can be obtained with the help of the scattering matrices {S̃µ(λ)}
of the scattering systems {K̃µ,K0}.
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The following corollary concerns the scattering matrices {S−τ(µ)(λ)} of the energy depen-
dent dissipative scattering systems {A−τ(µ), A0}, µ ∈ Στ .

Corollary 4.11 Let the assumptions be as in Theorem 4.8 and let µ ∈ ΣM ∩ Στ ∩ ΣN .
Then the scattering matrix {S−τ(µ)(λ)} of the dissipative scattering system {A−τ(µ), A0}
at energy λ = µ coincides with the upper left corner of the scattering matrix {S̃(λ)} of the
scattering system {L̃, L0} at energy λ = µ.

Let again K̃µ be the minimal self-adjoint dilation of the maximal dissipative operator
A−τ(µ) in H⊕L2(R, dλ,Hτ(µ)). In the next corollary we focus on the Lax-Phillips scattering
matrices {SLP

µ (λ)} of the Lax-Phillips scattering systems {K̃µ,D−,µ,D+,µ}, where

D−,µ := L2
(
R−,Hτ(µ)

)
and D+,µ := L2

(
R+,Hτ(µ)

)
are incoming and outgoing subspaces for K̃µ, cf. Lemma 3.9. If WA−τ(µ)(·) is the char-
acteristic function of A−τ(µ), cf. (4.6), then according to Corollaries 3.10 and 3.11 we
have

SLP
µ (λ) = WA−τ(µ)(λ− i0)∗

= IHτ(λ) − 2iPτ(λ)

√
=m (τ(λ))

(
τ(µ) +M(λ)

)−1√=m (τ(λ)) �Hτ(λ)

for all λ ∈ ΣM ∩ ΣQµ , cf. Proposition 4.2 and Corollary 4.6. Statements (ii) and (iii) of
the following corollary can be regarded as generalizations of the classical Adamyan-Arov
result, cf. [3, 4, 5, 6] and Corollary 3.11.

Corollary 4.12 Let the assumptions be as in Theorem 4.8 and let µ ∈ ΣM ∩ Στ ∩ ΣN .

(i) The scattering matrix {SLP
µ (λ)} of the Lax Phillips scattering system

{K̃µ,D−,µ,D+,µ} at energy λ = µ coincides with the lower right corner of the
scattering matrix {S̃(λ)} of the scattering system {L̃, L0} at λ = µ.

(ii) The characteristic function WA−τ(µ)(·) of A−τ(µ) satisfies

SLP
µ (µ) = WA−τ(µ)(µ− i0)∗

= IHτ(µ) − 2iPτ(µ)

√
=m (τ(µ))

(
τ(µ) +M(µ)

)−1√=m (τ(µ)) �Hτ(µ) .

(iii) If σ(A0) is purely singular, then

S̃(µ) = SLP
µ (µ) = WA−τ(µ)(µ− i0)∗

holds for a.e. µ ∈ R. In the special case σ(A0) = σp(A0) this is true for all µ ∈
ΣM ∩ Στ ∩ ΣN .

4.4 A quantum transmitting Schrödinger-Poisson system

As an example we consider an open quantum system of similar type as in Section 3.4.
Instead of a single pseudo-Hamiltonian AD here the open quantum system is described by
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a family of energy dependent pseudo-Hamiltonians {A−τ(λ)} which is sometimes called a
quantum transmitting family.

Let, as in Section 3.4, (xl, xr) ⊂ R be a bounded interval and let A be the symmetric
Sturm-Liouville operator in H = L2((xl, xr)) given by

(Af)(x) = −1
2
d

dx

1
m(x)

d

dx
f(x) + V (x)f(x),

dom (A) =

f ∈ H :
f, 1

mf
′ ∈W 1

2 ((xl, xr))
f(xl) = f(xr) = 0(

1
mf

′) (xl) =
(

1
mf

′) (xr) = 0

 ,

where V,m,m−1 ∈ L∞((xl, xr)) are real functions and m > 0. Let vl, vr be real constants,
let ml,mr > 0 and define Ṽ , m̃ ∈ L∞(R) by

Ṽ (x) :=


vl x ∈ (−∞, xl]
V (x) x ∈ (xl, xr)
vr x ∈ [xr,∞)

(4.20)

and

m̃(x) :=


ml x ∈ (−∞, xl]
m(x) x ∈ (xl, xr)
mr x ∈ [xr,∞)

, (4.21)

respectively. We choose the boundary triplet Π = {C2,Γ0,Γ1},

Γ0f =
(

f(xl)
f(xr)

)
, Γ1f =

( (
1

2mf
′) (xl)

−
(

1
2mf

′) (xr)

)
, f ∈ dom (A∗),

from (3.31) for A∗.

In the following we consider the Štraus family

A−τ(λ) = A∗ � ker
(
Γ1 + τ(λ)Γ0

)
, λ ∈ C+ ∪ Στ ,

associated with the 2× 2-matrix Nevanlinna function

λ 7→ τ(λ) =

 i
√

λ−vl

2ml
0

0 i
√

λ−vr

2mr

 ; (4.22)

here the square root is defined on C with a cut along [0,∞) and fixed by =m (
√
λ) > 0 for

λ 6∈ [0,∞) and by
√
λ ≥ 0 for λ ∈ [0,∞), cf. Example 2.5, so that indeed =m (τ(λ)) > 0

for λ ∈ C+ and τ(λ) = τ(λ), λ ∈ C\R. Moreover it is not difficult to see that τ(·) is
holomorphic on C\[min{vl, vr},∞) and Στ = R. The Štraus family {A−τ(λ)}, λ ∈ C+∪Στ ,
has the explicit form(

A−τ(λ)f
)
(x) := −1

2
d

dx

1
m

d

dx
f(x) + V (x)f(x),

dom
(
A−τ(λ)

)
=

f ∈ H :

f, 1
mf

′ ∈W 1
2 ((xl, xr)),(

1
2mf

′) (xl) = −i
√

λ−vl

2ml
f(xl),(

1
2mf

′) (xr) = i
√

λ−vr

2mr
f(xr)

 .
(4.23)
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The operator A−τ(λ) is self-adjoint if λ ∈ (−∞,min{vl, vr}] and maximal dissipative if
λ ∈ (min{vl, vr},∞). We note that the Štraus family in (4.23) plays an important role
for the quantum transmitting Schrödinger-Poisson system in [10] where it was called the
quantum transmitting family. For this open quantum system the boundary conditions in
(4.23) are often called transparent boundary conditions.

We leave it to the reader to verify that the Nevanlinna function τ(·) in (4.22) satisfies the
conditions (4.7). Hence by [28, 48, 50] there exists a separable Hilbert space G, a densely
defined closed simple symmetric operator T in G and a boundary triplet ΠT = {C2,Υ0,Υ1}
for T ∗ such that τ(·) is the corresponding Weyl function. Here G, T and ΠT = {C2,Υ0,Υ1}
can be explicitly described. Indeed, as Hilbert space G we choose L2((−∞, xl) ∪ (xr,∞))
and frequently we identify this space with L2((−∞, xl))⊕L2((xr,∞)). An element g ∈ G
will be written in the form g = gl ⊕ gr, where gl ∈ L2((−∞, xl)) and gr ∈ L2((xr,∞)).
The operator T in G is defined by

(Tg)(x) :=
(
− 1

2
d
dx

1
ml

d
dxgl(x) + vlgl(x) 0

0 − 1
2

d
dx

1
mr

d
dxgr(x) + vrgr(x)

)
,

dom (T ) :=
{
g = gl ⊕ gr ∈ G :

g ∈W 2
2 ((−∞, xl))⊕W 2

2 ((xr,∞))
gl(xl) = gr(xr) = g′l(xl) = g′r(xl) = 0

}
,

and it is well-known that T is a densely defined closed simple symmetric operator in G
with deficiency indices n+(T ) = n−(T ) = 2. The adjoint operator T ∗ is given by

(T ∗g)(x) =
(
− 1

2
d
dx

1
ml

d
dxgl(x) + vlgl(x) 0

0 − 1
2

d
dx

1
mr

d
dxgr(x) + vrgr(x)

)
,

dom (T ∗) =
{
g = gl ⊕ gr ∈ G : W 2

2 ((−∞, xl))⊕W 2
2 ((xr,∞))

}
.

We leave it to the reader to check that ΠT = {C2,Υ0,Υ1}, where

Υ0g :=
(

gl(xl)
gr(xr)

)
and Υ1g :=

(
− 1

2ml
g′l(xl)

1
2mr

g′r(xr)

)
,

g = gl ⊕ gr ∈ dom (T ∗), is a boundary triplet for T ∗. Notice that T0 = T ∗ � ker(Υ0) is the
restriction of T ∗ to the domain

dom (T0) =
{
g ∈ dom (T ∗) : gl(xl) = gr(xr) = 0

}
,

that is, T0 corresponds to Dirichlet boundary conditions. It is not difficult to see that
σ(T0) = [min{vl, vr},∞) and hence the Weyl function corresponding to ΠT = {C2,Υ0,Υ1}
is holomorphic on C\[min{vl, vr},∞).

Lemma 4.13 Let T ⊂ T ∗ and ΠT = {C2,Υ0,Υ1} be as above. Then the corresponding
Weyl function coincides with τ(·) in (4.22).

Proof. A straightforward calculation shows that

hl,λ(x) :=
i√

2ml(λ− vl)
exp

{
−i
√

2ml(λ− vl)(x− xl)
}

belongs to L2((−∞, xl)) for λ ∈ C\[vl,∞) and satisfies

−1
2
d

dx

1
ml

d

dx
hl,λ(x) + vlhl,λ(x) = λhl,λ(x).
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Analogously the function

kr,λ(x) :=
i√

2ml(λ− vr)
exp

{
i
√

2mr(λ− vr)(x− xr)
}

belongs to L2((xr,∞)) for λ ∈ C\[vr,∞) and satisfies

−1
2
d

dx

1
mr

d

dx
kr,λ(x) + vrkr,λ(x) = λkr,λ(x).

Therefore the functions

hλ := hl,λ ⊕ 0 and kλ := 0⊕ kr,λ

belong to G and we have ker(T ∗ − λ) = sp{hλ, kλ}.

As the Weyl function τ̂(·) corresponding to T and ΠT = {C2,Υ0,Υ1} is defined by

Υ1gλ = τ̂(λ)Υ0gλ for all gλ ∈ ker(T ∗ − λ),

λ ∈ C\[min{vl, vr},∞), we conclude from

Υ1hλ =
1
2

(
− 1

ml

0

)
and Υ0hλ =

(
i√

2ml(λ−vl)

0

)

and

Υ1kλ =
1
2

(
0

− 1
mr

)
and Υ0kλ =

(
0
i√

2mr(λ−vr)

)
that τ̂ has the form (4.22), τ̂(·) = τ(·). �

Let A, Π = {C2,Γ0,Γ1} and T , ΠT = {C2,Υ0,Υ1} be as above. Then according to
Theorem 4.3 the operator

L̃ := A∗ ⊕ T ∗ �

{
f ⊕ g ∈ dom (A∗ ⊕ T ∗) :

Γ0f −Υ0g = 0
Γ1f + Υ1g = 0

}
(4.24)

is a self-adjoint extension of A⊕ T in H⊕G. We can identify H⊕G with L2((−∞, xl))⊕
L2((xl, xr))⊕L2((xr,∞)) and L2(R). The elements f ⊕g in H⊕G, f ∈ H, g = gl⊕gr ∈ G
will be written in the form gl ⊕ f ⊕ gr. The conditions Γ0f = Υ0g and Γ1f = −Υ1g,
f ∈ dom (A∗), g ∈ dom (T ∗), have the form(

f(xl)
f(xr)

)
=
(

gl(xl)
gr(xr)

)
and

( (
1

2mf
′
l

)
(xl)

−
(

1
2mf

′
r

)
(xr)

)
=
( 1

2ml
g′(xl)

− 1
2mr

g′(xr)

)
.

Therefore an element gl ⊕ f ⊕ gr in the domain of (4.24) has the properties

gl(xl) = f(xl) and f(xr) = gr(xr)

as well as
1
ml

g′l(xl) =
(

1
m
f ′
)

(xl) and
(

1
m
f ′
)

(xr) =
1
mr

g′r(xr)
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and the self-adjoint operator L̃ in (4.24) becomes

L̃(gl ⊕ f ⊕ gr) =− 1
2

d
dx

1
ml

d
dxgl + vlgl 0 0
0 − 1

2
d
dx

1
m

d
dxf + V f 0

0 0 − 1
2

d
dx

1
mr

d
dxgr + vrgr

 .

With the help of (4.20) and (4.21) we see that (4.24) can be regarded as the usual self-
adjoint second order differential operator

L̃ = −1
2
d

dx

1
m̃

d

dx
+ Ṽ

on the maximal domain in L2(R), that is, (4.24) coincides with the so-called Buslaev-Fomin
operator from [10].

Denote by M(·) the Weyl function corresponding to A and the boundary triplet Π =
{C2,Γ0,Γ1}, cf. (3.33)-(3.34). Since σ(A0) consists of eigenvalues Corollary 4.6 implies
that the scattering matrix {S̃(λ)} of the scattering system {L̃, L0}, L0 = A0⊕ T0, is given
by

S̃(λ) = IHτ(λ) − 2iPτ(λ)

√
=m (τ(λ))

(
M(λ) + τ(λ)

)−1√=m (τ(λ)) �Hτ(λ)

for all λ ∈ ρ(A0) ∩ ΣN , where

Hτ(λ) = ran (=m (τ(λ))) =


{0}, λ ∈ (−∞,min{vl, vr}],
C, λ ∈ (min{vl, vr},max{vl, vr}],
C2, λ ∈ (max{vl, vr},∞).

The scattering system {L̃, L0} was already investigated in [9, 10]. There it was in particular
shown that the scattering matrix {S̃(λ)} and the characteristic function WA−τ(λ)(·) of the
maximal dissipative extension A−τ(λ) from (4.23) are connected via

S̃(λ) = WA−τ(λ)(λ− i0)∗,

which we here immediately obtain from Corollary 4.6.
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