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We report the first experimental observation of vortex light bullets that are discrete, spatiotemporal,

solitary waves with orbital angular momentum. We analyze conditions for their existence and investigate

their rich properties and dynamics. Vortex light bullets are excited in fiber arrays with spatially shaped

femtosecond pulses and analyzed with a spatiotemporal cross correlator. Most importantly, we find that

they have entirely new stability properties, being robust against considerable degrees of perturbation in a

limited range of energies. All experimental findings are backed up by rigorous simulations, giving further

insight into the rich dynamics of vortex light bullets.
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I. INTRODUCTION

Solitary waves [1,2] are among the most fascinating
nonlinear wave phenomena. They constitute wave packets
that are immune to linear broadening induced by disper-
sion and/or diffraction and are of strictly finite energy.
They can be found in such diverse systems as ultracold
atoms [3], ocean waves [4], the nervous system [5], or
atmospheric phenomena [6]. Nonlinear optics, however,
has traditionally pioneered experimental solitary-wave re-
search [7,8] due to a combination of flexible, high-quality
wave-propagation environments and ready accessibility
of experimental data, exploiting advanced excitation and
analysis techniques.

The quest for the understanding of solitary-wave dynam-
ics has led to the generation of solitary waves in ever more
advanced environments and of increasing complexity. Of
particular interest are solitary waves in media with a peri-
odically modulated refractive index [9–11], called discrete
solitons. The prediction [12] and observation [13] of dis-
crete solitons [10,11,14] in one-dimensional lattices soon
led to the demonstration of higher-dimensional discrete
solitons. Among these works have been the prediction
[15–17] and observation of spatial solitons [18–20] and
spatial vortex solitons [21,22] in two-dimensional wave-
guide arrays and spatiotemporal quasisoliton pulses travel-
ing in waveguiding structures with one transverse spatial
dimension [23,24]. In particular, vortex solitons [25] have
recently gained a considerable amount of interest because
optical-angular-momentum fields are currently discussed
as possible carriers of data and energy due to their fav-
orable diffraction properties and low cross talk [26,27].

The arguably most complex solitary wave observed so far
was the so-called light bullet [28] (LB), a spatiotemporal,
solitary wave in a two-dimensional waveguide array [29].
As opposed to previous works, it is fully self-confined along
all spatial and temporal transverse dimensions. It was pre-
dicted in the 1990s [30] but eluded observation [31] until
recent breakthroughs in modeling [32,33], sample fabrica-
tion [34,35], and analysis techniques [36,37] could be
brought to bear, immediately bringing forward new spatio-
temporal effects such as self-induced soliton decay, direct
space-time coupling, and superluminal decay [38,39].
Here, we present the first experimental observation of an

even more complex, spatiotemporal, solitary wave: the
discrete vortex light bullet (VLB), an angular-momentum-
stabilized compound of three fundamental LBs. We show
that the VLB exhibits a new mode of partial stability,
characterized by spatiotemporal desynchronization into its
fundamental constituents upon long-range propagation.
Then, we present evidence of its experimental observation
and use experimental and numerical data to explore its
internal dynamics, which is characterized by an intricate
balance of angular momentum, discreteness, nonlinearity,
and the dispersive properties of the medium.

II. VORTEX LIGHT BULLETS AND
SELF-DESYNCHRONIZATION

To get a first insight into the properties of VLBs, we find
VLB solutions of the idealized discrete-continuous, non-
linear Schrödinger equation with Kerr nonlinearity [38].
The term discreteness refers to the spatial dependence of
the field, which is described as a superposition of funda-
mental modes with amplitudes anm at the discrete sites of
waveguides with index ðm; nÞ in a two-dimensional, hex-
agonal array in a tight-binding approximation. The tunnel-
ing of light from one waveguide mode to its neighbors’
modes gives rise to a propagation behavior similar to
diffraction that is hence termed ‘‘discrete diffraction.’’
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Of particular interest to this work is the robustness [30] of
discrete diffraction against self-induced wave collapse
[40], which hinders observation of LBs in homogenous
materials [28]. This robustness is related to the different
shape of the band structure for large transverse wave
numbers, as compared to the homogeneous case. The
waveguide array is experimentally realized as a fiber array
[35], discussed in more detail in Appendix C and depicted
in the inset of Fig. 1. The equation reads

i
@anmðt; zÞ

@z
¼ �2

@2anmðt; zÞ
@t2

þ �janmðt; zÞj2anmðt; zÞ
þ c½anþ1mðt; zÞ þ anmþ1ðt; zÞ
þ anþ1mþ1ðt; zÞ þ an�1mðt; zÞ
þ anm�1ðt; zÞ þ an�1m�1ðt; zÞ�; (1)

where anm is the amplitude in the nmth core of the
fiber array in the comoving frame of reference. z is the
propagation length, and t is time. The parameters �2 ¼
27� 103 fs2=m, c¼28m�1, and �¼0:28�10�3 ðmWÞ�1

are determined by the array geometry (see Appendix A)
and, respectively, mediate the strength of dispersion,
nearest-neighbor coupling, and nonlinearity. Cores at the
edge of the 91-core array have fewer coupling partners
according to their position. Parameter scaling of the

solutions is discussed in Ref. [38]. Note that Eq. (1) is a
simplified, prototypical model, serving as a minimal sys-
tem to study the interplay of dispersion, diffraction, non-
linearity, and optical angular momentum. It does not
include the higher-order effects discussed below, which
are needed to understand the full dynamics of VLBs, but
it is a helpful tool to understand the basic mechanisms of
VLB propagation and stability.
Nontrivial stationary solutions with anmðz;tÞ¼ ~anmðtÞ�

expðibzÞ to Eq. (1) are found with a Newton-Raphson
scheme. The specific type of LB is selected by picking
initial conditions with the desired symmetry. The physical
meaning of the family parameter b is that of a nonlinearly
induced offset of the longitudinal wave number �. It is
therefore commonly referred to as the nonlinear phase shift
b. We solve for VLBs, for single LBs, concentrated in a
single waveguide, and for triplet LBs, which have the same
field in three neighboring waveguides but no angular
momentum. While Fig. 2 shows that all three solutions
have qualitatively similar properties, we find that both
single as well as triplet LBs have the same cutoff phase
shift bcut ¼ 175 m�1; the VLB, however, has a signifi-
cantly reduced bcut ¼ 160 m�1. All three solutions have
a threshold energy Ethresh at a particular bthresh, suggesting
that they are all subject to redshift-induced decay, first
described for ordinary LBs [31]. For any nonlinear phase
shift b, we find that the energy of the VLB is higher than 3
times the energy of the single LB.
Stability analysis is carried out by propagating the sta-

tionary solutions with numerical noise using Eq. (1). Noise
sources are uncertainties of the initial conditions and errors
induced by the numerical integrator. Their impact has been
tested by the variation of the temporal resolution, the
integrator step size, and the addition of white noise to the
initial conditions. The results do not depend, within certain

FIG. 1. Scheme of the experiment. Beam propagation is left to
right. An 800-nm pulse (green line) is split. The first part
bypasses the experiment through a delay line and impinges on
a BBO crystal. The second is converted to 1550 nm in an optical
parametrical amplifier (red line). It propagates through a phase
plate, which imprints the discrete angular momentum on the
pulse before it is focused onto the front of the fiber array,
exciting a VLB. A second lens images the output onto the
BBO crystal. This crystal generates sum-frequency light (blue
line), which is imaged onto a CCD, recording cross-correlation
data proportional to the intensity Iðx; y; tÞ at the fiber array end.
Inset: Microscope image of the fiber array front with (second
inset) geometrical parameters of the unit cell.

FIG. 2. Families of various LB solutions of the nonlinear
Schrödinger equation [Eq. (1)]. Displayed is the energy E vs
the nonlinear phase shift b. The red line denotes the VLB. The
green line denotes a triplet LB. The blue line denotes a single LB
(energy multiplied by 3). The dashed black line denotes the
minimal energy Emin and the corresponding nonlinear phase shift
bmin. The dash-dotted black line denotes the solution with the
minimal nonlinear phase shift bcut.
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limits, on the strength of either of these noise sources. It is
found for single LBs [41] that those with b < bthresh are
unstable whereas all others are stable. Triplet LBs are never
stable and are subject to modulation instability.

For VLBs, however, we find semistable solutions for
b > bcrit ¼ 557 m�1 and unstable solutions otherwise
[see Fig. 3(a)]. While the unstable solutions exhibit expo-
nential perturbation growth, as expected from modulation
instability, semistable VLBs retain their shape for a con-
siderable propagation length z � 140 mm and then decay
suddenly [see Fig. 3(b)]. Apart from nonexponential noise
growth behavior, we also observe different decay products.
Unstable solutions decay into a single LB and dispersive
waves [Fig. 3(c)]. The three main peaks of semistable
VLBs, however, desynchronize into three temporally sepa-
rated LBs without dispersive background [Fig. 3(d)]. This
desynchronization decay is another novel, nonlinearity-
triggered, spatiotemporal transition [39] of LBs. It coin-
cides with the findings of Ref. [42], predicting similar
results for square arrays. Our findings complement those
in Ref. [43], predicting a slightly lower value for bcrit �
476 m�1 and stability for all b > bcrit; the difference might
be due to the ‘‘temporal filtering’’ method employed by the
authors in Ref. [42].

We mention that for all experimental purposes,
semistable VLBs can be considered stable, as desynchro-
nization would happen on lengths of z � 100–200 mm,
equating into more than 30 dispersion lengths LD. Decay
by means of self-induced redshift does occur much earlier
[31,38], as discussed below.

III. OBSERVATION OF VORTEX LIGHT BULLETS

VLBs develop only if excited with a discrete vortex
pulse. We generate such pulses by insertion of a threefold
phase plate [44] before the focusing optics of the experi-
ment, depicted in Fig. 1. A schematic of the phase plate is
depicted in Fig. 4(a), with images of the beam profile in the
focal plane depicted in Figs. 4(b) and 4(c). As opposed to
continuous vortices, we can directly observe the vortex
character of the pattern by the rotary, azimuthal motion
of the three peaks on either side of the focal plane. We
confirm that the vorticity remains unaffected by coupling
into the array by the observation of the discrete diffraction
pattern at the end of the fiber array in Figs. 4(d) and 4(e) for
linear, low-power excitation of E ¼ 42 nJ. Although the
input has independent radial and azimuthal structures
(i.e., it can be factorized into a radial and an azimuthal part),
this independence is lifted by the interaction of discrete
diffraction with the orbital angular momentum, resulting
in a discrete corkscrew pattern with an interdependent
radial and azimuthal structure at the output of the fiber
array. In continuous environments, such a corkscrew must
be generated by interference with a vortex-free beam; here,
it is generated by self-interference of discrete modes.
We therefore propose discrete optical elements for the
self-referencing detection [45] and (de-)multiplexing of
orbital-angular-momentum beams.
Figure 4(f) depicts the experimental diffraction pattern

of an excitation with a higher input energy of E ¼ 255 nJ
with a visible increase of contrast between the central part
of the vortex and its outer lobes. This spatial contraction is

FIG. 3. Stability of the VLB solutions of Eq. (1). (a) Perturbation logð"Þ at Z ¼ 100 mm, with a stability transition occurring at
b � 550 m�1. More details are given in (b)–(d) for the circled values. The definition of logð"Þ is given in Appendix D. (b) Growth of
perturbation logð"Þ as function of propagation length. Exponential growth for the unstable solution is represented by the green region, and
sudden onset growth for the semistable solution is represented by the solid blue line. (c),(d) Evolution of the temporal pulse intensity for the
three main cores for (c) an unstable solution and (d) a semistable solution. The cores are color coded into the red-, green-, and blue-color
(RGB) channels, respectively.

OBSERVATION OF DISCRETE, VORTEX LIGHT BULLETS PHYS. REV. X 3, 041031 (2013)

041031-3



observed in the energy range of 250 nJ<E< 300 nJ,
giving a first hint on the occurrence of VLBs. This range
is consistent with later results.

It is now instructive to validate the findings of Sec. II
with a realistic numerical model, including higher-order
effects, such as higher-order dispersion, chromatic varia-
tion of the discrete coupling, and higher-order nonlinearity.
The model is based on the solution of the unidirectional
Maxwell equations [46,47] and discussed in Ref. [38]. In
particular, we pay attention to the semistability of the
VLBs and their robustness against residual excitation
asymmetry, which is evident from Figs. 4(d) and 4(e).

To differentiate between the two mechanisms that might
perturb the VLBs, we run two sets of simulations. First,
we inject three 2�=3 phase-shifted, otherwise identical
Gaussian pulses with a FWHM of 50 fs into the array
and determine the threshold energy needed to excite a
VLB. This energy cannot be taken directly from the
above discussed ideal solutions, as the excitation pulse
length is considerably larger than the VLB duration and
pulse shortening is accompanied by dispersive-wave
generation [31].

At a threshold of Emin ¼ 260 nJ, we find an increase of
the light localization by roughly 20%. An overview over
the typical propagation dynamics in this energy range is
given in Fig. 5. We observe temporally synchronized,
subdispersive propagation [see Fig. 5(c)] of a pulse with
duration of less than 25 fs [Fig. 5(b)], if the sample length
is shorter than Zmax < 17 mm. The pulses in all three

cores are also phase locked to a nonlinear attractor at
relative phase shifts of 2�=3 and 4�=3, respectively
[see the inset of Fig. 5]. Initial pulse contraction takes
roughly Zmin ¼ 5 mm, such that we observe VLB propa-
gation for LVLB ¼ 12 mm, equating into LVLB ¼ 2:5LD,
where LD is the dispersion length. Although LVLB is just a
bit more than one-half of the array’s diffraction length

Ldiff ¼ �=ð2� 61=2cÞ ¼ 23 mm, one needs to keep in
mind that the appropriate spatial scale [31,38] for LBs is
given by �=ð20cÞ � LD � Ldiff , and therefore VLBs are
also spatially robust.
Note that all parameters are only given after Z ¼

10 mm, as parameter extraction is unreliable for the range
of 5 mm< Z< 10 mm, because the VLB is not yet sepa-
rated from the dispersive background. More details of the

FIG. 4. (a) Phase-plate design. (b) Simulated and
(c) experimental images of the focal spot intensity produced
by a Gaussian beam and the phase plate. Adjacent peaks have
2=3� phase difference. (d)–(f) Diffraction patterns of discrete
vortices in a hexagonal lattice of 17-mm length (c ¼ 28 m�1).
(d) Simulated and (e) experimental discrete diffraction patterns
in the linear, low power range. (e) Experimental pattern in the
VLB power range. Increased contrast of the center compared to
the outer waveguides is observed.

FIG. 5. Simulation of VLB propagation for excitation with
three identical 50-fs pulses with 2�=3 relative phase shift and
total energy E ¼ 265 nJ. (a) Pulse power as a function of time
and sample length in the three central cores of the array.
Each core’s instantaneous optical power is coded into the
image’s RGB channel—gray denotes synchronous propagation.
(b) FWHM in the central cores. The pulse, represented by a
dashed line, shows hypothetical linear dispersion. The dotted
purple line shows that linear dispersive broadening describes the
pulse behavior well after Z > 17 mm. (c) Peak delay of the pulse
in the second and third cores with respect to the first. The
desynchronization onset is visible by growth of temporal syn-
chronization for large distances. Inset: Phase shift of the pulse in
the first core with respect to the second and third. The phase-lock
point (red circle) is an attractor, approached by the system in a
damped orbit. (The propagation length is color coded.)
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temporal dynamics in the three main cores are shown
in Fig. 5(a).

For propagation lengths larger than Zmax, we observe the
same Raman-induced, redshift-mediated decay [31] that we
previously reported for single LBs accompanied by linear
pulse broadening [Fig. 5(c)]. There, we found stationary
propagation for twice the distance. We attribute this differ-
ence to the higher powers required for stable VLBs, leading
to an increased redshift rate and reduced lifetime [38].

To analyze the impact of inevitable excitation asym-
metries, we reexamine the range of critical energies, with
a 5% energy reduction in the second core and a 10%
reduction in the third core with respect to the first. Linear
excitation with E � 100 nJ does not produce VLBs,
but no temporal desynchronization or other symmetry
breaking is observed due to the absence of nonlinearity.
If the input energy is too large E> 300 nJ, we observe
rapid temporal and energetic desynchronization and the
generation of individual LBs.

If the energy is, however, in the range of 260 nJ<E<
300 nJ [Fig. 6(a)], we observe temporal synchronization

to less than 5 fs for Z < 15 mm [Figs. 6(b) and 6(e)]
with phase synchronization to less than 10% of the respec-
tive phase difference of 2�=3 [see Fig. 6(f)]. As opposed
to higher powers, the peaks exchange energy periodi-
cally [Figs. 6(c) and 6(d)] and approach equilibrium for
Z < 15 mm. At longer lengths, desynchronization into
multiple individual LBs is observed.
Thus, for a limited range of energies, VLB propagation

is possible in samples shorter than 15 mm, even with
slightly asymmetric excitation and a realistic propagation
model. Longer samples and larger energies do not support
VLBs but desynchronized individual LBs.
Experimental characterization is carried out with the

imaging cross-correlation method established previously
[31,36–39]. Details of the method are described in
Appendix C. An overview of the setup is given in Fig. 1.
The cross correlator is augmented by a self-referencing
pulse shaper [48], allowing us to improve the temporal
resolution of the cross correlator to 20 fs with approxi-
mately 10-fs jitter. Pulse compression comes at the expense
of reduced beam quality, leading to spatial variation in

FIG. 6. Simulation of VLB propagation for excitation with three 50-fs pulses with 2�=3 relative phase shift and initial peak power
differences of 10% in the second and 5% in the third cores. (a) Relative energy content in the main pulse of the three central cores vs
input energy. (b)–(f) Detailed results for an excitation energy E ¼ 265 nJ. (b) Instantaneous power as a function of time and sample
length in the three central cores. Each core’s power is coded into one of the image’s RGB channels. Gray denotes synchronous
propagation. Regions of stationary VLB propagation are represented in green. Regions with desynchronization are represented in
white. (c) VLB energy content during propagation. The subdiffractive region (Z < 20 mm) is represented in red. (d) Relative energy
content of each of the cores with respect to the average energy content. Regions with energy synchronization (Z < 17 mm) are
represented in red. (e) Peak delay of the pulse in the second and third cores with respect to the first. Regions with temporal
synchronization (Z < 17 mm) are marked in red. (f) Phase shift of the first core with respect to the second and third cores during
propagation. The phase-lock point (red circle) is an attractor, approached by the state of the system in a damped orbit as long as
Z < 17 mm. (The propagation length is color coded.)
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the sum-frequency generation efficiency and a power
uncertainty of up to 10%.

Measurements are taken for samples of 13.63-, 16.88-,
and 29.92-mm length, chosen such that the short sample
facilitates the measurement of VLBs, whereas the long
samples allow the characterization of decay into multiple
desynchronized LBs.

Results for the short sample are depicted in Fig. 7.
Figure 7(a) displays the relative energy content of the
second and third cores with respect to the first. Similarly,
Fig. 7(b) displays the relative delay of the peaks of the
second and third pulses with respect to the first. Energetic
and temporal synchronization and thus VLB observation
are achieved if both curves enter the red bands, whose
heights are determined by the respective measurement un-
certainties. Synchronization is observed for an energy range
of 260 nJ<E< 300 nJ, in agreement with the prediction.

Lower input energies produce nonsymmetric sets of
pulses, with a pronounced single LB in one of the channels,
as predicted. At very low energies, no nonlinear reshaping
is observed and all pulses are of more or less equal power
and almost synchronized due to the absence of nonlinear
reshaping. At higher input energies, the pulses are again
desynchronized. They form a set of multiple, temporally
independent, single LBs, as predicted. The right part
of Fig. 7 shows cross-correlation traces in 2D and 3D
representations at input energies marked with circles in
Fig. 7(a). The energies are chosen to represent all four of
the discussed scenarios.

FIG. 7. Experimental data for a short sample. (a) Relative energy content of the second and third cores with respect to the first vs
excitation energy. (b) Relative peak delay of the second and third cores with respect to the first vs excitation energy. Red bands
represent regions of energetic and temporal synchronization defined by the respective measurement accuracies. Green bands represent
regions of VLB existence as judged by predicted energy ranges and by temporal and energetic synchronization. (1)–(4), left column:
Spatiotemporal cross-correlation traces at the location of the three central core modes at energies denoted in (a). (1)–(4), right column:
3D cross-correlation, isointensity plots of the same data. The green box denotes a typical VLB correlation.

FIG. 8. Experimental data for longer samples. Left: A sample
with L ¼ 16:88 mm, just longer than the maximal VLB
propagation range. Right: A sample with L ¼ 29:92 mm.
(a),(b) Relative energy content of the second and third cores
with respect to the first vs excitation energy. (c),(d) Relative peak
delay of the second and third cores with respect to the first vs
excitation energy. The red bands represent regions of energetic
and temporal synchronization defined by the respective mea-
surement accuracies. (1),(2) Spatiotemporal cross-correlation
traces at the location of the three central core modes at energies
where VLB propagation is measured for shorter samples.
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Results for longer samples are depicted in Fig. 8. No
synchronization takes place, and thus noVLBs are observed.
It is interesting to note that the 16.88-mm sample, which is
just a little bit longer than the predicted maximum VLB
range of Z ¼ 15 mm, exhibits an onset of synchronization,
with almost identical energies [Fig. 8(a)] but with nonzero
time delay [Fig. 8(b)], which is in accordance with simula-
tions, predicting decay into temporally desynchronized
LBs at maximumVLB propagation length. Formuch longer
samples [Figs. 8(b) and 8(c)], even more asymmetry
is observed and an onset of synchronization is no longer
visible. Subfigures (1) and (2) of Fig. 8 depict exemplary
cross-correlation data in the VLB energy range.

IV. CONCLUSIONS

We have observed discrete VLBs, the arguably most
complex, nonlinear, solitary, spatiotemporal wave packets
reported so far. VLBs are a bound state of three temporally
synchronized pulses with a respective phase shift of 2�=3
in a triangular configuration. VLBs are solitary waves,
stabilized by orbital angular momentum. They propagate
in a discrete environment that interacts nontrivially with
the vorticity of the light, even in the linear regime.

As opposed to ordinary LBs, VLBs are of semistable
nature and decay into a set of desynchronized LBs after
considerable propagation length. Experimental data and
realistic numerical modeling show that VLBs are robust
against higher-order effects and asymmetric excitation,
with a roughly twofold decrease in stationary propagation
length compared to LBs. They occur in a limited energy
window, characterized by temporal and energetic synchro-
nization up to a certain sample length. All experimental
findings are in perfect agreement with numerical predic-
tions and give insight into the overwhelmingly complex
behavior and internal dynamics of VLBs.

These findings shed new light on effects to be discovered
in the physics of high-dimensional, nonlinear excitations
and will pave the way for a better understanding of non-
linear wave phenomena in many physical environments.

APPENDIX A: ARRAY FABRICATION
AND PROPERTIES

The fiber arrays are constructed by a stack-and-draw
process similar to photonic crystal fibers, with a solid
core of increased refractive index instead of air holes
[34,35]. The design is optimized for high regularity and
negligible disorder [49,50] over all of the 91 cores and
lengths up to a few decimeters. The fiber used has a core
radius of r ¼ 10:3 �m with a center-to-center distance of
� ¼ 34:7 �m. It is depicted in Fig. 9. The core is from
pure silica, whereas the cladding is fluorine doped, yield-
ing a refractive-index depression of�n ¼ 1:1� 10�3. The
outer diameter is 670 �m and can be varied in the drawing
process with all other geometric parameters.

For the excitationwavelength of� ¼ 1550 nm, this design
is characterized by a waveguide coupling coefficient c ¼
28:6 m�1, a dispersion of roughly �2 ¼ 27� 103 fs2=m,
and a nonlinear coefficient of � ¼ 0:28� 10�3 ðWmÞ�1.
Whereas the former two quantities c and �2 grow with
increasing wavelength, � is decreasing, with the most drastic
change [39] in the coupling constant c, as seen in Fig. 9.

APPENDIX B: EXCITATION OF LBs

To excite VLBs, we generate an input field with the
desired angular momentum and a modulus that guarantees
sufficient overlap with the modal fields in the three main
waveguides. Such an input field is achieved by the place-
ment of a threefold phase plate [44] before the focusing
lens. The phase plate is made of silica and consists of
three 120� arcs fabricated in an etching process. It is
depicted in Fig. 4(a). The thickness increases by
2=3�=ðn� 1Þ per arc. n is the refractive index of silica,
and � ¼ 1550 nm is the center wavelength of the excita-
tion, which is chosen in the anomalous-dispersion regime
of the array far away from the zero-dispersion wave-
length, facilitating soliton propagation and impeding
supercontinuum generation.
The focal pattern of the phase plate inherits the angular

momentum and discrete nature of the phase plate. It is
depicted in Figs. 4(a) and 4(b) and consists of three slightly
distorted foci with 2=3� relative phase shift. Their diame-
ters and half-distances are approximately the same as the
diameter of the focal spot without the phase plate. Both
quantities can bemanipulated by selection of an appropriate
focusing lens. The similarity of the focal diameter and
focal half-distances fits very well to the geometry of the
fiber array, having a modal diameter of roughly 16 �m and
an array pitch of� ¼ 34:9 �m. An excitation efficiency of
roughly 65% is achieved. To properly orient the array
with respect to the focal pattern, we place the array in a

FIG. 9. Linear parameters of the fiber array as a function of
wavelength. The blue line represents the dispersion length
Ldisp ¼ �20=j�2j2 with �0 ¼ 20 fs, and the red line represents

the diffraction length Ldiff ¼ �=ð2 ffiffiffi
6

p
cÞ.
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rotatable fiber holder. Moreover, we have used simulations
to check that the pulse has no considerable spatiotemporal
distortion.

APPENDIX C: ANALYSIS OF LBs—THE
IMAGING CROSS CORRELATOR

The spatiotemporal light distribution Asigðx; y; tÞ, which
is leaving the waveguide array, passes an output lens,
where it is magnified and imaged onto a thin slice of a
beta-barium-borate (BBO) crystal. The crystal is cut and
oriented for the sum-frequency generation of signal pho-
tons at �sig ¼ 1550 nm and reference photons at �ref ¼
800 nm, generating photons at wavelengths of roughly
�SF ¼ 527 nm. The crystal width guarantees phase match-
ing over a range of more than 500 nm and an angular
acceptance range that is compatible with the possible range
of incidence angles.

The reference pulse is supplied by a part of the pump
pulse bypassing the experiment, propagating collinearly
through the BBO together with the signal. See Fig. 1 for
an overview of the experiment. The pulse has a Gaussian
shape with a duration of roughly 20 fs, formed by an
adaptive, spectral pulse-shaping stage [48] not depicted
in Fig. 1. Its diameter is larger than the signal image on
the BBO. The relative delay � of the reference pulse to the
signal is tuned with a delay line. The motion of the delay
line is synchronized with a CCD camera that records
the sum-frequency signal with a second imaging lens.
The sum-frequency signal ISFðx; y; �Þ is therefore a three-
dimensional representation of the signal intensity
jAsigðx; y; tÞj2, convolved with the reference pulse shape.

This scheme allows us to measure the spatiotemporal
intensity distribution of the VLB with a resolution of
20 fs [36,37] and roughly 10-fs timing jitter in parallel
over the complete waveguide array. The measurement
duration is only a few seconds. To avoid recording non-
sum-frequency background, undesired wavelength compo-
nents are blocked before the CCD.

APPENDIX D: DEFINITION OF
THE PERTURBATION

Given is an initial state ~anmðtÞ, which is a stationary
solution to Eq. (1). We observe the evolution of the solu-
tion anmðz; tÞ of the nonlinear Schrödinger equation
Eq. (1), with ~anmðtÞ as the initial state. According to the
ansatz, the initial state janmðz; tÞj is invariant during propa-
gation, if the solution is stable; however, perturbation
growth is observed for unstable solutions. We therefore
define the quantity

logð"Þ ¼ log

P
nm

R1
�1 janmðz; tÞj � j~anmðtÞjdtP

nm

R1
�1 j~anmðtÞjdt (D1)

to measure how the initial state is perturbed by the
propagation.
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[35] U. Röpke, H. Bartelt, S. Unger, K. Schuster, and J.
Kobelke, Fiber Waveguide Arrays as Model System for
Discrete Optics, Appl. Phys. B 104, 481 (2011).

[36] M.A.C. Potenza, S. Minardi, J. Trull, G. Blasi, D. Salerno,
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