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I. QUANTUM CHEMISTRY CALCULATIONS

Ir d-shell excitations. On-site d-d excitations for Ir ions in β-Li2IrO3 were obtained from ab initio quantum chemistry (QC)
calculations performed on a cluster consisting of one reference IrO6 octahedron plus three nearest-neighbor (NN) IrO6 octahedra
and 15 nearby Li ions. The surrounding solid-state matrix was modeled as a finite array of point charges fitted to reproduce the
crystal Madelung field in the cluster region. We used energy-consistent relativistic pseudopotentials for Ir, with quadruple-zeta
basis sets for the valence shells of the reference Ir ion along with two f polarization functions and triple-zeta basis functions for
the Ir NN’s1. The oxygen ligands of the central octahedron were represented by all-electron triple-zeta basis sets2. For the Li+

NN’s we employed total-ion effective potentials and a single s valence basis function3. To simplify the analysis of the spin-orbit
coupled wave functions, the NN Ir4+ ions were modeled as closed-shell Pt4+ t62g species.4–6

At the complete-active-space self-consistent-field (CASSCF) level, two different sets of calculations were performed, with
different active orbital spaces. In a first set of computations, all five 5d functions (t2g + eg) at the central Ir site and five electrons
were considered as active; the orbitals were optimized for an average of the 2T2g (t52g), 4T1g (t42ge

1
g), 4T2g (t42ge

1
g), and 6A1g

(t32ge
2
g) states. All these states were included in the subsequent spin-orbit treatment. In the second set of calculations, the

active space was truncated to contain only the 5d t2g orbitals of the central Ir site and five electrons. The orbitals were here
optimized for the 2T2g (t52g) configuration and the off-diagonal spin-orbit couplings between the 2T2g (t52g) and t42ge

1
g states were

neglected. In both cases, all O 2p and Ir t2g electrons at the central octahedron were correlated in the subsequent multireference
configuration interaction (MRCI) calculations. The QC pacakge MOLPRO7 was employed for all computations.

NN magnetic couplings. The magnetic spectrum of two NN Ir4+ ions was obtained from CASSCF and MRCI spin-orbit
calculations on units of two edge-sharing IrO6 octahedra. To accurately describe the charge distribution at sites in the immediate
neighborhood, we also included in the actual cluster the closest 22 Li+ ions and the four adjacent IrO6 octahedra around the
reference [Ir2O10] fragment. As for the single-site calculations, we used energy-consistent relativistic pseudopotentials with
quadruple-zeta basis sets for the valence shells of the two reference Ir ions1, all-electron quintuple-zeta basis sets for the two
bridging ligands2 and triple-zeta basis functions for the other O’s of the two reference octahedra2. Additionally, we employed
two Ir f 1 and four O d polarization functions for the two central Ir ions and the two bridging ligands,2 respectively. The NN Ir4+

sites were once again modeled as closed-shell Pt4+ t62g species.
Multiconfiguration reference wave functions were first generated by CASSCF calculations. For two NN IrO6 octahedra, the

finite set of Slater determinants was defined in the CASSCF treatment in terms of ten electrons (2×5) and six Ir t2g orbitals
(2×3). The SCF optimization was carried out for an average of the lowest nine singlet and the nine triplet states associated with
this manifold. All these states entered the spin-orbit calculations, both at the CASSCF and MRCI levels. On top of the CASSCF
reference, the MRCI expansion additionally includes single and double excitations from the Ir t2g shells and the 2p orbitals of
the bridging ligands. A similar strategy of explicitly dealing only with selected groups of ligand orbitals was earlier adopted in
QC studies on both 3d8–11 and 5d4–6,12,13 compounds, with results in good agreement with the experiment4,6,8–12. To separate
the Ir 5d and O 2p valence orbitals into different groups, we used the Pipek-Mezey14 orbital localization module available in
MOLPRO7.

II. EFFECTIVE SPIN HAMILTONIAN

For a pair of NN pseudospins S̃i and S̃j , the most general bilinear spin Hamiltonian can be written as

Hij = Jij S̃i ·S̃j + Dij ·S̃i×S̃j + S̃i ·Γij ·S̃j , (1)

where Jij is the isotropic Heisenberg exchange, the vector Dij defines the antisymmetric anisotropy, and Γij is a symmetric
traceless second-rank tensor that describes the symmetric part of the exchange anisotropy.

B1 links. The Ir hyper-honeycomb lattice contains two structurally different sets of Ir-Ir links,15 labeled as B1 and B2 in
Fig. 1 of the main text. For the B1 links, the magnetic spectrum was mapped onto an effective spin Hamiltonian displaying D2h
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point-group symmetry. In the reference frame {X,Y,Z} with the Ir-Ir bond along the (X) axis and Z perpendicular to the Ir2O2

plaquette, see Fig. 1a, the effective magnetic Hamiltonian reads

HB1
〈ij〉=J (0)S̃i · S̃i +A (S̃Xi S̃

X
j − S̃Zi S̃Zj ) +B (S̃Yi S̃

Y
i − S̃Zi S̃Zj ). (2)

The antisymmetric anisotropy is the smallest parameter according to our analysis and therefore neglected in the following.
Further, only the diagonal elements of the symmetric anisotropic tensor may have, by symmetry, nonzero values. Diagonalization
of (2) yields the eigenvalues ES = 3J(0)

4 , E1 = J(0)+2A+2B
4 , E2 = J(0)−2B

4 and E3 = J(0)−2A
4 . The effective exchange

couplings are then given by

J (0) =
1

3
(E1 + E2 + E3)− ES ,

A =
2

3
(E1 + E2 − 2E3),

B =
2

3
(E1 − 2E2 + E3). (3)

In the local Kitaev reference system {x,y,z}, that is rotated from the reference frame {X,Y,Z} by 45o about the Z = z axis
(see Fig.1a and Refs. 5,16), the Hamiltonian given in expression (2) above is transformed into equation (1) of the main text. For
the latter, the exchange interaction parameters read

J = J (0) +
A+B

2
, K = −3

2
(A+B) , Γxy =

A−B
2

≡ D. (4)

B2 links. The magnetic spectrum obtained for the Ir-Ir links of type B2 was mapped onto an effective spin Hamiltonian
displaying C2h point-group symmetry15:

HB2
〈ij〉= S̃i ·

J (0) +A 0 0
0 J (0) +B C
0 C J (0) − (A+B)

 · S̃j . (5)

A straightforward diagonalization ofH〈ij〉 in (5) yields the following eigenvalues and eigenfunctions:

ES = −3J (0)

4
, ΦS =

↑↓ − ↓↑√
2

,

E1 =
J (0) +A+

√
(A+ 2B)2 + 4C2

4
, Φ1 =

↑↓ + ↓↑√
2

,

E2 =
J (0) +A−

√
(A+ 2B)2 + 4C2

4
, Φ2 =

↑↑ + ↓↓√
2

,

E3 =
J (0) − 2A

4
, Φ3 =

↑↑ − ↓↓√
2

. (6)

FIG. 1: Local reference frames {X,Y,Z} and {x,y, z} for a Ir2O10 block of two NN octahedra.
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Here ΦS is the total spin singlet and Φ1−3 describe the three triplet components. The diagonalization procedure to obtain the
expressions in (6) is equivalent with a rotation of the coordinate system {X,Y,Z} around X by an angle α to a new frame
{X′,Y′,Z′} in which the symmetric anisotropic exchange matrix is diagonal.17 {X′,Y′,Z′} are also referred to as principal axes
and the angle α is given by

tan(2α) =
2C

A+ 2B
. (7)

In C2h symmetry, the ΦS, Φ1, Φ2 and Φ3 spin-orbit wave functions transform according to theAg ,Bu,Bu andAu irreducible
representations, respectively. Since states Φ1 and Φ2 belong to the same irreducible representation Bu, they are in general
admixed, i.e., in the reference frame {X,Y,Z} the corresponding eigenfunctions should be written as

Ψ1 = Φ1 cosα+ iΦ2 sinα ,

Ψ2 = iΦ1 sinα+ Φ2 cosα . (8)

The mixing parameter ξ = sinα reads

iξ = 〈Φ2|Ψ1〉 = 〈Φ1|Ψ2〉 (9)

and is explicitly obtained from the QC data.
Since the QC calculations were actually performed in C1 symmetry, to determine the nature of each of the lowest four

spin-orbit states, we explicitly computed the dipole and quadrupole transition matrix elements within that manifold. Standard
selection rules and the nonzero dipole and quadrupole matrix elements in the QC outputs then clearly indicate which state is
which. We also carried out the transformation of the spin-orbit wave functions from the usual {L1,ML1

,L2,ML2
,S,MS} basis

in standard QC programs to the {S̃1,S̃2,M̃S1
,M̃S2

} basis. This allows the study of Φ1–Φ2 mixing due to the off-diagonal Γyz
and Γzx couplings. With such an analysis, we find that in β-Li2IrO3 the weight of Φ1 in Ψ1 (and of Φ2 in Ψ2) is 97% for links
B2.

Using Eqs. (6), (7) and (9) we obtain the effective coupling parameters of (5) as:

J (0) =
1

3
(E1 + E2 + E3)− ES ,

A =
2

3
(E1 + E2)− 4

3
E3,

B =
1

2

[
−A± 2(E1 − E2)√

1 + η2

]
, with η =

2ξ
√

1− ξ2
1− 2ξ2

,

C =
η(A+ 2B)

2
. (10)

In the local Kitaev reference system {x,y,z}, the Hamiltonian given in expression (5) above is transformed into equation (2)
of the main text and the exchange interaction parameters become

J = J (0) +
A+B

2
, K = −3

2
(A+B) , Γxy =

A−B
2

≡ D , Γzx =
−C√

2
, Γyz =

C√
2
. (11)

The numerical values of the above coupling parameters, as found by ab initio MRCI calculations, are (in units of meV) :

Bond type b J
(0)
b Ab Bb Cb Jb = J

(0)
b + Ab+Bb

2 Kb = − 3
2 (Ab +Bb) Γbxy = A−B

2 Γbyz = −Γbzx
1(B1) −5.2 2.8 7.0 − −0.3 −14.7 −2.1 −
2(B2) −6.33 −0.07 7.84 2.83 −2.45 −11.65 −3.95 2.0

3(B2) −6.33 −0.07 7.84 2.83 −2.45 −11.65 −3.95 2.0

For completeness, we also provide the coupling parameters as found by spin-orbit CASSCF calculations (in units of meV) :

Bond type b J
(0)
b Ab Bb Cb Jb = J

(0)
b + Ab+Bb

2 Kb = − 3
2 (Ab +Bb) Γbxy = Ab−Bb

2 Γbyz = −Γbzx
1(B1) −4.77 2.87 3.87 − −1.40 −10.11 −0.50 −
2(B2) −5.93 0.53 4.62 1.77 −3.36 −7.73 2.04 1.25

3(B2) −5.93 0.53 4.62 1.77 −3.36 −7.73 2.04 1.25
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III. CLUSTERS USED FOR THE EXACT-DIAGONALIZATION CALCULATIONS

The structural building block of the Ir hyper-honeycomb lattice includes four Ir sites and is shown in Fig. 2(a). For the exact-
diagonalization (ED) calculations with periodic boundary conditions (PBC) we used four different types of clusters: two 16-site
clusters [see Fig. 2(b–c)], a 20-site cluster [Fig. 2(d)] and a 24-site cluster [Fig. 2(a) in the main text].

FIG. 2: (a) Structural building block for the Ir hyper-honeycomb lattice of β-Li2IrO3. (b–c) 16-site and (d) 20-site clusters used for ED
calculations with periodic boundary conditions, denoted as 16-I, 16-II and 20, respectively.

IV. FITTING OF THE MAGNETIZATION CURVE

In Fig. 3, magnetization curves are plotted as functions of the magnetic field for several J2 values. Here, the 16-I cluster
has been used. The magnetization curves are quite sensitive to the J2 value and enable us to perform a very fine fitting of the
experimental data.

FIG. 3: Magnetization curves calculated by ED for the 16-I cluster.
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V. SPIN-SPIN CORRELATIONS IN THE SPIN LIQUID PHASE

FIG. 4: Spin-spin correlation functions 〈S̃i·̃Sj〉 and sketch of the “periodic” clusters used in the ED calculations for (a) a 2D Kitaev-Heisenberg
and (b) our hyper-honeycomb models. The reference site is indicated by a square and the numbers labelling various other sites are in direct
correspondence with the numbered lines in the plots of 〈S̃i ·S̃j〉. Yellow windows indicate the Kitaev SL region.

To further confirm that a Kitaev spin liquid (SL) phase exists between the ferromagnetic (FM) and incommensurate (IC)
ordered phases in our hyper-honeycomb system, we calculated the spin-spin correlation functions 〈S̃i ·S̃j〉 and compared them
to those of the Kitaev SL phase of the 2D Kitaev-Heisenberg (KH) model on a honeycomb lattice18. The NN interactions of the
KH model are written as

H(γ)
ij = 2K S̃γi S̃

γ
j + J S̃i ·S̃j , (12)

where γ(= x, y, z) labels the three distinct types of NN bonds in the honeycomb plane. Following the notation of Ref. 18, we
define the effective parameter A =

√
K2 + J2 and an angle ϕ via K = A sinϕ and J = A cosϕ. In Fig. 4(a) the spin-spin

correlations near the FM Kitaev limit (ϕ = 1.5) of the KH model are plotted, for a 24-site PBC cluster. The Kitaev SL state is
characterized by a rapid decay of spin-spin correlations: in the Kitaev limit, only the NN correlations are finite and longer-range
ones are zero; that is faithfully reproduced by the 24-site calculations. Even away from the Kitaev limit, the longer-range (not
NN) spin-spin correlations fall within a narrow range −0.05 . 〈S̃i ·S̃j〉 . 0.1 in the Kitaev SL phase (1.40 < ϕ < 1.58). As
seen in Fig. 4(b), the hyper-honeycomb system exhibits similar features; the values of longer-range correlations are distributed
within a narrow range −0.03 . 〈S̃i · S̃j〉 . 0.1 in the SL phase (0.46 . J2 < 1.58). In other words, a rapid decay of the
spin-spin correlations is seen in our hyper-honeycomb system, at the same level as in the Kitaev SL phase of the 2D KH model.

VI. ESTIMATION OF THE CRITICAL J2 VALUES

In the main text we estimated the critical J2 values for the SL-IC and IC-zigzag transitions by analyzing the propagation
vector along the θ-direction in open clusters; the obtained values are J2,c1 =0.02 and J2,c2 =1.43 meV, respectively. The same
analysis is possible for a propagation vector along the δ-direction, as shown in Fig. 5. We obtained very similar critical values,
J2,c1 =0.02, J2,c2 =1.48 meV. This confirms the validity of our finite-size scaling analysis.
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FIG. 5: Propagation vector qmθ and total spin 2S/N for our “open” clusters, as function of J2. Inset: finite-scaling analysis of the critical
points.

VII. SECOND DERIVATIVE OF THE GROUND-STATE ENERGY

FIG. 6: Ground-state energy per site E/N and its second derivative −d2E/dJ2
2 plus total spin 2S/N and its second derivative −d2S/dJ2

2

for (a) the 24-site PBC and (b) the 16-site OBC clusters, as functions of J2. Inset: enlarged view for the small-J2 region.

As shown in Ref. 18, the second derivative of the ground-state energy E/N with respect to particular parameters may provide
valuable information on the position of phase boundaries. In Fig. 6, we show results for −d2E/dJ2

2 for the 24-site PBC and 16-
site OBC hyper-honeycomb clusters. The FM-SL phase boundary can be indeed identified by the peak position of −d2E/dJ2

2 .
We would like, however, to point out that this is not associated with a drastic change of the wave function.

The singularity of−d2E/dJ2
2 in the vicinity of the FM-SL transition is not really sharp even in the 2D KH model. Identifying

the SL-to-IC and IC-to-zigzag-order transition points by −d2E/dJ2
2 is a rather delicate matter because those are continuous

transitions and, for instance, the Bragg peak position in the spin structure factor changes continuously from 0 to π with increasing
J2. As seen in Fig. 6(b), −d2E/dJ2

2 exhibits two small peaks for J2 values of about 0.65 and 2.35 meV. However, such peaks
may also arise from finite-size effects for an incommensurate magnetic structure. The ground-state energy is lowered (raised)
when the incommensurate propagation comes close to (gets away from) one of the discrete momenta possible for a small cluster.
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As a result, the ground-state energy can heave up even when the propagation vector changes continuously. We also checked the
second derivative of total spin, d2S/dJ2

2 . Although that seems to provide less solid evidence of possible phase boundaries, the
two singularities seen in the small-J2 regime [bottom of Fig. 6(b)] do suggest FM-SL and SL-IC transitions.
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