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Abstract
Wepresent here an adaptive control schemewith a feedback delay to achieve elimination of
synchronization in a large population of coupled and synchronized oscillators.We validate the
feasibility of this scheme not only in the coupledKuramoto’s oscillators with a unimodal or bimodal
distribution of natural frequency, but also in two representativemodels of neuronal networks, namely,
the FitzHugh–Nagumo spiking oscillators and theHindmarsh–Rose bursting oscillators.More
significantly, we analytically illustrate the feasibility of the proposed schemewith a feedback delay and
reveal how the exact topological formof the bimodal natural frequency distribution influences the
scheme performance.We anticipate that our developed schemewill deepen the understanding and
refinement of those controllers, e.g. techniques of deep brain stimulation, which have been
implemented in remedying some synchronization-inducedmental disorders including Parkinson
disease and epilepsy.

1. Introduction

Synchronization phenomena are omnipresently observed in nature andman-made systems. The initial
observation of synchronization phenomenonwas attributed toHuygens [1, 2], and analytical investigations on
synchronization, starting from the seminal work [3], have been performed systematically for deterministically
coupled, stochastically coupled, time-altered coupled, and spatiotemporally configured oscillators [4–8]. Some
of the synchronization phenomena are believed to be constructive in realization of specific physical, biological
or/and ecological functions; nevertheless, some of them are regarded as fatal factors that lead to disasters or
diseases in human beings. Examples abound, including thefiercely wobblymillenniumBridge in the presence of
a large amount of consensus pedestrians [9] andmental disorders like Parkinson disease and epilepsy in the
presence ofmassively synchronized bursting neurons in specific areas of the brain [10–15].

Naturally, the question arises, ‘How to control and even eliminate the noxious synchronization in a large
population of coupled oscillators?’ In fact, several techniques and controlmethods for synchronization
elimination have been successively developed [10, 16–21].With an appropriate selection of control parameters,
synchronization can be eliminated inmodels of coupled oscillators through feedback controllers. However, due
to unavoidable feedback delay in controllers, the feasible parameter regions for realizing synchronization
elimination are neither uniformly nor globally distributed but circumscribed in some narrow areas [20]. This
may bring difficulties to practical use of these control techniques. Once the controller is switched on, a precise
selection of parameters, which requires accurate information on the coupled oscillators,must be processed.
However, it is not easy to instantly obtain the informationwithminimally invasive techniques. Therefore, from a
viewpoint of practical use, an adaptive andminimally invasive technique that can automatically adjust the
parameters into a feasible region for synchronization elimination is extremely desirable.
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As amatter of fact, a large number of adaptive techniques have been developed and validated to be
theoretically and practically useful for chaos control, oscillation death, synchronization, and parameter
identification in nonlinear dynamics and even network dynamics [22–32]. Some particular adaptive techniques
have been successfully applied for synchronization suppression in coupled oscillators [33–35]. These developed
techniques, though being very numerically effectual, compulsorily require either only instantaneous signal input
[34] or both instantaneous and time-delayed signal inputs [35], and even complicated adaptive configurations
[34, 35]. Only with unavoidable time-delayed signal input, an adaptive feedback control scheme ofmuch
simpler configuration and easier implementation for practical use is highly challenging. Note that in terms of
dynamical order parameter of coupled oscillators, synchronization and desynchronization indicate two
different steady states with different basins of attraction. This therein invites a delicate design of the adaptive
schemewith a feedback delay for eliminating synchronization, different from those conventional techniques
solely for archiving synchronization.

In addition, the distribution of natural frequencies, which determines the intrinsic property and
classification of uncoupled oscillators, can influence the dynamics of coupled oscillators. There have been a
series of works reporting on how the topological properties of the symmetric unimodal and bimodal
distributionwith orwithout time delays produce synchronization and even new dynamics [36–45]. However, in
the literature, there have been only a few investigations on how the asymmetry, as well as the shift distance of the
bimodal distribution of the natural frequencies, influences the elimination of synchronization in terms of the
adaptive schemewith a feedback delay.

In this paper, we present a delicately designed adaptive schemewith a feedback delay for achieving
synchronization elimination not only in the coupledKuramoto oscillators, but also in the representative
analogousmodels of neuronal networks including the coupled FitzHugh–Nagumooscillators with spiking
dynamics and the coupledHindmarsh–Rose oscillators with bursting dynamics.Moreover, we illustrate why the
designed schemewith a feedback delay is efficient, andfind out how the exact topological formof the bimodal
natural frequency distribution influences the scheme performance. Ourfindings are useful tomake a clear
description of the directions for further improvements and real applications of the designed scheme.

2.Model description: from the coupled normal forms to kuramoto oscillators

To beginwith, we consider the coupledHopf-bifurcation normal form:

= + - + = ˙ ( ∣ ∣ ) ( )z w z z KZ j Ni 1 , 1, 2, , , 1j j j j
2

where zj is a complex-valued variable describing the dynamics of the jth oscillator,wj represents its natural
frequency,K is the internal and global coupling strength, and = å =Z z

N j
N

j
1

1 is themean-field coupling term. All
the natural frequencies are not identical but are supposed to obey some probability distribution.Without loss of
generality, the probability distribution g(w) for the natural frequency is assumed bimodal as:
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Here, h1,2 represent thewidths of the two peaks of the distribution g(w), and a stands for the half distance
between the two peaks. Particularly, the distribution becomes unimodal when a=0, whichmakes the two
peaks coincide with each other. For simplicity, we assume that + =h h 21 2 in (2), and that = + Dh 11 and

= - Dh 12 withD Î [ ]0, 1 .When >a 0, ifD = 0, the distribution is symmetric; otherwise, it becomes
asymmetric, as shown infigure 1.

Without coupling (i.e.K=0), each individual oscillator rotates alongwith its ownnatural frequency in the
complex plane, showing unsynchronized dynamics.With a sufficiently strong couplingK, the coupledHopf-
bifurcation normal form shows some phenomena of phase synchronization, whichwill be illustrated in detail
later.Here, themission is to use an appropriate controller to eliminate phase synchronization. Thus, a feedback
controller of themeanfield is added to the coupled normal form (1), which yields a controlled system:

= + - + + t˙ ( ∣ ∣ ) ( ) ( )z w z z KZ L t Zi 1 3j j j j
2

for = j N1, 2, , . Here, t= -t ( )Z Z t and τ is a feedback delay, which is unavoidable in practical
instruments of control. The time-altered variable L(t) is a complex-valued adaptive coupling strength, which
needs to be designed to be as simple as possible for practical use.However, those control schemes proposed in
the literature for updating the coupling strength are complicated and even require an instantaneous signal in
addition to the time-delayed signal [34, 35]. Thus, an adaptive feedback scheme, different from and simpler than
the exitingmethods [34, 35], for updating L(t) is pending for delicate design.

To this end, inspired by [16, 20], we investigate the phase dynamics of the controlled system (3) by using the
transformations r= qz ej j

i j where r r r= -˙ ( )1j j j
2 and letting r  1j . Hence, we have

2

New J. Phys. 19 (2017) 083004 S Zhou et al



q t= + + - q-˙ {[ ( ) ( )] } ( )w Kr L t r tIm e 4j j
i j

where = å q
=r e

N j
N1

1
i j is the order parameter and ‘Im’ denotes the imaginary part of a complex number. Letting

= g∣ ∣L L ei transforms the system(4) into
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which, by using the trigonometric formula, can be further rewritten as
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Here, both the adaptive coupling strengths

g g g p p= = Î -∣ ∣ ∣ ∣ ( ]C L S Lcos , sin , , ,

are time-altered, real-valued variables pending for design.
Clearly, without the control term (i.e. º ºC S 0), system(5) becomes the classic Kuramotomodel with a

bimodal natural-frequency distribution g(w). For the symmetric distribution, there exists a critical valueKc such
that phase synchronization could be always achieved if >K Kc, as reported in [46] and references therein. For
the asymmetric distribution, through analogous arguments, we still can verify phase synchronization to be
achievedwith a sufficiently largeK. Therefore, in the following discussion, we always suppose thatK is large
enough to ensure the existence of phase synchronization in the uncontrolled system.

3. Adaptive techniques for coupled oscillators

With the preparations in section 2, we are able to develop an adaptive technique for the controlled system (5).
We set t= = - =t t( ) ∣ ( )∣ ∣ ∣Q Q t r t r2 2, which can be viewed as an energy function for the dynamics of the
order parameter. In fact, the synchronization state and the desynchronization state correspond, respectively, to
two steady states º( )r t 1and º( )r t 0 for the dynamics r(t). Intuitively, the coexistent steady states are located,
respectively, at theminimal andmaximal energies of t ( )Q t . In order to realize the synchronization elimination,
we use the steepest descentmethod (SDM) [23, 28, 47, 48], where the desynchronized steady state º( )r t 0, the
minimal energy, is set as the unique control target. As such, starting at some position, the controlled trajectory,
whichmoves along the downhill gradient of the energy potential, acquires the speediest convergence to the
minimal energy. Accordingly, we design an adaptive scheme for variable S andC along the downhill gradient as
follows:

 h h= - ¶ - = - ¶ -t t˙ · ˙ · (∣ ∣ ) ˙ · ˙ · (∣ ∣ ) ( )C Q H r S Q H r, , 6C S1 2

where∂ represents a derivative operator on a given functionwith respect to the subscript argument, h1,2 and ò
are adjustable control parameters with h > 01,2 and < <0 1, and (·)H is the standardHeaviside step
function. Combining the order parameter r and system (5) in the scheme(6) yields amore explicit adaptive
scheme:

* * * * * * h h= - - - = - -t t t t t t t t t t t t˙ {[ ]} (∣ ∣ ) ˙ {[ ]} (∣ ∣ ) ( )C r r r r s H r S r r r r s H rRe , Im , 71 2 2 2 2 2

where ‘Re’ and ‘*’ denote the real part and the complex conjugate of a given complex number, respectively,
and = å q

=( )s t e
N j

N1
1

2i j .

As numerically shown infigure 2(a), we use the adaptive scheme (7) to achieve the synchronization
elimination for the coupled dynamics (5). Also shown infigure 2(b) are not only the dynamics of the order
parameter r for the entire coupled oscillators, but also the dynamics of the order parameters for the partial

Figure 1. From symmetric probability distributions to asymmetric distributions for natural frequency.Here, the parameters a andΔ
are set, respectively, in the legend for different distributions.
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groups of coupled oscillators corresponding to both sides of the axis of the natural frequency distribution. This
manifests that the synchronization elimination is realized not only in the subgroups of oscillators but also among
all oscillators in the entire network. As for theHeaviside step function used in the schemes (6) or (7), it is not
compulsorily required according to the classical SDM.The necessity of an inclusion of it into (6) or (7)will be
illustrated in the final section.

Sincewe use r  1j for obtaining the coupled phase dynamics above, keeping the polar distance variable in
themeanfieldZ and leaving out the quantity s(t) of high order (as illustrated in figure 2(c)) yields the adaptive
scheme for the original controlled system (3) as follows:

* * h h= - - = -t t t t t t˙ { } (∣ ∣ ) ˙ { } (∣ ∣ ) ( )C Z Z H Z S Z Z H Z2 Re , 2 Im , 81 2 2 2

with = +L C Si . In fact, we are able to obtain this adaptive scheme (8) directly by introducing an energy
function = ∣ ∣Q ZZ

2 instead ofQ as defined above and using the SDM.The detailed computational procedures
for getting (7) and (8) are given in appendix A.Meanwhile, we use (8) to successfully eliminate synchronization
in the coupled normal form in(3), as numerically shown infigure 2(d). Thismanifests that the designed adaptive
scheme is not only suitable for synchronization elimination in the coupledKuramoto’s oscillators but also for
the original oscillatormodels. This alsomakes it feasible to use the current scheme tomanipulate the
synchronization dynamics in the analogousmodels of neuronal networks.

Furthermore, we are interested in the transition timeT from synchronization to desynchronizationwith
respect to the parameters a andΔ. Here, the transition timeT is defined as

  d= < + -{ ∣ ∣ ( )∣ ˆ}T t r t t t t t T tinf forT T Ton on with a small constant δ, a sufficiently large constant
T̂ , and a time instant ton beyondwhich the control is switched on. As shown infigure 3,T shows amore stable
continuumwhen the distance between the two peaks of the distribution is closer and the asymmetry is not very
strong (i.e. a and D∣ ∣are relatively small). However, when the distance between the two peaks becomes relatively
large (such as >a 1.5),T reveals a rapid fluctuationwhen increasing the asymmetry degree D∣ ∣. This also reveals

Figure 2. (a)Dynamics of the 500 coupledKuramoto oscillators in (5)without andwith the adaptive scheme (7), where
t= =K 6, 0.2, and h = 2;1,2 (b) dynamics of the order parameter for all the above coupled oscillators as well as for the two groups of

these oscillators corresponding to the both sides of the axis of the natural frequency distribution (a=2 andD = 0) depicted in
figure 1; (c) dynamics s rapidly becomes aminor quantity of high orderwhen the adaptive scheme (7) is switched on; (d) dynamics of
the 100 controlled oscillators described by the normal forms (3) before and after the adaptive control (8) is switched on, where the
parameters are set as: t= = =a K2, 6, 0.1, and h = 21,2 . The color in the color bar represents the dynamical state of each
oscillating neuron.

Figure 3. For the coupledKuramotomodels in (5)with the adaptive control (7), the transition timeT from synchronization to
desynchronizationwhen different distributions for natural frequency are used. The colors showdifferent transition timesT for
different pairs of parameters. Here, a andΔ are the parameters corresponding to the asymmetry property of the distributions.  = 0.2
and =T̂ 20.
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that the asymmetric degree of the natural frequency distribution slows down the transition from
synchronization to desynchronization. This slowing-down procedure becomesmore outstanding, when the two
peaks of the distribution are at a farther distance.

4. Synchronization elimination in coupled analogousmodels of neuronal networks

Wehave shown the efficiency of our developed adaptive scheme for realizing synchronization elimination in the
coupled oscillators. The analogous technique enables us to adaptively eliminate the synchronization of spiking
or bursting dynamics inmodels of neuronal networks.Here, we consider two concrete coupled neuronal
models, i.e., the FitzHugh–Nagumomodel [49, 50] and theHindmarsh–Rosemodel [51].

First, we analyze the coupled FitzHugh–Nagumomodels with an external controller as follows:

t sx e b n= - + + - + - + = + -˙ ( ) ( ) ( ) ˙ ( ) ( )v v
v

w I I L t V t t w v w
3

, , 9j j
j

j j j j j j

3

syn

where = =j N1, 2, , 100, the internal noise Ij is supposed to obey theGaussian normal distribution
( )1, 0.01 , and the external noise x ( )t obeys  x =[ ( )]t 0 with  x x d= -[ ( ) ( )] ( )t s t s . The internal coupling
is set as = - å -

- ¹ ( ) ( )I g v v v vj c N k j ksyn
1

1 0 with = + -( ) [ ( )]v v v1 1 exp th . The parameters are taken
as: b m= = = = = =g v v v0.7, 0.8, 0.4, 2.8, 1, 0.1c 0 th , t s= =0.2, 0.1. All the neurons are divided into
two groups: ej in (9) for thefirst half independently obey the uniformdistribution ( )0.01, 0.03 , while the
others independently obey ( )0.04, 0.06 . The settings imply that the two groups of neurons behavewithin two
different bands of natural frequencies aswithout control each ej determines the natural frequency of the
neurons.

In addition, themeanfield for themembrane potentials of the oscillators is taken as = å =( ) ( )V t v t
N k

N
k

1
1 ,

and analogous to (8), the adaptive scheme for L(t) in (9) is designed as

h t t t= - - - - -˙ ( ) ( ) (∣ ( )∣ ) ( )L V t V t H V t2 2 . 10

As shown infigure 4, in the absence of adaptive control (10) º[ ( )L t 0 for Î [ )t t0, on with =t 600on ], the
coupled FitzHugh–Nagumomodels in (9)display spiking synchronization dynamics; however, when the control
with h = 1 and  = 0.3 is switched on ( t ton), the synchronization is adaptively eliminated although each
individual oscillator still exhibits spiking dynamics.

Secondly, we consider a small-world network of coupledHindmarsh–Rose neuronalmodels with an
adaptive controller as follows:

t sx

e

= - + - + + + - +

= - - = - -

˙ ( ) ( ) ( )

˙ ˙ [ ( ) ] ( )

x y ax bx z I I L t X t t

y c dx y z s x x z

,

, , 11

j j j j j j

j j j j j j R j

3 2
syn

2

where = =j N1, 2, , 100. The parameters are taken as: = = = = = = -a b c d s x1, 3, 1, 5, 4, 1.6R ,
and t = 0.2. The internal noise  e~ ( )I 3, 0.01 ,j j satisfies the uniformdistribution ( )0.006, 0.007 , and the
external noise x ( )t and its intensity are defined in the samemanner as those in the preceding example. The
internal coupling is set as s= å -= ( )I g x xk

N
kj k jsyn 1 , where s = 0.6 and all gkj correspond to a small-world

networkwithN=100 (the node number), =K2 4 (the number of nearest neighboring nodes before

Figure 4. (a)Dynamics of the coupled FitzHugh–Nagumo oscillators in (9) before and after the designed adaptive control (10) is
switched on at =t 600on . Here, each color represents the argument value of a complex number obtained from themembrane
potential signal after the standardHilbert transformation [52]. (b)Dynamics of the order parameter for the entire coupled oscillators
as well as for the two groups of oscillators corresponding to two peaks of natural frequency distribution. (c) Selected are themembrane
potential dynamics for thefirst and the second FitzHugh–Nagumooscillators from the entire network, which shows the synchronized
dynamics and desynchronized dynamics, respectively, before and after the control switched-on time ton.
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reconnection), and p=0.1 (the reconnection probability). In addition, the adaptive controller

h t t t= - - - - -˙ ( ) ( ) (∣ ( )∣ ) ( )L X t X t H X t2 2 , 12

where h= å ==( ) ( )X t x t , 1
N k

N
k

1
1 , and  = 0.5.Without control =[ ( )L t 0 for Î [ )t t0, on ], the coupled

Hindmarsh–Rosemodels in (11) display synchronization of bursting dynamics, as shown infigure 5.Once the
adaptive control (12) is switched on at =t ton, the synchronized dynamics become eliminated adaptively;
however, the bursting dynamics for each individual oscillator are not completely destroyed and can be still
observed. This is important since preserving these dynamics is essential to sustainment of the information
processing function for each neuron.

Remarks.Actually, the analytical results established in the preceding sections deal with the fully connected
networks; however, the above example shows that our adaptive control scheme is also practically feasible for
other network patterns, such as consumerresource,mutualism, and scale-free interactions. The analytical and
numerical results under the configurations of other network patterns will be discussed elsewhere.Moreover,
sincewe design the adaptive control scheme for the general oscillatingmodels around their limit cycles, the
control scheme is useful for the oscillations induced by limit cycles of theHopf bifurcation. Although a large
number of synchronized oscillators are induced by limit cycles in real-world systems, there are stillmany other
types of oscillations [53, 54]. Eliminating synchronization of all these oscillators could be one of our future
research topics.

5. Feasible parameter regions

In order to analytically illustrate the feasibility of the adaptive technique proposed above, we set
º = +g( ) ∣ ∣L t L C Se ii as a constant complex number in (4), so that we need to locate the parameter region of L

in the complex plane for eliminating synchronization in (4). To this end, letting  ¥N and using theOtt–
Antonsen ansatz [46] yield:

* *

* *

a a a t a t

a a a t a t

= - + - - - - - -

= - - - - - - - -

g g

g g

-

-

˙ ( ) ( ) [ ( ) ( )]

˙ ( ) ( ) [ ( ) ( )] ( )

∣ ∣
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h a r r r t r t

h a r r r t r t

i e e ,

i e e , 13

K L

K L

1 2 1 2 1
2

2
i

1
2 i

2 1 2 2 2
2

2
i

2
2 i

where the conjugate of the order parameter becomes

* a a= +( )r
1

2
.1 2

K is beyond the critical valueKc ensuring the existence of phase synchronizationwithout control.With control
of constant couplings, we are intended tofind the parameter region of L for ensuring the stability of a = 01,2 in
equation (13) (i.e. achieving elimination of synchronization). The linearization of equation (13) at a = 01,2

becomes t= + -˙ ( )x Ax Bx t , where a a= [ ]x ,1 2 ,

Figure 5. (a)Dynamics of the small-world network of coupledHindmarsh–Rose neuronal oscillators in (11) before and after the
designed adaptive control (12) is switched on at =t 600on . (b) Selected are the synchronized and desynchronizedmembrane potential
dynamics of thefirst and the sixtiethHindmarsh–Rose oscillators from the entire network, respectively, before and after the control
switched-on time ton. Here, the bursting dynamics for all the oscillators, though being desynchronized, are persistently observed
whenever the control (12) is on.
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Hence, using =  Dh 11,2 and computing the characteristic equation l - - =lt-[ ]I A Bdet e 0 give

l l+ - + + + + D =
g lt- -⎛

⎝⎜
⎞
⎠⎟( ) ( ) ∣ ∣ ( ) ( )K L

a1 2 1
4

e

4
i 0, 142
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2

which is a transcendental equationwith respect to the complex-valued variableλ. Clearly, if all roots of (14) are
located on the left half of the complex plane, a = 01,2 is stable so that elimination of synchronization is achieved.

First, we setD = 0, which corresponds to the symmetric probability distribution defined in (2) for the
natural frequencies. In this situation, the characteristic equation obtained above is conjugately invariant, so it is
sufficient to assume g pÎ [ ]0, .Without time delay (i.e. t = 0) andwith a real-valued L (i.e. g p= 0 or ), the
condition < - + -{ ( ) }L K a Kmin 4 , 2 1 2 ensures the stability.With a time delay, tofind the stability region
of the complex-valued L, we investigate themarginal stability condition through substituting l b= i in (14),
and get

b bt g b bt g

b b bt g bt g

- + - + = + + +

- - = + - +( )
[ ( ) ( )]

[ ( ) ( )] ( )

∣ ∣

∣ ∣

a1 cos sin ,

2 1 cos sin . 15

K L

K L

2
2

2
2

4 2

Through a calculation by using the trigonometric formulas, we further get a polynomial equationwith respect to
the variableβ as

b
b

b
+ = - +

+
- -⎜ ⎟⎛
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which yields four possible roots:

b b= - - = - - - ( ) ( )p p q p p q2 , 2 ,1,2
2

3,4
2

where = - + - -+ ( ) ∣ ∣p 1K a K L
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2 4

2

16

2 2

and = -+( ) ∣ ∣q a L1

2

2

16

2 2

. Hereafter, for the parameter a, the half

distance between the two peaks of the natural frequency distribution, we separate our discussions into two cases:
(i)  <a0 1and (ii) >a 1.

Case (i) ‘  <a0 1’: when the internal coupling is sufficiently strong (i.e., > +( )K a2 1 2 ) ,
synchronization occurrs in theKuramotomodel without external control. Then, as - - <b+ 0a K1

2 4 2

2 2

, we

get
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2

denoted by b( )h L K n, , , for simplicity. Here, -f 1 represents the inverse of a given function f and n is some
positive integer. Clearly, the existence of τ implies thatβ is real, and that b2,4 do not exist.

When g p> 2, there is a critical point Lc such that t b= = -( )h L K0 , , , 1c 3 and that when >∣ ∣L Lc ,
both eigenvalues of thematrixA+B are located on the left half of the complex plane. Therefore, >∣ ∣L Lc with
t = 0 becomes a necessary boundary for stability. Furthermore, we getmore accurate descriptions of the
stability region in the ∣ ∣L –τ plane: the region is circumscribed either by the curves t b= -- ( )h L K, , , 13, 1 3 and
t = 0 for g p¹ (see the left panel infigure 6), or by the curves t b t= - =- ( )h L K, , , 1 , 0c3, 1 3 , and

= - +∣ ∣ ( )L K a2 1 2 for g p= . In the latter circumscribed region, t t = - - +( ) [ ( )]a K a2 2 2 1c1
2 2 as

 - +∣ ∣ ( )L K a2 1 2 because both = - +∣ ∣ ( )L K a2 1 2 and b = 0 satisfy equation (15).Moreover, forfixed

K and L, we validate >l
t

{ }Re 0d

d
along the curves determined by equation (15). This implies that there is no
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further stability region other than the regions obtained above.When g p 2, there is no stability region in the
∣ ∣L –τ plane for any τ.

The above discussions also reveal the stability regions in the complex planewith respect to = +L C Si for
given a andK.When t = 0, the stability region is unbounded and located on the left side of two intersecting and
endless curves.When t > 0, the region becomes a bounded and leaf-like area. In particular, it shrinks as τ
increases, and disappears as τ increases above t = - - +( ) [ ( )]a K a2 2 2 1c1

2 2 . This changing process of the
stability regionwith increasing τ is depicted infigure 7(a) for particularly given a andK.

Case (ii) ‘ >a 1’: when > +( )K a2 1 2 , the changing process of the stability region is the same as the result
concluded for case(i) shown infigure 7(a).When < +( )K a4 2 1 2 , the situation for stability regions
becomesmore complicated. In fact, from equation (15), it follows that
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=
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⎪⎪⎪
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Analogously, for simplicity, denote this piecewise-defined τ by bˆ ( )h L K n, , , . Through further calculations, we
obtain themarginal curves for the stability regions in the ∣ ∣L –τ plane: t b= ˆ ( )h L K n, , ,n1, 1 ,

t b= ˆ ( )h L K n, , ,n2, 2 , t b= ˆ ( )h L K n, , ,n3, 3 , and t b= ˆ ( )h L K n, , ,n4, 4 . In particular, when g p> 2, the
stability region is located below t n3, and above t +n2, 1 for some smaller n (see themiddle panel infigure 6); when
g p 2, it is located below t n1, and above t n4, for some smaller n (see the right panel infigure 6).
The above discussions further yield a changeable stability region in the complex plane of Lwith increasing τ

but for given a andK. Concretely, there exist two sequences t{ }n and t +{ }( )n n
M

1 for some smaller n. For
t tÎ [ )0, 1 , the stability region shrinks from anunbounded area (for t = 0) to a leaf-like area (for t t< <0 1),

Figure 6. Stability regions in the ∣ ∣L –τ plane, highlighted by the color by the yellow. Themarginal curves are also indicated by tm n,

where = m 1, , 4 and = - n n1, 0, , c . The parameters are taken as = =a K0.5, 3 and g p= - 0.1 (the left panel),
= =a K2, 4.5 and g p p= - >0.1 2 (themiddle panel) and = =a K2, 4.5 and g p= <0.1 2 (the right panel).

Figure 7. Stability regions in the complex plane of = +L C Si for a=0.5 andK=3 (a) and for a=2 andK=4.5 (b)with different
time delays τ. For a and k given in (b), the area of the stability regionwith respect to the increasing τ (c). Here, the area takes positive
signwhen the stability region is located on the left half of the complex plane, but takes negative signwhen it appears on the right half of
the plane.
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changing in the samemanner as the stability region obtained for case (i). For t t tÎ [ ],1 2 , the stability region
vanishes. For t t tÎ ( ),2 3 , the stability region appears in a leaf-like shape again but on the right half of the
complex plane. Particularly, there exists a number tM

23 such that for t t tÎ ( ], M
2 23 , the region area is augmented;

but for t t tÎ [ ),M
23 3 , it becomes reducedmonotonically. For t t tÎ ( ),3 4 the stability region vanishes again. For

t t tÎ ( ),4 5 , the stability region appears on the left hand of the complex plane again. Similarly, there exists a
number tM

45 such that the stability region grows for t t tÎ ( ], M
4 45 but shrinks for t t tÎ [ ),M

45 5 . The left-like
region appears back and forth on both half planes until τ increasingly approaches some finite critical value tc2.
As t t> c2, the stability region no longer appears.With increasing τ, the above-described changing process of
the stability region is depicted numerically in the complex plane of L (see figure 7(b)with particularly given
parameters a andK ). Still with these parameters, the area of the stability region non-monotonically attenuates
with increasing τ, and it eventually vanishes for t t> > 7.2c2 , as shown infigure 7(c).

Analogously, for simplicity, we denote this piecewise-defined τ by bˆ ( )h L K n, , , . Through further

calculations, we obtain themarginal curves for the stability regions in the ∣ ∣L –τ plane: t b= ˆ ( )h L K n, , ,n1, 1 ,

t b= ˆ ( )h L K n, , ,n2, 2 , t b= ˆ ( )h L K n, , ,n3, 3 , and t b= ˆ ( )h L K n, , ,n4, 4 . In particular, when g p 2, the
stability region is located below t n1, and above t n4, for some smaller n; when g p> 2, it is located below t n3,

and above t +n2, 1 for some smaller n. These discussions further yield a changeable stability region in the complex
plane of Lwith increasing τ but for given a andK. Concretely, there exist two sequences t{ }n and t +{ }( )n n

M
1 for

some smaller n. For t tÎ [ )0, 1 , the stability region shrinks from anunbounded area (for t = 0) to a leaf-like
area (for t t< <0 1), changing in the samemanner as the stability region obtained for Case (i). For t t tÎ [ ],1 2 ,
the stability region vanishes. For t t tÎ ( ),2 3 , the stability region appears in a leaf-like shape again but on the
right half of the complex plane. Particularly, there exists a number tM

23 such that for t t tÎ ( ], M
2 23 , the region area

is augmented; but for t t tÎ [ ),M
23 3 , it becomes reducedmonotonically. For t t tÎ ( ),3 4 the stability region

vanishes again. For t t tÎ ( ),4 5 , the stability region appears on the left hand of the complex plane again.
Similarly, there exists a number tM

45 such that the stability region gets growing for t t tÎ ( ], M
4 45 but shrinking for

t t tÎ [ ),M
45 5 . The left-like region appears back and forth on both half planes until τ increasingly approaches

some finite critical value tc2. As t t> c2, the stability region no longer appears. The analytical validation of the
existence tc2 is provided in appendix C.With increasing τ, the above-described changing process of the stability
region is depicted numerically in the complex plane of L (see figure 7(b)with particularly given parameters a and
K ). Still with these parameters, the area of the stability region non-monotonically attenuates with increasing τ,
and it eventually becomes zero for t t> > 7.2c2 (figure 7(c)).

The above discussions focus on the case where the symmetric axis for the natural frequency distribution (2)
is centered atw=0.However, when it is not centered at zero but at = ¹w w 00 , the locations of these leaf-like
stability regions found above change. As amatter of fact, a utilization of the transformation f q= - w ti i 0 to
system (5) yields:

å å
f

f f f t f g t= - + - + - - + -
= =

( ) [ ] ∣ ∣ [ ( ) ( ) ( )]
t

w w
K

N

L

N
t t w

d

d
sin sin ,i

i
j

N

j i
j

N

j i0
1 1

0

whose natural frequency distribution indeed has a symmetric axis centered at zero. Therefore, we conclude that
for realizing the elimination of synchronization, the complex-valued = g t-∣ ∣ ( )L L ew

wi
0

0 needs to be inside the
leaf-like stability region infigures 7(a), (b) for given a K, , and τ. Note that complex-valued L and Lw0

have the
same norms but different arguments. The stability region of L remains in a leaf-like shape but rotates
counterclockwise with the increase ofw0.Moreover, this rotation period can be directly computed as p t2 .
Figure 8 shows these counterclockwise rotating and leaf-like regions, respectively, for a uniform group of a and
K but different τ. These parameters correspond to the case shown infigure 7(b). Clearly, to realize elimination of
synchronization, the external coupling strength L has to be selected from some specific stability region, and thus
it has some specific forms, such as the forms of only negative real part, only positive real part, and non-real value.
For given a K, , and τ, an appropriate formof L depends crucially on the choice of the symmetry axisw0, which is
an interesting phenomenon akin to the results reported in [55].

Finally, we consider the situation ofD ¹ 0, which corresponds to an asymmetric distribution g(w) as
defined in (2) for the natural frequency. The absolute value ofΔmeasures the asymmetric degree of the
distribution. Figure 1 shows that the larger the asymmetric degree is, themore asymmetric the distribution
becomes. Analytical analysis of the (14) ismathematically feasible but computationally tedious.Here, we
numerically showhow the stability region of L is influenced by the asymmetric parameterΔ aswell as by the
time delay τ for a particularly given a andK. On one hand, as shown in figure 9(a), for each given small t < 0.4,
the stability region area approaches themaximumatD = 0 because of the convexity of those contours. This
implies that the asymmetric degree can reduce the size of the stability region for the coupling strength L. Asmore
explicitly shown infigure 9(b), a larger asymmetric degree also leads to not only a deformation but also spin of
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the stability region. The real axis no longer coincides with the line crossing both vertexes on the border of the
leaf-like region.On the other hand, for some fixed asymmetric degreeΔ, the area of the stability region
monotonically decreases with the increase of τ (figure 9(a)). A larger asymmetric degree results in amore rapid
attenuation of the stability region.Moreover, the change of the area is quite smooth for afixed t < 0.4 andwith
increasing D∣ ∣, which is different from the rapid change of the transition time for afixed awith increasing D∣ ∣
(see figure 3).

Additionally, as shown infigure 9(c), for larger τ, the stability region area shows a symmetry property with
respect toΔ, which is analogous to the case infigure 9(a). However, one difference is that with continuously
increasing τ above 0.4, the stability region disappears suddenly and then appears rapidly. The differences also
include the non-monotonic area of the stability regionwith increasing τ, which contains a particular case for the
stability area shown infigure 7(c)whereD = 0. Indeed, for some fixed τ (e.g. t< <1 1.9 in figure 9(c)), the
stability region area drops downdramatically as the asymmetry parameterΔ passes through some critical value
depending on τ. This is the reasonwhy the tongue-like region can be observed infigure 9(c).

The above discussions on the stability regions are completely based on the assumption that L is a constant
complex number. However, the adaptive scheme (7)wedeveloped and validated in the preceding sections
requires the complex-valued L to be always changing and updated as time passes. Although the initial value for L
is not necessarily located inside the stability region, the designed adaptive scheme adjusts L at every time instant
and directs it to thefinal destination, the leaf-like stability region. As shownby some panels infigures 8 and 9, the
orbits of L, starting from the locations highlighted by the pentagram signs, automaticallyfind their routes to
enter the stability regions. Once they approach the regions, elimination of synchronization is achieved definitely
and the updating rate for L tends towards zero according to the adaptive scheme (7). Therefore, all the above
arguments and discussions theoretically illustrate the reasonability and feasiblity of the adaptive schemewe
propose in section 3.

Figure 8.The counterclockwise rotating and leaf-like stability regions for t= = =a K2, 4.5, 0.35 (a), and t = 1.60 (b). Here, for
each panel from left to right and from top to bottom, the symmetric axis =w w0 takes a value of 0, 1, 2, 4.5, 6, 9, in turn (a), and
0, 1, 2, 3, 4, 5, in turn (b). The rotation period p t2 is approximately equal to 17.952 for (a) and 3.927 for (b). Each color value
represents the exponential convergence rate of the controlled system(13) for the corresponding = +L C Si .
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6.Discussions and concluding remarks

6.1. Necessity ofHeaviside step function
As designed in the scheme (6) or (7), theHeaviside step function is included. Although this term is not
compulsorily required from a theoretical viewpoint of the SDM, the feasible stability region of the constant
coupling strength º = +( )L t L C Si for elimination of synchronization is very limited and even distributes
separately in the complex plane, as has been expatiated in the preceding section 5.Once the coupling strength

= +( ) ( ) ( )L t C t S ti updates its value into this isolated stability region, the update rate, theoretically, should
become tremendously small and approaches zero eventually; nevertheless, due to computational errors, they
accumulate errors to some extent, whichmakes it likely to push themout of the stability region. Since the SDM
provides only one direction for updating the strengths, departure of the stability region always results in an
everlastingmissing of this region, which eventually results in a failure of elimination of synchronization. As
shown infigure 10, once the control is switched on, but in the absence of theHeaviside step function in the
adaptive scheme(7), the failure of elimination of synchronization happens eventually, although at the beginning
of the control being switched on, the elimination of synchronization is achieved rapidly and lasts for a certain

Figure 9. (a)Variation of the stability region areawith changingΔ and τ. Here, = =a K2, 4.5, and each curve represents the
contour alongwhich the stability regions have the same area. The area values are indicated in the legend inside the panel. (b)The
stability region is deformed and spunwhenΔ is non-zero. For each panel from left to right and from top to down,Δ takes value of
0, 0.1, 0.7, and 0.99, in turn.Here, a andK are the same as those in (a), and t = 0.35 corresponds to the horizontal dash line in (a). (c)
A tongue-like stability regionwith particularly alterableΔ and τ. Here, a andK are still the same as those in (a). The color values in (b)
are defined in the samemanner as those infigure 8, and each color value in (c) represents the stability region area after the logarithm,
so that the black color indicates a disappearance of the stability region.
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course of time. Therefore, it is reasonable and of high practical significance to include theHeaviside step
function as themanner designed in scheme (6) or (7) for obtaining a persistent and robust elimination of
synchronization.

6.2. Partly elimination of synchronization
Weadditionally consider coupled FitzHugh–Nagumomodels in (9) aswell as their adaptive control (10)with
different parameter configurations: e e= º =g 0.1, 0.1j , and the internal noise Ij for the neurons from
j=1–50 independently obey the uniformGaussian normal distribution ( )0.7, 0.01 , while Ij
( = j 51, , 100) independently obey ( )1.3, 0.01 .With these configurations andwithout adaptive control,
the coupled FitzHugh–Nagumomodels in (9) display synchronized spiking dynamics separated into two
clusters, which can be seen from the two types of the strip patterns infigure 11 for Î [ )t t0, on . Clearly, it is the
two types of the internal noises that produce some groups of the neurons as well as their cluster synchronization.
Now,when the adaptive control (10) is switched on at =t ton, the order parameter ∣ ∣r for thewhole oscillators
rapidly transits to a low-level with a small quantity offluctuations.However, the order parameters ∣ ∣r1,2 ,
corresponding respectively to the two types of the neurons, fluctuatewithin a relatively large range. This implies
that the synchronization of neither group is not completely but partly eliminated. Also it is the anti-phase-like
dynamics of r1,2 that result in the low-level andmild fluctuations of the order parameter ∣ ∣r . Here, the
performance of the adaptive control is unlike the effectiveness shown in section 4, where the two groups of the
neurons are attributed to the two groups of ej. As amater of fact, a change of either Ij or ej leads to a change of the
frequency of the oscillators. However, because of the specific forms of the FitzHugh–Nagumomodels, a change
of Ij also alters the location of the equilibrium circled by the oscillating limit cycle, but yet a change of ej does not.
Sincewe use an approximation r  1j during our design of the adaptive control scheme in section 3, this

assumption actually requires an unchanging or slightly changing location of the equilibrium circled by the
oscillating limit cycle, which therefore is essential tomaximize the efficiency of our designed adaptive scheme.

Figure 10.Dynamics of the 500 coupledKuramoto oscillators (a) and their order parameters (b)when theHeaviside step function is
not included in the adaptive scheme (7). All the parameters and control on-off configurations are the same as those infigure 2(a).

Figure 11.Dynamics of the coupled FitzHugh–Nagumomodels in (9)when the adaptive control (10) is switched on at =t 600on .
Here, some parameters, different from those used in figure 4, are specified in themain text.
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6.3. Adaptive scheme for time delay
As discussed in section 5, the stability region for L always vanishes occasionally for a particular feedback delay τ
and disappears forever when τ is sufficiently large. In real applications, oneway tomake the designed scheme
efficient is to reduce τ asmuch as possible. However, τ is unavoidable because it does take a certain amount of
time to transmit a signal in a remote distance and process a signal to some requiredmode. Then, the otherway is
to design an adaptive scheme also for τ. Thus, τ, as a variable, updates its value based on themeanfield signal
experimentally recorded andfinds its way automatically to the nearest and correct delay which admits a stability
region for L. Analogous updating schemes for the feedback delay have been investigated, respectively, in [56–58].
However, for the current scheme, there is a ceiling for the feedback delay, such as the critical values tc c1, 2 derived
in section 5.Once τ updates its value close to the ceiling, a replacement of it with an appropriately small value
that is acceptable in a real system should be conducted. This adaptive updating procedure is repeated until the
synchronization elimination is achieved.

6.4. Concluding remarks
In this paper, we have designed an adaptive control schemewith a feedback delay to achieve elimination
synchronization not only in coupledKuramoto’s oscillators, but also in two representativemodels of neuronal
networks.More importantly, we have analytically and numerically investigated how the topological structure of
the bimodal natural frequency distribution influences the elimination of synchronizationwith a feedback delay.
These investigations also support the feasibility of the designed adaptive scheme in synchronization elimination.

In addition, in the treatment of some synchronization-inducedmental disorders, techniques, such as deep
brain stimulation (DBS), have been validated to have some therapeutic effect; however, themechanism of this
effect is still unknown [12, 59].MajorDBS is generally designed as an open-loop control, whose robustness
against noise is notoriously weak andwhose effectiveness is not persistently lasting [60]. Actually, our developed
adaptive scheme is of a closed-loopwith automatic control, which usually has several advantages including
strong robustness, sustainable effect, and less requirement formanual intervention [14, 61, 62]. So, the designed
scheme and our newfindings are expected to be used clinically to deepen understanding and even refine the
existingDBS techniques. The clinical application aswell as improvement of the current scheme becomes one of
themajor research directions for our present and future works.
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AppendixA.Derivation of adaptive control schemes

For simplicity, we set t = 0 and then consider the derivative of ( )Q t0 , as defined in section 3, with respective to
t. Thus,

* *= + =˙ ( ) ˙ ( ) ( ) [˙ ( ) ( )]Q t r t r t r t r tc.c. 2 Re .0

Adirect computation of the derivative of r(t)with respective to t yields:
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2i j and by (·)g the remaining terms. Thus, we get
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Notice that = +L C Si . Hence, we have

* * *t t¶ = - - -˙ ( ) [ ( ) ( ) ( ) ( ) ( )]Q t r t r t r t r t s tReC 0

and

* * *t t¶ = - - - -˙ ( ) [ ( ) ( ) ( ) ( ) ( )]Q t r t r t r t r t s tIm .S 0
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Now, setting t= -t t gives the expression for t= - = t˙ ˙ ( ) ˙ ( )Q Q t Q t0 aswell as for ¶ = ¶ t˙ ˙ ( )Q Q tC S C S, , .
Finally, a substitution of all these results into the adaptive scheme designed in(6) yields the explicit formof the
adaptive scheme(7).

The other adaptive control schemes developed in this work for the coupled normal formmodels and for the
coupled analogousmodels of neuronal networks can be obtained in an analogous computational argument.

Appendix B.Derivative ofλ

Derivative ofλwith respect to τ in the transcendental characteristic equation at l b= i gives

l
t

b z= + - - +
l b=

{ } [( ) ] ·a a KaRe
d

d
1 4 ,

i

2 2 4 2 2

where z z b t= ( )L K a, , , , is analytically validated to be a positive quantity. For the case of ‘  <a0 1’, we
have

 b+ - - + - - + > -( ) ( )a a Ka a a Ka a1 4 1 4 1 0,2 2 4 2 2 4 2 2 2 2

for > +( )K a2 1 2 . Hence, this estimationwith the positive ζ validates >l
t{ }Re 0d

d
along the curve. On the

other hand, for the case of ‘ >a 1’, direct calculations, respectively, yield:
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which validate that l
t{ }Re d

d
along eachmarginal curve is non-zero.

AppendixC. Existence ofmarginal curves

Here, we prove that for givenK and L, there exists a threshold tc , belowwhich the system is stable, abovewhich it
is unstable, and at which there is a solution of bi for the corresponding transcendental characteristic equation.
The existence of tc and bi further implies the existence of themarginal curves specified in themain text.

From the definition of tc , there exist a sequence of t =
¥{ }n n 1 such that *t tn as  ¥n and for each tn,

there is a solution ln with l >{ }Re 0n for the transcendental characteristic equation:
l - - =l t-[ ]I A Bdet e 0n

n n , which naturally is transformed into l l- - =l t- - -[ ]I A Bdet e 0n n
1 1 n n . For a

sequence of complex numbers in , it is reasonable that as  ¥n , either situations, l  +¥∣ ∣n or *l ln

with * l{ }Re 0, is valid.
For thefirst situation of l  +¥∣ ∣n , we have l >{ }Re 0n so that <l t-∣ ∣e 1n n . Letting  ¥n gives

=[ ]Idet 0, which is a contradiction. Therefore, we need to consider the second situation *l ln as concluded
above.

By letting  ¥n in the characteristic equation and from the continuity, we have
* *l - - =l t-[ ]I A Bdet e 0c . Hence, we only need to disprove *l >{ }Re 0. From thewell-known implicit

function theorem, for τwhich belongs to a small domain containing tc innerly, the characteristic equation
always has a solutionλ satisfying l >{ }Re 0. This, however, contradicts the definition of tc because it is a
threshold value separating the stability and instability regions. Eventually, we have *l ={ }Re 0.

The above argument for proving the existence of tc is suited to both cases in themain text where tc1,2 are,
respectively, discussed and tc1 even can be explicitly obtained.
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