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Die Tagung fand unter der Leitung von A. Beauville (Ni
e), F. Catanese (G

�

ottingen), E.

Looijenga (Utre
ht) und Ch. Okonek (Z

�

uri
h) statt.

Wie s
hon bei fr

�

uheren Tagungen

�

uber komplexe Geometrie in Oberwolfa
h haben au
h

dieses Jahr viele bedeutende Mathematiker aus vers
hiedenen L

�

andern an der Tagung

teilgenommen. So �el es ni
ht s
hwer, ein interessantes Tagungsprogramm zusammenzu-

stellen.

Viele Vortr

�

age bezogen si
h auf wi
htige komplex-geometris
he Themen wie z.B. Mo-

dulr

�

aume von Kurven und Vektorb

�

undeln, Hilberts
hemata, Gromov-Witten Invarianten

und Quanten
ohomologie. Behandelt wurden au
h moderne Entwi
klungen und neue-

ste Resultate in der komplexen Geometrie, etwa: projektive Kontaktmannigfaltigkeiten,

komplex symplektis
he Mannigfaltigkeiten, Calabi-Yau Variet

�

aten, Invarianz der Plurige-

s
hle
hter. Dar

�

uber hinaus wurden au
h Anwendungen von Methoden aus der Ei
htheorie

und aus der symplektis
hen und fast komplexen Geometrie dargestellt.
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Abstra
ts

Estimated transversality in symple
ti
 geometry and proje
tive maps

D. Auroux

If (X

2n

; !) is a 
ompa
t symple
ti
 manifold, then it 
arries a 
ompatible almost-
omplex

stru
ture, but this almost-
omplex stru
ture is usually not integrable. Still, Donaldson has

shown that 
onstru
tions from 
omplex geometry 
an be performed using se
tions that are

only approximately holomorphi
: if L ! X is a line bundle with 


1

(L) =

1

2�

[!℄, then

L


k

has \many" approximately holomorphi
 se
tions, some of whi
h present estimated

transversality properties. In general, one has the following:

Theorem 1. Let S

k

be �nite strati�
ations of the jet bundles J

m

(C

r+1


 L


k

) by approx-

imately holomorphi
 submanifolds (+ geometri
 bounds). Then for k >> 0 there exist

approximately holomorphi
 se
tions s

k

of C

r+1


 L


k

, su
h that the m-jets j

m

s

k

are uni-

formly transverse to S

k

, i.e. 9� > 0 independent of k su
h that j

m

s

k

either avoids strata by

a distan
e > � or interse
ts them transversally with angle > �. Moreover, this 
onstru
tion

is 
anoni
al up to isotopy for k large enough.

This makes it possible to 
onstru
t in parti
ular proje
tive maps, i.e. to �nd s

k

=

(s

0

k

; : : : ; s

r

k

) su
h that f = [s

0

k

; : : : ; s

r

k

℄ : X n base ! C P

r

behaves like a generi
 
omplex

map, lo
ally. In parti
ular for maps to C P

2

the only generi
 lo
al models near 
riti
al

points are

(z

1

; : : : ; z

n

) 7�! (z

2

1

+ � � �+ z

2

n�1

; z

n

)

and

(z

1

; : : : ; z

n

) 7�! (z

3

1

+ z

1

z

n

+ z

2

2

+ � � �+ z

2

n�1

; z

n

):

In parti
ular, the bran
h 
urve D � C P

2

is a symple
ti
 
urve with only (
omplex) 
usps,

and nodes (
omplex or anti
omplex), as singularities. So for a given symple
ti
 manifold

we get invariants 
onsisting of a plane 
urve and a monodromy morphism (or rather a

sequen
e of su
h data for k >> 0). Conversely, these data allow one to re
onstru
t (X;!)

up to symple
tomorphism: these are 
omplete invariants.

When X is a symple
ti
 4-manifold, the monodromy data is just a homomorphism

� : �

1

(C P

2

nD)! S

N

, where N = deg(f); the interesting information is therefore en
oded

in the isotopy 
lass of the 
urve D, up to 
reation or 
an
ellation of pairs of nodes. The


urve D 
an be investigated using a 
omplete invariant: its braid monodromy (studied in

detail in the algebrai
 
ase by Moishezon and Tei
her). On the other hand, a less 
omplete

but more manageable invariant in the 
omplex 
ase is �

1

(C P

2

nD). In the symple
ti
 
ase,

node 
an
ellations a�e
t this group by quotienting �

1

(C P

2

nD) by 
ertain 
ommutators;

the resulting quotient G

k

is a symple
ti
 invariant for large enough k (joint result with

L. Katzarkov, M. Yotov and S. Donaldson). It is worth mentioning that, in all known

examples, for large enough k, one has G

k

�

=

�

1

(C P

2

nD) (stabilization does not a�e
t the

group). Also there exists an exa
t sequen
e 1 ! G

0

k

! G

k

! S

N

� Z

d

! Z

2

! 1, where

d = degD and the maps from G

k

to S

N

and Z

d

are respe
tively the monodromy and the

linking number.

In all known examples, G

0

k

is solvable, with [G

0

k

; G

0

k

℄ of order at most 4; Ab(G

0

k

) has been

thought to be a very powerful invariant, but it turns out that this is maybe not the 
ase;

in parti
ular, it 
annot distinguish the so-
alled Horikawa surfa
es, and there is eviden
e

suggesting that it may be a purely homologi
al invariant.

2



Szpiro inequalities for hyperellipti
 pen
ils

Bogomolov

(joint work with T. Pantev and L. Katzarkov)

Let X

g

be a symple
ti
 family of 
urves over S

2

with double singular points only. We

assume that all the vanishing 
y
les are nonseparating and the monodromy is a subgroup

of Map

hyp(g)

- the hyperellipti
 mapping 
lass group of genus g. This group 
oin
ides with

a 
entralizer of a hyperellipti
 involution in the mapping 
lass group Map(g).

Denote by N the total number of singular points in singular �bres and by D the number

of singular �bres.

Theorem 1. Under the above assumptions we have the inequality

N � (4g + 2)D:

For g = 1 we obtain the 
lassi
al Szpiro inequality and for g > 1 we obtain Lo
khardt's


onje
ture in the 
ase of proje
tive �brations.

The proof uses the monodromy 
onsiderations only.

BPS states of 
urves in Calabi-Yau 3-folds

J. Bryan

The Gopakumar-Vafa 
onje
ture gives a reformulation of Gromov-Witten theory in terms

of (
onje
turally) integer invariants obtained in physi
s by 
ounting BPS states. We give

an approa
h to the 
onje
ture that involves studying the 
ontribution of isolated 
urves

to the Gromov-Witten invariants and the 
orresponding BPS states. We prove this \lo
al

version" of the Gopakumar-Vafa 
onje
ture in a variety of 
ases.

In the last few minutes we des
ribe roughly how physi
s predi
ts the BPS invarints are

de�ned. They are the multipli
ities of 
ertain representations of sl

2

on the 
ohomology of

a moduli spa
e of D-branes. The pre
ise nature of the D-brane moduli spa
e and the sl

2

a
tion is not understood.

Multiple �bres and 
lassi�
ation theory

F. Campana

X = proje
tive manifold =C f : X �! Y a �bration (i.e. onto 
onne
ted, smooth,

proje
tive Y )

De�ne �(f) :=

P

(1 �

1

m

i

)�

i

, where �

i

runs over all irredu
ible divisors of Y , and for

any �

i

, m

i

:= m(f;�

i

) := g
d(m

ij

), where j runs over all irredu
ible 
omponents D

ij

of

f

�1

(�

i

) mapped onto �

i

by f , with f

�

(�

i

) = (

P

m

ij

D

ij

) + Rest. The pair Y;�(f)) is

the \preorbifold" stru
ture on Y de�ned by f .

De�ne K

Y

+ �(f) (a Q -divisor) to be the 
anoni
al \bundle" of this stru
ture (a funda-

mental group 
an be de�ned also).

De�ne �(Y; f) := inff�(Y

0

; K

Y

0

+ �(f

0

))g, where f

0

: X

0

! Y

0

runs over all �brations

whi
h are equivalent to f , equivalent means: 9u : X

0

! X and v : Y

0

! Y , bimeromor-

phi
, su
h that fu = vf

0

. (If �(Y ) � 0, this in�mum is not needed).

De�ne

1. f : X ! Y is a �bration of general type if �(Y; f) = dimY > 0.

2. X is spe
ial if 6 9f ;X ! Y of general type. We note: X 2 S, then
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3. f : X ! Y is a spe
ial �bration if so is its generi
 �bre.

Examples of spe
ial manifolds: 
urves of genus 0,1; Rationally 
onne
ted manifolds; mani-

foldsX with �(X) = 0. Also by a generalization to our 
ontext of Kobayashi-O
hai's exten-

sion theorem, an X is spe
ial if there exists a dominating meromorphi
 map � : C

n

! X,

and in parti
ular if the universal 
overing of X is

�

=

C

n

. Spe
ial surfa
es and threefolds

are 
lassi�ed, too.

Conje
ture 1. X spe
ial =) �

1

(X) is almost abelian.

This is true up to dimX = 3 (ex
ept 2 spe
ial 
ases), for rationally 
onne
ted X, and

also if �

1

(X) is either solvable torsion free or is linear (i.e. �

1

(X) � Gl(N; C )).

Conje
ture 2. X spe
ial () d

X

� 0 (where d

:

is the Kobayashi pseudometri
).

This essentually should redu
e to the 
ase where �(X) = 0 (where one should prove

that d

X

� 0) and to the 
ase where X is of general type (where one should prove Lang's


onje
ture). But the redu
tion itself should be highly non-trivial (assume f : X ! Y is a

�bration su
h that d

F

� 0 on the �bres; there are no multiple �bres, and d

Y

� 0. One has

to show that d

X

� 0).

We next 
onstru
t a 
ore 


X

: X ! C(X) with general �bre spe
ial and the largest

spe
ial subvarieties sitting inside X.

Conje
ture 3. The 
ore 


X

is a �bration of general type.

This is true up to dimension 3.

By 
onje
ture 2, d

X

vanishes on the �bres of 


X

, There exists thus a pseudometri
 d

�

C(X)

on C(X) su
h that d

X

= (


X

)

�

(d

�

C(X)

).

Conje
ture 4. : d

�

C(X)

is a metri
 outside some proper algebrai
 subset A � C(X)

This generalizes Lang's 
onje
ture, whi
h is the 
ase when �(X) = dimX, so that

C(X) = X.

A more pre
ise version of Conje
ture 4 
an be given: d

�

C(X)

should be the Kobayashi

pseudometri
 of the preorbifold (C(X);�(


X

)), naturally de�ned. Su
h a preorbifold of

general type has a Kobayashi pseudometri
 whi
h is a metri
 outside some A as above.

Finally let us say that if X is de�ned over a (�nitely generated over Q ) �eld K � C ,

then 


X

: X ! C(X) is de�ned over K. Mordell-Lang's Conje
ture should then extend

and say:

The K-rational points of X lie over �nitely many of the K-rational points of C(X).

Numeri
al 
hara
terization of the K�ahler 
one of a 
ompa
t K�ahler manifold

J.P. Demailly

(joint work with M. Paun)

The goal of this work is give a pre
ise numeri
al des
ription of the K�ahler 
one of a


ompa
t K�ahler manifold. Our main result states that the K�ahler 
one depends only on

the interse
tion form of the 
ohomology ring, the Hodge stru
ture and the homology 
lasses

of analyti
 
y
les: if X is a 
ompa
t K�ahler manifold, the K�ahler 
one K of X is one of

the 
onne
ted 
omponents of the set P of real (1; 1) 
ohomology 
lasses f�g whi
h are

numeri
ally positive on analyti
 
y
les, i.e.

R

Y

�

p

> 0 for every irredu
ible analyti
 set Y

in X, p = dimY . This result is new even in the 
ase of proje
tive manifolds, where it
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an be seen as a generalization of the well-known Nakai-Moishezon 
riterion, and it also

extends previous results by Campana-Peternell and Eyssidieux. The prin
ipal te
hni
al

step is to show that every nef 
lass f�g whi
h has positive highest self-interse
tion number

R

X

�

n

> 0 
ontains a K�ahler 
urrent; this is done by using the Calabi-Yau theorem and

a mass 
on
entration te
hnique for Monge-Amp�ere equations. The main result admits

a number of variants and 
orollaries, in
luding a des
ription of the 
one of numeri
ally

e�e
tive (1; 1) 
lasses and their dual 
one. As an appli
ation, D. Huybre
hts re
ently

obtained a des
ription of the K�ahler 
one of a very general hyperk�ahler manifold; a slightly

more pre
ise result by S. Bou
ksom states that the K�ahler 
one 
onsists pre
isely of the

(1; 1)-
lasses in the positive quadrati
 
one de�ned by the Beauville-Bogomolov quadrati


form, whi
h are positive on every rational 
urve (as there are no su
h 
urves for a very

general hyperk�ahler manifold, the K�ahler 
one then just 
oin
ides with the quadrati
 
one).

Another important 
onsequen
e is the fa
t that for an arbitrary deformation X ! S of


ompa
t K�ahler manifolds, the K�ahler 
one of a very general �ber X

t

is \independent"

of t, i.e. invariant by parallel transport under the (1; 1)-
omponent of the Gauss-Manin


onne
tion.

Published on arXiv as math.AG/0105176

Conta
t stru
tures and quaternioni
 geometry

J. Geiges

(joint work with J. Gonzalo)

A 
onta
t 
ir
le on a (real!) 3-manifold M is apair of 
onta
t forms (�

1

; �

2

) su
h that

any nontrivial 
ombination �

1

�

1

+ �

2

�

2

with 
onstant 
oeÆ
ients is again a 
onta
t form.

We 
all (�

1

; �

2

) taut if the volume form (�

1

�

1

+ �

2

�

2

) ^ (�

1

d�

1

+ �

2

d�

2

) is the same for

all (�

1

; �

2

) 2 S

2

� R

2

. Similarly one de�nes a (taut) 
onta
t sphere.

We have shown earlier that the 
losed 3-manifolds whi
h admit a taut 
onta
t 
ir
le are

exa
tly those of the form M = � n G with G equal to SU(2),

~

SL

2

, or

~

E

2

(the universal


over of the symetry groups of the three 2-dimensional spa
e forms), and � � G dis
rete

and 
o
ompa
t. Taut 
onta
t spheres exists exa
tly on left quotients � n SU(2).

In this talk I des
ribe how taut 
onta
t 
ir
les and spheres relate to 
omplex and hy-

perk�ahler geometry. This is then used to des
ribe the moduli of these families of 
onta
t

stru
tures. For instan
e, up to di�eomorphism and an obvious 
onformal equivalen
e, the

taut 
onta
t spheres on S

3

� H are given in quaternioni
 notation by

i�

1

+ j�

2

+ k�

3

=

1

4

(dq � �q � q � d�q)�

�

2

d(qi�q)

with � 2 R

+

0

. The key to this 
lassi�
ation is the result that a taut 
onta
t sphere on a


losed manifoldM gives rise to a 
at hyperk�ahler metri
 onM�R (this is false, in general,

if M is not 
losed).

Families of rationally 
onne
ted varieties

T. Graber

(joint work with J. Harris and J. Starr)

If X is a smooth, proje
tive variety =C , we say X is rationally 
onne
ted if any 2 points

in X 
an be joined by a rational 
urve. We prove the following result:
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Theorem 1. Let � : X �! B be a morphism of smooth proje
tive varieties, where B is

an irredu
ible 
urve. If a general �ber of � is rationally 
onne
ted, then � has a se
tion.

Our proof is by studying the lo
al stru
ture of the indu
ed morphism

�

M

g

(X; �) !

�

M

g

(P

1

; d) of moduli spa
es of stable maps together with some elementary properties of

spa
es of bran
hed 
overs.

2 K�ahler manifolds and spe
ial langrangien �brations

M. Grassi

In this talk we introdu
e s-K�ahler manifolds, whi
h are a generalization of K�ahler mani-

folds in whi
h s forms are involved. One way of de�ning them is as follows: You have s forms

!

1

; :::; !

s

of degree 2 on M , and a Riemanniann metri
 g so that all the forms !

j

are 
on-

stant. Moreover, over any p 2M you have an orthonormal 
oframe dx

1

; :::; dx

n

; dy

1

1

; :::; dy

s

n

so that (!

j

)

p

=

P

n

i=1

dx

i

^ dy

j

i

.

The easy way to build examples is with 
at tori, but the motivation for their introdu
tion is

their 
onje
tural relation with mirror symmetry for Calabi-Yau manifolds. Namely, in the

Strominger-Yau-Zaslow approa
h, the mirror partner of a CY 3-fold X is the moduli spa
e

of spe
ial lagrangian tori in X endowed with a 
at 
onne
tion. We show that the \uni-

versal" or total spa
e of su
h a moduli spa
e is a 9-dimensional almost 2-k�ahler manifold,

away from the singular �bres. We 
onje
ture that this spa
e admists a 
ompa
ti�
ationM

whi
h 
an be endowed with a globally de�ned 2-K�ahler stru
ture, extending that 
oming

from X at the level of forms (but not ne
essarily at the metri
 level). Su
h a stru
ture

would indu
e a representation of the Lie algebra sl(3;R) on the real 
ohomology of M ,

and this representation in turn should shed light on the mirror phaenomenon, at least at

the 
ohomologi
al level. The existen
e of this representation guarantees also the existen
e

of a (Hard) Lefs
hetz theorem, whi
h 
an be also used to put 
ohomologi
al restri
tions

whi
h guarantee that some manifold 
annot be s-K�ahler.

Symple
ti
 sums and relations in H

�

(

�

M

g;n

;Q )

E. Ionel

We show that any degree g monomial in des
endant or tautologi
al 
lasses vanishes

on M

g;n

(where g > 0). This generalizes a result of Looijenga and proves a version of

Getzler's 
onje
ture. The method we use is the sudy of relative Gromov-Witten invariants

of C P

1

relative to r points to give a 
orresponden
e between

�

M

g;n

and

�

M

0;r

. Pulling

ba
k relations in H

�

(

�

M

0;r

) together with the degeneration formula for Gromov-Witten

invariants of symple
ti
 sums proves the result stated at the beginning (The degeneration

formula for GW invariants is joint work with T. Parker from Mi
higan State University).

Uniqueness of 
onta
t stru
tures

S. Kebekus

A 
omplex manifold X of odd dimension 2n + 1 is said to be a \
onta
t manifold" if

there exists a sequen
e

0! F ! T

X

! L! 0

6



where L is a line bundle on X, and where the skew-symmetri
 map

N : F 
 F ! L

whi
h is indu
ed by the Lie-bra
ket, is everywhere non-degenerate. It is 
onje
tured that

a proje
tive 
onta
t manifold whi
h satis�es b

2

(X) = 1, is homogeneous. In the present

talk, we prove a weaker statement whi
h was 
onje
tured by LeBrun: If X is a proje
tive

manifold with b

2

(X) = 1 then either X

�

=

P

2n+1

, or the 
onta
t stru
ture is unique.

The proof is based on a result of Demailly, who has shown that X is ne
essarily Fano.

Using a re
ent 
hara
terization of the proje
tive spa
e, it follows that either X

�

=

P

2n+1

, or

that X is 
overed by rational 
urves ` whi
h interse
t the line bundle L with multipli
ity

one. A detailed study of the deformations of these 
urves reveals that at a general point

x 2 X, the subspa
e F j

x

� T

X

j

x

is spanned by the tangent spa
es of the minimal rational


urves whi
h 
ontain x. In parti
ular, F j

x

is 
anoni
ally given and therefore the subbundle

F is unique.

Complete sets of relations for the 
ohomology of moduli spa
es of bundles

over a 
ompa
t Riemann surfa
e

F. Kirwan

The 
ohomology of the moduli spa
e of stable bundles of rank 2 and odd degree d

over a 
ompa
t Riemann surfa
e is extremely well understood from the work of many

people; in parti
ular generators and a 
omplete set of relations (\Mumford relations")

among these generators are known. For bundles of rank n and degree d, where n and d

are 
oprime (so that the moduli spa
e is a nonsingular proje
tive variety) and n > 2, a set

of generators for the 
ohomology ring has been known for two de
ades or more, but the

obvious generalisation of the Mumford relations in rank 2 is not a 
omplete set when n > 2.

This talk des
ribes joint work with R. Earl, whi
h provides a modi�ed generalization of the

rank 2 Mumford relations, and sket
hes a proof that they form a 
omplete set of relations

for any n > 2.

Quantum 
ohomology without moduli spa
es

A. Kres
h

We dis
uss methods for 
omputing genus zero Gromov-Witten invariants of manifolds,

without using moduli spa
es.

We outline A. Bu
h's simpli�ed proof of the quantum Giambelli formula for the Grass-

mannian G = G(k; n) = fV � C

n

j dimV = kg. Let f�

�

g, indexed by partitions

� � (n� k)

k

, denote the usual basis of S
hubert 
lasses for H

�

(G). Bu
h establishes

Theorem 1. Given any two partitions �; � � (n � k)

k

, with the sum of the lengths of

� and � less than or equal to k, the quantum produ
t �

�

� �

�

in QH

�

(G) is equal to the


lassi
al produ
t �

�

[ �

�

.

The quantum Giambelli formula, whi
h was originally provd by Aaron Bertram and

whi
h states that Giambelli's determinant in spe
ial S
hubert 
lasses, evaluated inQH

�

(G),

is equal to �

�

is an immediate 
onsequen
e of this theorem. The proof uses the notion of

span of a map ' : P

1

�! G, t 7�! V

t

, de�ned as follows:

Span(') = SpanfV

t

jt 2 P

1

g:

7



We have

Proposition 2. The span of any degree d map ' : P

1

�! G has dimension � k + d.

A dimension-
ounting argument, involving span of maps, establishes the theorem.

On the 
ohomology ring of Hilbert s
hemes of surfa
es with K = 0

M. Lehn

Let X be a smooth proje
tive surfa
e =C . By a 
lassi
al result of Fogarty, for all n � 0,

the Hilbert s
heme X

[n℄

= f� � X subs
heme jdim� = 0; l(�) = ng is a smooth variety.

Its Betti numbers were 
omputed by G�otts
he, and Nakajima proved that

1

M

n=0

H

�

(X

[n℄

)t

�n

�

=

S

�

�

H

�

(X)
 t

�1

C [t

�1

℄

�

as representations over the Heisenberg Lie algebra

h = H

�

(X)
 C [t; t

�1

℄� C 
:

We report on joint work with Chr. Sorger to determine the ring stru
ture of H

�

(X

[n℄

) in

terms of the ring stru
ture of H

�

(X).

Let A =

L

d

i=�d

A

i

be a graded Frobenius algebra, d an even natural number. A ring

stru
ture is de�ned on AfS

n

g :=

L

�2S

n

A


�nf1;::: ;ng

� in su
h a way, that the subring of

invariants A

[n℄

:= AfS

n

g

S

n

with respe
t to the 
onjugation a
tion of S

n

is again a Frobenius

algebra. We apply this 
onstru
tion to the 
ase A = H

�

(X)[2℄.

Theorem 1. If X is a smooth proje
tive surfa
e with K

X

� 0,

(H

�

(X)[2℄)

[n℄

�

=

H

�

(X

[n℄

)[2n℄:

The proof is based on 
al
ulations in Nakajima's vertex algebra stru
ture on H =

L

1

n=0

H

�

(X

[n℄

) and geometri
 results relating this stru
ture with multipli
ation opera-

tors m(�) : H ! H , where m(�)j

H

�

(X

[n℄

)

= �

[n℄

[ �, and �

[n℄

= p

�

(
hO

�


 q

�

(� � td X)),

� � X

[n℄

�X denoting the universal family.

A degeneration of the moduli of stable morphisms

J. Li

We study the following problem: Let � : W ! C be a proje
tive family of s
hemes.

We assume that for t 6= 0 2 C W

t

are smooth and that the spe
ial �ber W

0


onsists

of two smooth 
omponents interse
ting transversally along a smooth divisor D. Here we

assume the total spa
e W to be smooth. Let (g; n) be a pair of integers and � the degree

of the stable morphisms to be studied, also �xed. Then it is well understood that the

GW-invariants of W

t

, t 6= 0, are 
onstru
ted based on

1.) The moduli of stable morphismsM

g;n

(W

t

; �);

2.) The virtual moduli 
y
le [M

g;n

(W

t

; �)℄

virt

and

3.) GW (W

t

)(�) =

R

[M

g;n

(W

t

;�)℄

virt

� .
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The goal of this proje
t is to de�ne the GW-invariants of W

0

, de�ne the relative GW-

invariants of the two 
omponents Y

1

and Y

2

of W

0

, and then establish a degeneration

formula of the form

GW (W

t

) = GW (W

0

)

(�) = an expression in f rel �GW (Y

1

; D), rel �GW (Y

2

; D) g

The main ingredient of this proje
t is to introdu
e a new set of stable morphisms to

W [n℄

0

and introdu
e

M

g;n

(W; �) =M

g;n

(W nW

0

; �)

aa

n�0

M

g;n

(W [n℄

0

; �)

st

=(C

�

)

n

We then prove that

Theorem 1. M

g;n

(W; �) is naturally a separated proper Deligne-Mumford sta
k with per-

fe
t obstru
tion theory.

The part of the proje
t, that was not mentioned in the le
ture, but 
ompleted, in
ludes

the following steps: 
onstru
t the moduli spa
e of relative stable morphisms; 
onstru
t their

perfe
t obstru
tion theories and de�ne two relative GW invariants; prove a degeneration

formula of the form (�).

A generalization of the Grauert Mumford 
riterion for semismall maps

L. Migliorini

(joint work with M. de Cataldo)

Let X be a nonsingular 
omplex variety. A map f : X ! Y is said to be semismall if for

every subvariety S � X 2dim(S)�dim f(S) � dimX. The main sour
e of semismall map

is given by 
ontra
tion of holomorphi
 symple
ti
 varieties. Suppose X proje
tive. A line

bundle L is said to be LEF if some multiple is globally generated and the map it de�nes is

semismall. LEF line bundles behave in many ways just as ample line bundles. For instan
e,

the Kodaira Akizuki Nakano theorem holds for LEF bundles; a related statement is that

the Hard Lefs
hetz theorem holds for a LEF bundle: 


1

(L) : H

n�k

(X) �! H

n+k

(X) is an

isomorphism for all k = 0; : : : ; n.

This result has some interesting 
onsequen
es for the topology of semismall maps. The

�rst 
orollary is the following: let Y

i

be a strati�
ation of Y su
h that f

�1

(Y

i

) ! Y

i

is a

topologi
ally lo
ally trivial �bration. Suppose 2dimf

�1

(Y

i

) � dimY

i

= dimX. Let y 2 Y

i

and D be a lo
al transversal sli
e to Y

i

. The interse
tion form de�ned by the irredu
ible


omponents of f

�1

(y) (
omputed in f

�1

(D)) is de�nite ((�1)

dimD

2

-de�nite). This is a

generalization of the Grauert Mumford 
riterion for 
ontra
tibility of 
urves on a surfa
e. A


orollary of this statement is the following statement: Rf

�

Q

X

[n℄ =

L

JH

�

Y

i

(L

i

), whi
h is a

spe
ial 
ase of the de
omposition theorem of BeilinsonBernsteinDeligne. Here JH

�

Y

i

(L

i

) is

the interse
tion 
ohomology 
omplex of the lo
al system L

i

on Y

i

de�ned by the monodromy

of the irredu
ible 
omponents of the �bres of f j

f

�1

(Y

i

)

. The statement about nondegenera
y

of interse
tion forms allows also the de�nition of a proje
tor P 2 A

n

(X �X)

Q

su
h that

(X;P ) is the motive of interse
tion 
ohomology of Y . This is 
onsistent with the re
ent

mostly 
onje
tural theory of motivi
 de
omposition given by Corti-Hanamura.
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Homology of moduli spa
es of sheaves on a K3 surfa
e

H. Nakajima

Let (X;H) be a polarized K3 surfa
e =C . Let (H

�

(X;Z); h; i) be the Mukai latti
e, i.e.

hx; yi = hx

1

[y

1

�x

0

[y

2

�x

2

[y

0

; [X℄i where x

i

; y

i

are theH

2i

(X;Z)-
omponents of x; y. For

a 
oherent sheaf E on X, let us de�ne the Mukai ve
tor v(E) by 
h(E)

p

tdX 2 H

�

(X;Z).

LetM

H

(v) be the moduli spa
e ofH-stable sheaves E onX with v(E) = v. If v is primitive

and H is generi
, it is known thatM

H

(v) is a nonsingular proje
tive variety with a natural

symple
ti
 stru
ture (Mukai). Harvey-Moore proposed the following

Problem 1. Study the stru
ture of

L

v

H

�

(M

H

(v)). Relate it to the representation the-

ory of an 1-dimensional Lie algebra, a kind of a generalized Ka
-Moody Lie algebra

(Bor
herds).

The stru
ture should 
ome fom the following subvariety in the triple produ
t:

Closf(E

1

; E

2

; E

3

)j0! E

1

! E

2

! E

3

! 0)g �M

H

(v

1

)�M

H

(v

2

)�M

H

(v

3

):

We are intersted in a spe
ial 
ase when M

H

(v

1

) or M

H

(v

2

) is a point, in other words, the


orresponding sheaf is a rigid sheaf. When E

2

= i

�

O

C

(d) where C is a (-2)-
urve, I have

proved that the above operator gives a representation of

^

sl

2

, an aÆne lie algebra of sl

2

.

By a philosophy 
oming from the duality in the string theory, we should expe
t the

whole 
onstru
tion has a symmetry under O(H

�

(X;Z)). It implies, that we 
ould have a

similar 
onstru
tion for any rigid sheaf.

Based on a work of Yoshioka and Markman, we 
an 
onstru
t a representation of sl

2

(�nite dimensional!) by the above 
orresponden
e with a rigid sheaf E

1

. Her we must put

a 
ertain te
hni
al 
onditon on H and v

2

, v

3

.

Examples of irredu
ible symple
ti
 varieties

K. O'Grady

We des
ribe two new examples of irredu
ible symple
ti
 varieties (of dimension 6 and

10). These manifols are not not deformation equivalent to the other known irredu
ible

symple
ti
 manifolds (Hilbert s
hemes of points on a K3 surfa
e and generalized Kummer

varieties). First one 
onstru
ts a symple
ti
 
ompa
ti�
ation of M

st

, the moduli spa
e of

rank-2 stable torsion-free sheaves with 


1

= 0 and 


2

= 2k on a proje
tive surfa
e S with

K

s

� 0, where k = 2 if S is a K3, and k = 1 if S is an abelian surfa
e. The moduli spa
e

M

st

is an open subset of the singular moduli spa
eM of semistable sheaves (with the same

rank and Chern 
lasses): one blows upM twi
e and then one 
ontra
ts an extremal ray to

get the symple
ti
 desingularization

~

M. If S is a K3 then

~

M is a new symple
ti
 variety

of dimension 10: it is \new" be
ause b

2

(

~

M) � 24, and all known examples have b

2

� 23.

If S is an abelian surfa
e, let

~

M

0

be the �bre over (0;

^

0) of the �bration

~

M! S�

^

S whi
h

maps the point [F ℄ to (Alb(


2

(F )); detF ) (stri
tly speaking we �rst map

~

M to M, and

then apply this map). Then dim

~

M

0

= 6, b

2

(

~

M

0

) = 8, and

~

M

0

is irredu
ible symple
ti
;

sin
e b

2

= 7 or b

2

= 23 for all other 6-dimensional examples,

~

M

0

is a \new" irredu
ible

symple
ti
 manifold. The topologi
al 
omputations needed to prove that

~

M and

~

M

0

are

irredu
ible symple
ti
 and that b

2

(

~

M

0

) = 8 (b

2

(

~

M) � 24 is easy) are done by applying

Goreski-Ma
Pherson's LHT to a high power of the determinant line bundle over

~

M (or

~

M

0

).
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The Rozansky-Witten topologi
al quantum �eld theory

J. Sawon

(joint work with J. Roberts and S. Willerton)

About �ve years ago Rozansky and Witten wrote a paper in whi
h they des
ribed a

topologi
al sigma model based on a path integral over the spa
e of all maps from a 3-

manifold to a hyperk�ahler manifold X. The topologi
al output of this theory is twofold:

1. Fixing the hyperk�ahler manifold, the partition fun
tion of the theory is a topologi
al

invariant of the 3-manifold. For example, if X is the Atiyah-Hit
hin manifold (a


ertain monopole moduli spa
e), the 3-fold invariant is the Casson invariant.

2. A Feynman diagram expansion of the partition fun
tion gives 
oeÆ
ients whi
h de-

pend on the hyperk�ahler manifold (and on a Feynman diagram). These are a kind

of a generalized "Chern numbers", and are 
onstant under deformations of the hy-

perk�ahler stru
ture.

In my talk I investigated the asso
iated 3-dimensional TQFT.

In fa
t, instead of the usual TQFT, we look at the extended TFT. This involves extending

the 
ategory of 3-bordisms to a 2-
ategory (obje
ts are 1-manifolds, morphisms are 2-

bordisms, 2-fun
tors are 3-bordisms with 
orners). Then an ETFT is a 2-fun
tor from this

2-
ategory. In other words, it takes 1-manifolds to 
ategories, 2-bordisms to fun
tors, and

3-bordisms to natural transformations.

In our 
onstru
tion the images of 1-manifolds are derived 
ategories D(pt), D(X), D(X�

X), et
. and the fun
tors are integral transforms 
onstru
ted from the kernels O

diagonal

�

X � � � � � X. Only at the 3-bordism level do we need X to be hyperk�ahler (instead

of just a 
omplex manifold). Then the natural transformations are 
onstru
ted using a

generalization of the 
oeÆzients from 2) above. This gives us a 
ompletely 
ombinatorial

des
ription of the (extended) TQFT.

Quasi-proje
tivity of moduli spa
es of polarized proje
tive varieties

G. S
huma
her

Theorem 1 (H. Tsuji-G. S
huma
her). Any 
oarse moduli spa
e of polarized, (smoth) pro-

je
tive varieties is quasi-proje
tive.

Corollary 2. Moduli spa
es of polarized non-uniruled varieties are quasi-proje
tive.

Known was the quasi-proje
tivity for moduli spa
es of polarized varieties su
h that anm-


anoni
al bundle is globally generated (E. Viehweg 89/90), in
luding the 
ase of 
anoni
ally

polarized varieties.

We 
onstru
t a line bundle on the 
ompa
ti�ed moduli spa
e with a positive hermitian

metri
 where Lelong numbers vanish su
h that the 
urvature is stri
tly positive in the

interior, as a 
urrent. The method is based upon the 
urvature formula for the Quillen

metri
s on determinant line bundles (Bismut-Gillet-Soul�e), GriÆth's theory about period

mappings, and moduli of framed manifolds. In a se
ond step, an embedding theorem is

proved.
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Deformational invarian
e of plurigenera

Y.T. Siu

Let X be a holomorphi
 family of 
ompa
t 
omplex proje
tive algebrai
 manifolds with

�bers X

t

over the open unit 1-disk �. Let K

X

t

and K

X

be respe
tively the 
anoni
al line

bundles of X

t

and X. We prove that, if L is a holomorphi
 line bundle over X with a

(possibly singular) metri
 e

�'

of semipositive 
urvature 
urrent on X su
h that e

�'

j

X

0

is

lo
ally integrable onX

0

, then for any positive integerm, any s 2 �(mK

X

0

+L) with jsj

2

e

�'

lo
ally bounded on X

0


an be extended to an element of �(X;mK

X

+ L). In parti
ular,

dim�(X

t

; mK

X

t

+ L) is independent of t for ' smooth. The 
ase of trivial L gives the

deformational invarian
e of the plurigenera. The method of proof uses an appropriately

formulated e�e
tive version, with estimates, of the argument in the speaker's earlier paper

on the invarian
e of plurigenera for general type. A deli
ate point of the estimates involves

the use of metri
s as singular as possible for pK

X

0

+a

p

L on X

0

to make the the dimension

of the spa
e of L

2

holomorphi
 se
tions over X

0

bounded independently of p, where a

p

is

the smallest integer �

p�1

m

. These metri
es are 
onstru
ted from s. More 
onventional

metri
es, independent of s, su
h as generalized Bergman kernels, are not singular enough

for the estimates.

Gauge theoreti
al equivariant Gromov-Witten invariants

A. Teleman

(joint work with Ch. Okonek)

Let (F; !; J) be an almost K�ahler manifold, � :

^

K � F �! F an a
tion of

^

K whi
h lets

J invariant and K a 
losed subgroup of

^

K, whi
h lets ! invariant (

^

K is a 
ompa
t Lie

group).

We introdu
e, using gauge theoreti
al methods, Gromov-Witten type invariants for su
h

triples (F; �;

^

K). The adiabati
 limit 
onje
ture states that these invariants 
an be related

to the (twisted) Gromov-Witen invariants of the 
orresponding symple
ti
 quotient of F

with respe
t to K.

We state a "universal" Kobayashi-Hit
hin 
orresponden
e (generalizing previous results

by Mundet i Riera) whi
h gives a 
omplex geometri
 interpretation of the moduli spa
es

asso
iated with any triple (F; !; J) with F K�ahler. Using this Kobayashi-Hit
hin 
orre-

sponden
e, we des
ribe expli
itely the moduli spa
es asso
iated with triples of the form

1. (Hom(C

r

; C

r

0

); �


an

; U(r)), where �


an

is the natural a
tion of U(r)� U(r

0

).

2. (C

r

; �


an

; K

w

), where �


an

is the natural a
tion of [S

1

℄

r

on C

r

and K

w

= ker(w),

where w is an epimorphism w : [S

1

℄

r

�! [S

1

℄

m

.

An expli
it formula for the invariants for the �rst 
ase (when r = 1) and appli
ations are

dis
ussed.

Vanishing 
omje
tures for the moduli spa
e of 
urves

R. Vakil

(joint work with T. Graber)

There are many \vanishing" 
onje
tures and theorems on the moduli spa
e

�

M

g;n

of

(genus g, n-pointed) 
urves, whi
h roughly state, that 
ertain 
ohomology 
lasses vanish
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on some large open subset. I will motivate a new 
onje
ture, Conje
ture � (dimension i


lasses vanish away from the lo
us of 
urves with at least 2g�2+n�i rational 
omponents;


odimension j 
lasses vanish away from the lo
us of 
urves with at least j � g+1 rational


omponents), from whi
h the other vanishing 
onje
tures and theorems, and more, easily

follows.

In some sense, one should think, that the fundamental geometri
al fa
t is Conje
ture �,

and that the other vanishing results are 
ombinatorial 
onsequen
es. This 
onje
ture also

suggests that the 
oarse strati�
ation of

�

M

g;n

by number of genus 0 
omponents is useful.

In the last few minutes, I will sket
h a proof of at least part of of the 
onje
ture, giving

most of the desired 
onsequen
es. The key idea is to 
onsider \Hurwitz 
lasses", and use

both degeneration and virtual lo
alization arguments on J. Li's (algebrai
) moduli spa
e

of relative stable maps (see p. 8)

Symple
ti
 Hilbert s
hemes and a 
onje
ture of Ruan

C. Voisin

If X is a 
omplex surfa
e, it is known by Fogarty that the pun
tual Hilbert s
heme

Hilb

k

(X) is smooth. By the Hilbert-Chow morphism 
 : Hilb

k

(X)! X

(k)

, it is a desingu-

larization of the symmetri
 produ
t. We �rst explain the 
onstru
tion of a similar desin-

gularization 
 : Hilb

k

(X)! X

(k)

, when X is now an almost 
omplex fourfold. The map 


is 
ontinuous, is a di�eomorphism over X

(k)

0

, the open set parametrizing k-uples of distin
t

points, and its �bers are isomorphi
 to the �bers of the Hilbert-Chow morphism in the 
om-

plex 
ase. We show also that if (X; J) is 
ompa
t symple
ti
 , that is J is an almost 
omplex

stru
ture ompatible with !, Hilb

k

(X) is also symple
ti
. Following G�otts
he-Siergel, we

explain the 
omputation of the 
ohomoloy of Hilb

k

(X) in the 
omplex 
ase. We also show

it is still valid in our symple
ti
 situation. It follows from this that H

�

(Hilb

k

(X)) is 
anon-

i
ally isomorphi
 to the orbifold 
ohomology H

�

orb

(X

(k)

) de�ned by Ruan-Chen. Chen and

Ruan have a 
onstru
tion of a ring stru
ture on orbifold 
ohomology. Ruan 
onje
tures

that under the additive isomorphism above, the produ
t on H

�

(Hilb

k

(X)) is dedu
ed from

the produ
t on orbifold 
ohomology, modi�ed by quantum 
orre
tion asso
iated to the

Gromov-Witten invariants �

A;0;n

, where A 2 ker(H

2

(Hilb

k

(X);Z)




�

! H

2

(X

(k)

;Z))

�

=

Z.

Small 
ontra
tions of 
omplex symple
ti
 4-folds

J. Wisniewski

(joint work with J. Wierzba)

Let ' : X ! Y be a lo
al 
ontra
tion in the sense of M & P: Assume that ' is

birational and 
ontra
ts the ex
eptional lo
us lo
us E to an isolated point y 2 Y . We

asssume moreover that X admits a symple
ti
 (holomorphi
) form (hen
e ' is a 
repant


ontra
tion).

This talk reports on an approa
h to prove

Theorem 1 (Wierzba-). In the above situation, if dimX = 4, then ' is analyti
ally equiv-

alent to 
ontra
ting the zero se
tion in the 
otangent bundle of the proje
tive plane.

Edited by Markus D�urr
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