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Die Tagung fand unter der Leitung von A. Beauville (Nice), F. Catanese (Gottingen), E.
Looijenga (Utrecht) und Ch. Okonek (Ziirich) statt.

Wie schon bei fritheren Tagungen iiber komplexe Geometrie in Oberwolfach haben auch
dieses Jahr viele bedeutende Mathematiker aus verschiedenen Lindern an der Tagung
teilgenommen. So fiel es nicht schwer, ein interessantes Tagungsprogramm zusammenzu-
stellen.

Viele Vortrige bezogen sich auf wichtige komplex-geometrische Themen wie z.B. Mo-
dulrdume von Kurven und Vektorbiindeln, Hilbertschemata, Gromov-Witten Invarianten
und Quantencohomologie. Behandelt wurden auch moderne Entwicklungen und neue-
ste Resultate in der komplexen Geometrie, etwa: projektive Kontaktmannigfaltigkeiten,
komplex symplektische Mannigfaltigkeiten, Calabi-Yau Varietiten, Invarianz der Plurige-
schlechter. Dariiber hinaus wurden auch Anwendungen von Methoden aus der Eichtheorie
und aus der symplektischen und fast komplexen Geometrie dargestellt.



Abstracts

Estimated transversality in symplectic geometry and projective maps
D. Auroux

If (X?" w) is a compact symplectic manifold, then it carries a compatible almost-complex
structure, but this almost-complex structure is usually not integrable. Still, Donaldson has
shown that constructions from complex geometry can be performed using sections that are
only approximately holomorphic: if L — X is a line bundle with ¢;(L) = 5-[w], then
L®F has “many” approximately holomorphic sections, some of which present estimated
transversality properties. In general, one has the following:

Theorem 1. Let Sy be finite stratifications of the jet bundles J™(C™' @ L=*) by approz-
imately holomorphic submanifolds (+ geometric bounds). Then for k >> 0 there erist
approzimately holomorphic sections s;, of C't' ® L®*, such that the m-jets j™s; are uni-
formly transverse to S, i.e. An > 0 independent of k such that j™sy. either avoids strata by
a distance > n or intersects them transversally with angle > n. Moreover, this construction
15 canonical up to isotopy for k large enough.

This makes it possible to construct in particular projective maps, i.e. to find s, =
(s),...,s%) such that f = [s%,...,s%] : X \ base — CP" behaves like a generic complex
map, locally. In particular for maps to CP? the only generic local models near critical
points are

(zla--' ,Zn)'—>(2’%+"'+2’72l,1,2n)

and
(Zla s JZTl) — (Zi)’ + 212 + Z% +et Z721717Z71)'

In particular, the branch curve D C CP? is a symplectic curve with only (complex) cusps,
and nodes (complex or anticomplex), as singularities. So for a given symplectic manifold
we get invariants consisting of a plane curve and a monodromy morphism (or rather a
sequence of such data for k£ >> 0). Conversely, these data allow one to reconstruct (X,w)
up to symplectomorphism: these are complete invariants.

When X is a symplectic 4-manifold, the monodromy data is just a homomorphism
6 : 7 (CP?\ D) — Sy, where N = deg(f); the interesting information is therefore encoded
in the isotopy class of the curve D, up to creation or cancellation of pairs of nodes. The
curve D can be investigated using a complete invariant: its braid monodromy (studied in
detail in the algebraic case by Moishezon and Teicher). On the other hand, a less complete
but more manageable invariant in the complex case is 71 (CP? \ D). In the symplectic case,
node cancellations affect this group by quotienting 7, (CP? \ D) by certain commutators;
the resulting quotient Gy is a symplectic invariant for large enough k& (joint result with
L. Katzarkov, M. Yotov and S. Donaldson). It is worth mentioning that, in all known
examples, for large enough k, one has Gy = 7 (CP? \ D) (stabilization does not affect the
group). Also there exists an exact sequence 1 — G — Gy — Sy X Zg — Zy — 1, where
d = degD and the maps from Gy to Sy and Z, are respectively the monodromy and the
linking number.

In all known examples, GY is solvable, with [GY}, GY] of order at most 4; Ab(GY) has been
thought to be a very powerful invariant, but it turns out that this is maybe not the case;
in particular, it cannot distinguish the so-called Horikawa surfaces, and there is evidence
suggesting that it may be a purely homological invariant.



Szpiro inequalities for hyperelliptic pencils
BocomoLrov
(joint work with T. Pantev and L. Katzarkov)

Let X9 be a symplectic family of curves over S? with double singular points only. We
assume that all the vanishing cycles are nonseparating and the monodromy is a subgroup
of Mapyypy) - the hyperelliptic mapping class group of genus g. This group coincides with
a centralizer of a hyperelliptic involution in the mapping class group Map(g).

Denote by N the total number of singular points in singular fibres and by D the number
of singular fibres.

Theorem 1. Under the above assumptions we have the inequality
N < (49 +2)D.

For ¢ = 1 we obtain the classical Szpiro inequality and for ¢ > 1 we obtain Lockhardt’s
conjecture in the case of projective fibrations.
The proof uses the monodromy considerations only.

BPS states of curves in Calabi-Yau 3-folds
J. BRYAN

The Gopakumar-Vafa conjecture gives a reformulation of Gromov-Witten theory in terms
of (conjecturally) integer invariants obtained in physics by counting BPS states. We give
an approach to the conjecture that involves studying the contribution of isolated curves
to the Gromov-Witten invariants and the corresponding BPS states. We prove this “local
version” of the Gopakumar-Vafa conjecture in a variety of cases.

In the last few minutes we describe roughly how physics predicts the BPS invarints are
defined. They are the multiplicities of certain representations of sly on the cohomology of
a moduli space of D-branes. The precise nature of the D-brane moduli space and the sl
action is not understood.

Multiple fibres and classification theory
F. CAMPANA

X = projective manifold /C f : X — Y a fibration (i.e. onto connected, smooth,
projective Y)
Define A(f) := Y (1 — m%)Ai, where A; runs over all irreducible divisors of YV, and for
any A;, m; := m(f,A;) := ged(m;;), where j runs over all irreducible components D;; of
f71(A;) mapped onto A; by f, with f*(A;) = (3. mi;D;;) + Rest. The pair Y, A(f)) is
the “preorbifold” structure on Y defined by f.
Define Ky + A(f) (a Q-divisor) to be the canonical “bundle” of this structure (a funda-
mental group can be defined also).
Define (Y, f) := inf{x(Y', Ky» + A(f'))}, where f': X' — Y’ runs over all fibrations
which are equivalent to f, equivalent means: Ju : X' — X and v : Y/ — Y, bimeromor-
phic, such that fu=wvf". (If £&(Y) > 0, this infimum is not needed).
Define

1. f: X = Y is a fibration of general type if x(Y, f) = dimY > 0.

2. X is special if Af; X — Y of general type. We note: X € S, then




3. f: X — Y is a special fibration if so is its generic fibre.

Examples of special manifolds: curves of genus 0,1; Rationally connected manifolds; mani-
folds X with x(X) = 0. Also by a generalization to our context of Kobayashi-Ochai’s exten-
sion theorem, an X is special if there exists a dominating meromorphic map ¢ : C* — X,
and in particular if the universal covering of X is =2 C". Special surfaces and threefolds
are classified, too.

Conjecture 1. X special = m,(X) is almost abelian.

This is true up to dim X = 3 (except 2 special cases), for rationally connected X, and
also if 7 (X) is either solvable torsion free or is linear (i.e. 7 (X) C GI(N,C)).

Conjecture 2. X special <= dx =0 (where d_ is the Kobayashi pseudometric).

This essentually should reduce to the case where x(X) = 0 (where one should prove
that dxy = 0) and to the case where X is of general type (where one should prove Lang’s
conjecture). But the reduction itself should be highly non-trivial (assume f: X — Y is a
fibration such that drp = 0 on the fibres; there are no multiple fibres, and dy- = 0. One has
to show that dx = 0).

We next construct a core cx : X — C(X) with general fibre special and the largest
special subvarieties sitting inside X.

Conjecture 3. The core cx is a fibration of general type.

This is true up to dimension 3.
By conjecture 2, dyx vanishes on the fibres of c¢x, There exists thus a pseudometric dc(x)

on C'(X) such that dx = (cx)"(dgy))-
Conjecture 4. : db(X) is a metric outside some proper algebraic subset A C C(X)

This generalizes Lang’s conjecture, which is the case when k(X) = dim X, so that
C(X)=X.

A more precise version of Conjecture 4 can be given: db(x) should be the Kobayashi
pseudometric of the preorbifold (C'(X), A(cx)), naturally defined. Such a preorbifold of
general type has a Kobayashi pseudometric which is a metric outside some A as above.

Finally let us say that if X is defined over a (finitely generated over Q) field K C C,
then cx : X — C(X) is defined over K. Mordell-Lang’s Conjecture should then extend
and say:

The K-rational points of X lie over finitely many of the K-rational points of C'(X).

Numerical characterization of the Kahler cone of a compact Kahler manifold
J.P. DEMAILLY
(joint work with M. Paun)

The goal of this work is give a precise numerical description of the Kahler cone of a
compact Kéahler manifold. Our main result states that the Kahler cone depends only on
the intersection form of the cohomology ring, the Hodge structure and the homology classes
of analytic cycles: if X is a compact Kahler manifold, the Kahler cone I of X is one of
the connected components of the set P of real (1,1) cohomology classes {«a} which are
numerically positive on analytic cycles, i.e. fY a? > 0 for every irreducible analytic set Y
in X, p=dimY. This result is new even in the case of projective manifolds, where it



can be seen as a generalization of the well-known Nakai-Moishezon criterion, and it also
extends previous results by Campana-Peternell and Eyssidieux. The principal technical
step is to show that every nef class {a} which has positive highest self-intersection number
) + @ > 0 contains a Kahler current; this is done by using the Calabi-Yau theorem and
a mass concentration technique for Monge-Ampere equations. The main result admits
a number of variants and corollaries, including a description of the cone of numerically
effective (1,1) classes and their dual cone. As an application, D. Huybrechts recently
obtained a description of the Kahler cone of a very general hyperkahler manifold; a slightly
more precise result by S. Boucksom states that the Kahler cone consists precisely of the
(1, 1)-classes in the positive quadratic cone defined by the Beauville-Bogomolov quadratic
form, which are positive on every rational curve (as there are no such curves for a very
general hyperkdhler manifold, the Kéhler cone then just coincides with the quadratic cone).
Another important consequence is the fact that for an arbitrary deformation X — S of
compact Kahler manifolds, the Kahler cone of a very general fiber X, is “independent”
of ¢, i.e. invariant by parallel transport under the (1,1)-component of the Gauss-Manin
connection.

Published on arXiv as math.AG/0105176

Contact structures and quaternionic geometry
J. GEIGES
(joint work with J. Gonzalo)

A contact circle on a (real!) 3-manifold Mis apair of contact forms (ay, as) such that
any nontrivial combination Ajaq + Asas with constant coefficients is again a contact form.
We call (a1, ap) taut if the volume form (Ao + Aaaa) A (A1day + Aadas) is the same for
all (A1, A\y) € S? C R?. Similarly one defines a (taut) contact sphere.

We have shown earlier that the closed 3-manifolds which admit a taut contact circle are
exactly those of the form M =T\ G with G equal to SU(2), SLsy, or Ey (the universal
cover of the symetry groups of the three 2-dimensional space forms), and I' C G discrete
and cocompact. Taut contact spheres exists exactly on left quotients I\ SU(2).

In this talk I describe how taut contact circles and spheres relate to complex and hy-
perkéahler geometry. This is then used to describe the moduli of these families of contact
structures. For instance, up to diffeomorphism and an obvious conformal equivalence, the
taut contact spheres on S® C H are given in quaternionic notation by

. . 1 _ I 2
i + jog + kag = Z(dq -q—q-dq) — §d(qzq)

with v € Ry . The key to this classification is the result that a taut contact sphere on a
closed manifold M gives rise to a flat hyperkdhler metric on M xR (this is false, in general,
if M is not closed).

Families of rationally connected varieties
T. GRABER
(joint work with J. Harris and J. Starr)

If X is a smooth, projective variety /C, we say X is rationally connected if any 2 points
in X can be joined by a rational curve. We prove the following result:



Theorem 1. Let m : X — B be a morphism of smooth projective varieties, where B is
an irreducible curve. If a general fiber of m is rationally connected, then ™ has a section.

~ Our proof is by studying the local structure of the induced morphism M,(X,8) —
M,(P',d) of moduli spaces of stable maps together with some elementary properties of
spaces of branched covers.

2 Kahler manifolds and special langrangien fibrations
M. GRASSI

In this talk we introduce s-Kéahler manifolds, which are a generalization of Kahler mani-

folds in which s forms are involved. One way of defining them is as follows: You have s forms
Wi, ..., ws of degree 2 on M, and a Riemanniann metric g so that all the forms w; are con-
stant. Moreover, over any p € M you have an orthonormal coframe dx1, ..., dz,, dy], ..., dy$
so that (w;), = S0, da; A dy.
The easy way to build examples is with flat tori, but the motivation for their introduction is
their conjectural relation with mirror symmetry for Calabi-Yau manifolds. Namely, in the
Strominger-Yau-Zaslow approach, the mirror partner of a CY 3-fold X is the moduli space
of special lagrangian tori in X endowed with a flat connection. We show that the “uni-
versal” or total space of such a moduli space is a 9-dimensional almost 2-kahler manifold,
away from the singular fibres. We conjecture that this space admists a compactification M
which can be endowed with a globally defined 2-Kéhler structure, extending that coming
from X at the level of forms (but not necessarily at the metric level). Such a structure
would induce a representation of the Lie algebra sl(3,R) on the real cohomology of M,
and this representation in turn should shed light on the mirror phaenomenon, at least at
the cohomological level. The existence of this representation guarantees also the existence
of a (Hard) Lefschetz theorem, which can be also used to put cohomological restrictions
which guarantee that some manifold cannot be s-Kahler.

Symplectic sums and relations in H*(M,,, Q)
E. IoNEL

We show that any degree g monomial in descendant or tautological classes vanishes
on M, (where g > 0). This generalizes a result of Looijenga and proves a version of
Getzler’s conjecture. The method we use is the sudy of relative Gromov-Witten invariants
of CP' relative to r points to give a correspondence between ./\;lg,n and ./\;lo,,.. Pulling
back relations in H*(M,,) together with the degeneration formula for Gromov-Witten
invariants of symplectic sums proves the result stated at the beginning (The degeneration
formula for GW invariants is joint work with T. Parker from Michigan State University).

Uniqueness of contact structures
S. KEBEKUS

A complex manifold X of odd dimension 2n + 1 is said to be a “contact manifold” if
there exists a sequence
0—>F—>Tx —L—0



where L is a line bundle on X, and where the skew-symmetric map
N:FF —L

which is induced by the Lie-bracket, is everywhere non-degenerate. It is conjectured that
a projective contact manifold which satisfies by(X) = 1, is homogeneous. In the present
talk, we prove a weaker statement which was conjectured by LeBrun: If X is a projective
manifold with by(X) = 1 then either X = Py, ., or the contact structure is unique.

The proof is based on a result of Demailly, who has shown that X is necessarily Fano.
Using a recent characterization of the projective space, it follows that either X =2 Py, ., or
that X is covered by rational curves ¢ which intersect the line bundle L with multiplicity
one. A detailed study of the deformations of these curves reveals that at a general point
x € X, the subspace F|, C Tx|, is spanned by the tangent spaces of the minimal rational
curves which contain z. In particular, F'|, is canonically given and therefore the subbundle
F' is unique.

Complete sets of relations for the cohomology of moduli spaces of bundles
over a compact Riemann surface

F. KIRwAN

The cohomology of the moduli space of stable bundles of rank 2 and odd degree d
over a compact Riemann surface is extremely well understood from the work of many
people; in particular generators and a complete set of relations (“Mumford relations”)
among these generators are known. For bundles of rank n and degree d, where n and d
are coprime (so that the moduli space is a nonsingular projective variety) and n > 2, a set
of generators for the cohomology ring has been known for two decades or more, but the
obvious generalisation of the Mumford relations in rank 2 is not a complete set when n > 2.
This talk describes joint work with R. Earl, which provides a modified generalization of the
rank 2 Mumford relations, and sketches a proof that they form a complete set of relations
for any n > 2.

Quantum cohomology without moduli spaces
A. KrRESCH

We discuss methods for computing genus zero Gromov-Witten invariants of manifolds,
without using moduli spaces.

We outline A. Buch’s simplified proof of the quantum Giambelli formula for the Grass-
mannian G = G(k,n) = {V C C'|dimV = k}. Let {0,}, indexed by partitions
A C (n — k)*¥, denote the usual basis of Schubert classes for H*((G). Buch establishes

Theorem 1. Given any two partitions A\, C (n — k)*, with the sum of the lengths of
A and p less than or equal to k, the quantum product oy * 0, in QH*(G) is equal to the
classical product o\ U 0.

The quantum Giambelli formula, which was originally provd by Aaron Bertram and
which states that Giambelli’s determinant in special Schubert classes, evaluated in Q H*(G),
is equal to o, is an immediate consequence of this theorem. The proof uses the notion of
span of a map ¢ : P! — G, t — V}, defined as follows:

Span(p) = Span{V;|t € P'}.



We have
Proposition 2. The span of any degree d map ¢ : P — G has dimension < k + d.

A dimension-counting argument, involving span of maps, establishes the theorem.

On the cohomology ring of Hilbert schemes of surfaces with K =0
M. LEHN

Let X be a smooth projective surface /C. By a classical result of Fogarty, for all n > 0,
the Hilbert scheme X[ = {¢ ¢ X subscheme |dim¢ = 0, [({) = n} is a smooth variety.
Its Betti numbers were computed by Go6ttsche, and Nakajima proved that

éH*(X[n])t_n o S* (H*(X) ® t—l(c[t—l])

as representations over the Heisenberg Lie algebra
h=H"(X)®C[tt '@ Ce
We report on joint work with Chr. Sorger to determine the ring structure of H*(X[) in
terms of the ring structure of H*(X).
Let A = @ngd A; be a graded Frobenius algebra, d an even natural number. A ring

structure is defined on A{S,} := @, A®™ "1 in such a way, that the subring of

invariants A" := A{S,}% with respect to the conjugation action of S, is again a Frobenius
algebra. We apply this construction to the case A = H*(X)[2].

Theorem 1. If X is a smooth projective surface with Kx ~ 0,
(H*(X)[2))" = H* (X)) [2n).

The proof is based on calculations in Nakajima’s vertex algebra structure on H =
D, H*(X[M) and geometric results relating this structure with multiplication opera-
tors m(a) : H — H, where m(a)|p«(xiny = aM U —, and ol = p, (chOe ® ¢*(a - td X)),
O c XM x X denoting the universal family.

A degeneration of the moduli of stable morphisms
J. L1

We study the following problem: Let m : W — C' be a projective family of schemes.
We assume that for ¢ 2 0 € C W, are smooth and that the special fiber W consists
of two smooth components intersecting transversally along a smooth divisor D. Here we
assume the total space W to be smooth. Let (g,n) be a pair of integers and [ the degree
of the stable morphisms to be studied, also fixed. Then it is well understood that the
GW-invariants of W;, t # 0, are constructed based on

1.) The moduli of stable morphisms 9, (W, 5);

2.) The virtual moduli cycle [90, ,(W;, 3)]""* and

3) GW(Wt)() = f[img,n(Wt,,B)}”"t :



The goal of this project is to define the GW-invariants of Wy, define the relative GW-
invariants of the two components Y; and Y5 of W,, and then establish a degeneration
formula of the form

GW(W,) = GW (W)
(%) = an expression in { rel — GW (Y1, D), rel — GW (Y5, D) }

The main ingredient of this project is to introduce a new set of stable morphisms to
Winly and introduce

My (W, B) = My (W \Wo, B) [T [ 9.0 (Wnlo, B)*/(C)"

n>0
We then prove that

Theorem 1. M, (W, B) is naturally a separated proper Deligne-Mumford stack with per-
fect obstruction theory.

The part of the project, that was not mentioned in the lecture, but completed, includes
the following steps: construct the moduli space of relative stable morphisms; construct their
perfect obstruction theories and define two relative GW invariants; prove a degeneration
formula of the form (x).

A generalization of the Grauert Mumford criterion for semismall maps
L. MIGLIORINI
(joint work with M. de Cataldo)

Let X be a nonsingular complex variety. A map f : X — Y is said to be semismall if for
every subvariety S C X 2dim(S) —dim f(S) < dimX. The main source of semismall map
is given by contraction of holomorphic symplectic varieties. Suppose X projective. A line
bundle £ is said to be LEF if some multiple is globally generated and the map it defines is
semismall. LEF line bundles behave in many ways just as ample line bundles. For instance,
the Kodaira Akizuki Nakano theorem holds for LEF bundles; a related statement is that
the Hard Lefschetz theorem holds for a LEF bundle: ¢;(£) : H* *(X) — H""*(X) is an
isomorphism for all £ =0,... ,n.

This result has some interesting consequences for the topology of semismall maps. The
first corollary is the following: let Y; be a stratification of ¥ such that f='(V;) — Y; is a
topologically locally trivial fibration. Suppose 2dimf~!(Y;) — dimY; = dimX. Let y € Y;
and D be a local transversal slice to Y;. The intersection form defined by the irreducible
components of f~'(y) (computed in f~'(D)) is definite ((—1)“5"-definite). This is a
generalization of the Grauert Mumford criterion for contractibility of curves on a surface. A
corollary of this statement is the following statement: Rf.Qx [n] = @ JHy,(L;), which is a
special case of the decomposition theorem of BeilinsonBernsteinDeligne. Here JHy.(L;) is
the intersection cohomology complex of the local system L; on Y; defined by the monodromy
of the irreducible components of the fibres of f|;-1(y;). The statement about nondegeneracy
of intersection forms allows also the definition of a projector P € A, (X x X)g such that
(X, P) is the motive of intersection cohomology of Y. This is consistent with the recent
mostly conjectural theory of motivic decomposition given by Corti-Hanamura.



Homology of moduli spaces of sheaves on a K3 surface
H. NAKAJIMA

Let (X, H) be a polarized K3 surface /C. Let (H*(X,Z),(,)) be the Mukai lattice, i.e.
(z,y) = (2,Uy; —20Uys — T2 U0, [ X]) where z;, y; are the H* (X, Z)-components of z,y. For
a coherent sheaf E on X, let us define the Mukai vector v(E) by ch(E)VtdX € H*(X,Z).
Let My (v) be the moduli space of H-stable sheaves F on X with v(E) = v. If v is primitive
and H is generic, it is known that My (v) is a nonsingular projective variety with a natural
symplectic structure (Mukai). Harvey-Moore proposed the following

Problem 1. Study the structure of @, H*(Mu(v)). Relate it to the representation the-
ory of an oo-dimensional Lie algebra, a kind of a generalized Kac-Moody Lie algebra

(Borcherds).

The structure should come fom the following subvariety in the triple product:
ClOS{(El, EQ,E3)|0 — E1 — E2 — Eg — 0)} C MH(UI) X MH(UQ) X MH(Ug).

We are intersted in a special case when My (v1) or My (vs) is a point, in other words, the
corresponding sheaf is a rigid sheaf. When Ey = i,O¢(d) where C' is a (-2)-curve, I have

proved that the above operator gives a representation of SZQ, an affine lie algebra of sl;.
By a philosophy coming from the duality in the string theory, we should expect the
whole construction has a symmetry under O(H*(X,Z)). It implies, that we could have a
similar construction for any rigid sheaf.
Based on a work of Yoshioka and Markman, we can construct a representation of sl
(finite dimensional!) by the above correspondence with a rigid sheaf F;. Her we must put
a certain technical conditon on H and v,, vs.

Examples of irreducible symplectic varieties
K. O’'GrADY

We describe two new examples of irreducible symplectic varieties (of dimension 6 and
10). These manifols are not not deformation equivalent to the other known irreducible
symplectic manifolds (Hilbert schemes of points on a K3 surface and generalized Kummer
varieties). First one constructs a symplectic compactification of M*! the moduli space of
rank-2 stable torsion-free sheaves with ¢; = 0 and ¢y = 2k on a projective surface S with
K, ~ 0, where £k =2 if S'is a K3, and k£ = 1 if S is an abelian surface. The moduli space
Mt is an open subset of the singular moduli space M of semistable sheaves (with the same
rank and Chern classes): one blows up M twice and then one contracts an extremal ray to
get the symplectic desingularization M. If S is a K3 then M is a new symplectic variety
of dimension 10: it is “new” because by(M) > 24, and all known examples have b, < 23.
If S is an abelian surface, let M, be the fibre over (0, 0) of the fibration M — S x S which
maps the point [F] to (Alb(cy(F)),det F) (strictly speaking we first map M to M, and
then apply this map). Then dim M, =6, bg(Mg) =8, and M, is irreducible symplectic;
since by = 7 or by = 23 for all other 6-dimensional examples, M, is a “new” irreducible
symplectic manifold. The topological computations needed to prove that M and M, are
irreducible symplectic and that by(Mg) = 8 (by(M) > 24 is easy) are done by applying
Goreski-MacPherson’s LHT to a high power of the determinant line bundle over M (or
Moy).
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The Rozansky-Witten topological quantum field theory
J. SAwoN
(joint work with J. Roberts and S. Willerton)

About five years ago Rozansky and Witten wrote a paper in which they described a
topological sigma model based on a path integral over the space of all maps from a 3-
manifold to a hyperkédhler manifold X. The topological output of this theory is twofold:

1. Fixing the hyperkahler manifold, the partition function of the theory is a topological
invariant of the 3-manifold. For example, if X is the Atiyah-Hitchin manifold (a
certain monopole moduli space), the 3-fold invariant is the Casson invariant.

2. A Feynman diagram expansion of the partition function gives coefficients which de-
pend on the hyperkidhler manifold (and on a Feynman diagram). These are a kind
of a generalized ”Chern numbers”, and are constant under deformations of the hy-
perkahler structure.

In my talk I investigated the associated 3-dimensional TQFT.

In fact, instead of the usual TQFT, we look at the extended TF'T. This involves extending
the category of 3-bordisms to a 2-category (objects are l-manifolds, morphisms are 2-
bordisms, 2-functors are 3-bordisms with corners). Then an ETFT is a 2-functor from this
2-category. In other words, it takes 1-manifolds to categories, 2-bordisms to functors, and
3-bordisms to natural transformations.

In our construction the images of 1-manifolds are derived categories D(pt), D(X), D(X x
X), etc. and the functors are integral transforms constructed from the kernels Ogiggonar C
X X .-+ x X. Only at the 3-bordism level do we need X to be hyperkéhler (instead
of just a complex manifold). Then the natural transformations are constructed using a
generalization of the coeffizients from 2) above. This gives us a completely combinatorial
description of the (extended) TQFT.

Quasi-projectivity of moduli spaces of polarized projective varieties
G. SCHUMACHER

Theorem 1 (H. Tsuji-G. Schumacher). Any coarse moduli space of polarized, (smoth) pro-
jective varieties s quasi-projective.

Corollary 2. Moduli spaces of polarized non-uniruled varieties are quasi-projective.

Known was the quasi-projectivity for moduli spaces of polarized varieties such that an m-
canonical bundle is globally generated (E. Viehweg 89/90), including the case of canonically
polarized varieties.

We construct a line bundle on the compactified moduli space with a positive hermitian
metric where Lelong numbers vanish such that the curvature is strictly positive in the
interior, as a current. The method is based upon the curvature formula for the Quillen
metrics on determinant line bundles (Bismut-Gillet-Soulé), Griffith’s theory about period
mappings, and moduli of framed manifolds. In a second step, an embedding theorem is
proved.
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Deformational invariance of plurigenera
Y.T. Siu

Let X be a holomorphic family of compact complex projective algebraic manifolds with
fibers X; over the open unit 1-disk A. Let K, and Kx be respectively the canonical line
bundles of X; and X. We prove that, if L is a holomorphic line bundle over X with a
(possibly singular) metric e~ % of semipositive curvature current on X such that e ?|x, is
locally integrable on Xy, then for any positive integer m, any s € I'(m Kx,+L) with |s|?e~%
locally bounded on Xj can be extended to an element of T'(X,m Kx + L). In particular,
dimI'(Xy, m Kx, + L) is independent of ¢ for ¢ smooth. The case of trivial L gives the
deformational invariance of the plurigenera. The method of proof uses an appropriately
formulated effective version, with estimates, of the argument in the speaker’s earlier paper
on the invariance of plurigenera for general type. A delicate point of the estimates involves
the use of metrics as singular as possible for p Kx, +a, L on X, to make the the dimension
of the space of L? holomorphic sections over X, bounded independently of p, where a, is
the smallest integer > ’%1. These metrices are constructed from s. More conventional
metrices, independent of s, such as generalized Bergman kernels, are not singular enough
for the estimates.

Gauge theoretical equivariant Gromov-Witten invariants
A. TELEMAN
(joint work with Ch. Okonek)

Let (F,w,J) be an almost Kéhler manifold, « : K x F — F an action of K which lets
J invariant and K a closed subgroup of K , which lets w invariant (k is a compact Lie
group).

We introduce, using gauge theoretical methods, Gromov-Witten type invariants for such
triples (F, a, K) The adiabatic limit conjecture states that these invariants can be related
to the (twisted) Gromov-Witen invariants of the corresponding symplectic quotient of F
with respect to K.

We state a "universal” Kobayashi-Hitchin correspondence (generalizing previous results
by Mundet i Riera) which gives a complex geometric interpretation of the moduli spaces
associated with any triple (F,w,.JJ) with F' Kahler. Using this Kobayashi-Hitchin corre-
spondence, we describe explicitely the moduli spaces associated with triples of the form

1. (Hom(C",C™), ean, U(T)), where ap,, is the natural action of U(r) x U(ry).

2. (C", ean, Ky), where gy is the natural action of [S']” on C" and K, = ker(w),

where w is an epimorphism w : [S1]" — [S1]™.
An explicit formula for the invariants for the first case (when r = 1) and applications are
discussed.

Vanishing comjectures for the moduli space of curves
R. VakKIL
(joint work with T. Graber)

There are many “vanishing” conjectures and theorems on the moduli space M,,, of
(genus ¢, n-pointed) curves, which roughly state, that certain cohomology classes vanish
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on some large open subset. I will motivate a new conjecture, Conjecture * (dimension i
classes vanish away from the locus of curves with at least 2g —2-+n —1 rational components;
codimension j classes vanish away from the locus of curves with at least j — g 4+ 1 rational
components), from which the other vanishing conjectures and theorems, and more, easily
follows.

In some sense, one should think, that the fundamental geometrical fact is Conjecture *,
and that the other vanishing results are combinatorial consequences. This conjecture also
suggests that the coarse stratification of M,,, by number of genus 0 components is useful.

In the last few minutes, I will sketch a proof of at least part of of the conjecture, giving
most of the desired consequences. The key idea is to consider “Hurwitz classes”, and use
both degeneration and virtual localization arguments on J. Li’s (algebraic) moduli space
of relative stable maps (see p. 8)

Symplectic Hilbert schemes and a conjecture of Ruan
C. VoIsiN

If X is a complex surface, it is known by Fogarty that the punctual Hilbert scheme
Hilb*(X) is smooth. By the Hilbert-Chow morphism ¢ : Hilb*(X) — X®) it is a desingu-
larization of the symmetric product. We first explain the construction of a similar desin-
gularization ¢ : Hilb*(X) — X®) when X is now an almost complex fourfold. The map c
is continuous, is a diffeomorphism over Xék), the open set parametrizing k-uples of distinct
points, and its fibers are isomorphic to the fibers of the Hilbert-Chow morphism in the com-
plex case. We show also that if (X, J) is compact symplectic , that is J is an almost complex
structure ompatible with w, Hilb*(X) is also symplectic. Following Gottsche-Siergel, we
explain the computation of the cohomoloy of Hilb*¥(X) in the complex case. We also show
it is still valid in our symplectic situation. It follows from this that H*(Hilb*(X)) is canon-
ically isomorphic to the orbifold cohomology H*,(X*)) defined by Ruan-Chen. Chen and
Ruan have a construction of a ring structure on orbifold cohomology. Ruan conjectures
that under the additive isomorphism above, the product on H*(Hilb*(X)) is deduced from
the product on orbifold cohomology, modified by quantum correction associated to the

Gromov-Witten invariants ® 4 ., where A € ker (Hy(Hilb*(X),Z) < Hy(X 7)) 2 7.

Small contractions of complex symplectic 4-folds
J. WISNIEWSKI
(joint work with J. Wierzba)

Let ¢ : X — Y be a local contraction in the sense of M & P: Assume that ¢ is
birational and contracts the exceptional locus locus F to an isolated point y € Y. We
asssume moreover that X admits a symplectic (holomorphic) form (hence ¢ is a crepant
contraction).

This talk reports on an approach to prove

Theorem 1 (Wierzba-). In the above situation, if dim X = 4, then ¢ is analytically equiv-
alent to contracting the zero section in the cotangent bundle of the projective plane.

Edited by Markus Diirr
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