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Abstract: One of the most popular micromechanical techniques of determining the local interfacial
shear strength (local IFSS, τd) between a fiber and a matrix is the single fiber pull-out test.
The τd values are calculated from the characteristic forces determined from the experimental
force–displacement curves using a model which relates their values to local interfacial strength
parameters. Traditionally, the local IFSS is estimated from the debond force, Fd, which corresponds
to the crack initiation and manifests itself by a “kink” in the force–displacement curve. However,
for some specimens the kink point is hardly discernible, and the “alternative” method based on the
post-debonding force, Fb, and the maximum force reached in the test, Fmax, has been proposed.
Since the experimental force–displacement curve includes three characteristic points in which
the relationship between the current values of the applied load and the crack length is reliably
established, and, at the same time, it is fully determined by only two interfacial parameters, τd
and the interfacial frictional stress, τf, several methods for the determination of τd and τf can be
proposed. In this paper, we analyzed several theoretical and experimental force–displacement curves
for different fiber-reinforced materials (thermoset, thermoplastic and concrete) and compared all
seven possible methods of τd and τf calculation. It was shown that the “alternative” method was
the most accurate and reliable one, while the traditional approach often yielded the worst results.
Therefore, we proposed that the “alternative” method should be preferred for the experimental
force–displacement curves analysis.

Keywords: pull-out test; local interfacial shear strength; interfacial frictional stress; analysis of
force–displacement curves; debond force; “alternative” method

1. Introduction

The single fiber pull-out test [1–4] is probably the most popular micromechanical technique for
determining the interfacial strength parameters in fiber–matrix systems. Since its invention in the
early 60s [1], this technique has been greatly improved and further developed concerning both its
experimental part and the data reduction. For a long time, the quality of interfacial bonding was
characterized in terms of the apparent interfacial shear strength (apparent IFSS, τapp) defined as [5,6].

τapp =
Fmax

πd f le
(1)
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where Fmax is the maximum force registered in the pull-out test, df is the fiber diameter and le is the
embedded fiber length.

This approach is experimentally very simple, and the calculation of τapp requires the knowledge of
the fiber diameter, embedded length and the force required for complete fiber pull-out. The τapp value
calculated using Equation (1) was often referred to as “interfacial adhesion”, “adhesive strength” or
“bond strength” [1,7,8]. Much later came the understanding that to the apparent IFSS contributes, except
adhesion, also interfacial friction between the fiber and the matrix [9,10]. This is due to the mechanism
of interfacial debonding. It was shown both theoretically [10–13] and experimentally [13–19] that it
occurs through interfacial crack propagation (unzipping). The effects of adhesion and friction can be
understood when we consider a force–displacement curve recorded during the pull-out test (Figure 1).
It can be divided into several consecutive segments. At the first stage (OA, initial loading), the interface
is intact and fiber end displacement is nearly proportional to the applied force. At point A, the force
becomes sufficient to initiate interfacial debonding (F = Fd, “debond force”). From this moment, friction
in debonded regions begins to contribute to the current force value. At point B, the intact interface region
becomes too short, and further crack propagation only can decrease the force, in spite of continuously
increasing crack length. Therefore, the recorded force shows its maximum value there (F = Fmax). Further,
debonding becomes instable at point C. Consequently, the remaining embedded area instantly debonds
and the force dropped to a smaller value, Fb. The remaining segment, DE, is due to frictional interaction
during pull-out of the debonded fiber; the force here is nearly proportional to the length of the fiber part
remaining within the specimen. Note that the length of this segment (DE) is presented in Figure 1 not
to scale, in order to explicitly show point E which is used during the experimental data treatment to
determine the embedded fiber length (OE = le). In real pull-out experiments, debonding typically gets
completed (point D) at the displacements of less than 20–25 µm, while the embedded length can be much
greater (up to several millimeters).

Figure 1. An idealized force–displacement curve in the pull-out test (for details, see Introduction).

Analysis of experimental force–displacement curves promoted a change from the averaged
(apparent) τapp value to local interfacial parameters, which can be considered as debonding criteria and
“true” characteristics of the interface strength. Two large groups of theoretical models based on two
different debonding criteria have been developed. In stress-controlled debonding models [4,5,20–24],
the local (ultimate) interfacial shear strength, τd, considered as the local shear stress near the crack
tip, is supposed to be constant during the test (and thus independent of the crack length, a). Models
of energy-controlled debonding [10,12,25–28] assume that the interfacial crack is initiated when the
energy release rate, G, reaches its critical value, Gic, and further crack propagation proceeds at constant
G value (G = Gic). In this approach, the critical energy release rate can also be considered as local
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interfacial strength parameter, called also interfacial toughness. It was shown that the local IFSS
and the critical energy release rate are practically equivalent as criteria for interfacial crack initiation
(the onset of debonding) and, moreover, the experimental force–displacement curves from the pull-out
test can be successfully modeled using both energy-base and stress-base approaches [23]. In this paper,
we will limit to the stress-based approach, with the local interfacial strength, τd, as debonding criterion.

Both stress-based and energy-based approaches relate the appropriate local interfacial strength
parameter (τd or Gic) to the debond force, Fd, which manifests itself as a “kink” in the
force–displacement curve [12,13,19,23]. Therefore, Fd becomes the most important experimental
quantity which should be determined as accurately as possible. Modern installations for pull-out
testing [29–34] are much more sophisticated than old devices whose only task was to measure Fmax

in order to further calculate τapp. The fiber is pulled out from the matrix with a small controlled
speed (displacement rate); geometrical dimensions of the matrix droplet required for τd calculation
are accurately determined; the fiber diameter is measured in a strong optical or electron microscope
with an accuracy of 0.01 µm. As a result, a very accurate force–displacement curve is recorded whose
general shape is similar to that shown in Figure 1. It may seem that getting the Fd value from this
curve and subsequent local IFSS calculation using one of available stress-based debonding models
should be a rather simple task.

Unfortunately, in some cases the debond force value cannot be reliably determined from the
force–displacement curve. If the test equipment is not stiff enough (e.g., when the free fiber length
between the matrix droplet top and the fixed opposite fiber end is too large), the curve slope
changes at point A only slightly, so that the kink corresponding to the debonding onset is not
discernible [12,13,19,35,36]. For some fiber–matrix pairs, plasticity of the matrix may be responsible
for the first “kink” in the force–displacement curve, especially if the local IFSS is close to the matrix
shear strength [37]. For some other systems, even force–displacement curves obtained using stiff
pull-out installations show no kink, or there can be multiple kinks in the curve, and the Fd value cannot
be determined reliably [34]. The examples of such force–displacement curves and the discussion of
possible reasons for this behavior are given below in Section 5.

To avoid these problems, we proposed a method for local IFSS determination based on
other characteristic points of force–displacement curves (Fmax and Fb), without using the Fd value
(“alternative method”) [38,39]. Research over the last few years has put forth evidence that this method
successfully works for many fiber–matrix systems and is often more reliable than the traditional
method using Fd [40,41]. The further sections of this paper plan to:

• briefly present the model and main equations used to calculate the local interfacial strength
parameters from a recorded force–displacement curve;

• show how different methods for τd determination can be developed using different sets of
characteristic points;

• estimate the accuracy and “general quality” of all these methods by applying them to determine
the local IFSS and the interfacial frictional stress, τf, from theoretical and experimental (for various
fiber–matrix pairs) force–displacement curves;

• discuss the problems encountered in estimating τd and τf from force–displacement curves for
different systems and under different conditions, and recommend the most reliable method
if possible.

2. The Model

In this paper, we will follow our own stress-based model first introduced in [23] and then
successfully used to analyze interfacial strength properties for various combinations of fibers and
matrices. It is based on the one-dimensional shear-lag method proposed for fiber–matrix systems
by Cox [42] but using corrected shear-lag parameter proposed by Nayfeh [43]. The model includes
interfacial friction and thermal shrinkage characteristic for systems with polymer matrices. We make
the usual assumptions for such kind of models: (1) both the fiber and the matrix can be considered as
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perfectly elastic; the matrix is isotropic and the fiber is transversely isotropic; (2) the matrix droplet is
considered as a cylinder whose radius is equal to the total specimen volume within the embedded
fiber region (“equivalent cylinder” [12,36]), and the fiber is also cylindrical and is embedded in the
matrix co-axially; and (3) the interfacial frictional stress in the debonded regions, τf, is constant during
the test [12,44]. Detailed analysis of the pull-out test based on this model can be found in [23,24,35,38].
For our further consideration, it is very important that the model gives direct expression for the current
force, F, applied to the fiber, as a function of the crack length, a [23]:

F(a) =
2πr f

β

{
τdtanh[β(le − a)]− τTtanh[β(le − a)]tanh

τdtanh[β(le − a)]
2

+ βaτf

}
(2)

where rf = df/2 is the fiber radius; β is the shear-lag parameter as defined by Nayfeh [43]

β2 =
2

r2
f EAEm

 EAVf + EmVm

Vm

4GA
+

1
2Gm

(
1

Vm
ln

1
Vf
− 1−

Vf

2

)
 (3)

and τT is a term having dimensions of stress, which appears due to residual thermal stresses [23,35]:

τT =
βr f EA

2
(αA − αm)∆T (4)

In Equations (3) and (4), EA and Em are the axial tensile modulus of the fiber and the tensile
modulus of the matrix, respectively, Vf and Vm are the fiber and matrix volume fractions within the
specimen, GA and Gm are the axial shear modulus of the fiber and the shear modulus of the matrix,
αA is the axial coefficient of thermal expansion (CTE) of the fiber, αm is the CTE of the matrix, and ∆T
is the difference between the test temperature and a stress-free temperature which, for polymers, is
usually assumed to be equal to the glass transition temperature (or to the room temperature, if it is
above the glass transition temperature).

As can be seen, the F(a) value depends, except the crack length, on the fiber and matrix properties,
specimen geometry and two interfacial parameters, τd and τf. In the force–displacement curve
(see Figure 1), the whole region corresponding to the crack propagation (from a = 0 to a = le) is
represented by segment ABCD, which includes all three characteristic points (A, B and D). Thus, we
can write Equation (2) for these points and then consider resulting equations as implicit equations for
τd and τf.

Point A (a = 0, F = Fd):

Fd =
2πr f

β

[
τdtanh(βle)− τTtanh(βle)tanh

(
βle
2

)]
(5)

Point D (a = le, F = Fb):
Fb = 2πr f aτf (6)

Point B (F = Fmax). The equation for Fmax cannot be derived so easily as for Fd and Fb, since the
crack length at point B is a priori unknown. Nevertheless, we have found its explicit form [24]:

Fmax =


2πr f

β

[
τdtanh(βle)− τTtanh(βle)tanh

(
βle
2

)]
, βle < ω;

2πr f

β

{
τd

u√
u2 + 1

− τT

(
1− 1√

u2 + 1

)
+ τf (βle −ω)

}
, βle ≥ ω,

(7)
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where

u =

√
τ2

T + 4τf

(
τd − τf

)
− τT

2τf
(8)

ω = ln
(

u +
√

u2 + 1
)

(9)

We have three implicit Equations (5)–(7) for two unknown variables, τd and τf; all others variables
and constants in these equations are known. So, we can choose several different methods to solve this
overdetermined set of equations. This will be discussed in Section 3.

All calculations for this paper were performed in the programming environment Mathematica
10.3 by Wolfram Research, Inc. (Champaign, IL, USA) [45].

3. Methods for Determination of Interfacial Strength Parameters

In this Section, we will present possible methods for determination of the interfacial strength
parameters, τd and τf. We should note that each method must show a way to calculate both parameters;
in other words, methods differing in algorithms of determination of at least one parameter are
considered to be different.

It is easy to see that the local interfacial shear strength, τd, can immediately be determined from
Equation (5) without considering other equations of the set:

τd =
Fdβ

2πr f
coth(βle) + τTtanh

(
βle
2

)
(10)

This is the basis for the “traditional” approach to the τd determination (from the debond force
value). At the same time, the frictional stress, τf, can be found in three different ways. This yields the
first three methods for τd and τf determination.

Method 1 (“traditional”). The local IFSS is calculated using Equation (10). Then this value is
substituted into Equation (7), and the resulting implicit equation is solved for τf. This method was
widely used in our work [23,24,35,36,46,47] before we have developed the “alternative” method.
In most experimental papers in the literature, e.g., [48–54], researchers were not interested in the τf
value but calculated τd from the debond force, using Equation (10) or a similar one. These papers we
will also conditionally refer to as using the “traditional” approach.

In this method, Equation (6) is not used. It is interesting to substitute into it the calculated τf
value and compare the resulting Fb to its experimental value. If the investigated specimen satisfied
all assumptions made in Section 2 (ideally cylindrical shape, absolute elasticity, constant interfacial
friction), the calculated and experimental Fb values should be equal. In practice, however, the calculated
Fb value is somewhat greater than the experimental one. This is shown in Figure 2a (curve 1) which
schematically presents force–crack length curves for different methods considered.

Method 2. This method was proposed quite recently by Textechno Herbert Stein GmbH & Co.
KG [55] and implemented in the commercial fiber–matrix adhesion tester FIMATEST [31]. The Fd
value is used to determine τd from Equation (10), and the interfacial frictional stress, τf, is calculated
using Equation (6). In some sense, this is a kind of “hybrid” of the “traditional” and “alternative”
methods (the latter is discussed below under “Method 4”). The Fmax value is ignored in this method;
it is regrettable, since Fmax is measured with the best accuracy of all forces in the characteristic points.
The calculated Fmax values for most systems are smaller than the experimental ones (Figure 2a, curve 2).

Method 3. The local IFSS is calculated using Equation (10), as in the two previous methods.
However, the τf value is determined from a statistical consideration: the force–crack length curve
should be “the best” one, i.e., provide the minimum sum of the least squares

s3 = (Fmax − F3max)
2 + (Fb − F3b)

2 (11)
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where Fmax and Fb are experimental values, and F3max and F3b are theoretical values satisfying set of
Equations (6) and (7). The s3 minimization can be carried out using the interval bisection method,
starting (for τf) from the interval (0, τd). The best curve and corresponding values of all forces are
shown in Figure 2a, curve 3.

Figure 2. Schematic force–crack length curves illustrating the methods used for determination of
interfacial strength parameters: (a), methods directly based on the debond force, Fd; (b), all other
methods. The curve numbers correspond to the numbers of methods as listed in Section 3.

Note that we can also formally calculate the minimum sum of the least squares for previous
methods. For Method 1, s1 = (Fb − F1b)

2; for Method 2, s2 = (Fmax − F2max)
2.

Each of Methods 1–3 could be successfully used for determination of interfacial strength
parameters if there were no problems with accurate Fd determination from experimental
force–displacement curves. The possible error in Fd entails an error in τd, which, in turn, results
in incorrect τf value. Therefore, we should try a method which does not use Fd values.

Method 4 (“alternative”). The interfacial frictional stress, τf, is calculated using Equation (6);
then this value is substituted into Equation (7), and the resulting implicit equation is solved for τd.
This method was proposed by Zhandarov and Mäder [38] and then used for the estimation of the
interfacial strength parameters in several subsequent papers [39–41], some of which also included
the energy-based consideration (Gic and τf) [39,41]. The comparison with the traditional method for
several fiber–matrix systems showed that τd (and Fd) values were similar or slightly greater for the
alternative method. It is schematically shown in Figure 2b, curve 4. Since the Fd value is not used,
the minimum “sum” is s4 = (Fd − F4d)

2.
The obvious advantage of this method is that it is based on Fmax and Fb values which can be

measured with good accuracy, in contrast to the third characteristic force, Fd.
To complete the picture, we will also present three remaining possible methods for τd and τf

determination which use the characteristic force values in different ways.
Method 5. The τf value is calculated from Fb using Equation (6), and τd from the minimum sum

s5 = (Fd − F5b)
2 + (Fmax − F5max)

2 (Equations (5) and (7), curve 5 in Figure 2b).
Method 6. It is based on a force–crack length curve whose maximum coincides with the

experimental Fmax point, and the sum s6 = (Fd − F6d)
2 + (Fb − F6b)

2 reaches its minimum value
(curve 6 in Figure 2b). The algorithm of τd and τf evaluation for this method is more complicated than
simple interval bisection used for Methods 3 and 5. First, we should note that τf cannot be greater than
the apparent IFSS, τapp. In the interval (0, τapp) we select a large number (e.g., 1000) τf values. Then,
for each τf value determine the local IFSS (solving the implicit Equation (7) for τd using the interval
bisection method) and the corresponding sum of the least squares, s6. The pair {τd, τf} which yields
the least s6 value is taken as the best estimation of the interfacial strength parameters for this method.
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Method 7. In this method, the best force–crack length curve having form (2) has to minimize
the sum s7 = (Fd − F7d)

2 + (Fmax − F7max)
2 + (Fb − F7b)

2 (least squares method for all characteristic
points, curve 7 in Figure 2b). For Method 7, we calculated s7 values for many {τd, τf } pairs falling into
the area {0 < τd ≤ τdmax, 0 < τf ≤ τfmax} (where τdmax and τfmax are large enough, e.g., 120–150 MPa
for τdmax and 30–100 MPa for τfmax) and plotted the map of the sum of least squares, s7, as shown
in Figure 3a. Enlarging the scale, it is possible to determine, after 2–3 iterations, the “best” τd and τf
values with good accuracy (Figure 3b). Then these values are used to calculate the best F7d, F7max and
F7b values from Equations (5)–(7).

Figure 3. The maps of the sum of least squares for Method 7: (a), 1st iteration; (b) 3rd iteration.
The central point corresponds to the best {τd, τf} pair.

4. Evaluation of Interfacial Strength Parameters from Theoretical Force–Displacement Curves:
Comparison of the Methods

As already was mentioned above, if all assumptions of the model were satisfied, the theoretical
force–crack length curve must go through all three characteristic points, Fd, Fmax and Fb, and not
depend on which two points were selected for the evaluation. In other words, all seven above-described
methods should result in the same “true” force–crack length curve with the same τd and τf parameters;
all theoretical force–displacement curves also should be identical. However, real experimental curves
differ from their ideal shape. The possible reasons can be as follows:

• Non-cylindrical shape of the matrix droplet. The interfacial crack starts at the top of the droplet,
where the fiber content is extremely high (well above its mean value, Vf), and then propagates
into the regions with continuously decreasing Vf.

• Non-ideal elasticity, especially of the matrix, which distorts the theoretical curve and can affect
positions of the characteristic points.

• Too short embedded length; in such specimens, most of the crack may be located in the meniscus
region which is essentially non-cylindrical.

• Imperfect interface: large interfacial defects can result in additional “kinks” and decrease the
measured debond force.

• Possible movement of the opposite (fixed) fiber end within the glue or in the clamps.
• Non-linear frictional force which indicates substantial effect of transverse (normal) interfacial stresses.

This is only a few of the factors that can affect the shapes of the force–displacement and force–crack
length curves. However, the non-cylindrical shape of the specimen is undoubtedly the main factor.
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In our previous papers [56,57], we investigated crack initiation and propagation within matrix droplets
of real shape, i.e., spherical segments with menisci (wetting cones) having different wetting angles in
contact with a fiber. We start with these theoretical examples for two reasons: (1) For specimens with
a well-defined non-cylindrical shape, we obtained both force–crack length and force–displacement
curves, which is typically impossible for real pull-out specimens; and (2) for each theoretical curve, we
have pre-set the interfacial parameters, τd and τf; in other words, we know the “true” values of these
parameters, in contrast to real pull-out tests.

Figure 4 presents the force–crack length (Figure 4a) and force–displacement (Figure 4b) curves
simulated for the glass fiber–epoxy matrix system [57]. The mechanical and thermal properties of both
components are listed in Table 1. The matrix droplet radius was set to 1.25 mm, which corresponds
to the diameter of matrix holder used in our experiments (2.5 mm). The fiber diameter was set to
20 µm, the embedded length, to 500 µm. The wetting angle was 30◦, which is typical for fiber–polymer
systems [57]. The interfacial strength parameters were set to τd = 60 MPa and τf = 5 MPa, the free fiber
length was assumed to be zero in order to reach maximum stiffness of the virtual “testing installation”.
For comparison, the “equivalent cylinder” specimen having the same embedded length and total
volume was investigated.

As can be seen in Figure 4a, in the cylindrical specimen interfacial crack starts at a final and rather
large applied force value, Fd = 0.3401 N. Then, as the crack propagates, the force continuously increases
to its maximum value (Fmax = 0.4412 N at a = 0.325 mm) and then drops to the post-debonding value
(Fb = 0.1571 N at a = le = 0.5 mm). The corresponding force–displacement curve is shown in Figure 4b
by filled circles. Its shape is typical for fiber pull-out from cylindrical specimens ([23]; cf. also Figure 1).
The segment CD′D is experimentally unobservable, since the loaded fiber end cannot move in the
reverse direction. The kink corresponding to debonding onset at point A is very pronounced, and the
Fd value can easily be determined “experimentally”. The τd value calculated from Equation (10) using
Fd = 0.3401 N is 60 MPa as pre-set.

Figure 4. Force–crack length (a) and force–displacement (b) curves simulated for the glass fiber–epoxy
matrix system. The embedded length is 500 µm. Curves 1 correspond to the equivalent cylinder;
curves 2, to the real-shaped specimen.
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Table 1. Fiber and matrix properties and specimen dimensions.

Property GF a CF1 b CF2 c PVA d Epoxy e PP f PA 6,6 g Concrete h

Fiber diameter, df (µm) 10–25 6–8 3–6 25–49 - - - -
Radius of the matrix droplet, Rm (mm) - - - - 1.25 1.25 1.25 1.3
Axial tensile modulus, EA or Em (GPa) 75 240 205 35 2.9 1.4 3.2 28

Axial Poisson ratio, νA 0.17 0.2 0.2 0.2 0.35 0.35 0.3 n/a
Axial CTE, αA or αm (10−6 K−1) 5 −0.1 −0.9 n/a i 76 150 i 81 n/a
Stress-free temperature, Tref (◦C) - - - - 80 23 i 65 23 i

Embedded length, le (µm) 100–900 80–200 30–120 300–2000 - - - -
a Leibniz-Institut für Polymerforschung, Dresden, Germany; b Toho Tenax, Japan; c Sigrafil C, SGL Carbon Fibers
Ltd., Wiesbaden, Germany; d Kuralon K-II REC15, Kuraray Co., Ltd. (Tokyo, Japan); e DGEBA-based epoxy matrix
by Momentive Specialty Chemicals Inc., Columbus, OH, USA; f HG455FB polypropylene homopolymer by Borealis
AG, Vienna, Austria; g Ultramid A27 PA 6,6 by BASF; h Leibniz-Institut für Polymerforschung, Dresden, Germany
(see [58] for details); i If the stress-free temperature for a given fiber–matrix pair is equal to the test temperature,
the coefficients of thermal expansion are not required for data evaluation.

However, both curves for the specimen with the meniscus show quite different behavior. The crack
initiates at very small applied force, practically zero, and then propagates very slowly but with steady
growing speed as the applied force is increased. Only from a ≈ 0.4 le = 0.2 mm, the force–crack length
force curves for “real” and cylindrical specimens became very similar. The maximum force value for the
“real” specimen is reached at a = 0.321 mm and is equal to Fmax = 0.4466 N; the post-debonding force,
Fb, is equal for both specimens (Fb = 0.1571 N) since it does not depend on crack propagation. However,
the character of initial crack propagation in the “real” specimen results in a smooth force–displacement
curve (Figure 4b, curve 1) in which the kink is hardly discernible. Its position can be determined
only, to a great extent, arbitrarily. One possible choice is to select the point at which the curve begins
to deviate from a straight line (A1); for this point, Fd = 0.2 N. Another choice has been proposed
by Textechno [31,55]. In their approach, two tangent lines were drawn at two successive segments
of the force–displacement curve, and the Fd value was taken at the point of their intersection (A2).
For this point, Fd = 0.2939 N. Both Fd values obviously result in τd underestimation: Equation (10)
yields τd = 40.53 MPa for A1 and τd = 53.53 MPa for A2. Since the Fd value calculated for point A2 is
closer to the true local IFSS (60 MPa), the method of kink determination proposed by Textechno should
be preferred, in spite of its non-physicality [34]. For our further calculations in which the Fd value is
explicitly used, we will take Fd = 0.2939 N.

Table 2 presents the results of determination of the interfacial strength parameters (τd and τf) using
all seven methods presented in Section 3. The “experimental” values of the characteristic force values
are shown in the last string of the table. Parameter s is the sum of the least squares, and “Rank” was
assigned to the methods according to the calculated s values (from the least to the greatest). As could
be expected, the best s value was obtained for the method 7 in which all three characteristic forces
(Fd, Fmax and Fb) were chosen as fitting parameters. Methods 5, 3 and 6 with two fitting parameters
each received ranks from 2 to 4. And, finally, methods which used only one fitting parameter (1, 2 and
4) were ranked as 5–7. However, this does not mean that Method 7 is the best method for τd and τf
determination. In our opinion, the criterion of the methods evaluation should be based on its accuracy
in determining the interfacial strength parameters rather than on indirect statistical considerations.
And in this sense, the best method is Method 4 which yields an absolutely accurate value for τf and
gives, for this specimen, only 1.5% error in τd. This can be physically understood if we look at Figure 4a.
The Fb and Fmax values for the “real” specimen and the equivalent cylinder are very close, and the
very unreliable (and, as was shown above, significantly underestimated) Fd value is not used in this
method. The question arises, why are the Fb and Fmax values for specimens with such different shapes
so close to each other? First, we should note that the post-debonding frictional force, Fb, does not
depend on the specimen shape or the pattern of the crack propagation. And close values for Fmax

can be explained, in our opinion, by the fact that the maximum force is reached at rather large crack
length, deeply inside the matrix droplet, where the matrix shape is much closer to a cylinder than in
the meniscus or at the top of the matrix spherical segment. We can expect that for the specimens with
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short embedded fiber lengths, when the whole fiber is located at the matrix top, the Fmax values may
be different. In order to check this, we simulated the pull-out test on a specimen with the same fiber
and matrix materials, wetting angle of 30◦, but having embedded length of 50 µm.

Table 2. Interfacial strength parameters determined from a theoretical force–displacement curve for
E-glass fiber–epoxy matrix pair using different methods.

Method Fd, N Fmax, N Fb, N τd, MPa τf, MPa s × 103, N2 Rank

1 (Fd, Fmax) 0.2939 0.4466 0.2284 53.53 7.27 5.11 7
2 (Fd, Fb) 0.2939 0.3982 0.1569 53.53 5.00 2.34 5
3 (Fd, best{Fmax, Fb}) 0.2939 0.4132 0.1794 53.53 5.71 1.62 3
4 (Fb, Fmax) 0.3472 0.4466 0.1569 60.90 5.00 2.84 6
5 (Fb, best{Fd, Fmax}) 0.3180 0.4200 0.1569 56.87 5.00 1.29 2
6 (Fmax, best{Fd, Fb}) 0.3288 0.4466 0.1827 58.35 5.81 1.88 4
7 (best { Fd, Fmax, Fb}) 0.3133 0.4250 0.1712 56.21 5.45 1.04 1

Equivalent cylinder 0.3401 0.4412 0.1569 60 5 - -
30◦ meniscus 0.2939 0.4466 0.1569 60 5 - -

The embedded length is 500 µm, the fiber diameter is 20 µm, and the nominal (preset) strength parameters are
τd = 60 MPa and τf = 5 MPa.

The force–crack length and force–displacement curves for this specimen are shown in Figure 5.
While the force–crack length curve for the “real” specimen is more or less similar to that for 500 µm,
for the equivalent cylinder the force steadily decreases from the very crack initiation (Figure 5a), which
indicates unstable crack propagation over the whole embedded length. This is also confirmed by the
shape of the force–displacement curve (Figure 5b). As can be seen from Figure 5a,b, both Fd and Fmax

values for the “real” specimen are considerably lower than those for the equivalent cylinder. This
means that the calculated local IFSS (τd value) will be underestimated for all seven methods, including
Method 4 (since the “experimental” Fmax is also too small!) Nevertheless, Method 4 remains the best
method for this specimen with the error in τd of “only” 25%. The full results of τd and τf estimation
are presented in Table 3. As can be seen, the methods based on the debond force, Fd (Methods 1–3)
yielded the worst τd value (23.76 MPa) which is only 39.6% of the true local IFSS.

Figure 5. Force–crack length (a) and force–displacement (b) curves simulated for the glass fiber–epoxy
matrix system. The embedded length is 50 µm. Curve 1 corresponds to the equivalent cylinder; curve 2,
to the real-shaped specimen.

Thus, we revealed that the embedded length can significantly affect the determined τd value.
As we found from our practice, the τd estimation was satisfactory if le > 100 . . . 120 µm. In order to
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be able to test specimens with smaller embedded lengths, we would recommend the use of smaller
matrix droplets, for which the specimen shape will be close to cylindrical one. In the next Section, we
will consider real (experimental) force–displacement curves obtained by pull-out testing on different
fiber–matrix pairs, with different embedded fiber lengths, specimen shapes, etc.

Table 3. Interfacial strength parameters determined from a theoretical force–displacement curve for
E-glass fiber–epoxy matrix pair using different methods.

Method Fd, N Fmax, N Fb, N τd, MPa τf, MPa s × 103, N2 Rank

1 (Fd, Fmax) 0.05681 0.1181 0.07463 23.76 23.76 3.47 3
2 (Fd, Fb) 0.05681 0.05681 0.01572 23.76 5.00 3.76 4–7
3 (Fd, best{Fmax, Fb}) 0.05681 0.05681 0.01572 23.76 5.00 3.76 4–7
4 (Fb, Fmax) 0.1181 0.1181 0.01572 45.01 5.00 3.76 4–7
5 (Fb, best{Fd, Fmax}) 0.08746 0.08746 0.01572 34.38 5.00 1.88 1–2
6 (Fmax, best{Fd, Fb}) 0.1181 0.1181 0.01571 45.01 5.00 3.76 3
7 (best { Fd, Fmax, Fb}) 0.08745 0.08745 0.01571 34.38 5.00 1.88 1–2

Equivalent cylinder 0.1730 0.1730 0.01572 60 5 - -
30◦ meniscus 0.05681 0.1181 0.01572 60 5 - -

The embedded length is 50 µm, the fiber diameter is 20 µm, and the nominal (preset) strength parameters are τd =
60 MPa and τf = 5 MPa.

5. Evaluation of Interfacial Strength Parameters from Theoretical Force–Displacement Curves:
Comparison of the Methods

5.1. Experimental

5.1.1. Materials and Specimen Preparation

Properties of fibers and matrices used in our experiments and other data required for τd and τf
calculation are presented in Table 1. We have tested the following fiber–matrix systems: (1) E-glass
fibers–Hexion 135 epoxy; (2) Toho Tenax carbon fibers (CF1)–polyamide 6,6 (PA 6,6); (3) Sigrafil
C carbon fibers (CF2)–Hexion 135 epoxy; (4) E-glass fibers–polypropylene (PP); and (5) poly(vinyl
alcohol) (PVA) fibers–concrete matrix. The conditions of specimen preparation were as follows:

(1) melting for 100 s at 45 ◦C, then fiber embedding, 1 h at 85 ◦C and curing for 6 h at 80 ◦C;
(2) 290 ◦C/10 s (embedding), then 15 min cooling down to 23 ◦C;
(3) the same procedure as in (1);
(4) 255 ◦C/2 min (embedding), then cooling down to 23 ◦C;
(5) 24 h at 23 ◦C and RH = 50%, then 1 week at 23 ◦C and RH = 90%.

5.1.2. Pull-Out Testing

All pull-out tests were carried out at the Leibniz-Institut für Polymerforschung Dresden (IPF)
using a specialized apparatus constructed at the IPF and described in detail elsewhere [29]. The pull-out
rate was 0.01 µm/s in all cases (quasi-static test). The details of the experimental procedure and data
acquisition/initial treatment (recording the force–displacement curve and its further processing in
Mathematica) were presented earlier in [38]. For each specimen, three characteristic force values
(Fd, Fmax and Fb) were determined from the corresponding force–displacement curve and then used to
calculate the interfacial strength parameters (τd and τf) using all seven methods described in Section 3.

5.2. Evaluation Results and Comparison of the Methods

Interfacial strength parameters for real fiber–matrix systems are determined in the same way
as for virtual specimens presented in Section 4. However, one important difference is that for real
specimens we usually do not have force–crack length curves (unless we specifically investigate the
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crack propagation, e.g., using Raman spectroscopy [16,17] or direct video recording for transparent
matrices [18,19]), and τd and τf evaluation is based on solely force–displacement curve.

Figure 6. The initial parts of experimental force–displacement curves. (a) glass fiber–PP matrix,
le = 629 µm; (b) PVA fiber–concrete matrix, le = 1921 µm; (c) carbon fiber (CF2)–H135 epoxy matrix,
le = 47 µm (for this specimen, the full force–displacement curve is also shown).

In the case of glass fiber–PP matrix system, the embedded fiber length in this specimen was
629 µm, so that there were no problems resulting from short embedded length. The general shape
of the force–displacement curve for this specimen is rather typical, and the maximum force, Fmax,
and the post-debonding force, Fb, can easily be determined: Fmax = 0.3296 N and Fb = 0.2867 N
(see Table 4). However, two kinks were present in the rising part of the force–displacement curve
(Figure 6a). For these kinks, A1 and A2 in Figure 6a, we found Fd1 = 0.1259 N and Fd2 = 0.2659 N,
respectively. Then we determined the interfacial parameters, τd and τf, for both sets of characteristic
forces {Fd, Fmax, Fb} using all seven methods presented in Section 3. As expected, the pairs {τd, τf}
determined using the “alternative” method (Method 4) appeared to be equal for both sets (17.59 and
8.24 MPa, respectively), since the Fd value is not used in this method. At the same time, all other
methods showed a great difference between the results obtained using kink 1 and kink 2. As can be
seen in Table 4, the τd and τf values calculated for kink 1 are close to values determined using Method 4,
while for kink 2 all τd values are much greater. Obviously, kink 1 is the “true” kink (the corresponding
Fd value is in agreement with Fmax and Fb within the frame of the model used), while Fd2 = 0.2659 N is
highly overestimated. The analysis of the sums of least squares, s, confirms this conclusion (see Table 4).
Since the embedded fiber length was sufficiently large, we believe that τd = 17.59 MPa is close to the
“true” local IFSS value. Note that if the kink force is determined wrongly (as for kink 2), the methods



Materials 2018, 11, 2406 13 of 18

which are directly based on the Fd value (Methods 1–3) yield larger errors than the methods which
assume that Fd value may be incorrect and combine it with Fmax and/or Fb (Methods 5–7).

Table 4. Interfacial strength parameters determined from the experimental force–displacement curve
for E-glass fiber–PP matrix pair using different methods.

Method Fd, N Fmax, N Fb, N τd, MPa τf, MPa s × 103, N2 Rank

1 (Fd, Fmax) 0.1259 0.3296 0.3038 15.22 8.73 0.292 6
0.2659 0.3296 0.1356 32.14 3.90 22.82 7

2 (Fd, Fb) 0.1259 0.3158 0.2867 15.22 8.24 0.191 5
0.2659 0.4272 0.2867 32.14 8.24 9.53 5

3 (Fd, best{Fmax, Fb}) 0.1259 0.3212 0.2935 15.22 8.44 0.116 2
0.2659 0.3968 0.2419 32.14 6.95 6.53 3

4 (Fb, Fmax) 0.1455 0.3296 0.2867 17.59 8.24 0.384 7
0.1455 0.3296 0.2867 17.59 8.24 14.50 6

5 (Fb, best{Fd, Fmax}) 0.1324 0.3203 0.2867 16.01 8.24 0.130 3
0.2183 0.2869 0.2867 26.39 8.24 5.55 2

6 (Fmax, best{Fd, Fb}) 0.1344 0.3296 0.2966 16.25 8.53 0.172 4
0.1977 0.3296 0.2304 23.89 6.62 7.83 4

7 (best { Fd, Fmax, Fb}) 0.1305 0.3230 0.2918 15.77 8.39 0.091 1
0.2282 0.3736 0.2560 27.59 7.36 4.30 1

Experimental values 0.1259
0.3296 0.2867 - - - -

0.2659

The embedded length was 629 µm, the fiber diameter was 17.6 µm. The upper value was calculated for the first
kink (Fd1 = 0.1259 N); the lower, for the second kink (Fd2 = 0.2659 N).

The PVA fiber–concrete matrix system is very interesting. First, it is one of the few fiber–matrix
pairs for which the specimen shape can be considered as very close to cylindrical. Second, large
fiber diameters (for the specimen under consideration, df = 38.13 µm) and relatively small local IFSS
make possible pull-out testing on specimens with very large embedded lengths (le = 1921 µm for the
considered specimen). Third, the force–displacement curves for this system are more intricate due to
slip-dependent friction characteristic of composites with concrete matrices [41,58–61]. Nevertheless,
the maximum force, Fmax, and the post-debonding frictional force at the moment of debonding
completion, Fb, can be determined reliably using the techniques proposed in [41,58]. For our specimen,
we found Fmax = 0.2924 N and Fb = 0.1540 N (Table 5). The initial part of the force–displacement curve
also shows two kinks, A1 and A2, with corresponding kink forces Fd1 = 0.200 N and Fd2 = 0.2812 N
(Figure 6b). The analysis similar to that described in the previous paragraph shows that the height of
point A1 is only slightly overestimated, while the τd values based on Fd2 are too large. All conclusions
made at the end of the previous paragraph are also valid for the PVA–concrete system. We should
only note that overestimated τd values for systems with low interfacial friction may often be combined
with highly underestimated τf values (even by an order of magnitude!)

As can be seen in Section 4, we do not recommend pull-out testing on specimens with very
short embedded fiber length. In addition to the above-discussed underestimation of the local IFSS
determined by all seven methods, these experiments involve some others, purely technical, problems.
Figure 6c presents the force–displacement curve for the carbon fiber (CF2)–H135 epoxy pair. For this
type of force–displacement curves, it is rather difficult to draw a straight line corresponding to
post-debonding friction. As a result, the Fb value can be determined only very roughly. But the error
in the embedded length, le, may be much greater, since it is not clear where should the post-debonding
straight line cross the displacement axis. For the specimen presented, we determined Fb ≈ 0.00764 N
(more or less reliably) and le ≈ 47 µm (very rough). Fortunately, this curve includes only one distinct
kink in its rising part, so that an approximate estimation of the interfacial parameters can be done.
The results are shown in Table 6. Since τd = 107 MPa determined using Methods 4 and 6 is greater than
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τd calculated using all other methods, the kink force should be considered as a bit underestimated,
which results in a conclusion that the true τd value should be even greater. In any case, the test results
for such short embedded lengths are very unreliable and can only be used for rough comparative
studies. If it is possible, the embedded fiber length in pull-out test should not be less than 100–120 µm.

Table 5. Interfacial strength parameters determined from the experimental force–displacement curve
for PVA fiber–concrete matrix pair using different methods.

Method Fd, N Fmax, N Fb, N τd, MPa τf, MPa s × 103, N2 Rank

1 (Fd, Fmax) 0.2000 0.2924 0.1006 36.10 0.44 2.85 7
0.2812 0.2924 0.0126 50.76 0.054 19.99 7

2 (Fd, Fb) 0.2000 0.3422 0.1540 36.10 0.67 2.48 5
0.2812 0.4228 0.1540 50.76 0.67 16.99 5

3 (Fd, best{Fmax, Fb}) 0.2000 0.3190 0.1292 36.10 0.56 1.32 3
0.2812 0.3625 0.0891 50.76 0.39 9.13 3

4 (Fb, Fmax) 0.1497 0.2924 0.1540 27.02 0.67 2.53 6
0.1497 0.2924 0.1540 27.02 0.67 17.30 6

5 (Fb, best{Fd, Fmax}) 0.1751 0.3175 0.1540 31.61 0.67 1.25 2
0.2161 0.3581 0.1540 39.00 0.67 8.56 2

6 (Fmax, best{Fd, Fb}) 0.1734 0.2924 0.1289 31.30 0.56 1.34 4
0.2112 0.2924 0.0886 38.13 0.39 9.17 4

7 (best {Fd, Fmax, Fb}) 0.1825 0.3100 0.1381 32.95 0.60 0.87 1
0.2363 0.3376 0.1104 42.65 0.48 5.96 1

Experimental values 0.2000
0.2924 0.1540 - - - -

0.2812

The embedded length was 1921 µm, the fiber diameter was 38.13 µm. The upper value was calculated for the first
kink (Fd1 = 0.200 N); the lower, for the second kink (Fd2 = 0.2812 N).

The force–displacement curves and detailed tables with results for the two remaining fiber–matrix
systems (CF1–PA 6,6, le = 139 µm and E-glass–H135 epoxy, le = 89 µm) are not shown since the general
shapes of both curves are regular. The first curve shows one distinct kink; Method 4 yields for this
specimen τd = 45.80 MPa and τf = 7.29 MPa, while other methods which use the Fd estimated τd to be
between 35 and 42 MPa. This means that the kink position (Fd) is roughly in agreement with the Fmax

and Fb values and may be only slightly underestimated, probably due to non-cylindrical shape of the
specimen. The agreement between the characteristic force values is also confirmed by very small sums
of the least squares, s1–s7: all of them are below 0.33 × 10−3.

Table 6. Interfacial strength parameters determined from the experimental force–displacement curve
for carbon fiber (CF2)–H135 epoxy matrix pair using different methods.

Method Fd, N Fmax, N Fb, N τd, MPa τf, MPa s × 103, N2 Rank

1 (Fd, Fmax) 0.05197 0.06386 0.06181 89.25 75.92 2.935 7
2 (Fd, Fb) 0.05197 0.51973 0.00764 89.25 9.38 0.141 3–6
3 (Fd, best{Fmax, Fb}) 0.05197 0.05197 0.00764 89.25 9.38 0.141 3–6
4 (Fb, Fmax) 0.06386 0.06386 0.00764 107.47 9.38 0.141 3–6
5 (Fb, best{Fd, Fmax}) 0.05792 0.05792 0.00764 98.36 9.38 0.071 1–2
6 (Fmax, best{Fd, Fb}) 0.06386 0.06386 0.00766 107.47 9.41 0.141 3–6
7 (best { Fd, Fmax, Fb}) 0.05792 0.05792 0.00764 98.36 9.38 0.071 1–2

Experimental values 0.05197 0.06386 0.00764 - - - -

The embedded length was 47 µm, the fiber diameter was 5.5 µm.

The curve for the E-glass–H135 epoxy includes two kinks in its rising part. Methods using the Fd
value yield τd = 46 . . . 72 MPa (s = (30 . . . 36) × 10−3) for the “lower” kink and τd = 85 . . . 95 MPa
(s = (2 . . . 4) × 10−3) for the “upper” one. Method 4 gave τd = 104.8 MPa (and τf = 6.43 MPa) for both
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“kinks”. Obviously, the first kink is “wrong” (is not related to the interfacial crack). At the same time,
the second one is, in all probability, rather close to the debond force for the equivalent cylinder, and
the value of 104.8 MPa can be considered as a good τd estimation for this system.

The factors causing multiple kinks in force–displacement curves still remain, to a great extent,
unclear. As can be seen in “theoretical” curves (e.g., Figure 4a), some of the kinks may be artifacts
resulting from non-cylindrical specimen shape, even for large embedded lengths. On the other hand,
experimental force–displacement curves often show exactly two kinks before reaching the Fmax value;
in our opinion, one of these kinks may be due to crack initiation in the glue which holds the opposite
fiber end. Since the parameters of the glue droplet (or layer) are typically poorly controlled, the position
of this “parasite” kink may vary considerably from one specimen to another. Thus, there is a danger
that the wrong kink may be erroneously considered as characterizing the investigated fiber–matrix
system. However, if we use several different methods (or at least “traditional” and “alternative” ones)
to evaluate an experimental force–displacement curve, the two kinks can be reliably identified, and the
“true” one can be chosen.

6. Conclusions

We compared seven methods of estimating the local interfacial strength parameters (local IFSS,
τd, and interfacial frictional stress, τf) from force–displacement curves recorded in single fiber pull-out
test. All these methods are based on the three characteristic forces which can be determined from
the experimental force–displacement curve (debond force, Fd, maximum force, Fmax, and initial
post-debonding force, Fb) but use these values in different combinations within the frames of a
stress-based model of interfacial debonding.

The main reason due to which real experimental force–displacement curves differ from their
theoretical shape is non-cylindrical shape of the matrix droplets, especially at their top where the
fiber enters the matrix. As a result, the debond force cannot be measured reliably, while the Fmax and
Fb values can be determined with good accuracy. Thus, the methods which directly use the debond
force, Fd, for τd calculation, including the most popular “traditional” method, may yield large errors
in the calculated values of the local interfacial strength parameters. Therefore, we propose that the
“alternative” method, which does not use Fd at all, should be strongly preferred.

The alternative method yields best results when the embedded fiber length is large enough
(greater than 100–120 µm). Under this condition, the falling parts of force–crack length curves for the
real specimen and the “equivalent cylinder”, including the Fmax and Fb values, are close to each other,
and the equivalent cylinder can be used instead the real specimen shape.

For short embedded length, all seven methods underestimate the τd value, but the alternative
method yields the least error, since the difference in Fmax values for the real specimen and the equivalent
cylinder is smaller than the difference in Fd. On the contrary, the traditional method based on the
debond force results in the greatest τd underestimation.

For some specimens, the force–displacement curve can include two kinks, and one of them may
be due to crack propagation in the glue at the opposite fiber end. These kinks can be identified by
comparing the τd values obtained using the traditional and alternative methods. The Fd value which
shows better agreement between the two methods, corresponds to the “correct” kink.
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