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Mass transport in multicomponent compressible fluids: Local
and global well-posedness in classes of strong solutions for

general class-one models
Dieter Bothe, Pierre-Étienne Druet

Abstract

We consider a system of partial differential equations describing mass transport in a multi-
component isothermal compressible fluid. The diffusion fluxes obey the Fick-Onsager or Maxwell-
Stefan closure approach. Mechanical forces result into one single convective mixture velocity, the
barycentric one, which obeys the Navier-Stokes equations. The thermodynamic pressure is de-
fined by the Gibbs-Duhem equation. Chemical potentials and pressure are derived from a thermo-
dynamic potential, the Helmholtz free energy, with a bulk density allowed to be a general convex
function of the mass densities of the constituents.

The resulting PDEs are of mixed parabolic–hyperbolic type. We prove two theoretical results
concerning the well-posedness of the model in classes of strong solutions: 1. The solution always
exists and is unique for short–times and 2. If the initial data are sufficiently near to an equilibrium
solution, the well-posedness is valid on arbitrary large, but finite time intervals. Both results rely on
a contraction principle valid for systems of mixed type that behave like the compressible Navier-
Stokes equations. The linearised parabolic part of the operator possesses the self map property
with respect to some closed ball in the state space, while being contractive in a lower order norm
only. In this paper, we implement these ideas by means of precise a priori estimates in spaces of
exact regularity.

1 Mass transport for a multicomponent compressible fluid

This paper is devoted to the mathematical analysis of general class-one models of mass transport
in isothermal multicomponent fluids. We are interested in the theoretical issues of unique solvability
and continuous dependence (in short: well-posedness) in classes of strong solutions for the under-
lying PDEs. To start with, we shall expose the model very briefly. An extensive derivation from ther-
modynamic first principles is to find in [BD15], or [DGM13], [DGM18] for the extension to charged
constituents. There are naturally alternative modelling approaches: The reader who wishes exploring
the model might for instance consult the references in these papers, or the book [Gio99].

Model for the bulk. We consider a molecular mixture of N ≥ 2 chemical species A1, . . . ,AN

assumed to constitute a fluid phase. The convective and diffusive mass transport of these species and
their mechanical behaviour are described by the following balance equations:

∂tρi + div(ρi v + J i) = ri for i = 1, . . . , N , (1)

∂t(% v) + div(% v ⊗ v − S(∇v)) +∇p =
N∑
i=1

ρi b
i(x, t) . (2)
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D. Bothe, P.-É. Druet 2

The equations (1) are the partial mass balances for the partial mass densities ρ1, . . . , ρN of the
species. We shall use the abbreviation % :=

∑N
i=1 ρi for the total mass density. The barycentric ve-

locity of the fluid is called v and the thermodynamic pressure p. In the Navier-Stokes equations (2), the
viscous stress tensor is denoted S(∇v). The vector fields b1, . . . , bN are the external body forces. The
diffusions fluxes J1, . . . , JN , which are defined to be the non-convective part of the mass fluxes, must
satisfy by definition the necessary side-condition

∑N
i=1 J

i = 0. Following the thermodynamic consis-
tent Fick–Onsager closure approach described by [BD15], [DGM18] (older work in [MR59, dM63]), the
diffusion fluxes J1, . . . , JN obey, in the isothermal case,

J i = −
N∑
j=1

Mi,j(ρ1, . . . , ρN) (∇µj − bj(x, t)) for i = 1, . . . , N . (3)

The Onsager matrix M(ρ1, . . . , ρN) is a symmetric, positive semi-definite N × N matrix for every
(ρ1, . . . , ρN) ∈ RN

+ . In all known linear closure approaches this matrix satisfies

N∑
i=1

Mi,j(ρ1, . . . , ρN) = 0 for all (ρ1, . . . , ρN) ∈ RN
+ . (4)

One possibility to compute the special form of M is for instance to invert the Maxwell–Stefan balance
equations. For the mathematical treatment of this algebraic system, the reader can consult [Gio99],
[Bot11], [JS13] or [HMPW17]. OrM is constructed directly in the form P T M0 P , whereM0 is a given
matrix of full rank, and P is a projector guaranteeing that (4) is valid. The paper [BDb] establishes
equivalence relations between the Fick–Onsager and the Maxwell–Stefan constitutive approaches, so
that we do not need here further specifying the structure of the tensor M .

The quantities µ1, . . . , µN are the chemical potentials. The material theory which provides the defini-
tion of µ is based on the assumption that the Helmholtz free energy of the system possesses only a
bulk contribution with density %ψ. Moreover, this function possesses the special form

%ψ = h(ρ1, . . . , ρN) ,

where h : D ⊆ RN
+ → R is convex and sufficiently smooth in the range of mass densities relevant

for the model. For the sake of simplicity, we shall in fact assume that h possesses a smooth convex
extension to the entire range of admissible mass densities RN

+ = {ρ ∈ RN : ρi > 0 for i =
1, . . . , N}. The chemical potentials µ1, . . . , µN of the species are related to the mass densities
ρ1, . . . , ρN via

µi = ∂ρih(ρ1, . . . , ρN) . (5)

In (2), the thermodynamic pressure has to obey the isothermal Gibbs-Duhem equation

N∑
i=1

ρi dµi = dp (6)

where d is the total differential. This yields, up to a reference constant, a relationship between p and
the variables ρ1, . . . , ρN which is often called the Euler equation:

p = −h(ρ1, . . . , ρN) +
N∑
i=1

ρi µi = −h(ρ1, . . . , ρN) +
N∑
i=1

ρi ∂ρih(ρ1, . . . , ρN) . (7)

For the mathematical theory of this paper, we do not need to assume a special form of the free energy
density, but rather formulate general assumptions: The free energy function is asked to be a Legendre
function on RN

+ with surjective gradient onto RN . For illustration, let us remark that the choices
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Multicomponent compressible fluids 3

� h = kB θ
∑N

i=1 ni ln ni
nref ;

� h = K F
(∑N

i=1 ni v̄
ref
i

)
+ kB θ

∑N
i=1 ni ln ni

n
;

� h =
∑N

i=1 Ki ni v̄
ref
i ((ni v̄

ref
i )αi−1 + ln(ni v̄

ref
i )) + kB θ

∑N
i=1 ni ln ni

n
;

are covered by the results of this paper. In these examples, θ > 0 is the constant absolute tem-
perature, ni := ρi/mi is the number density (mi > 0 the molecular mass of species Ai), and
n =

∑N
i=1 ni is the total number density. The first example models the free energy for a mixture

of ideas gases with a reference value nref > 0. In the second example, the constants v̄ref
i > 0 are

reference volumes introduced in [DGL14] to explain solvatisation effects in electrolytes, K > 0 is
the compression module of the fluid, and F is a general non-linear convex function related to volume
extension. The third example, with constants Ki > 0 and αi ≥ 1 shows that more complex state
equations can as well be included in the setting. For the convenience of the reader, we briefly show in
the Appendix, Section A, that the examples fit into the abstract framework of our well-posedness theo-
rems. We also remark that stating assumptions directly on the thermodynamic potential h is possible,
because it is always possible to find this potential from the knowledge of the chemical potentials or of
the state equation of the physical system, as shown in [BD15], or in the upcoming paper [BDa].

Reaction densities ri = ri(ρ1, . . . , ρN) or ri = ri(µ1, . . . , µN) for i = 1, . . . , N will be considered
in (1) only for the sake of generality. We shall not enter the very interesting details of their modelling.
We just note that these functions are likewise subject to the constraint

∑N
i=1 ri(ρ1, . . . , ρN) = 0 for

all (ρ1, . . . , ρN) ∈ RN
+ , which expresses the conservation of mass by the reactions. As to the stress

tensor S, we shall restrict for simplicity to the standard Newtonian form with constant coefficients. The
paper, however, provides methods which are sufficient to extend the results to the case of density and
composition dependent viscosity coefficients.

Boundary conditions. We investigate the system (1), (2) in a cylindrical domain QT := Ω×]0, T [
with a bounded domain Ω ⊂ R3 and T > 0 a finite time. It is possible to treat the case Ω ⊂ Rd for
general d ≥ 2 with exactly the same methods.

We are mainly interested in results for the bulk operators. Thus, we shall not be afraid of some simplifi-
cation concerning initial and boundary operators. A lot of interesting phenomena like mass transfer at
active boundaries, or chemical reactions with surfactants, shall not be considered here but in further
publications. Boundary conditions are also often the source of additional problems for the mathemati-
cal theory, like: Mixed boundary conditions, non-smooth boundaries, singular initial data. All this can,
however, only be dealt with in the context of weak solutions, and is not our object here.

We consider the initial conditions

ρi(x, 0) = ρ0
i (x) for x ∈ Ω, i = 1, . . . , N , (8)

vj(x, 0) = v0
j (x) for x ∈ Ω, j = 1, 2, 3 . (9)

For simplicity, we consider the linear homogeneous boundary conditions

v = 0 on ST := ∂Ω×]0, T [ , (10)

ν · J i = 0 on ST for i = 1, . . . , N . (11)
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D. Bothe, P.-É. Druet 4

2 Mathematical analysis: state of the art and our results

The local or global existence and uniqueness of strong solutions to the class-one model exposed in
the introduction has, from this point of view of generality, not yet been studied. More generally, there
are relatively few published investigations with rigorous analysis about mass transport equations for
a multicomponent system, with or without chemical reactions, being coupled to equations of Navier-
Stokes type. In the theoretical study of this problem two different branches or disciplines of PDE
analysis are meeting each other: diffusion–reaction systems and mathematical fluid dynamics.

The first fundamental observation in studying the system is that the differential operator generated
by the mass transport equation is not parabolic. This is due to the condition (4), which implies that
the second–order spatial differential operator possesses one zero eigenvalue. The total mass density
satisfies the continuity equation ∂t%+div(% v) = 0. One of the coordinates of the vector of unknowns
behaves inherently hyperbolic.

One important question is how to deal with this hyperbolic component. Among the papers repre-
senting most important advances for the understanding of the field, we can mention [HMPW17] and
[CJ15]. The first paper is concerned with local-in-time well-posedness analysis for strong solutions,
while the second deals with globally defined weak solutions for the Maxwell-Stefan closure of the
diffusion fluxes. Both papers, however, rely on the same fundamental idea to eliminate the hyper-
bolic component by assuming % = const. (incompressibility). Under this condition, the Navier-Stokes
equations reduce to their incompressible variant and decouple from the mass transport system. This
system can be solved independently and re-expressed as a parabolic problem for the mass fractions
ρ1/%, . . . , ρN/% (in [HMPW17]) or for differences of chemical potentials (in [CJ15]). In both cases
there remains only N − 1 independent variables. Let us briefly remark that the Navier-Stokes equa-
tions do not occur explicitly in [HMPW17] but are treated (in addition to other difficulties though) in
[BP17]. Note that in [BS16], a class of multicomponent mixtures has been introduced for which the
use of the incompressible Navier-Stokes equation is more realistic: Incompressibility is assumed for
the solvent only, and diffusion is considered against the solvent velocity.

In the context of compressible fluids, the global weak solution analysis of non-isothermal class-one
models was initiated in [FPT08], where a simplified diffusion law (diagonal, full-rank closure) was
considered so that the problem of degenerate parabolicity is avoided. In [MPZ15] and [Zat15] the
fluxes are calculated from a constitutive equation similar to (3), though for a special choice of the
mobility matrix and of the thermodynamic potential. The global existence of weak solution is tackled
by means of diverse stabilisation techniques and a tool called Bresch-Desjardins technique, which
exploits a special dependence of viscosity coefficients on density to obtain estimates for the density
gradient.

The first paper dealing with the full class-one model exposed in the introduction for more general
thermodynamic potentials h = h(ρ) and closure relations for diffusion fluxes and reaction terms is
the investigation [DDGG16] and the subsequent [DDGG17a, DDGG17b, DDGG17c] in the context of
charged carriers (electrolytes). There ideas of [CJ15] were generalised in order to rewrite the PDEs
as a coupled system with the following structure:

(a) A doubly non-linear parabolic system for N − 1 variables q1, . . . , qN−1 called relative chemical
potentials (for instance qi := µi − µN for i = 1, . . . , N − 1);

(b) The compressible Navier-Stokes equations with pressure p = P (%, q1, . . . , qN−1) to determine
the variables % and v.
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Multicomponent compressible fluids 5

The concrete form of this system is given by the equations

∂tR(%, q) + div(R(%, q) v − M̃(%, q) (∇q − b̃)) = r̃(%, q) ,

∂t%+ div(% v) = 0 ,

∂t(% v) + div(% (v ⊗ v)− S(∇v)) +∇P (%, q) = R(%, q) · b̃(x, t) + % b̄(x, t)

in which M̃ ∈ R(N−1)×(N−1) is a positive operator, the Jacobian Rq ∈ R(N−1)×(N−1) is likewise
positive definite, and b̃, b̄, r̃ are suitable transformations of the vector of bulk forces and of the reaction
term. This formulation has many advantages, the most obvious one being that it allows to handle the
total mass density with Navier-Stokes techniques and eliminates the tedious positivity constraints on
the partial mass densities. Applying these ideas, we were able to prove the global existence of certain
weak solutions under the restriction that the non-zero eigenvalues of M = M(ρ) remain strictly
positive independently of the possible vanishing of species.

In this paper, we show that the reformulation based on (a), (b) is also suited to study the local and
global well-posedness for strong solutions, without restriction on the particular form of the free energy
(inside of the assumption h = h(ρ) with h of Legendre type, a notion to be defined below), and for
generalM = M(ρ) symmetric and positively semi–definite of rankN−1. From the point of view of its
structure, the reformulated system of equations consists of the compressible Navier-Stokes equations,
coupled to a doubly nonlinear parabolic system of dimension N − 1 for the unknown q. For N = 2,
the equation for q is scalar, and we would face a variant of the so-called Navier-Stokes-Fourier system
with q playing the role of the temperature, and a density-dependent diffusion coefficient M̃ .

The general method used to study these systems in classes of strong or classical solutions is the con-
traction principle valid for short times or small perturbations of equilibrium solutions (a property some-
times improperly called ’small data’). We have to pay attention to the fact, though, that the parabolic
contraction principle does not apply here in its pure form. There have been two types of attempts to
study mixed systems like Navier-Stokes and Navier-Stokes-Fourier. The first method consists in pass-
ing to Lagrange coordinates, in terms of which there is an explicit inversion formula for the continuity
equation. Then, the density is eliminated, and it is possible to study the parabolic part of the system
with a nonlocal term. This is the approach exposed for instance in [Tan77], [SK81] with short-time
well-posedness results in the scale of Hölder spaces (see also [Sol95] for corresponding results with-
out proofs in scale of Hilbert-spaces). The second method sticks to the Eulerian coordinates and it
exploits precise estimates to control the growth of the solution. Early results for this approach are to
be found in [Sol80] for the Navier-Stokes operator in the Sobolev (non Hilbertian) scale of spaces, and
in [MN83, Val82, Val83, VZ86] for the Sobolev-Hilbert scale. Further short comments on this type of
literature are given after the statement of the main Theorems.

In our case, for N > 2 the parabolic system for q is non-diagonal, but its linearised principal part
in smooth points is still parabolic in the sense of Petrovki, normally elliptic in Amanns notation. This
is clearly a nontrivial extension of the traditional problems of fluids mechanics. We shall study the
problem in the class proposed in the paper [Sol80] for Navier-Stokes: W 2,1

p with p larger than the
space dimension for the components of the velocity and W 1,1

p,∞ for the densities. For the new variable
q we also choose the parabolic setting of W 2,1

p . Within these classes we are able to prove the local
existence and the semi-flow property for strong solutions. We shall also prove the global existence
under the condition that the initial data are sufficiently near to an equilibrium (stationary) solution.
Since this result foots on stability estimates in the state space, we however need to assume the higher
regularity of the initial data in order to obtain some stability from the continuity equation. Thus, these
solutions exist and are unique on arbitrary large time intervals, but they might not enjoy the extension
property.

DOI 10.20347/WIAS.PREPRINT.2658 Berlin 2019
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A further feature worth to mention is that in our treatment, the question of positivity of the mass
densities is reduced to obtaining a L∞ estimate for the relative chemical potentials q1, . . . , qN−1 and
a positivity estimate for the total mass density %. This is a consequence of the fact that we recover
ρ1, . . . , ρN in the form of a continuous map R(%, q) with range in RN

+ . The positivity of a solution %
to the continuity equation depends only on the smoothness of the velocity field v, while the L∞ bound
for q is a natural consequence of the choice of the state space. In this way, the question of positivity
is entirely reduced to the smoothness issue, and strong solutions remain by definition positive as long
as they are bounded in the state space.

At last we would like to mention that, while finishing this investigation, we became aware of the recent
work [PSZ18]. Here the authors study the short-time well-posedness for a model similar to the one
considered in [MPZ15, Zat15], with certain restrictions to some particular choices for the thermody-
namic potentials and kinetic matrix. The paper foots on the same change of variables as in [DDGG16],
and it uses a reformulation similar to (a), (b). The problem is studied in the LpLq parabolic setting by
means of the Lagrange coordinate transformation. This approach provides interesting complements
to the methods proposed in the present paper, and vice versa.

2.1 Main results

We assume that Ω ⊂ R3 is a bounded domain and T > 0. We denote Q = QT = Ω×]0, T [.

In order to formulate our results, we first recall a few notations and definitions. At first for ` = 1, 2, . . .
and 1 ≤ p ≤ +∞ we introduce the anisotropic/parabolic Sobolev spaces

W 2`,`
p (Q) :={u ∈ Lp(Q) : Dβ

t D
α
xu ∈ Lp(Q)∀ 1 ≤ 2 β + |α| ≤ 2 `} ,

‖u‖W 2`,`
p (Q) :=

∑
0≤2β+|α|≤2 `

‖Dβ
t D

α
xu‖Lp(Q)

and, with a further index 1 ≤ r <∞, the spaces

W `
p,r(Q) = W `,`

p,r(Q) :={u ∈ Lp,r(Q) :
∑

0≤β+|α|≤`

Dα
x D

β
t u ∈ Lp,r(Q)} ,

‖u‖W `,`
p,r(Q) :=

∑
0≤β+|α|≤`

‖Dβ
t D

α
xu‖Lp,r(Q) .

Let us precise that in these notations the space integration index always comes first. For r = +∞,
W `,`
p,∞(Q) denotes the closure of C`(Q) with respect to the norm above, and thus

W `,`
p,∞(Q) :={u ∈ Lp,∞(Q) :

∑
0≤β+|α|≤`

Dα
x D

β
t u ∈ C([0, T ]; Lp(Ω))} .

We moreover need the concept of essential smoothness for a proper, convex function f : RN → R
(see [Roc70], page 251). For an essentially smooth, strictly convex function with open domain, the
operation of conjugation is identical with applying the classical Legendre transform. We will therefore
call h : RN

+ → R a Legendre function if it belongs to C1(RN
+ ), is strictly convex, and if |∇ρh(ρ)| →

+∞ for ρ → ∂RN
+ . If the function h is moreover co-finite ([Roc70], page 116), the gradient mapping

∇h is invertible between the domain of h and the entire space RN . Typical free energy densities h
are co-finite functions of Legendre type as shown in Appendix, Section A.

Due to (4), the diffusion system (1) is not parabolic. The matrix M(ρ)D2h(ρ) possesses only N − 1
positive eigenvalues that moreover might degenerate for vanishing species. There are therefore only
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Multicomponent compressible fluids 7

N − 1 ’directions of parabolicity’ of the mass transport equations. In order to extract them, we shall
need the following standard projector in RN :

P : RN → {1N}⊥ , P := IdRN −
1

N
1N ⊗ 1N .

Let us introduce also

RN
+ :={ρ = (ρ1, . . . , ρN) ∈ RN : ρi > 0 for i = 1, . . . , N} ,

RN

+ :={ρ = (ρ1, . . . , ρN) ∈ RN : ρi ≥ 0 for i = 1, . . . , N} .

Our first main Theorem is devoted to the short-time existence of a strong solution.

Theorem 2.1. We fix p > 3, and we assume that

(a) Ω ⊂ R3 is a bounded domain of class C2;

(b) M : RN
+ → RN×N is a mapping of class C2(RN

+ ; RN×N) into the positive semi-definite matri-
ces of rank N − 1 with constant kernel 1N = {1, . . . , 1};

(c) h : RN
+ → R is of class C3(RN

+ ), and is a co-finite function of Legendre type in its domain RN
+ ;

(d) r : RN
+ → RN is a mapping of class C1(RN

+ ) into the orthogonal complement of 1N ;

(e) The external forcing b satisfies P b ∈ W 1,0
p (QT ; RN×3) and b − P b ∈ Lp(QT ; RN×3). For

simplicity, we assume that ν(x) · P b(x, t) = 0 for x ∈ ∂Ω and λ1−almost all t ∈]0, T [.

(f) The initial data ρ0
1, . . . ρ

0
N : Ω → R+ are strictly positive measurable functions satisfying the

following conditions:

� The initial total mass density %0 :=
∑N

i=1 ρ
0
i is of class W 1,p(Ω);

� There is m0 > 0 such that 0 < m0 ≤ %0(x) for all x ∈ Ω;

� The vector defined via µ0 := ∂ρh(θ, ρ0
1, . . . ρ

0
N) (initial chemical potentials) satisfiesP µ0 ∈

W
2− 2

p
p (Ω; RN);

� The compatibility condition ν(x) · P∇µ0(x) = 0 is valid in W
1− 3

p
p (∂Ω; RN) in the sense

of traces;

(g) The initial velocity v0 belongs to W
2− 2

p
p (Ω; R3) with v0 = 0 in W

2− 3
p

p (∂Ω; R3).

Then, there exists 0 < T ∗ ≤ T such that the problem (1), (2) with closure relations (3), (5), (7) and
boundary conditions (8), (9), (10), (11) possesses a unique solution in the class

ρ ∈ W 1
p (QT ∗ ; RN

+ ), v ∈ W 2,1
p (QT ∗ ; R3) ,

such that, moreover, µ := ∂ρh(θ, ρ) satisfies P µ ∈ W 2,1
p (QT ∗ ; RN). The solution can be uniquely

extended to a larger time interval whenever there is α > 0 such that

‖P µ‖
Cα,

α
2 (QT∗ )

+ ‖∇(P µ)‖L∞,p(QT∗ ) + ‖v‖Lz p,p(QT∗ ) +

∫ T ∗

0

[∇v(s)]Cα(Ω) ds < +∞ .

Here z = z(p) satisfies z = 3
p−2

for 3 < p < 5, z > 1 arbitrary for p = 5, and z = 1 for p > 5.

DOI 10.20347/WIAS.PREPRINT.2658 Berlin 2019
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Remark 2.2. � A solution (ρ, v) in the sense of Theorem 2.1 is strong: The equations (1), (2)
are valid pointwise almost everywhere in QT ∗ . To see this one uses that (4) implies the identity

J = −M(ρ)∇µ = −M(ρ)P ∇µ .

Since Theorem 2.1 establishes parabolic regularity for P µ, the contributions div J are well
defined in Lp(QT ∗).

� The result carries over to the case where the potential h has a smaller domain: h : D ⊂
RN

+ → R, provided that D is open, and that h is of Legendre type in D1. The initial data must
satisfy ρ0 ∈ D. The maximal existence time is then further restricted by the distance of ρ0 to
∂D. The case that h is not co-finite, which means that the image of∇ρh is a true subset of RN ,
corresponds to constraints affecting the chemical potentials, which we do not wish to discuss
further here.

Remark 2.3. Other functional space settings are applicable:

� The parabolic Hölder-space scale C2+α, 1+α
2 seems to be very natural. It was applied success-

fully to the compressible Navier-Stokes equations with energy equation: see [Tan77] and [SK81]
for a (unfortunately very short) proof of local well-posedness;

� The Hilbert–space scale W 2`,`
2 with ` sufficiently large. In the latter approach one uses the

conservation law structure of the system to derive a priori bounds for higher derivatives of
the solution in L2. For several variants of the method in the case of Navier-Stokes or Navier-
Stokes-Fourier, see [MN83, Val82, Val83, VZ86], [Sol95], or also [CCK04, Hof12, BFJ15] and
references. Usually, somewhat more regularity of the domain and the coefficients is demanded
because it is necessary to differentiate the equations several times.

� In [FNS14] the Navier-Stokes-Fourier system was also studied in classes of higher square–
integrable derivatives. In this case the maximal existence time can be characterised by a weaker
criterion. Indeed, the boundedness of the velocity gradient suffices to guarantee that the solution
can be extended.

Proving the local well-posedness for the mixture case in these classes should be possible ’under
suitable modifications’. The quotation marks hint toward a substantial problem: The principal part of
the parabolic system for the variables q1, . . . , qN−1 is non-diagonal for N > 2. This might be an
obstacle to simply transferring the results.

Our second main result concerns global existence under suitable restrictions for the data. Here the
concept of an equilibrium solution is first needed. An equilibrium solution for (1), (2) is defined as a
vector (ρeq

1 , . . . , ρ
eq
N , v

eq
1 , v

eq
2 , v

eq
3 ) of functions defined in Ω with

ρeq ∈ W 1,p(Ω; RN
+ ), veq ∈ W 2,p(Ω; R3)

and the vector field µeq = ∂ρh(θ, ρeq) satisfies P µeq ∈ W 2,p(Ω; RN). For these functions, the

1The concept of a function of Legendre type on an open set is defined [Roc70], Th. 26.5. This is more exact then
speaking of a Legendre function, even if we shall also employ this terminology if the context is unequivocal.
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relations

div(ρeq
i v

eq −
N∑
j=1

Mi,j(ρ
eq) (∇µeq

j − bj(x)) = 0 for i = 1, . . . , N , (12)

div(%eq veq ⊗ veq − S(∇veq)) +∇peq =
N∑
i=1

ρeq
i b

i(x) (13)

are valid in Ω. Here we let peq = −h(θ, ρeq) +
∑N

i=1 ρ
eq
i µ

eq
i . The boundary conditions are veq = 0

on ∂Ω and ν(x) ·Mi,j(ρ
eq) (∇µeq

j −bj(x)) = 0 on ∂Ω. We show that the problem (1), (2) possesses
a unique strong solution on arbitrary large, but finite time intervals, given that:

(i) The equilibrium solution and the initial data are sufficiently smooth;

(ii) The distance of the initial data to an equilibrium solution is sufficiently small.

Theorem 2.4. We adopt the assumptions of Theorem 2.1, but also assume that b = b(x) does not
depend on time with b ∈ W 1,p(Ω; RN×3) and r ≡ 0. In addition, we assume that an equilibrium
solution (ρeq, veq) ∈ W 1,p(Ω; RN

+ )×W 2,p(Ω; R3) is given and that the data possess the additional
regularity

%eq, %0 ∈ W 2,p(Ω), veq ∈ W 3,p(Ω; R3), v0 ∈ W 2,p(Ω; R3) .

Then, for every 0 < T < +∞, there exists R1 > 0, depending on T and on the respective norms of
the data, such that if

‖P (µ0 − µeq)‖
W

2− 2
p

p (Ω;RN )
+ ‖%0 − %eq‖W 1,p(Ω) + ‖v0 − veq‖

W
2− 2

p
p (Ω;R3)

≤ R1

the problem (1), (2) with closure relations (3), (5), (7) and boundary conditions (8), (9), (10), (11)
possesses a unique solution in QT in the same class as in Theorem 2.1.

Remark 2.5. � One particular stability issue for the compressible Navier-Stokes equations and for
the Navier-Stokes-Fourier system is well studied in the Hilbert space setting in [MN83, Val82,
Val83, VZ86]. It is proved there that some ’equilibrium solution’ veq = 0 and %eq = const. (and,
in the case of Navier-Stokes-Fourier, θeq = const.) is globally stable. For initial data sufficiently
close to this solution, there indeed exists a global strong solution (T = +∞). Extensions of
this result to the stability of other stationary solutions are, to the best of our knowledge, not
available.

� Robustness estimates on bounded time intervals are to be found in Theorem 1 of [BFJ15], as
well as more recent references in the stability discussion.

� The additional regularity required in Theorem 2.4 for the data is sufficient, but might be not
optimal. Since we are interested in a qualitative result we do not attempt to formulate minimal
assumptions in this place.

2.2 Organisation of the paper

Section 3 explains the change of variables in the transport problem, which is the core of our method.
The closely related Section 4 reformulates the partial differential equations and the main results in
these new variables.
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In Section 5 we introduce the differential operators to be investigated in the analysis and the Banach
spaces in which they are defined. We state the C1−property for these operators and discuss diverse
technicalities such as trace properties and the extension of the boundary data.

Section 6 introduces two methods of linearising in order to reformulate the operator equation as a
fixed-point problem. The first method freezes both the coefficients and the lower-order terms, and is
applied to prove the short-time existence. The second method is somewhat more demanding and
relies on linearising the entire lower-order part of the operators around a suitable extension of the
initial data. This second method allows to prove stability estimates and is used for the global existence
result.

The technical part is occupied by the remaining sections. Section 7 states the main continuity esti-
mates for the inverse of the principal part of the linearised operators.

In Section 8, we apply these estimates to show the controlled growth of the solution and the state
space estimates for the short-time existence and uniqueness. We prove the convergence of the fixed-
point iteration in Section 9.

For the global existence, we prove the main estimate in the section 10, and the existence of a fixed-
point in Section 11.

3 A change of variables to tackle the analysis

The system (1), (2) exhibits several features that might restrain the global well-posedness: 1. The dif-
fusion system is coupled at the highest order; 2. This system possesses mixed parabolic–hyperbolic
character, with possibly degenerated parabolicity; 3. The mass densities are subject to positivity con-
straints. We show in the present paper that there is a reformulation of the problem allowing to eliminate
the positivity constraints on ρ and to handle the singularity due to M 1N = 0. A first main idea is to
use the chemical potentials as principal variables. With the help of the conjugate convex function h∗

to h, we invert the relation µi = ∂ρih(ρ) for i = 1, . . . , N , which reads

ρi = ∂µih
∗(µ1, . . . , µN) for i = 1, . . . , N . (14)

If h is of Legendre type on RN
+ and co-finite, then h∗ is strictly convex and smooth on RN . Thus,

the natural domain of µ is not subject to constraints. The idea to pass to dual variables to avoid the
positivity constraints in multicomponent transport problems is not new. It was probably introduced
first in the context of the weak solution analysis of semiconductor equations (see a. o. [GG98]). The
method has been generalised in the context of a boundedness by entropy method : See, among others,
[Jün15, Jün17] to allow the weak solution analysis of full rank parabolic systems.

In the context of Fick-Onsager or equivalent closure equations for the diffusion fluxes, the PDE system
exhibits a rank N − 1 parabolicity. In the literature, this parabolicity could be exploited by imposing
an incompressibility condition which allows to eliminate one variable: See [CJ15], [HMPW17], [BP17]
for this approach. In these cases the free energy is positively homogeneous, and the thermodynamic
pressure resulting from (7) is constant.

In the paper [DDGG16], we first proposed to combine the inversion formula (14) with a linear trans-
formation in order to eliminate the positivity constraints and to exploit the rank N − 1 parabolicity,
without imposing restriction on the pressure of the physical system. Note that already in the papers
[BD15, DGM13] devoted mainly to modelling, the diffusion problem is partly formulated in variables %
(total mass density) and µ1 − µN , . . . , µN−1 − µN (differences of chemical potentials). These mod-
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els single out one particular species, introducing some asymmetry. For the theoretical investigation we
shall therefore rather follow [DDGG16] where the choice of the projector is left open.

We choose a basis ξ1, . . . , ξN−1, ξN of RN such that ξN = 1N , and introduce the uniquely deter-
mined η1, . . . , ηN ∈ RN such that ξi · ηj = δij for i, j = 1, . . . , N (dual basis). We define

q` := η` · µ :=
N∑
i=1

η`i µi for ` = 1, . . . , N − 1 .

We call q1, . . . , qN−1 the relative chemical potentials. We can now express

% =
N∑
i=1

ρi = 1N · ∇µh
∗(µ1, . . . , µN) =

N∑
i=1

∂µih
∗(µ1, . . . , µN)

= 1N · ∇µh
∗(
N−1∑
`=1

q` ξ
` + (µ · ηN) 1N) .

This is an algebraic equation of the form F (µ · ηN , q1, . . . , qN−1, %) = 0. We notice that

∂µ·ηNF (µ · ηN , q1, . . . , qN−1, %) = D2h∗(µ)1N · 1N > 0 ,

due to the strict convexity of the conjugate function. Thus, the latter algebraic equation defines the last
component µ · ηN implicitly as a differentiable function of % and q1, . . . , qN−1. We call this function
M and obtain the equivalent formula

µ =
N−1∑
`=1

q` ξ
` + M (%, q1, . . . , qN−1) 1N , (15)

ρ = ∇µh
∗(
N−1∑
`=1

q` ξ
` + M (%, q1, . . . , qN−1) 1N) , (16)

where only the total mass density % and the relative chemical potentials q1, . . . , qN−1 occur as free
variables. Since the pressure obeys the Euler equation (7)

p = h∗(µ) =h∗(
N−1∑
`=1

q` ξ
` + M (%, q1, . . . , qN−1) 1N) =: P (%, q) . (17)

Certain properties of the functions M and P for general h = h(ρ) have already been studied in the
Section 5 of [DDGG16]. Here we need only the following property:

Lemma 3.1. Suppose that h ∈ C3(RN
+ ) is a Legendre function in RN

+ , and the image of the gradient
map ∇ρh is the entire RN . Then, the formula (17) defines a function P which belongs to C2(R+ ×
RN−1).

Proof. Due to the main Theorem 26.5 of [Roc70] on the Legendre transform, we know that the convex
conjugate h∗ is differentiable and locally strictly convex on the image∇ρh(RN

+ ) of the gradient map-
ping. In addition, ∇ρh(RN

+ ) = int(dom(h∗)). By assumption, we thus know that dom(h∗) = RN .
Since ∇h and ∇h∗ are inverse to each other, the inverse mapping theorem allows to show that
h∗ ∈ C3(RN) if and only if h ∈ C3(RN

+ ).
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Consider now the function M introduced in (15). Since it is obtained implicitly from the algebraic
relation 1N ·∇µh

∗(
∑N−1

`=1 q` ξ
`+(µ ·ηN) 1N)−% = 0, we obtain for the derivatives the expressions

∂%M (%, q) =
1

D2h∗1N · 1N
, ∂qkM (%, q) = −D

2h∗1N · ξk

D2h∗1N · 1N
,

in which the HessianD2h∗ is evaluated at µ =
∑N−1

`=1 q` ξ
`+M (%, q1, . . . , qN−1) 1N . We thus see

that M ∈ C2(R+ × RN−1). Clearly, the formula (17) implies that P ∈ C2(R+ × RN−1).

In order to deal with the right-hand side (external forcing), we also introduce projections for the field b.
For ` = 1, . . . , N − 1, we define b̃`(x, t) :=

∑N
i=1 b

i(x, t) η`i and b̄(x, t) :=
∑N

i=1 b
i(x, t) ηNi in

order to express

bi(x, t) :=
N∑
`=1

b̃`(x, t) ξ`i + b̄(x, t) for i = 1, . . . , N .

For the reaction term r : RN
+ → RN , ρ 7→ r(ρ), we define

r̃k(%, q) :=
N∑
i=1

ξki ri(
N−1∑
k=1

Rk(%, q) η
k + % ηN) for k = 1, . . . , N − 1 .

4 Reformulation of the partial differential equations and of the
main theorem

We recall (4) and we see that the diffusion fluxes have the form

J i = −
N∑
j=1

Mi,j(ρ1, . . . , ρN) (∇µj − bj(x, t))

= −
N∑
j=1

[
N−1∑
`=1

Mi,j(ρ1, . . . , ρN) ξ`j (∇q` − b̃`)−Mi,j(ρ1, . . . , ρN) (∇M (%, q)− b̄(x, t))

]

= −
N−1∑
`=1

[
N∑
j=1

Mi,j(ρ1, . . . , ρN) ξ`j

]
(∇q` − b̃`) .

If we introduce the rectangular projection matrixQj,` = ξ`j for ` = 1, . . . , N − 1 and j = 1, . . . , N ,

then J = −M Q(∇q − b̃). Thus, we consider equivalently

∂tρ+ div(ρ v −M Q (∇q − b̃(x, t))) = r ,

∂t(% v) + div(% (v ⊗ v)− S(∇v)) +∇P (%, q) =
N∑
i=1

ρi b
i(x, t) .

Next we define, for k = 1, . . . , N − 1, the maps

Rk(%, q) :=
N∑
j=1

ξkj ρj =
N∑
j=1

ξkj ∂µjh
∗(
N−1∑
`=1

q` ξ
` + M (%, q1, . . . , qN−1) 1N) . (18)

Obviously we can express ρi :=
∑N−1

k=1 Rk(%, q) η
k
i + % ηNi . We note a particular property of the

vector field R.

DOI 10.20347/WIAS.PREPRINT.2658 Berlin 2019



Multicomponent compressible fluids 13

Lemma 4.1. Suppose that h ∈ C3(RN
+ ) is a co-finite Legendre function on RN

+ . Then, the formula
(18) defines R as a vector field of class C([0, +∞[×RN−1; RN−1) and C2(R+ × RN−1; RN−1).
The Jacobian {Rk,qj}k,j=1,...,N−1 is symmetric and positively definite at every (%, q) ∈ R+ × RN−1

and

Rq(%, q) = QT D2h∗Q− Q
T D2h∗1N ⊗QT D2h∗1N

D2h∗1N · 1N
.

In this formula, the Hessian D2h∗ is evaluated at µ =
∑N−1

`=1 q` ξ
` + M (%, q1, . . . , qN−1).

The proof is direct, using Corollary 5.3 of [DDGG16]. Multiplying the mass transport equations with
ξki , we obtain that

∂tRk(%, q) + div(Rk(%, q) v − (QT M(ρ)Q)k,`︸ ︷︷ ︸
=:M̃k,`(ρ)

(∇q` − b̃`) = (QT r)k for k = 1, . . . , N − 1 .

It turns out that if the rank of M(ρ) is N − 1 on all states ρ ∈ RN
+ , the matrix M̃(ρ) is symmetric

and strictly positively definite on all states ρ ∈ RN
+ . Making use of (15), (16), we can also consider M̃

as a mapping of the variables % and q. Using Lemma 4.1, we can establish the following properties of
this map.

Lemma 4.2. Suppose that h ∈ C3(RN
+ ) is a co-finite Legendre function on RN

+ . Suppose further that
M : RN

+ → RN×N is a mapping into the positively semi-definite matrices of rank N − 1 with kernel

{1N}, having entries Mi,j of class C2(RN
+ ) ∩ C(RN

+ ). Then the formula M̃(%, q) := QT M(ρ)Q
defines a map M̃ : R+ × RN−1 → R(N−1)×(N−1) into the symmetric positively definite matrices.
The entries M̃k,j are functions of class C2(]0, +∞[×RN−1) and C([0, +∞[×RN−1).

Overall, we get for the variables (%, q1, . . . , qN−1, v) instead of (1), (2) the equivalent equations

∂tR(%, q) + div(R(%, q) v − M̃(%, q) (∇q − b̃(x, t))) = r̃(%, q) , (19)

∂t%+ div(% v) = 0 , (20)

∂t(% v) + div(% v ⊗ v − S(∇v)) +∇P (%, q) = R(%, q) · b̃(x, t) + % b̄(x, t) . (21)

Up to the positivity constraint on the total mass density %, the latter problem is free of constraints!

Our first aim is now to show that at least locally–in–time the system (19), (20), (21) for the variables
(%, q1, . . . , qN−1, v) is well–posed. We consider initial conditions

q(x, 0) = q0(x) for x ∈ Ω , (22)

%(x, 0) = %0(x) for x ∈ Ω , (23)

v(x, 0) = v0(x) for x ∈ Ω . (24)

Due to the preliminary considerations in Section 3, prescribing these variables is completely equiv-
alent to prescribing initial values for the mass densities ρi and the velocity v. It suffices to define
µ0 = ∂ρh(ρ0) and then q0

k = µ0 · ηk for k = 1, . . . , N − 1. For simplicity, we consider the linear
homogeneous boundary conditions

v = 0 on ST , (25)

ν · ∇qk = 0 on ST for k = 1, . . . , N − 1 . (26)
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The conditions (26) and (11) are equivalent, because we assume throughout the paper that the given
forcing b satisfies ν(x) · P b(x, t) = 0 for x ∈ ∂Ω (see the assumption (e) in the statement of The-
orem 2.1). We can also do without this assumption, but at the price of further technical complications
– to be avoided here – due to the need of conceptualising also surface source terms. Owing to the
Lemmas 3.1, 4.1 and 4.2, the coefficient functions R, M̃ and P are of class C2 in the domain of
definitions R+×RN−1. The set Ω is assumed smooth likewise (further precisions in the statement of
the theorem). We reformulate Theorem 2.1 for the new variables.

Theorem 4.3. Assume that the coefficient functions R, M̃ and P are of class C2, while r̃ is of class
C1, in the domain of definition R+ × RN−1. Let Ω be a bounded domain with boundary ∂Ω of class
C2. Suppose that, for some p > 3, the initial data are of class

q0 ∈ W
2− 2

p
p (Ω; RN−1), %0 ∈ W 1,p(Ω; R+), v0 ∈ W

2− 2
p

p (Ω; R3) ,

satisfying %0(x) ≥ m0 > 0 in Ω and the compatibility conditions ν(x) · ∇q0(x) = 0 and v0(x) = 0
on ∂Ω. Assume that b̃ ∈ W 1,0

p (QT ; R(N−1)×3) and b̄ ∈ Lp(QT ; R3).

Then there is 0 < T ∗ ≤ T , depending only of these data in the norms just specified, such that the
problem (19), (20), (21) with boundary conditions (22), (23), (24), (25) and (26) is uniquely solvable in
the class

(q, %, v) ∈ W 2,1
p (QT ∗ ; RN−1)×W 1,1

p,∞(QT ∗ ; R+)×W 2,1
p (QT ∗ ; R3) .

The solution can be uniquely extended in this class to a larger time interval whenever there is α > 0
such that

‖q‖
Cα,

α
2 (QT∗ )

+ ‖∇q‖L∞,p(QT∗ ) + ‖v‖Lz p,p(QT∗ ) +

∫ T ∗

0

[∇v(s)]Cα(Ω) ds < +∞ ,

where z = z(p) is the number defined in Theorem 2.1.

5 Technicalities

5.1 Operator equation

For functions q1, . . . , qN−1, v1, v2, v3 and for non-negative % defined on Ω× [0, T ], we introduce an
operator A (q, %, v) = (A 1(q, %, v), A 2(%, v), A 3(q, %, v)), where

A 1(q, %, v) := ∂tR(%, q) + div(R(%, q) v − M̃(%, q) (∇q − b̃(x, t)))− r̃(%, q)
A 2(%, v) := ∂t%+ div(% v)

A 3(q, %, v) := % (∂tv + (v · ∇)v)− div S(∇v) +∇P (%, q)−R(%, q) · b̃(x, t)− % b̄(x, t) .

We shall moreover introduce another related operator. This trick allows to deal with the time derivative
of % occurring in A 1, which is a coupling in the highest order. Consider a solution u = (q, %, v) to
A (u) = 0. Computing time derivatives in the equation A 1(u) = 0, we obtain that

R% (∂t%+ v · ∇%) +
N−1∑
j=1

Rqj (∂tqj + v · ∇qj) +R div v − div(M̃ ∇q)

= − div(M̃ b̃(x, t)) + r̃ .
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Here, all non-linear functions R, R%, Rq and M̃ , r̃ etc. are evaluated at (%, q). We next exploit
A 2(%, v) = 0 to see that ∂t%+ v · ∇% = −% div v. Thus, under the side-condition A 2(%, v) = 0,
the equation A 1(u) = 0 is equivalent to

Rq(%, q) ∂tq − div(M̃(%, q)∇q)
= (R%(%, q) %−R(%, q)) div v −Rq(%, q) v · ∇q − div(M̃ b̃(x, t)) + r̃(%, q) .

(27)

We therefore can introduce Ã (q, %, v) := (Ã 1(q, %, v), A 2(%, v), A 3(q, %, v)), the first com-

ponent being the differential operator defined by (27). Clearly, A (u) = 0 if and only if Ã (u) = 0.

5.2 Functional setting

We now introduce a functional setting for which the short–time well–posedness can be proved by
relatively elementary means. We essentially follow the parabolic setting of the book [LSU68], which
relies on the former study [Sol65]. We use the standard Sobolev spaces Wm,p(Ω) for m ∈ N and
1 ≤ p ≤ +∞, the Sobolev-Slobodecki spaces W s

p (Ω) for s > 0 non-integer and, with a further
index 1 ≤ r ≤ +∞, the parabolic Lebesgue spaces Lp,r(Q) (space index first; Lp(Q) = Lp,p(Q)).

First, we consider the setting for the parabolic variables v and q. For ` = 1, 2, . . ., the Banach-
spaces W 2`,`

p (Q) are defined in Section 2. For ` = 1, the space W 2,1
p (Q) denotes the usual space

W 1
p (0, T ; Lp(Ω)) ∩ Lp(0, T ; W 2,p(Ω)) of maximal parabolic regularity of index p. Moreover, we let

W `,0
p (QT ) := {u ∈ Lp(Q) : Dα

xu ∈ Lp(Q)∀ |α| ≤ `}. We denote C(Q) = C0,0(Q) the space

of continuous functions over Q and, for α, β ∈ [0, 1], we define the spaces of Hölder continuous
functions via

Cα, β(Q) :={u ∈ C(Q) : [u]Cα,β(Q) < +∞} ,

[u]Cα, β(Q) = sup
t∈[0, T ], x,y∈Ω

|u(t, x)− u(t, y)|
|x− y|α

+ sup
x∈Ω, t,s∈[0, T ]

|u(t, x)− u(s, x)|
|t− s|β

.

Remark 5.1 (Useful properties of W 2,1
p (Q):). � The spatial differentiation is continuous from

W 2,1
p into W 1,0

p , and into C([0, T ]; W
1− 2

p
p (Ω));

� The spatial differentiation is continuous from W 2,1
p into L∞,2p−3(Q), into Lz1 p,∞(Q) and into

Ls(Q) for s = 2p − 3 + z1 p. Here z1 = z1(p) := 3
5−p for 3 < p < 5, z1 ∈]1, ∞[ arbitrary

for p = 5, and z1 := +∞ for p > 5;

� For k ∈ N and α ∈ [0, 1] such that k+α ≤ 2− 5
p
, the space W 2,1

p embeds continuously into

the Hölder space Ck+α, 0(Q), and its elements are bounded;

� The time differentiation is continuous from W 2,1
p into Lp;

Proof. The embedding W 2,1
p (QT ) ⊂ C([0, T ]; W

2− 2
p

p (Ω)) is known from the references [Sol65],

[DHP07] and several others. Thus, d
dx

is continuous from W 2,1
p (Q) into C([0, T ]; W

1− 2
p

p (Ω)). With

the Sobolev embedding theorem (e. g., 8.3.3 in [KJF77] or XI.2.1 in [Vis96]), we know thatW
1− 2

p
p (Ω) ⊂

DOI 10.20347/WIAS.PREPRINT.2658 Berlin 2019



D. Bothe, P.-É. Druet 16

L
3p

(5−p)+ (Ω). Thus d
dx

is continuous into C([0, T ]; L
3p

(5−p)+ (Ω)). For α := p
2p−3

, the interpolation in-
equality (see [Nir66], Theorem 1)

‖∇f‖L∞(Ω) ≤C1 ‖D2f‖αLp(Ω) ‖f‖1−α
L∞(Ω) + C2 ‖f‖L∞(Ω)

implies that

‖∇u‖2p−3
L∞,2p−3(QT ) ≤ 22p−3 (C2p−3

1 ‖D2u‖pLp(QT ) ‖u‖
p−3
L∞(QT ) + C2p−3

2 ‖u‖2p−3
L∞,2p−3(QT )) .

Thus∇u ∈ L∞,2p−3(Q). The continuity of d
dx

into W 1,0
p is obvious. For k ∈ N and α ∈ [0, 1] such

that k+α ≤ 2− 5
p
, the space W

2− 2
p

p (Ω) embeds continuously into the Hölder space Ck+α(Ω) (see

[Vis96], XI.2.1). Thus W 2,1
p (Q) embeds continuously into the Hölder space Ck+α, 0(Q).

Next, we consider the appropriate functional space setting for the continuity equation. Since this equa-
tion has another type, some asymmetry cannot be avoided. We introduce the space

W 1,1
p,∞(Q) := {u ∈ Lp,∞(Q) : ut, uxi ∈ C([0, T ]; Lp(Ω)) for i = 1, 2, 3} ,

‖u‖W 1,1
p,∞(Q) := ‖u‖Lp,∞(Q) + ‖ux‖Lp,∞(Q) + ‖ut‖Lp,∞(Q) .

Remark 5.2 (Properties of W 1,1
p,∞(Q)). � The spaceW 1,1

p,∞ embeds continuously into the isotropic

Hölder space C1− 3
p (Q), and its elements are bounded;

� The spatial differentiation is continuous from W 1,1
p,∞ into Lp,∞(Q);

� The time differentiation is continuous from W 1,1
p,∞ into Lp,∞(Q);

Proof. While the two last properties are obvious, we can deduce the first one from the anisotropic
embedding result in the appendix of [KP11].

Beside the diverse Sobolev embedding results, we shall use for p > 3 the interpolation inequality (see
[Nir66], Theorem 1)

‖∇f‖L∞(Ω) ≤C1 ‖D2f‖αLp(Ω) ‖f‖1−α
Lp(Ω) + C2 ‖f‖Lp(Ω) (28)

valid with α := 1
2

+ 3
2p

for any function f in W 2,p(Ω).

We consider the operator (q, %, v) 7→ A (q, %, v) as acting in the product space

XT := W 2,1
p (QT ; RN−1)×W 1,1

p,∞(QT )×W 2,1
p (QT ; R3) . (29)

Since the coefficients of A are defined only for positive %, the domain of the operator is contained in
the subset of strictly positive second argument

XT,+ := W 2,1
p (QT ; RN−1)×W 1,1

p,∞(QT ; R+)×W 2,1
p (QT ; R3) . (30)

Since A is a certain composition of differentiation, multiplication and Nemicki operators, the properties
above allow to show the following statement
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Lemma 5.3. It the coefficientsR, M̃ and P are continuously differentiable in their domain of definition
R+ × RN−1, the operator A is continuous and bounded from XT,+ into

ZT = Lp(QT ; RN−1)× Lp,∞(QT )× Lp(QT ; R3) .

It the coefficients R, M̃ and P are twice continuously differentiable in their domain of definition R+×
RN−1, the operator A is continuously differentiable at every point of XT,+.

The same holds for the operator Ã . The proof of Lemma 5.3 can be carried over using standard
differential calculus and the properties stated in the Remarks 5.1 and 5.2. In order to save room, we
abstain from presenting it. The same estimates are needed in the proof of the main theorems anyway,
and shall be exposed there. We shall moreover make use of a reduced state space, containing only
the parabolic components (q, v), namely

YT := W 2,1
p (QT ; RN−1)×W 2,1

p (QT ; R3) . (31)

Some short remarks on notation: 1. We shall never employ local Hölder continuous functions. For
the sake of notation we identify Cα, β(Q) with Cα, β(Q); 2. Whenever confusion is impossible, we
shall also employ for a function f of the variables x ∈ Ω and t ≥ 0 the notations fx = ∇f for the
spatial gradient, and ft for the time derivative; 3. For the coefficients R, M̃ , etc. which are functions
of % and q, the derivatives are denoted R%, M̃q etc.

5.2.1 Boundary conditions and traces

As before, we let ST = ∂Ω×]0, T [. As is well known, there is a well-defined trace operator trST ∈
L (W 1,0

p (Q), Lp(ST )) (even continuous with values in Lp(0, T ; W
1− 1

p
p (∂Ω))). Since W 2`,`

p (Q) ⊂
W 1,0
p (Q) for ` ≥ 1, we can meaningfully define a Banach space

TrST W
2`,`
p (Q) :={f ∈ Lp(ST ) : ∃f̄ ∈ W 2`,`

p (Q), trST (f̄) = f} ,
‖f‖TrSTW

2`,`
p (Q) := inf

f̄∈W 2`,`
p (Q), trST (f̄)=f

‖f̄‖W 2`,`
p (Q) .

These spaces have been exactly characterised in terms of anisotropic fractional Sobolev spaces
on the manifold ST . The topic is highly technical. In particular, it is known that TrST W

2,1
p (Q) =

W 2− 1
p
, 1− 1

2p (ST ): See [DHP07], while older references [LSU68], [Sol65] seem to show only the inclu-

sion TrST W
2,1
p (Q) ⊆ W 2− 1

p
, 1− 1

2p (ST ).

Next, we consider the conditions on the surface Ω×{0}, i. e. the initial conditions. There is a well de-
fined trace operator trΩ×{0} ∈ L (C([0, T ]; Lp(Ω)), Lp(Ω)). Note thatW 2`,`

p (Q) ⊂ C([0, T ]; Lp(Ω))
for ` ≥ 1. Thus, we can define similarly

TrΩ×{0}W
2`,`
p (Q) :={f ∈ Lp(Ω) : ∃f̄ ∈ W 2`,`

p (Q), trΩ×{0}(f̄) = f} ,
‖f‖TrΩ×{0}W

2`,`
p (Q) := inf

f̄∈W 2`,`
p (Q), trΩ×{0}(f̄)=f

‖f̄‖W 2`,`
p (Q) .

It is known that TrΩ×{0}W 2,1
p (Q) = W

2− 2
p

p (Ω), see [Sol65], or [DHP07] and references for a complete
characterisation using the Besov spaces. Here we can restrict to the Slobodecki space since 2− 2

p
is
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necessarily non-integer for p > 3. The spaces of zero initial conditions are defined via

0W
2,1
p (QT ) := {u ∈ W 2,1

p (QT ) : u(0) = 0} ,
0W

1,1
p,∞(QT ) := {u ∈ W 1,1

p,∞(QT ) : u(0) = 0} ,

0XT := 0W
2,1
p (QT ; RN−1)× 0W

1,1
p,∞(QT )× 0W

2,1
p (QT ; R3) ,

0YT := 0W
2,1
p (QT ; RN−1)× 0W

2,1
p (QT ; R3) .

5.2.2 Compatible extension of the boundary data

The boundary operator for the problem (19), (20), (21) on ST is chosen as simple as possible: linear
and homogeneous (see (26), (25)). Thus, we consider B(q, %, v) given by

B1(q, %, v) = B1(q) :=ν · ∇q ,
B2 :≡0 ,

B3(q, %, v) = B3(v) :=v .

The operator B is acting on the space XT .

As usual for higher regularity, the choice of the initial conditions is restricted by the choice of the
boundary operator. The conditions q0

i ∈ TrΩ×{0}W 2,1
p (QT ), v0

i ∈ TrΩ×{0}W 2,1
p (QT ) guarantee at

first the existence of liftings q̂0 ∈ W 2,1
p (QT ; RN−1) and v̂0 ∈ W 2,1

p (QT ; R3). It is now necessary to
homogenise all boundary data in such a way that these liftings are also in the kernel of the boundary
operator. In order to find q̂0 ∈ W 2,1

p satisfying q̂0(0) = q0 and B1(q̂0) = ν · ∇q̂0 = 0 on ST and
v̂0 ∈ W 2,1

p satisfying v̂0(0) = v0 and B3(v̂0) = v̂0 = 0 on ST , we refer to the Lp− theory of the
Neumann/Dirichlet problem for the heat equation (see among others the monograph [LSU68]). There
is, in both cases, one necessary compatibility condition,

ν · ∇q0 = 0 on ∂Ω, v0 = 0 on ∂Ω ,

which make sense as identities in Tr∂ΩW
1− 2

p
p (Ω) = W

1− 3
p

p (∂Ω) and in Tr∂ΩW
2− 2

p
p (Ω) = W

2− 3
p

p (∂Ω).
In order to find an extension for %0 ∈ W 1,p(Ω), we solve the problem

∂t%̂0 + div(%̂0 v̂
0) = 0, %̂0(0) = %0 . (32)

For this problem, the Theorem 2 of [Sol80] establishes unique solvability in W 1,1
p,∞(QT ) and, among

other, the strict positivity %̂0 ≥ c0(Ω, ‖v̂0‖W 2,1
p (QT ;R3)) infx∈Ω %0(x).

6 Linearisation and reformulation as a fixed-point equation

We shall present two different manners to linearise the equation A (u) = 0 for u ∈ XT with initial
condition u(0) = u0 in TrΩ×{0}XT :

� The first method is used to prove the statements on short-time existence in Theorem 2.1, 4.3;

� The second technique shall be used to prove the global existence for restricted data in Theorem
2.4;

DOI 10.20347/WIAS.PREPRINT.2658 Berlin 2019



Multicomponent compressible fluids 19

The attentive reader will notice that the main estimate for the second linearisation techniques would
also allow to prove the short-time existence. However, it has the drawback to be applicable only if
the initial data possess more smoothness than generic elements of the state space XT . Thus, this
technique does not allow to prove a semi-flow property. For this reason we think that, at the price of
being lengthy, presenting the first method remains necessary.

In both cases, we start considering the problem to find u = (q, %, v) ∈ XT,+ such that Ã (u) = 0
and u(0) = u0, which possesses the following structure:

∂t%+ div(% v) =0 ,

Rq(%, q) ∂tq − div(M̃(%, q)∇q) =g(x, t, q, %, v, ∇q, ∇%, ∇v) ,

% ∂tv − div S(∇v) =f(x, t, q, %, v, ∇q, ∇%, ∇v) .

For the original problem, the functions g and f have the following expressions

g(x, t, q, %, v, ∇q, ∇%, ∇v) := (R%(%, q) %−R(%, q)) div v −Rq(%, q) v · ∇q
− M̃%(%, q)∇% · b̃(x, t)− M̃q(%, q)∇q · b̃(x, t)− M̃(%, q) div b̃(x, t)− r̃(%, q) , (33)

f(x, t, q, %, v, ∇q, ∇%, ∇v) := −P%(%, q)∇%− Pq(%, q)∇q − % (v · ∇)v

+R(%, q) · b̃(x, t) + % b̄(x, t) . (34)

In the proofs, we however consider the abstract general form of the right-hand sides. We shall also
regard g and f as functions of x, t and the vectors u and Dxu and write g(x, t, u, Dxu) etc.

6.1 The first fixed-point equation

For u∗ = (q∗, v∗) given in YT (cf. (31)) and for unknowns u = (q, %, v), we consider the following
system of equations

∂t%+ div(% v∗) =0 , (35)

Rq(%, q
∗) ∂tq − div(M̃(%, q∗)∇q) =g(x, t, q∗, %, v∗, ∇q∗, ∇%, ∇v∗) , (36)

% ∂tv − div S(∇v) =f(x, t, q∗, %, v∗, ∇q∗, ∇%, ∇v∗) , (37)

together with the initial conditions (22), (23), (24) and the homogeneous boundary conditions (25),
(26). Note that the continuity equation can be solved independently for %. Once % is given, the problem
(36), (37) is linear in (q, v).

We will show that the solution map (q∗, v∗) 7→ (q, v), denoted T is well defined from YT into itself.

The solutions are unique in the class YT . Clearly, a fixed point of T is a solution to Ã (q, %, v) = 0.

6.2 The second fixed-point equation

We assume that a reference vector û0 = (q̂0, %̂0, v̂0) ∈ XT is given and that q̂0 and v̂0 satisfy the
initial compatibility conditions. Moreover, we assume that %̂0 obeys (32).

Consider a solution u = (q, %, v) ∈ XT to Ã (u) = 0. We introduce the differences r := q − q̂0,
w := v − v̂0 and σ := %− %̂0, and the vector ū := (r, σ, w). Clearly, ū belongs to the space 0XT
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of homogeneous initial conditions. The equations Ã (u) = 0 shall be equivalently re-expressed as a

problem for the vector ū via Ã (û0 + ū) = 0. The vector ū = (r, σ, w) satisfies

Rq ∂tr − div(M̃ ∇r) = g1 :=g −Rq ∂tq̂
0 + M̃ 4q̂0 − M̃%∇% · ∇q̂0 (38)

− M̃q∇q · ∇q̂0 ,

∂tσ + div(σ v) =− div(%̂0w) , (39)

% ∂tw − div S(∇w) =f 1 =: f − %∂tv̂0 + div S(∇v̂0) . (40)

Herein, the coefficientsR, Rq, etc. are evaluated at (%, q), while g and f correspond to (33) and (34).

We next want to construct a fixed-point map to solve (38), (39), (40) by linearising the operators g1

and f 1 defined in (38) and (40). At a point u∗ = (q∗, %∗, v∗) ∈ XT,+ (cf. (30)), we can expand as
follows:

g = g(x, t, u∗, Dxu
∗) +

∫ 1

0

{(gq)θ (q − q∗) + (g%)
θ (%− %∗) + (gv)

θ (v − v∗)

+ (gqx)
θ · (qx − q∗x) + (g%x)

θ (%x − %∗x) + (gvx)
θ · (vx − v∗x)} dθ .

Here the brackets (·)θ, if applied to a function of x, t, u andD1
xu, stand for the evaluation at (x, t, (1−

θ)u∗ + θ u, (1− θ)Dxu
∗ + θ Dxu). In short, in order to avoid the integral and the parameter θ, we

write

g =g(x, t, u∗, Dxu
∗) + gq(u, u

∗) (q − q∗) + g%(u, u
∗) (%− %∗) + gv(u, u

∗) (v − v∗)
+ gqx(u, u

∗) · (qx − q∗x) + g%x(u, u
∗) (%x − %∗x) + gvx(u, u

∗) · (vx − v∗x)
=:g(x, t, u∗, Dxu

∗) + g′(u, u∗) (u− u∗) . (41)

We follow this scheme and write in short

g1 =g1(x, t, q̂0, %̂0, v̂0, q̂0
x, %̂x, v̂

0
x) + g1

q (u, û
0) r + g1

%(u, û
0)σ + g1

v(u, û
0)w

+ g1
qx(u, û

0) rx + g1
%x(u, û

0)σx + g1
vx(u, û

0)wx

=:ĝ0 + (g1)′(u, û0) ū . (42)

With obvious modifications, we have the same formula for f 1. Now we construct the fixed-point map to
solve (38), (39), (40). For a given vector (r∗, w∗) ∈ 0YT , we define q∗ := q̂0 +r∗ and v∗ := v̂0 +w∗.
We employ the abbreviation

u∗ :=(q∗, C (v∗), v∗) ∈ XT,+ , (43)

where C is the solution operator to the continuity equation with initial datum %0. For ū := (r, σ, w),
we next consider the linear problem

Rq(C (v∗), q∗) ∂tr − div(M̃(C (v∗), q∗)∇r) =ĝ0 + (g1)′(u∗, û0) ū , (44)

∂tσ + div(σ v∗) =− div(%̂0w) , (45)

C (v∗) ∂tw − div S(∇w) =f̂ 0 + (f 1)′(u∗, û0) ū , (46)

with boundary conditions ν · ∇r = 0 on ST and w = 0 on ST and with zero initial conditions. We will
show that the solution map (r∗, w∗) 7→ (r, w), denoted as T 1, is well defined from 0YT into itself.

Remark 6.1. If (r, w) is a fixed point of T 1, then u := û0 + (r, σ, w) is a solution to Ã (u) = 0.
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Proof. To see this, we note first that a fixed point satisfies T 1(r, w) = (r, w), hence the following
equations are valid:

Rq(q, C (v)) ∂tr − div(M̃(q, C (v))∇r) =ĝ0 + (g1)′((q, C (v), v), û0) ū ,

∂tσ + div(σ v) =− div(%̂0w) ,

C (v) ∂tw − div S(∇w) =f̂ 0 + (f 1)′((q, C (v), v), û0) ū .

Adding to the second equation the identity (32), valid by construction, we see that %̃ := %̂0 + σ is a
solution to the continuity equation with velocity v and initial data %0. Thus %̃ = C (v) (uniqueness for
the continuity equation, cf. Proposition 7.7 below). Now, we see by the definitions of (g1)′ and (f 1)′

(cf. (42)) that

ĝ0 + (g1)′((q, C (v), v), û0) ū =ĝ0 + (g1)′((q̂0 + r, %̂0 + σ, v̂0 + w), û0) (r, σ, w)

=g1(q̂0 + r, %̂0 + σ, v̂0 + w)

and, analogously, f̂ 0 + (f 1)′((q, C (v), v), û0) ū = f 1. Thus we recover a solution to the equations
(38), (39) and (40).

6.3 The self-mapping property

Assuming for a moment that the map T , (q∗, v∗) 7→ (q, v) via the solution to (35), (36), (37) is well
defined in the state space YT , then the main difficulty to prove the existence of a fixed-point is to show
that T maps some closed bounded set of YT into itself. If T is well–defined and continuous, we shall
rely on the continuous estimates

‖(q, v)‖W 2,1
p (Qt;RN−1)×W 2,1

p (Qt;R3) ≤ Ψ(t, R0, ‖(q∗, v∗)‖W 2,1
p (Qt;RN−1)×W 2,1

p (Qt;R3)) , (47)

valid for all t ≤ T with a function Ψ being continuous in all arguments. Here R0 is a parameter stand-
ing for the magnitude of the initial data q0, %0 and v0 and of the external forces b in their respective
norms. An important observation of the paper [Sol80] is the following.

Lemma 6.2. Suppose thatR0 > 0 is fixed. Suppose that for all t ≤ T , the inequality (47) is valid with
a continuous function Ψ = Ψ(t, R0, η) ≥ 0 defined for all t ≥ 0 and η ≥ 0 and increasing in these
arguments. Assume moreover that Ψ(0, R0, η) = Ψ0(R0) > 0 is independent of η. Then there are
t0 = t0(R0) > 0 and η0 = η0(R0) > 0 such that T (q∗, v∗) := (q, v) maps the closed ball with
radius η0 in Yt0 into itself.

Proof. We have to show that η0 := inf{η > 0 : Ψ(t0, R0, η) ≤ η} > 0, since then (47) implies

‖T (q∗, v∗)‖Yt0 ≤ Ψ(t0, R0, ‖(q∗, v∗)‖Yt0 ) ≤ ‖(q∗, v∗)‖Yt0 ,

whenever ‖(q∗, v∗)‖Yt0 ≤ η0. Hence T maps the closed ball with radius η0 in Yt0 into itself. Now
η0 = 0 yields Ψ(t0, R0, η) = 0 by the continuity of Ψ (and since Ψ is nonnegative by assumption),
hence implies the contradiction Ψ(0, R0, η) = Ψ0(R0) = 0.

The strategy for proving Theorem 2.4 shall be quite similar. We use here the map T 1, (r∗, w∗) 7→
(r, w) defined via solution to (44), (45) and (46). In this case, the fixed-point we look for is in the space

0YT and we expect a continuity estimate of the type

‖(r, w)‖0YT ≤ Ψ(T, R0, R1, ‖(r∗, w∗)‖0YT ) . (48)

Here R0 stands for magnitude of the initial data q0, %0 and v0 and of the external forces b, while the
parameter R1 expresses the distance of these initial data to a stationary/equilibrium solution.
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Lemma 6.3. Suppose that T > 0 and R0 > 0 are arbitrary but fixed. Suppose that (48) is valid
with a continuous function Ψ = Ψ(T, R0, R1, η) defined for all R1 ≥ 0 and η ≥ 0, and increasing
in these arguments. Assume moreover that Ψ(T, R0, 0, η) = 0 and that Ψ(T, R0, R1, 0) > 0.
Then, there is δ > 0 such that if R1 ≤ δ, we can find η0 > 0 such that T 1 maps the set {ū ∈ 0YT :
‖ū‖YT ≤ η0} into itself.

The proof can be left to the the reader as it is completely similar to the one of Lemma 6.2. In order to
prove the Theorems we shall therefore prove the continuity estimate (47), (48). This is the main object
of the next sections.

7 Estimates of linearised problems

In this section, we present the estimates on which our main results in Theorem 2.1, 4.3 are footing.
In order to motivate the procedure, we recall that we want to prove the continuity estimate (47) for
the map T in Section 6. With this fact in mind it shall be easier for the reader to follow the technical
exposition. The proof is split into several subsections. To achieve also more simplicity in the notation,
we introduce indifferently for a function or vector field f ∈ W 2,1

p (QT ; Rk) (p > 3 fixed, k ∈ N) and
t ≤ T the notation

V (t; f) := ‖f‖W 2,1
p (Qt;Rk) + sup

s≤t
‖f(·, s)‖

W
2− 2

p
p (Ω;Rk)

. (49)

Moreover, we will need Hölder half-norms. For α, β ∈ [0, 1] and f scalar–valued, we denote

[f ]Cα(Ω) := sup
x 6=y∈Ω

|f(x)− f(y)|
|x− y|α

, [f ]Cα(0,T ) := sup
t6=s∈[0,T ]

|f(t)− f(s)|
|t− s|α

[f ]Cα,β(QT ) := sup
t∈[0, T ]

[f(·, t)]Cα(Ω) + sup
x∈Ω

[f(x, ·)]Cβ(0,T ) .

The corresponding Hölder norms ‖f‖Cα(Ω), ‖f‖Cα(0,T ) and f ∈ Cα,β(QT ) are defined adding the
corresponding L∞−norm to the half-norm.

7.1 Estimates for a linearised problem in the variables q1, . . . , qN−1

We commence with a statement concerning the linearisation of Ã 1 (cf. (27)).

Proposition 7.1. Assume thatRq, M̃ : R+×RN−1 → R(N−1)×(N−1) are maps of classC1 into the
set of positively definite matrices. Suppose further that q∗ ∈ W 2,1

p (QT ; RN−1) and %∗ ∈ W 1,1
p,∞(QT )

(p > 3) are given, where %∗ is strictly positive. We denoteR∗q := Rq(%
∗, q∗) and M̃∗ := M̃(%∗, q∗).

For t ≤ T , we further define

m∗(t) := inf
(x,s)∈Qt

%∗(x, s) > 0 , M∗(t) := sup
(x,s)∈Qt

%∗(x, s) .

We assume that g ∈ Lp(QT ; RN−1) and q0 ∈ W 2− 2
p (Ω) are given and that ν · ∇q0(x) = 0 in the

sense of traces on ∂Ω. Then there is a unique q ∈ W 2,1
p (QT ; RN−1), solution to the problem

R∗q qt − div(M̃∗∇q) = g in QT , ν · ∇q = 0 on ST , q(x, 0) = q0(x) in Ω . (50)
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Moreover, there is a constant C independent on T , q, %∗ and q∗ as well as a continuous function
Ψ1 = Ψ1(t, a1, . . . , a6) defined for all t ≥ 0 and all numbers a1, . . . , a6 ≥ 0 such that for all t ≤ T
and 0 < β ≤ 1, it holds that

V (t; q) ≤ C Ψ1,t

[
(1 + [%∗]

Cβ,
β
2 (Qt)

)
2
β ‖q0‖

W
2− 2

p
p (Ω)

+ ‖g‖Lp(Qt)

]
,

Ψ1,t := Ψ1(t, (m∗(t))−1, M∗(t), ‖q∗(0)‖Cβ(Ω), V (t; q∗), [%∗]
Cβ,

β
2 (Qt)

, ‖∇%∗‖Lp,∞(Qt)) .

In addition, Ψ1 is increasing in all arguments and the value Ψ1(0, a1, . . . , a6) = Ψ0
1(a1, a2, a3)

does not depend on the last three arguments.

Proof. We prove here only the unique solvability. Due to the technicality, the proof of the estimate will
be given separately hereafter. After computation of the divergence and inversion of R∗q in (50), the
vector field q is equivalently asked to satisfy the relations

qt − [R∗q ]
−1 M̃∗4q = [R∗q ]

−1 g + [R∗q ]
−1∇M̃∗ · ∇q . (51)

The matrix A∗ := [R∗q ]
−1 M̃∗ is the product of two symmetric positive semi-definite matrices. The

Lemma C.1 implies that the eigenvalues are real and strictly positive. Moreover,

λmin(M̃∗)

λmax(R∗q)
≤ λmin(A∗) ≤ λmax(A∗) ≤ λmax(M̃∗)

λmin(R∗q)
. (52)

Thus, the equations (51) are a linear parabolic system in the sense of Petrovski ([LSU68], Chapter VII,
Paragraph 8, Definition 2). We apply the result of [Sol65], Chapter V recapitulated in [LSU68], Chapter
VII, Theorem 10.4, enriched and refined in several contributions of the school of maximal parabolic
regularity as for instance in [DHP07], and we obtain the unique solvability. Note that in the case of the
equations (51), this machinery does not need to be applied in its full complexity. The reason is that the
differential operator of second order in space is the Laplacian in each row of the system. Using this
fact, the continuity estimate for the system (51) can be established by elementary means, as revealed
by the proof of Lemma 7.2 below (Appendix, Section B). From the estimate we can easily pass to
solvability by linear continuation.

Due to its technicality, the proof of the estimate is split into several steps. The first step, accomplished
in the following Lemma, is the principal estimate. Subsequent statements are needed to attain the
bound as formulated in Proposition 7.1.

Lemma 7.2. We adopt the assumptions of Proposition 7.1. Then for β ∈]0, 1] arbitrary, there is a
constant C independent on T , q, %∗ and q∗ such that, for all t ≤ T ,

V (t; q) ≤C φ∗0,t (1 + [%∗]
Cβ,

β
2 (Qt)

+ [q∗]
Cβ,

β
2 (Qt)

)
2
β (‖q0‖

W
2− 2

p
p (Ω)

+ ‖q‖W 1,0
p (Qt)

)

+ C φ∗1,t (‖g‖Lp(Qt) + ‖∇%∗ · ∇q‖Lp(Qt) + ‖∇q∗ · ∇q‖Lp(Qt)) .

For i = 0, 1, there is a continuous function φ∗i = φ∗i (a1, a2, a3) defined for all a1, a2, a3 ≥ 0 and
increasing in each argument, such that φ∗i,t = φ∗i ((m

∗(t))−1, M∗(t), ‖q∗‖L∞(Qt;RN−1)).

Remark 7.3. The proof shall moreover show that the growth of φ∗0,t, φ
∗
1,t can be estimated by a

function of the minimal/maximal eigenvalues of the matrices R∗q and M̃∗, and of their local Lipschitz
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constants over the range of (%∗, q∗). To extract this point more easily, we define for a Lipschitz contin-
uous matrix valued mappingA : R+×RN−1 → RN−1×RN−1, taking values in the positive definite
matrices (for instance A = Rq or A = M̃ ), and for t ≥ 0 functions

λ0(t, A∗) := inf
(x, s)∈Qt

λmin[A(%∗(x, s), q∗(x, s))] ,

λ1(t, A∗) := sup
(x, s)∈Qt

λmax[A(%∗(x, s), q∗(x, s))] ,

L(t, A∗) := sup
(x, s)∈Qt

|∂%A(%∗(x, s), q∗(x, s))|+ sup
(x, s)∈Qt

|∂qA(%∗(x, s), q∗(x, s))| .

It is possible to reinterpret these expressions as increasing functions of (m∗(t))−1, M∗(t), and
‖q∗‖L∞(Qt;RN−1). In the statement of Lemma 7.2, we then can choose

φ∗0,t :=
λ0(t, R∗q) + λ1(t, M̃∗)

λ
3
2
0 (t, R∗q)

max{1, λ1(t, M̃∗)
λ0(t, R∗q)

}

min{1, λ0(t, M̃∗)
λ1(t, R∗q)

}
×

×

1 +
max{1, λ1(t, M̃∗)

λ0(t, R∗q)
}

min{1, λ0(t, M̃∗)
λ1(t, R∗q)

}

(λ1(t, M̃∗) + λ0(t, R∗q)) (L(t, M̃∗) + L(t, R∗q))

λ
5
2
0 (t, R∗q)

 ,

φ∗1,t :=
(1 + L(t, M̃∗)) max{1, λ1(t, M̃∗)

λ0(t, R∗q)
}

λ
3
2
0 (t, R∗q) min{1, λ0(t, M̃∗)

λ1(t, R∗q)
}

. (53)

The proof is interesting, but lengthy. Since the use of Hölder norms to control the dependence on the
coefficients is a classical tool, we prove these statements in the Appendix, Section B.

In order to prove Proposition 7.1, we need some reformulation of the estimate of Lemma 7.2.

Corollary 7.4. We adopt the situation of Proposition 7.1, and for β ∈]0, 1], we denote

φ∗2,t := φ∗0,t (1 + [%∗]
Cβ,

β
2 (Qt)

+ [q∗]
Cβ,

β
2 (Qt)

)
2
β ,

B∗t := φ∗2,t + 1 + (φ∗1,t)
2p
p−3 (sup

s≤t
‖q∗(s)‖

W
2− 2

p
p (Ω)

+ ‖∇%∗‖Lp,∞(Qt))
2p
p−3 .

Then there are constants c1, c2, independent on T , q, %∗ and q∗, such that

V (t; q) ≤ c1

(
1 + t

1
p B∗t exp(c2 t [B∗t ]

p)
)

(φ∗2,t ‖q0‖
W

2− 2
p

p (Ω)
+ φ∗1,t ‖g‖Lp(Qt)) .

Proof. We start from the main inequality of Lemma 7.2. Raising it to the p−th power, we obtain

V p(t, q) ≤Cp (φ∗2,t)
p (‖q0‖p

W
2− 2

p
p (Ω)

+ ‖q‖p
W 1,0
p (Qt)

)

+ Cp (φ∗1,t)
p(‖g‖pLp(Qt)

+ ‖∇%∗ · ∇q‖pLp(Qt)
+ ‖∇q∗ · ∇q‖pLp(Qt)

) . (54)

We use the identity ‖q‖p
W 1,0
p (Qt)

=
∫ t

0
‖q(s)‖pW 1,p(Ω) ds and, further, the fact that ‖q(s)‖W 1,p(Ω) ≤

supτ≤s ‖q(τ)‖
W

2− 2
p

p (Ω)
and see that ‖q‖p

W 1,0
p (Qt)

≤
∫ t

0
supτ≤s ‖q(τ)‖p

W
2− 2

p
p (Ω)

ds.
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Owing to the G. N. inequality (28),

‖∇q(s)‖L∞(Ω) ≤ C1 ‖D2q(s)‖αLp(Ω) ‖q(s)‖1−α
Lp(Ω) + C2 ‖q(s)‖Lp(Ω)

for α := 1
2

+ 3
2p

. Employing also Young’s inequality, a b ≤ ε a
1
α + cα ε

− α
1−α b

1
1−α , valid for all ε > 0

and a, b > 0 it follows that

‖∇%∗ · ∇q‖pLp(Qt)
≤
∫ t

0

|∇%∗(s)|pp |∇q(s)|p∞ ds

≤ C1

∫ t

0

|∇%∗(s)|pp |D2q(s)|pαp |q(s)|p(1−α)
p ds+ C2

∫ t

0

|∇%∗(s)|pp |q(s)|pp ds

≤ ε

∫ t

0

|D2q(s)|pp ds+ cα ε
− α

1−α

∫ t

0

|∇%∗(s)|
p

1−α
p |q(s)|pp ds+ C2

∫ t

0

|∇%∗(s)|pp |q(s)|pp ds

≤ ε

∫ t

0

|D2q(s)|pp ds+

∫ t

0

|q(s)|pLp (cα ε
− α

1−α |∇%∗(s)|
p

1−α
p + C2 |∇%∗(s)|pp) ds . (55)

Here we have denoted by | · |r the norm in Lr(Ω) in order to save room. Similarly,

‖∇q∗ · ∇q‖pLp(Qt)
≤ε
∫ t

0

|D2q(s)|pp ds+

∫ t

0

|q(s)|pp (cα ε
− α

1−α |∇q∗(s)|
p

1−α
p + C2 |∇q∗(s)|pp) ds .

(56)

In (55) and (56) we estimate roughly ‖q(s)‖Lp(Ω) ≤ supτ≤s ‖q(τ)‖
W

2− 2
p

p (Ω)
. Using the abbreviation

F ∗(s) := ‖∇q∗(s)‖pLp(Ω) + ‖∇%∗(s)‖pLp(Ω), it follows that

‖∇%∗ · ∇q‖pLp(Qt)
+ ‖∇q∗ · ∇q‖pLp(Qt)

≤ 2 ε

∫ t

0

|D2q(s)|pp ds (57)

+

∫ t

0

sup
τ≤s
‖q(s)‖p

W
2− 2

p
p (Ω))

[cα ε
− α

1−α (F ∗(s))
1

1−α + C2 F
∗(s)] ds .

Recalling (54), we choose ε = 1
4Cp (φ∗1,t)

p . This, in connection with (54), (57), now yields

1

2
V p(t; q) ≤ cp ((φ∗2,t)

p ‖q0‖p
W

2− 2
p

p (Ω)

+ (φ∗1,t)
p ‖g‖pLp(Qt)

+ E(t)

∫ t

0

f(s) ds) , (58)

f(s) := sup
τ≤s
‖q(s)‖p

W
2− 2

p
p (Ω)

,

E(t) := (φ∗2,t)
p + c̃p,α (φ∗1,t)

p
1−α sup

s≤t
(F ∗(s))

1
1−α + C2 (φ∗1,t)

p sup
s≤t

F ∗(s) .

The latter inequality implies that f(t) ≤ A(t) + E(t)
∫ t

0
f(s) ds. By Gronwall’s Lemma, we obtain

that f(t) ≤ A(t) exp(t E(t)), which means that

sup
s≤t
‖q(s)‖p

W
2− 2

p
p (Ω)

≤ cp ((φ∗2,t)
p ‖q0‖p

W
2− 2

p
p (Ω)

+ (φ∗1,t)
p ‖g‖pLp(Qt)

) exp (t E(t)) . (59)

Combining (59) and (58) we obtain that

1

2
V p(t; q) ≤ cp [(φ∗2,t)

p ‖q0‖p
W

2− 2
p

p (Ω)

+ (φ∗1,t)
p ‖g‖pLp(Qt)

] [1 + t E(t) exp(t E(t))] . (60)
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EstimatingF ∗(s) ≤ (sups≤t ‖q∗(s)‖
W

2− 2
p

p (Ω)
+‖∇%∗‖Lp,∞(Qt))

p, we obtain after another application

of Young’s inequality with power 1/α that

E(t) ≤ cp,α [(φ∗2,t)
p + 1 + (φ∗1,t)

p
1−α (sup

s≤t
‖q∗(s)‖

W
2− 2

p
p (Ω)

+ ‖∇%∗‖Lp,∞(Qt))
p

1−α ] .

We raise both sides of (60) to the power 1/p. Recall also that α = 1
2

+ 3
2p

and the claim follows.

To conclude the section, we show how to obtain the estimate of Proposition 7.1 as stated. We start

from the Lemma 7.4, in which φ∗2,t := φ∗0,t (1 + [%∗]
Cβ,

β
2 (Qt)

+ [q∗]
Cβ,

β
2 (Qt)

)
2
β . Moreover, Lemma 7.2

shows that φ∗0,t = φ∗0((m∗(t))−1, M∗(t), ‖q∗‖L∞(Qt)) is an increasing function of its arguments.
First, we roughly estimate

φ∗2,t ≤φ∗0,t [1 + [q∗]
Cβ,

β
2 (Qt)

]
2
β [1 + [%∗]

Cβ,
β
2 (Qt)

]
2
β . (61)

Making use of the Lemma C.2, we can further estimate the quantities [q∗]
Cβ,

β
2 (Qt)

and ‖q∗‖L∞(Qt) in

the latter expression. Define γ as in Lemma C.2. For 0 < β < min{1, 2− 5
p
} it follows that

‖q∗‖
Cβ,

β
2 (Qt)

≤ C(t) (‖q∗(0)‖Cβ(Ω) + tγ V (t; q∗)) , (62)

where we assume for simplicity C(t) ≥ 1 in Lemma C.2. Using that φ∗ is increasing in its arguments,
we obtain with the help of (62)

φ∗0,t [1 + [q∗]
Cβ,

β
2 (Qt)

]
2
β ≤φ∗0((m∗(t))−1, M∗(t), C(t) (‖q∗(0)‖Cβ(Ω) + tγ V (t; q∗)))×

× [1 + C(t) (‖q∗(0)‖Cβ(Ω) + tγ V (t; q∗))]
2
β .

The latter expression is next reinterpreted as a function φ∗3 of the arguments t, (m∗(t))−1, M∗(t),
‖q∗(0)‖Cβ(Ω) and V (t; q∗), in that order. This means that for t ≥ 0 and a1, . . . , a4 ≥ 0, we define

φ∗3(t, a1, . . . , a4) = φ∗0(a1, a2, C(t) (a3 + tγ a4)) [1 + C(t) (a3 + tγ a4)]
2
β .

This definition shows in particular that φ∗3(0, a1, . . . , a4) = φ∗0(a1, a2, C0 a3) (1 +C0 a3)
2
β is inde-

pendent on a4. Moreover, in view of (61),

φ∗2,t ≤ φ∗3(t, (m∗(t))−1, M∗(t), ‖q∗(0)‖Cβ(Ω), V (t; q∗)) [1 + [%∗]
Cβ,

β
2 (Qt)

]
2
β . (63)

We next invoke Lemma 7.4, where we have shown that

V (t; q) ≤ c1 [φ∗2,t ‖q0‖
W

2− 2
p

p (Ω)
+ φ∗1,t ‖g‖Lp(Qt)] [1 + t

1
p B∗t exp(c2 t [B∗t ]

p)] , (64)

and thatB∗t = φ∗2,t+1+(φ∗1,t)
2p
p−3 (sups≤t ‖q∗(s)‖

W
2− 2

p
p (Ω)

+‖∇%∗‖Lp,∞(Qt))
2p
p−3 . Due to (63), we

can bound φ∗2 and see that t
1
p B∗t is estimated by a function φ∗4 of the quantities t, (m∗(t))−1,M∗(t),

‖q∗(0)‖Cβ(Ω), V (t; q∗), and [%∗]
Cβ,

β
2 (Qt)

, ‖∇%∗‖Lp,∞(Qt), in that order. The function φ∗4 is defined

via

φ∗4(t, a1, . . . , a6) = t
1
p [1 + φ∗3(t, a1, . . . , a4) (1 + a5)

β
2 + φ∗1(a1, a2, a3) (a4 + a6)

2p
p−3 ] .

DOI 10.20347/WIAS.PREPRINT.2658 Berlin 2019



Multicomponent compressible fluids 27

In particular, φ∗4(0, a) = 0. Moreover we obtain with the help of (64) that

V (t; q) ≤c1 (1 + φ∗4,t exp(c2 [φ∗4,t]
p)) [φ∗3,t (1 + [%∗]

Cβ,
β
2 (Qt)

)
2
β ‖q0‖

W
2− 2

p
p (Ω)

+ φ∗1,t ‖g‖Lp(Qt)] .

We define Ψ1,t := (1 + φ∗4,t exp(c2 [φ∗4,t]
p)) max{φ∗3,t, φ∗1,t}. More precisely, for all non-negative

numbers a1, . . . , a6, we define

Ψ1(t, a1, . . . , a6) :=(1 + φ∗4(t, a1, . . . , a6) exp(c2 [φ∗4(t, a1, . . . , a6)]p))×
×max{φ∗3(t, a1, . . . , a4), φ∗1(a1, a2, a3)} .

By means of the properties of φ∗3 and φ∗4, we verify that

Ψ1(0, a1, . . . , a6) = max{φ∗0(a1, a2, C0 a3) (1 + C0 a3)
2
β , φ∗1(a1, a2, a3)}

=: Ψ0
1(a1, a2, a3) , (65)

which is independent of the arguments (a4, a5, a6). This is the claim of Proposition 7.1. We could
further specify the function Ψ0

1 by means of (53).

7.2 Estimates for linearised problems for the variables v and %

After these technicalities we can rely on estimates already available. We first quote [Sol80], Theorem
1.

Proposition 7.5. Suppose that %∗ ∈ Cα,0(QT ), 0 < α ≤ 1, is strictly positive, and denoteM∗(t) :=

maxQt %
∗, m∗(t) := minQt %

∗. Let f ∈ Lp(QT ; R3) and v0 ∈ W
2− 2

p
p (Ω; R3) with v0 = 0 on ∂Ω.

Then there is a unique solution v ∈ W 2,1(QT ; R3) to %∗ ∂tv − div S(∇v) = f in QT with the
boundary conditions v = 0 on ST and v(x, 0) = v0(x) in Ω. Moreover, for all t ≤ T ,

V (t; v) ≤C φ∗5,t (1 + sup
s≤t

[%(s)]Cα(Ω))
2
α (‖f‖Lp(Qt) + ‖v0‖

W
2− 2

p
p (Ω)

+ ‖v‖Lp(Qt)) ,

φ∗5,t :=

(
1

min{1, m∗(t)}

) 2
α
(
M∗(t)

m∗(t)

) p+1
p

.

With a Gronwall argument like in Lemma 7.4, we can get rid of ‖v‖Lp(Qt).

Corollary 7.6. Adopt the assumptions of Proposition 7.5. Then there is C independent on t, %∗, v0, f
and v, and a continuous function Ψ2 = Ψ2(t, a1, a2, a3), defined for all t ≥ 0 and all a1, a2, a3 ≥
0, such that

V (t; v) ≤C Ψ2,t (1 + sup
s≤t

[%∗(s)]Cα(Ω))
2
α (‖f‖Lp(Qt) + ‖v0‖

W
2− 2

p
p (Ω)

) ,

Ψ2,t :=Ψ2(t, (m∗(t)), M∗(t), sup
s≤t

[%∗(s)]Cα(Ω)) .

The function Ψ2 is increasing in all its arguments and the value of Ψ2(0, a1, a2, a3) = φ∗5(a1, a2) is
independent on a3.
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Proof. Introduce first the abbreviation φ̃∗5,t := φ∗5,t (1 + sups≤t[%(s)]Cα(Ω))
2
α . We raise the estimate

in Prop. 7.5 to the p−power and obtain that

V p(t; v) ≤cp (φ̃∗5,t)
p (‖f‖pLp(Qt)

+ ‖v0‖p
W

2− 2
p

p (Ω)

+

∫ t

0

‖v(s)‖pLp(Ω) ds) .

We then argue as in Corollary 7.4, using Gronwall. We let Ψ2,t := φ∗5,t (1 + t
1
p φ̃∗5,t e

C (φ̃∗5,t)
p t), and

the claim follows.

We recall one further Theorem of [Sol80] concerning the linearised continuity equation.

Proposition 7.7. Suppose that v∗ ∈ W 2,1
p (QT ; R3). Suppose that %0 ∈ W 1,p(Ω) satisfies 0 <

m0 ≤ %0(x) ≤M0 < +∞ in Ω. Then the problem ∂t%+div(% v∗) = 0 inQT with %(x, 0) = %0(x)
in Ω possesses a unique solution of class W 1,1

p,∞(QT ) for which

m0 [φ∗6,t]
−1 ≤ %(x, t) ≤M0 φ

∗
6,t for all (x, t) ∈ QT ,

with φ∗6,t := e
√

3 ‖v∗x‖L∞,1(Qt) . Moreover, for all t < T and 0 < α < 1,

‖∇%(t)‖Lp(Ω) ≤
√

3 [φ∗6,t]
(2+

1
p

)
√

3
(‖∇%0‖Lp(Ω) +

√
3 ‖%0‖L∞(Ω) ‖vx,x‖Lp,1(Qt)) ,

[%(t)]Cα(Ω) ≤ 3
α
2 [φ∗6,t]

1+α ([%0]Cα(Ω) +
√

3 ‖%0‖L∞(Ω)

∫ t

0

[v∗x(s)]Cα(Ω) ds) .

For α < 1, there is c = cα such that for all (x, t) ∈ QT ,

[%(x)]Cα(0,t) ≤c ‖%0‖Cα(Ω) φ
∗
6,t

(
‖v∗x‖L∞, 1

1−α (Qt)
+ (‖v∗‖L∞(Qt) φ

∗
6,t)

α (1 +

∫ t

0

[v∗x(τ)]Cα(Ω) dτ)
)
.

Proof. The three first estimates are stated and proved explicitly in [Sol80]. In order to estimate the
time Hölder norm, we invoke the formula

%(x, t) = %0(y(0; t, x)) exp

(
−
∫ t

0

div v(y(τ ; t, x), τ) dτ

)
.

We shall use the abbreviation F (t) := −
∫ t

0
div v(y(τ ; t, x), τ) dτ . The map τ 7→ y(τ ; t, x) is the

unique characteristics through (x, t) with speed v∗. Recall also the formula given between numbers
(15) and (16) in [Sol80] via

|∂ty(τ ; t, x)| ≤
√

3 ‖v∗‖L∞(Qt) φ
∗
6,t . (66)

Making use of the latter, we show for s < t that

|F (t)− F (s)| ≤3
1
2

∫ t

s

‖vx(τ)‖L∞(Ω) dτ +

∫ s

0

| div v(y(τ ; t, x), τ)− div v(y(τ ; s, x), τ)| dτ

≤3
1
2

∫ t

s

‖vx(τ)‖L∞(Ω) dτ + 3

∫ s

0

[vx(τ)]Cα(Ω) ( sup
σ∈[s,t]

|yt(τ ; σ, x)|)α dτ (t− s)α

≤3
1
2 (t− s)α (‖vx‖

L
∞, 1

1−α (Qt)
+ 3

1
2

+α
2 (‖v∗‖L∞(Qt) φ

∗
6,t)

α

∫ t

0

[vx(τ)]Cα(Ω) dτ) .
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For s < t, we have

%(x, t)− %(x, s) = (%0(y(0; t, x))− %0(y(0; s, x)) eF (t) + %0(y(0; s, x)) (eF (t) − eF (s))

By means of (66), it follows that

|%(x, t)− %(x, s)| ≤
[%0]Cα(Ω) (

√
3 ‖v∗‖L∞(Qt) φ

∗
6,t)

α (t− s)α eF (t) + ‖%0‖L∞(Ω) e
max{|F (t)|,|F (s)|} |F (t)− F (s)|

≤ c (t− s)α φ∗6,t ‖%0‖Cα(Ω)×

× (‖vx‖
L
∞, 1

1−α (Qt)
+ (‖v∗‖L∞(Qt) φ

∗
6,t)

α (1 +

∫ t

0

[vx(τ)]Cα(Ω) dτ)) .

We also need to restate these estimates as to be later able to quote them more conveniently.

Corollary 7.8. We adopt the assumptions of Proposition 7.7. Define m(t) := infQt % and M(t) :=
supQt %. We choose β = 1 − 3

p
. Then there are functions Ψ3, Ψ4,Ψ5 of the variables t, 1

m0
, M0,

‖∇%0‖Lp(Ω) and V (t; v∗), in that order, such that

1

m(t)
≤Ψ3(t, m−1

0 , V (t; v∗)), M(t) ≤ Ψ3(t, M0, V (t; v∗)) ,

‖∇%‖Lp,∞(Qt) ≤Ψ4(t, m−1
0 , M0, ‖∇%0‖Lp(Ω), V (t; v∗)) ,

[%]
Cβ,

β
2 (Qt)

≤Ψ5(t, m−1
0 , M0, ‖∇%0‖Lp(Ω), V (t; v∗)) .

For i = 3, 4, 5, the function Ψi is continuous and increasing in all variables, and Ψi(0, a1, . . . , a4) =
Ψ0
i (a1, a2, a3) is independent on the last variable a4 = V (t; v∗). (The function Ψ3 depends only

on t, a1 or a2 and a4).

Proof. The Sobolev embedding theorems imply that ‖v∗x‖L∞(Ω) ≤ C ‖v∗‖W 2,p(Ω). It therefore follows

from Hölder’s inequality that ‖v∗x‖L∞,1(Qt) ≤ C t1−
1
p ‖v∗‖W 2,1

p (Qt)
.

Thus φ∗6,t ≤ exp(C t1−
1
p ‖v∗‖W 2,1

p (Qt)
). Invoking the Proposition 7.7,

1

m(t)
≤ 1

m0

exp(
√

3 ‖v∗x‖L∞,1(Qt)) ≤
1

m0

exp(C t1−
1
p ‖v∗‖W 2,1

p (Qt)
)

:=Ψ3(t, m−1
0 , V (t; v∗)) .

Thus, choosing Ψ3(t, a1, a4) := a1 exp(C t1−
1
p a4), we have 1

m(t)
≤ Ψ3 and Ψ3(0, a1, a4) = a1

is independent on a4. Similarly M(t) ≤ M0 exp(C t1−
1
p ‖v∗‖W 2,1

p (Qt)
). Moreover, again due to the

Proposition 7.7,

‖∇%(t)‖Lp(Ω) ≤
√

3 [φ∗6,t]
(2+ 1

p
)
√

3 (‖∇%0‖Lp(Ω) +
√

3 ‖%0‖L∞(Ω) ‖vx,x‖Lp,1(Qt))

≤
√

3 [φ∗6,t]
(2+ 1

p
)
√

3 (‖∇%0‖Lp(Ω) + ‖%0‖L∞(Ω)

√
3 t1−

1
p ‖vx,x‖Lp(Qt))

≤
√

3 exp(C (2 +
1

p
)
√

3 t1−
1
p ‖v∗‖W 2,1

p (Qt)
) (‖∇%0‖Lp(Ω) + ‖%0‖L∞(Ω)

√
3 t1−

1
p ‖vx,x‖Lp(Qt)) .
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We define Ψ4(t, a1, . . . , a4) := exp(C (2 + 1
p
)
√

3 t
1−1

p a4) (a3 + a2

√
3 t

1−1
p a4). Then we clearly

can show that ‖∇%(t)‖Lp(Ω) ≤
√

3 Ψ4(t, m−1
0 , M0, ‖∇%0‖Lp , V (t; v∗)). As required, the value

of Ψ4(0, a1, . . . , a4) = a3 is independent on a4.

For α = 1− 3
p
, the Sobolev embedding yields ‖v∗x(t)‖Cα(Ω) ≤ C ‖v∗(t)‖W 2,p(Ω). Thus

[%(t)]Cα(Ω) ≤ 3
α
2 [φ∗6,t]

1+α ([%0]Cα(Ω) +
√

3 ‖%0‖L∞(Ω)

∫ t

0

[v∗x(s)]Cα(Ω) ds)

≤ 3
α
2 exp((1 + α)C t1−

1
p ‖v∗‖W 2,1

p (Qt)
) ([%0]Cα(Ω) +

√
3 ‖%0‖L∞(Ω)C t

1− 1
p ‖v∗‖W 2,1

p (Qt)
) .

Moreover [%0]Cα(Ω) ≤ C ‖∇%0‖Lp(Ω). Thus for Ψ
(1)
5 (t, a1, . . . , a4) = exp((1+α)C t1−

1
p a4) (a3+

a2 a4 t
1− 1

p ), we find [%(t)]Cα(Ω) ≤ C Ψ
(1)
5 (t, m−1

0 , M0, ‖∇%0‖Lp , V (t; v∗)). Note that Ψ
(1)
5 (0) =

a3. For x ∈ Ω and α < 1, we can invoke Proposition 7.7 to estimate [%(x)]Cα(0,t). If α < 1 − 1
p
,

Hölder’s inequality implies for r = (1−α) p−1
(1−α) p

> 0

‖v∗x‖L∞, 1
1−α (Qt)

≤ C ‖v∗‖
L

1
1−α (0,t;W 2,p(Ω))

≤ C tr ‖v∗‖W 2,1
p (Qt)

.

Moreover, for all α ≤ 1− 3
p
, we have

∫ t
0
[v∗x(τ)]Cα(Ω) dτ ≤ C t1−

1
p ‖v∗‖W 2,1

p (Qt)
. For α = 1− 3

p
we

define r = 2
3

and we see that

[%(x)]Cα(0,t) ≤ c ‖%0‖Cα(Ω) exp(C t1−
1
p ‖v∗‖W 2,1

p (Qt)
)
(
C t

2
3 ‖v∗‖W 2,1

p (Qt)

+ ‖v∗‖αL∞(Qt) exp(C α t1−
1
p ‖v∗‖W 2,1

p (Qt)
) (1 + C t1−

1
p ‖v∗‖W 2,1

p (Qt)
)
)
.

We can estimate ‖v∗‖L∞(Qt) ≤ sups≤t ‖v∗‖
W

2− 2
p

p (Ω)
and ‖%0‖Cα(Ω) ≤M0 +C ‖∇%0‖Lp(Ω). Then

we define

Ψ
(2)
5 (t, a1, . . . , a4)

= (a3 + C a2) exp(C t
1−1

p a4) (t
2
3 a4 + aα4 exp(C α t

1−1
p a4) (1 + C t

1−1
p a4)) ,

and find that [%(x)]Cα(0,t) ≤ Ψ
(2)
5 . The value Ψ

(2)
5 (0, a1, . . . , a4) = (a3 + C a2) aα4 is not yet inde-

pendent of a4. But for arbitrary 0 < α′ < 1− 3
p
, it also follows that [%(x)]Cα′ (0,t) ≤ C t

1−3
p
−α′

Ψ
(2)
5 .

The function Ψ
(3)
5 (t, a1, . . . , a4) := t1−

3
p
−α′ Ψ

(2)
5 (t, a1, . . . , a4) now satisfies Ψ

(3)
5 (0, a) = 0 in-

dependently on a4. Moreover [%(x)]Cα′ (0,t) ≤ Ψ
(3)
5 . Thus for β = 1 − 3

p
, we have [%]

Cβ,
β
2 (QT )

≤

C (Ψ
(1)
5 +Ψ

(3)
5 ) =: C Ψ5. Clearly Ψ5(0, a1, . . . , a4) = Ψ

(1)
5 (0, a1, . . . , a4) = a3. We are done.

8 The continuity estimate for T

We now want to combine the Propositions 7.1 and 7.5 with the linearisation of the continuity equation
in Proposition 7.7 to study the fixed point map T described at the beginning of Section 6 and defined
by the equations (35), (36), (37). For a given v∗ ∈ W 2,1

p (QT ; R3) and q∗ ∈ W 2,1
p (QT ; RN−1), we

introduce the notation V ∗(t) := V (t; q∗) + V (t; v∗). To begin with, we need to control the growth
of the lower order terms in (35), (36), (37).
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Lemma 8.1. Consider the compound Γ := Q × RN−1 × R+ × R3 × RN−1×3 × R3×3 × R3, and
a function G defined on Γ. For u∗ = (q∗, %∗, v∗) ∈ XT,+ we define G∗ := G(x, t, u∗, D1

xu
∗).

Assume that the function G is satisfying for all t ≤ T and x ∈ Ω the growth conditions

|G(x, t, u∗, D1
xu
∗)|

≤ c1((m∗(t))−1, |u∗|)
(
|Ḡ(x, t)|+ |q∗x|r1 + |v∗x|r1 + |H̄(x, t)| (|%∗x|+ |q∗x|)

)
,

in which 1 ≤ r1 < 2 − 3
p

+ 3
(5−p)+ and Ḡ ∈ Lp(QT ), H̄ ∈ L∞,p(QT ) are arbitrary and c1

is a continuous, increasing function of two positive arguments. Then, there is a continuous function
ΨG = ΨG(t, a1, . . . , a5) defined for all non-negative arguments such that

‖G∗‖Lp(Qt) ≤ ΨG(t, (m∗(t))−1, M∗(t), ‖(q∗(0), v∗(0))‖
W

2− 2
p

p (Ω)
, ‖∇%∗‖Lp,∞(Qt), V ∗(t)) .

The function ΨG is increasing in all arguments and ΨG(0, a1, . . . , a5) = 0 for all a ∈ [R+]5.

Proof. With the abbreviation c∗1 := c1((m∗(t))−1, ‖q∗‖L∞(Qt) + ‖v∗‖L∞(Qt) +M∗(t)), we have by
assumption

‖G∗‖Lp(Qt) ≤c∗1 (‖Ḡ‖Lp(Qt) + ‖|q∗x|+ |v∗x|‖
r1
Lpr1 (Qt)

+ ‖(|%∗x|+ |q∗x|) H̄‖Lp(Qt))

≤c∗1 (‖Ḡ‖Lp(Qt) + ‖|q∗x|+ |v∗x|‖
r1
Lpr1 (Qt)

+ ‖|q∗x|+ |%∗x|‖Lp,∞(Qt) ‖H̄‖L∞,p(Qt)) .

Thanks to the Remark 5.1, the gradients q∗x, v
∗
x belong to Lr(QT ) for r = 2p − 3 + 3p

(5−p)+ , and for

all t ≤ T the inequality ‖q∗x‖Lr(Qt) ≤ ‖q∗x‖
2p−3
r

L∞,2p−3(Qt)
‖q∗x‖

3p

r(5−p)+

L
3p

(5−p)+
,∞

(Qt)

is valid.

Thus, if r1 p < r, we obtain that ‖q∗x‖Lpr1 (Qt) ≤ C t1−
pr1
r |Ω|1−

pr1
r V (t; q). Moreover, since p <

3p
(5−p)+ , we have ‖q∗‖Lp,∞(Qt) ≤ C sups≤t ‖q∗(s)‖W 2− 2

p (Ω)
with C depending only on Ω. The terms

containing v∗x are estimated the same way. Overall, we obtain for G∗

‖G∗‖Lp(Qt) ≤ C∗1 (‖Ḡ‖Lp(Qt) + tr1 (1− pr1
r

) [V ∗(t)]r1 + ‖H̄‖L∞,p(Qt) (‖%∗x‖Lp,∞(Qt) + V ∗(t))) ,

in whichC∗1 = C1((m∗(t))−1, ‖q∗‖L∞(Qt) +‖v∗‖L∞(Qt) +M∗(t)). Invoking the Lemma C.2 to esti-
mate ‖q∗‖L∞(Qt) ≤ ‖q0‖L∞(Ω) + tγ V ∗(t) and the same for v∗, we see that this estimate possesses
the structure claimed by the Lemma.

We are now ready to establish the a final estimate that allows to obtain the self-mapping property.

Proposition 8.2. There is a continuous function Ψ8 = Ψ8(t, a1, . . . , a5) defined on [0, +∞[×R5
+,

increasing in all arguments, such that for the pair (q, v) = T (q∗, v∗) the following estimate is valid:

V (t) ≤ Ψ8(t, m−1
0 , M0, ‖∇%0‖Lp(Ω), ‖(q0, v0)‖

W
2− 2

p
p (Ω)

, V ∗(t)) .

Moreover, for all η ≥ 0

Ψ8

(
0, m−1

0 , M0, ‖∇%0‖Lp(Ω), ‖q0‖
W

2− 2
p

p (Ω)
, ‖v0‖

W
2− 2

p
p (Ω)

, η
)

= Ψ0
1(m−1

0 , M0, ‖q0‖
C

1− 3
p (Ω)

) (1 + ‖∇%0‖Lp(Ω))
2p
p−3 ‖q0‖

W
2− 2

p
p (Ω)

+

(
1

min{1, m0}

) 2p
p−3

(
M0

m0

)p+1
p

(1 + ‖∇%0‖Lp(Ω))
2p
p−3 ‖v0‖

W
2− 2

p
p (Ω)

.
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Proof. We first apply the Proposition 7.1 with %∗ = %. It follows that

V (t; q) ≤C Ψ1(t, m(t)−1, M(t), ‖q∗(0)‖Cβ(Ω), V (t; q∗), [%]
Cβ,

β
2 (Qt)

, ‖∇%‖Lp,∞(Qt))×

× ((1 + [%]
Cβ,

β
2 (Qt)

)
2
β ‖q0‖

W
2− 2

p
p (Ω)

+ ‖g∗‖Lp(Qt)) .

Due to the Corollary 7.8 and the choice %∗ = %, we have for β := 1− 3
p

max{ 1

m(t)
, M(t)} ≤Ψ3(t, max{m−1

0 , M0}, V (t; v∗)) =: Ψ3(t, . . .) ,

‖∇%∗‖Lp,∞(Qt) ≤Ψ4(t, m−1
0 , M0, ‖∇%0‖Lp(Ω), V (t; v∗)) =: Ψ4(t, . . .)

[%∗]
Cβ,

β
2 (Qt)

≤Ψ5(t, m−1
0 , M0, ‖∇%0‖Lp(Ω), V (t; v∗)) =: Ψ5(t, . . .) .

Moreover, we can apply the Lemma 8.1 to the right-hand defined in (33). (Choose G = g, r1 = 1,
H̄(x, t) := |b̃(x, t)| and Ḡ(x, t) = |b̃x(x, t)|.) It follows that

‖g∗‖Lp(Qt) ≤Ψg(t, Ψ3(t, . . .), Ψ3(t, . . .), ‖(q0, v0)‖
W

2− 2
p

p (Ω)
, Ψ4(t, . . .), V ∗(t))

=:Ψg(t, . . .) .

Combining all these estimates we can bound the quantity V (t; q) by the function

Ψ
(1)
8 :=Ψ1(t, Ψ3(t, . . .), Ψ3(t, . . .), ‖q0‖Cβ(Ω), V (t; q∗), Ψ5(t, . . .), Ψ4(t, . . .))×

×
(

(1 + Ψ5(t, . . .))
2
β ‖q0‖

W
2− 2

p
p (Ω)

+ Ψg(t, . . .)
)
.

Since we can apply the inequalities V (t; v∗), V (t; q∗) ≤ V (t), we reinterpret the latter expression

as a function Ψ
(1)
8 := Ψ

(1)
8 (t, m−1

0 , M0, ‖∇%0‖Lp(Ω), ‖(q0, v0)‖
W

2− 2
p

p (Ω)
, V (t)).

Moreover, it t = 0, we can use the estimates proved in the Proposition 7.1 and the Corollaries 7.6 and
7.8. Recall in particular that Ψ1(0, a1, . . . , a6) = Ψ0

1(a1, a2, a3). Moreover, Ψ3(t, M0, η) = M0.
Thus, since Ψ5(0, a1, a2, a3) = a3, and Ψg(0, . . .) = 0 (see Lemma 8.1) we can compute that

Ψ
(1)
8 (0, m−1

0 , M0, ‖∇%0‖Lp(Ω), ‖(q0, v0)‖
W

2− 2
p

p (Ω)
, V (t)) (67)

= Ψ0
1(m−1

0 , M0, ‖q0‖
C

1− 3
p (Ω)

) (1 + ‖∇%0‖Lp(Ω))
2p
p−3 ‖q0‖

W
2− 2

p
p (Ω)

.

We next apply the Corollary 7.6 with %∗ = % and f = f ∗, to obtain that

V (t; v) ≤C Ψ2(t, m(t)−1, M(t), sup
s≤t

[%(s)]Cα(Ω)) (1 + sup
s≤t

[%(s)]Cα(Ω))
2
α ×

× (‖v0‖
W

2− 2
p

p (Ω)
+ ‖f ∗‖Lp(Qt)) .

We apply the Lemma 8.1 to G = f (recall (34), and choose r1 = 1, |H̄(x, t)| = 1 and Ḡ(x, t) :=
|b̃(x, t)|+ |b̄(x, t)| in the statement of Lemma 8.1). For α = 1− 3

p
, we estimate V (t; v) above by

Ψ2(t, Ψ3(t, . . .) ,Ψ3(t, . . .), Ψ5(t, . . .)) (1 + Ψ5(t, . . .))
2
α (‖v0‖

W
2− 2

p
p (Ω)

+ Ψf (t, . . .)) .
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We reinterpret this function as a Ψ
(2)
8,t of the same arguments, and we note that

Ψ
(2)
8 (0, m−1

0 , M0, ‖∇%0‖Lp(Ω), ‖(q0, v0)‖
W

2− 2
p

p (Ω)
, η)

= Ψ0
2(m−1

0 , M0, ‖∇%0‖Lp(Ω)) (1 + ‖∇%0‖Lp(Ω))
2p
p−3 ‖v0‖

W
2− 2

p
p (Ω)

=

(
1

min{1, m0}

) 2p
p−3

(
M0

m0

)p+1
p

(1 + ‖∇%0‖Lp(Ω))
2p
p−3 ‖v0‖

W
2− 2

p
p (Ω)

The claim follows.

Proposition 8.3. We adopt the assumptions of the Theorem 4.3. For a given pair (q∗, v∗) ∈ YT ,
we define a map T (q∗, v∗) = (q, v) via solution to the equations (35), (36), (37) with homogeneous
boundary conditions (26), (25) and initial conditions (q0, %0, v

0). Then, there are 0 < T0 ≤ T and
η0 > 0 depending on the data R0 := (m−1

0 , M0, ‖∇%0‖Lp(Ω), ‖(q0, v0)‖
W

2− 2
p

p (Ω)
) such that T

maps the ball with radius η0 in YT0 into itself.

Proof. We apply the Lemma 6.2 with Ψ(t, R0, η) := Ψ8(t, R0, η) from Lemma 8.2, and the claim
follows.

9 Fixed point argument and proof of the theorem on short-time
well-posedness

Starting from (q1, v1) = 0, we consider a fixed point iteration (qn+1, vn+1) := T (qn, vn) for n ∈ N.

Recall that this means first considering %n+1 ∈ W 1,1
p,∞(QT ) solution to

∂t%
n+1 + div(%n+1 vn) = 0 in QT , %n+1(x, 0) = %0(x) in Ω .

Then we introduce (qn+1, vn+1) ∈ W 2,1
p (QT ; RN−1)×W 2,1

p (QT ; R3) via solution in QT to

Rq(%
n+1, qn) ∂tq

n+1 − div(M̃(%n+1, qn)∇qn+1) = − div(M̃(%n+1, qn) b̃(x, t))

+ (R%(%
n+1, qn) %n+1 −R(%n+1, qn)) div vn −Rq(%

n+1, qn) vn · ∇qn + r̃(%n+1, qn) ,

%n+1 ∂tv
n+1 − div S(∇vn+1) = −∇P (%n+1, qn)− %n+1 (vn · ∇)vn

+ b̃(x, t) ·R(%n+1, qn) + %n+1 b̄(x, t) .

with boundary conditions ν · ∇qn+1 = 0, vn+1 = 0 on ST and initial data qn+1(x, 0) = q0(x) and
vn+1(x, 0) = v0(x) in Ω. Recalling (49), we define V n+1(t) := V (t; qn+1) + V (t; vn+1). Since
obviously V 1(t) ≡ 0, the Prop. 8.3 implies the existence of parameters T0, η0 > 0 such that there
holds uniform estimates

sup
n∈N

V n(T0) ≤ η0 , sup
n∈N
‖%n‖W 1,1

p,∞(QT0
) ≤ C0 . (68)

In the Theorem 9.1 below, we obtain that the fixed-point iteration yields strongly convergence sub-
sequences in L2(Qt,t+t1) for the components of qn, %n and vn and the gradients qnx and vnx . Here
0 < t1 ≤ T0 is a fixed number and t ∈ [0, T0 − t1] is arbitrary. Thus, we obtain the convergence in
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L2(QT0) of these functions. The passage to the limit in the approximation scheme is then a straight-
forward exercise, since we can rely on a uniform bound in XT0 . This step shall therefore be spared.

We next prove sufficient convergence properties of the sequence {(qn, %n, vn)}n∈N by means of
contractivity estimates in a lower–order space. This estimate also guarantees the uniqueness. The
proof is unfortunately lengthy due to the complex form of the PDE system, but it is elementary in
essence and might be skipped.

Theorem 9.1. For n ∈ N, we define

rn+1 := qn+1 − qn, σn+1 := %n+1 − %n, wn+1 := vn+1 − vn

en+1 := |rn+1|+ |wn+1| .

Then there are k0, p0 > 0 and 0 < t1 ≤ T0 such that for all t ∈ [0, T0 − t1], the quantity

En+1(t) :=k0 sup
τ∈[t, t+t1]

(‖en+1(τ)‖2
L2(Ω) + ‖σn+1(τ)‖2

L2(Ω))

+ p0

∫
Qt,t+t1

(|∇rn+1|2 + |∇wn+1|2) dxdτ

satisfies En+1(t) ≤ 1
2
En(t) for all n ∈ N.

Proof. To be shorter, denote Rn := R(%n+1, qn), M̃n := M̃(%n+1, qn), P n := P (%n+1, qn).
For simplicity, we also define gn := (Rn

% %
n+1 − Rn) div vn − Rn

q v
n · ∇qn + r̃(%n+1, qn). The

differences rn+1, σn+1 and wn+1 solve

Rn
q ∂tr

n+1 − div(M̃n∇rn+1) = (69)

+ gn − gn−1 + (Rn−1
q −Rn

q ) ∂tq
n − div((M̃n−1 − M̃n) (∇qn − b̃(x, t)) ,

∂tσ
n+1 + div(σn+1 vn + %nw

n) = 0 , (70)

%n+1 ∂tw
n+1 − div S(∇wn+1) = (Rn −Rn−1) · b̃(x, t)−∇(P n − P n−1) (71)

− σn+1 [∂tv
n + (vn · ∇)vn − b̄(x, t)]− %n [(wn · ∇)vn + (vn−1 · ∇)wn] .

together with the boundary conditions ν · ∇rn+1 = 0 and wn+1 = 0 on ST0 and homogeneous initial
conditions. We multiply in (69) with rn+1 and make use of the formula

1

2
∂t(R

n
q r

n+1 · rn+1) = Rn
q ∂tr

n+1 · rn+1 +
1

2
∂tR

n
q r

n+1 · rn+1 .

We introduce the abbreviation an(rn+1, rn+1) := 1
2
Rn
q r

n+1 · rn+1. After integration over Ω, and
using the Gauss divergence theorem, we obtain that

d

dt

∫
Ω

an(rn+1, rn+1) dx+

∫
Ω

M̃n∇rn+1 · ∇rn+1 dx

=

∫
Ω

[gn − gn−1 + (Rn−1
q −Rn

q ) ∂tq
n] · rn+1 dx

+

∫
Ω

(M̃n−1 − M̃n) (∇qn − b̃) · ∇rn+1 dx+

∫
Ω

1

2
∂tR

n
q r

n+1 · rn+1 dx .

On the interval [0, T0], the a priori bounds (68) ensure that M̃n = M̃(%n+1, qn) has a smallest

eigenvalue strictly bounded away from zero. Thus M̃n∇rn+1 · ∇rn+1 ≥ λ0 |∇rn+1|2. Invoking the
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Young inequality and standard steps

d

dt

∫
Ω

an(rn+1, rn+1) dx+
λ0

2

∫
Ω

|∇rn+1|2 dx

≤
∫

Ω

[|gn − gn−1|+ |Rn−1
q −Rn

q | |∂tqn|] |rn+1| dx

+
1

2λ0

∫
Ω

|M̃n−1 − M̃n|2 (|∇qn|2 + |b̃|2) dx+

∫
Ω

1

2
|∂tRn

q | |rn+1|2 dx . (72)

We want to estimate the differences gn − gn−1. To do it shorter, we shall denote K0 a generic num-
ber depending possibly on infn∈N, (x,t)∈QT0

%n(x, t) and on supn∈N ‖(qn, %n, vn)‖L∞(QT0
). These

quantities are bounded independently on n due to the choice of T0; K0 might moreover depend on
the C2−norm of the maps R and M̃ over the range of (%n, q

n) on QT0 . This range is contained in
a compact K of R+ × RN−1. Thus |R(%n+1, qn) − R(%n, q

n−1)| ≤ ‖R‖C2(K) (|σn+1| + |rn|) ≤
K0 (|σn+1|+ |rn|). By means of these reasoning, we readily show that

|gn − gn−1| ≤ K0

[
(1 + |vnx |+ |vn| |qnx |) (|σn+1|+ |rn|) + |wnx |+ |qnx | |wn|+ |vn| |rnx |

]
.

Similarly we estimate |M̃n−1 − M̃n|2 ≤ K0 (|σn+1|2 + |rn|2) and |∂tRn
q | ≤ K0 (|%n+1

t |+ |qnt |).

We rearrange terms, and we recall that en := |rn|+ |wn|. From (72), we obtain the estimate

d

dt

∫
Ω

an(rn+1, rn+1) dx+
λ0

2

∫
Ω

|∇rn+1|2 dx

≤ K0

∫
Ω

|rn+1| (en + |σn+1|) (1 + |vnx |+ |qnx |+ |qnt |) dx+K0

∫
Ω

(|%n+1
t |+ |qnt |) |rn+1|2 dx

+K0

∫
Ω

|rn+1| (|wnx |+ |rnx |) dx+K0

∫
Ω

(en + |σn+1|)2 (|qnx |2 + |b̃|2) dx . (73)

To transform the right-hand we apply Hölder’s inequality, the Sobolev embedding theorem and Young’s
inequality according to the schema∫

Ω

a b c dx ≤‖a‖L3 ‖b‖L6 ‖c‖L2

≤C ‖a‖L3 (‖∇b‖L2 + ‖b‖L2) ‖c‖L2

≤λ0

4
‖∇b‖2

L2 + C2 (
1

λ0

+
1

4
) ‖a‖2

L3 ‖c‖2
L2 + ‖b‖2

L2 .

(74)

We apply this first with a = 1 + |vnx |+ |qnx |+ |qnt | and b = rn+1 and c = en + |σn+1|. Thus,∫
Ω

|rn+1| (en + |σn+1|) (1 + |vnx |+ |qnx |+ |qnt |) dx ≤
λ0

4
‖∇rn+1‖2

L2

+ C2 (
1

λ0

+
1

4
) ‖1 + |vnx |+ |qnx |+ |qnt |‖2

L3 (‖en‖2
L2 + ‖σn+1‖2

L2) + ‖rn+1‖2
L2 .

We choose next a = |%n+1
t |+ |qnt | and b = rn+1 = c, to get∫

Ω

(|%n+1
t |+ |qnt |) |rn+1|2 dx ≤λ0

4
‖∇rn+1‖2

L2

+ [C2 (
1

λ0

+
1

4
) ‖|%n+1

t |+ |qnt |‖2
L3 + 1] ‖rn+1‖2

L2 .
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Employing Young’s inequality we find for δ > 0 arbitrary that∫
Ω

(en + |σn+1|)2 (|qnx |2 + |b̃|2) dx ≤ (‖qnx‖2
L∞(Ω) + ‖b̃‖2

L∞(Ω)) (‖en‖2
L2 + ‖σn+1‖2

L2) ,

K0

∫
Ω

|rn+1| (|wnx |+ |rnx |) dx ≤ δ

∫
Ω

(|wnx |2 + |rnx |2) dx+
K2

0

4δ

∫
Ω

|rn+1|2 dx .

From (73) we deduce the inequality

d

dt

∫
Ω

an(rn+1, rn+1) dx+
λ0

4

∫
Ω

|∇rn+1|2 dx (75)

≤ D(t) (‖en‖2
L2 + ‖σn+1‖2

L2) +D
(1)
δ (t) ‖rn+1‖2

L2 + δ

∫
Ω

(|wnx |2 + |rnx |2) dx ,

in which the coefficients D and D(1)
δ satisfy

D(t) ≤ K0 (|Ω|
2
3 + ‖vnx(t)‖2

L3 + ‖qnx(t)‖2
L3 + ‖qnt (t)‖2

L3 + ‖qnx(t)‖2
L∞ + ‖b̃(t)‖2

L∞) ,

D
(1)
δ (t) ≤ K0 (‖%n+1

t (t)‖2
L3 + ‖qnt (t)‖2

L3 + δ−1) .

Next we multiply (70) with σn+1, integrate over Ω, and this yields

1

2

d

dt

∫
Ω

|σn+1|2 dx = −1

2

∫
Ω

div vn (σn+1)2 dx−
∫

Ω

div(%nw
n)σn+1 dx ,

1

2

d

dt

∫
Ω

|σn+1|2 dx ≤
∫

Ω

[
1

2
|vnx | |σn+1|2 +K0 |wnx | |σn+1|+ |%nx| |wn| |σn+1|] dx .

We note that
∫

Ω
1
2
|vnx | (σn+1)2 dx ≤ 1

2
‖vnx‖L∞(Ω) ‖σn+1‖2

L2 , and employing Young’s inequality we

see that
∫

Ω
K0 |wnx | |σn+1| dx ≤ δ

∫
Ω
|wnx |2 dx+

K2
0

4δ
‖σn+1‖2

L2 . As already seen∫
Ω

|%nx| |wn| |σn+1| dx ≤ δ ‖∇wn‖2
L2 +

C2

4

(
1

δ
+ 1

)
‖%nx‖2

L3 ‖σn+1‖2
L2 + ‖wn‖2

L2 ,

allowing us to conclude that

1

2

d

dt

∫
Ω

|σn+1|2 dx ≤ 2δ

∫
Ω

|wnx |2 dx+D
(2)
δ (t) ‖σn+1‖2

L2 + ‖en‖2
L2 , (76)

in which D(2)
δ (t) ≤ K0 δ

−1 (1 + ‖%nx(t)‖2
L3(Ω) + ‖vnx(t)‖2

L∞(Ω)). Finally, we multiply (71) with wn+1

and obtain that

%n+1

2
∂t|wn+1|2 − div S(∇wn+1) · wn+1 = −∇(P n − P n−1) · wn+1 + (Rn −Rn−1)b̃ · wn+1

− σn+1 [∂tv
n + (vn · ∇)vn)− b̄] · wn+1 − %n [(wn · ∇)vn + (vn−1 · ∇)wn] · wn+1 .

After integration over Ω,

1

2

d

dt

∫
Ω

%n+1 |wn+1|2 dx+

∫
Ω

S(∇wn+1) · ∇wn+1 dx

=
1

2

∫
Ω

∂t%
n+1 |wn+1|2 dx+

∫
Ω

(P n − P n−1) divwn+1 dx+

∫
Ω

(Rn −Rn−1)b̃ · wn+1 dx

−
∫

Ω

{σn+1 [∂tv
n + (vn · ∇)vn − b̄]− %n [(wn · ∇)vn + (vn−1 · ∇)wn]} · wn+1 dx .
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We use
∫

Ω
S(∇wn+1) · ∇wn+1 dx ≥ ν0

∫
Ω
|∇wn+1|2 dx. We estimate∣∣∣∣∫

Ω

(P n − P n−1) divwn+1 dx

∣∣∣∣ ≤ ν0

2

∫
Ω

|∇wn+1|2 dx+
1

2ν0

∫
Ω

|P n − P n−1|2 dx

≤ ν0

2

∫
Ω

|∇wn+1|2 dx+
K2

0

2ν0

∫
Ω

(|σn+1|2 + |rn|2) dx .

Further,

|(Rn −Rn−1)b̃ · wn+1| ≤ K0 (|σn+1|+ |rn|) |b̃| |wn+1| ,
|σn+1 (∂tv

n + (vn · ∇)vn − b̄) · wn+1| ≤ K0 |σn+1| |wn+1| (|vnt |+ |vnx |+ |b̄|) ,
|%n [(wn · ∇)vn + (vn−1 · ∇)wn] · wn+1| ≤ K0 |wn+1| (|wn| |vnx |+ |wnx |) .

Thus,

1

2

d

dt

∫
Ω

%n+1 |wn+1|2 dx+
ν0

2

∫
Ω

|∇wn+1|2 dx

≤ 1

2

∫
Ω

|∂t%n+1| |wn+1|2 dx+
K2

0

2ν0

∫
Ω

(|σn+1|2 + |rn|2) dx+K0

∫
Ω

|rn| |b̃| |wn+1| dx

+K0

∫
Ω

[|σn+1| |wn+1| (|vnt |+ |vnx |+ |b̃|+ |b̄|) + (|vnx | |wn|+ |wnx |) |wn+1|] dx .

By means of (74) and Young’s inequality, we can also show that

K0

∫
Ω

[σn+1 |wn+1| (|vnt |+ |vnx |+ |b̃|+ |b̄|) dx ≤
ν0

8
‖∇wn+1‖2

L2

+ C2K2
0 (

2

ν0

+
1

4
) ‖|vnt |+ |vnx |+ |b̃|+ |b̄|‖2

L3 ‖σn+1‖2
L2 + ‖wn+1‖2

L2 ,

K0

∫
Ω

|rn| |b̃| |wn+1| dx ≤ ν0

8
‖∇wn+1‖2

L2 + C2K2
0 (

2

ν0

+
1

4
) ‖b̃‖2

L3 ‖rn‖2
L2 + ‖wn+1‖2

L2 ,

K0

∫
Ω

|vnx | |wn| |wn+1| dx ≤ ν0

8
‖∇wn+1‖2

L2 + C2K2
0 (

2

ν0

+
1

4
) ‖vnx‖2

L3 ‖wn‖2
L2 + ‖wn+1‖2

L2 ,∫
Ω

|∂t%n+1| |wn+1|2 dx ≤ ν0

8
‖∇wn+1‖2

L2 +

(
2C2

ν0

‖%n+1
t ‖2

L3 + 1

)
‖wn+1‖2

L2 ,

K0

∫
Ω

|wnx | |wn+1| dx ≤ δ

∫
Ω

|wnx |2 dx+
K2

0

4δ

∫
Ω

|wn+1|2 dx .

Overall, we obtain for the estimation of (71) that

1

2

d

dt

∫
Ω

%n+1 |wn+1|2 dx+
ν0

2

∫
Ω

|∇wn+1|2 dx ≤ δ

∫
Ω

|wnx |2 dx

+D(3)(t) (‖en‖2
L2 + ‖σn+1‖2

L2) +D
(4)
δ (t) ‖wn+1‖2

L2 , (77)

in whichD(3)(t) ≤ K0 (‖vnt ‖2
L3 +‖vnx |‖2

L3 +‖b̃‖2
L3 +‖b̄‖2

L3) andD(4)
δ (t) ≤ K0 (‖%n+1

t ‖2
L3 +δ−1).

We add the three inequalities (75), (76) and (77) and get

d

dt

∫
Ω

{an(rn+1, rn+1) + 1
2
|σn+1|2 + 1

2
%n |wn+1|2} dx

+
λ0

2

∫
Ω

|∇rn+1|2 dx+
ν0

2

∫
Ω

|∇wn+1|2 dx

≤ 4 δ

∫
Ω

(|∇rn|2 + |∇wn|2) dx+ Fδ(t) (‖en‖2
L2 + ‖σn+1‖2

L2) + F
(1)
δ (t) ‖en+1‖2

L2 . (78)
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In this inequality we have introduced Fδ(t) := 1 + D(t) + D
(2)
δ (t) + D(3)(t), and F (1)

δ (t) :=

D
(1)
δ (t) +D

(4)
δ (t). These definitions and the inequalities above show that

Fδ(t) ≤ K0

[
(‖qnx‖L3 + ‖qnt ‖L3 + ‖qnx‖L∞ + ‖vnx‖L3 + ‖vnt ‖L3 + ‖%nx‖L3)2

+ ‖b̄‖2
L3 + ‖b̃‖2

L∞ + ‖b̃‖2
L3 + δ−1

]
.

Consequently, due to embedding properties of W 2,p(Ω), it follows for s ∈ [0, T0] arbitrary and for
0 < t1 ≤ T0 and t ≤ T0 − t1 that

|Fδ(s)| ≤ C K0 [‖qn(s)‖2
W 2,p + ‖vn(s)‖2

W 2,p + ‖%nx(s)‖2
Lp + ‖b̃(s)‖2

W 1,p + ‖b̄(s)‖2
Lp + δ−1] ,∫ t+t1

t

Fδ(s) ds ≤ K̃0 {t
1− 2

p

1 [‖qn‖2
W 2,1
p (QT0

)
+ ‖vn‖2

W 2,1
p (QT0

)
+ ‖b̃‖2

W 1,0
p (QT0

)
+ ‖b̄‖2

Lp(QT0
)]

+ t1 [‖%nx‖2
Lp,∞(QT0

) + δ−1]}

≤ C0 (1 + δ−1) t
1− 2

p

1 . (79)

Here we use the uniform bounds (68). Similarly we show thatF (1)
δ (s) ≤ K0 [‖qnt ‖L3(Ω)+‖%n+1

t ‖L3(Ω)+
δ−1] to show that∫ t+t1

t

F
(1)
δ (s) ds ≤ K̃0 {t

1− 2
p

1 ‖qnt ‖2
Lp(QT0

) + t1 [‖%n+1
t ‖2

Lp,∞(QT0
) + δ−1]}

≤ C1 (1 + δ−1) t
1− 2

p

1 . (80)

We integrate (78) over [t, τ ] for t1 ≤ T0, t ≤ T0 − t1 and t ≤ τ ≤ t+ t1 arbitrary. Note that∫
Ω

{an(rn+1, rn+1) + 1
2
|σn+1|2 + 1

2
%n |wn+1|2}(τ) dx

≥ 1

2

∫
Ω

{λinf(R
n
q ) |rn+1|2 + |σn+1|2 + inf

QT0

%n |wn+1|2}(τ)} dx

≥ 1

2
min{1, λinf(R

n
q ), inf

QT0

%n} (‖en+1(τ)‖2
L2 + ‖σn+1(τ)‖2

L2) .

Invoking (68), there is a uniform k0 > 0 such that 1
2

min{1, λinf(R
n
q ), infQT0

%n} ≥ k0 > 0. We
also define p0 := min{λ0, ν0}. This shows the inequality

k0 (‖en+1(τ)‖2
L2 + ‖σn+1(τ)‖2

L2) +
p0

2

∫
Qt,τ

(|∇rn+1|2 + |∇wn+1|2)

≤ δ

∫
Qt,τ

(|∇rn|2 + |∇wn|2)

+

∫ τ

t

Fδ(s) (‖en(s)‖2
L2 + ‖σn+1(s)‖2

L2) ds+

∫ τ

t

F
(1)
δ (s) ‖en+1(s)‖2

L2 ds . (81)

Thus, taking the supremum over all τ ∈ [t, t+ t1] yields

k0 sup
t≤τ≤t+t1

(‖en+1(τ)‖2
L2 + ‖σn+1(τ)‖2

L2) ≤ δ

∫
Qt,t+t1

(|∇rn|2 + |∇wn|2)

+

∫ t+t1

t

Fδ(s) ds sup
t≤τ≤t1

(‖en(τ)‖2
L2 + ‖σn+1(τ)‖2

L2) +

∫ t+t1

t

F
(1)
δ (s) ds sup

t≤τ≤t+t1
‖en+1(τ)‖2

L2 .
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On the other hand, choosing τ = t + t1 in (81) shows that also min{λ0, ν0}
2

∫
Qt,t+t1

(|∇rn+1|2 +

|∇wn+1|2) dx is estimated above by the same right-hand. Thus

k0 sup
t≤τ≤t+t1

(‖en+1(τ)‖2
L2 + ‖σn+1(τ)‖2

L2) +
p0

2

∫
Qt,t+t1

(|∇rn+1|2 + |∇wn+1|2)

≤ 2 δ

∫
Qt,t+t1

(|∇rn|2 + |∇wn|2) + 2

∫ t+t1

t

F
(1)
δ (s) ds sup

t≤τ≤t+t1
‖en+1(τ)‖2

L2

+ 2

∫ t+t1

t

Fδ(s) ds sup
t≤τ≤t+t1

(‖en(τ)‖2
L2 + +‖σn+1(τ)‖2

L2) .

We choose δ0 = p0

8
and 0 < t1 < T0 − t such that 2

∫ t+t1
t

F
(1)
δ0

(t) dt ≤ k0

2
. In view of (80), it is

sufficient to satisfy the condition C1

(
1 + 8

p0

)
t
1− 2

p

1 ≤ k0

4
. Then

k0

2
sup

t≤τ≤t+t1
(‖en+1(τ)‖2

L2 + ‖σn+1(τ)‖2
L2) +

p0

2

∫
Qt,t+t1

(|∇rn+1|2 + |∇wn+1|2)

≤ p0

4

∫
Qt,t+t1

(|∇rn|2 + |∇wn|2) + 2

∫ t+t1

t

Fδ0(s) ds sup
t≤τ≤t+t1

(‖en(τ)‖2
L2 + ‖σn+1(τ)‖2

L2) .

Now we choose t1 such that
∫ t+t1
t

Fδ0(s) ds ≤ k0

8
, by requiring that (cp. (79)) C0

(
1 + 8

p0

)
t
1− 2

p

1 ≤
k0

8
. It follows that

k0

4
sup

t≤τ≤t+t1
(‖en+1(τ)‖2

L2 + ‖σn+1(τ)‖2
L2) +

p0

2

∫
Qt,t+t1

(|∇rn+1|2 + |∇wn+1|2)

≤ k0

4
sup

t≤τ≤t+t1
‖en(τ)‖2

L2 +
p0

4

∫
Qt,t+t1

(|∇rn|2 + |∇wn|2) .

The claim follows.

In order to complete the proof of the Theorems 2.1, 4.3 it remains to investigate the characterisation
of the maximal existence time T ∗.

Lemma 9.2. Suppose that u = (q, %, v) ∈ Xt is a solution to Ã (u) = 0 and u(0) = u0 for all
t < T ∗. If for some α > 0 the quantity N (t) := ‖q‖

Cα,
α
2 (Qt)

+ ‖∇q‖L∞,p(Qt) + ‖v‖Lz p,p(Qt) +∫ t
0
[∇v(s)]Cα(Ω) ds is finite for t ↗ T ∗, then it is possible to extend the solution to a larger time

interval.

Proof. To show this claim we first note that the components of vx have all spatial mean-value zero
over Ω due to the boundary condition (25). Thus, the inequalities ‖vx(s)‖L∞(Ω) ≤ cΩ [vx(s)]Cα(Ω)

and ‖vx‖L∞,1(Qt) ≤ cΩ

∫ t
0
[vx(s)]Cα(Ω) ds are valid. Invoking the Proposition 7.7, we thus see that

(m(t))−1, M(t) and sups≤t[%(s)]Cα(Ω) are all bounded by a function of
∫ t

0
[vx(s)]Cα(Ω) ds, thus also

by a function ofN (t). Invoking further the estimates of Proposition 7.7, we also see that

‖%x(s)‖Lp(Ω) ≤φ(R0, ‖vx‖L∞,1(Qs)) (1 +

∫ s

0

‖vx,x(τ)‖Lp(Ω) dτ)

≤φ(R0, N (s)) (1 + V (s; v)) ,
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for all s ≥ 0, with a function φ increasing in its arguments. Next we apply the Corollary 7.6. Due to
the fact that (m(t))−1, M(t) and sups≤t[%(s)]Cα(Ω) are bounded by a function of N (t), this yields
V (t; v) ≤ φ(t, N (t)) (‖f‖Lp(Qt) + ‖v0‖

W
2− 2

p
p (Ω)

). We recall the form (34) of the function f , and

estimate

|f(x, t)| ≤|∇%| sup
Qt

|R%(%, q)|+ |∇q| sup
Qt

|Rq(%, q)|

+ c (|v(x, t)| |vx(x, t)|+ |b̄(x, t)|+ |b̃(x, t)|) sup
Qt

% .

We can bound the coefficients via supQt |R%(%, q)| ≤ φ(M(t), ‖q‖L∞(Qt)) ≤ φ(N (t)), etc. There-
fore, we can show that

‖f‖pLp(Qt)
≤ φ(N (t)) (‖∇%‖pLp(Qt)

+ ‖∇q‖pLp(Qt)
+ ‖v∇v‖pLp(Qt)

+ ‖b̃‖pLp(Qt)
+ ‖b̄‖pLp(Qt)

) .

Using the abbreviation A0(t) := ‖b̃‖pLp(Qt)
+ ‖b̄‖pLp(Qt)

+ ‖v0‖
W

2− 2
p

p (Ω)
we obtain, after straightfor-

ward computations

V p(t; v) ≤ φ(t, N (t)) (‖∇%‖pLp(Qt)
+ ‖v∇v‖pLp(Qt)

+ ‖∇q‖pLp(Qt)
+ A0(t)) .

As shown, we have ‖∇%‖pLp(Qt)
≤ φ(R0, ‖vx‖L∞,1(Qs))

∫ t
0
(1 + V (s; v))p ds. Recall the continuity

of W
2− 2

p
p ⊂ L

3p

(5−p)+ (cf. Rem. 5.1). Choosing z = 3
p−2

if 3 < p < 5, z > 1 arbitrary if p = 5 and

z = 1 if p > 5, we are thus able to also show by means of Hölder’s inequality that ‖v vx‖pLp(Qt)
≤∫ t

0
‖v(s)‖pLz p V p(s; v) ds.

Invoking the Gronwall Lemma yields V p(t; v) ≤ φ(t, R0, N (t)) (‖∇q‖pLp(Qt)
+ A0(t)). Since

‖∇q‖Lp(Qt) is also controlled by t andN (t), we obtain that V p(t; v) ≤ φ(t, R0, N (t)). Obviously
we now have also ‖∇%‖pLp,∞(Qt)

≤ φ(t, R0, N (t)). The Corollary 7.8 yields that ‖%‖
Cβ,

β
2 (Qt)

≤
φ(t, R0, N (t)) for β = 1− 3

p
.

To show the final claim, we reconsider the inequality (54) in the proof of Corollary 7.4. Note that a
solution (q, %, v) is a fixed-point of T , so that this inequality is valid with q∗ = q, %∗ = % and v∗ =
v. The factors φ∗1,t, φ

∗
2,t are increasing functions of (m(t))−1, M(t), ‖q‖L∞(Qt) and [q]

Cβ,
β
2 (Qt)

,

[%]
Cβ,

β
2 (Qt)

. With the preliminary considerations in this proof, we thus can state that

V p(t, q) ≤ φ(t, N (t)) (‖q0‖p
W

2− 2
p

p (Ω)

+ ‖q‖p
W 1,0
p (Qt)

+ ‖g‖pLp(Qt)

+ ‖∇% · ∇q‖pLp(Qt)
+ ‖∇q · ∇q‖pLp(Qt)

) ,

Invoking (33) and the fact that ‖v‖W 2,1
p (Qt)

+ ‖∇%‖pLp,∞(Qt)
and, by definition ‖∇q‖Lp(Qt) are all

bounded byN (t), we can obtain the inequality

V p(t; q) ≤ φ(t, D0, N (t)) (1 +

∫ t

0

‖∇q(s)‖pL∞(Ω) (‖∇ρ(s)‖pLp + ‖∇q(s)‖pLp) ds .

Thus, if ‖∇q(s)‖pL∞(Ω) is integrable in time, we obtain by means of Grownall an independent estimate

in terms ofN (t). The claim follows.
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10 Estimates for the solutions to the second linearisation

We now consider the equations (44), (45), (46) underlying the definition of the map T 1. Here the
data is a pair (r∗, w∗) ∈ 0YT , and we want to find the image (r, w) in the same space as well
as σ ∈ 0W

1,1
p,∞(QT ) by solving these equations. The solvability will not be discussed, since it can

be easily obtained by linear continuation using the estimates. We shall therefore go directly for the
estimates.

The first point consists in obtaining estimates for solutions to a perturbed continuity equation. Precisely
for this point, we need to assume more regularity of the function %̂0.

Lemma 10.1. Assume that %̂0 ∈ W 2,0
p (QT ), that v, w ∈ W 2,1

p (QT ; R3) and that σ ∈ W 1,1
p,∞(QT )

solves ∂tσ+ div(σ v+ %̂0w) = 0 in QT with σ(x, 0) = 0 in Ω. Then there are constants c, C > 0
depending only on Ω, such that for all s ≤ T we have

‖σ(s)‖pW 1,p(Ω) ≤C exp(c

∫ s

0

[‖vx‖L∞(Ω) + ‖vx,x‖Lp(Ω) + 1] ds)×

× (‖%̂0‖p
W 2,0
p (Qs)

‖w‖pL∞(Qs)
+ ‖%̂0‖p

W 1,1
p,∞(Qs)

‖w‖p
W 2,0
p (Qs)

) .

Proof. After some obvious technical steps, we can show that the components zi := σxi (i = 1, 2, 3)
of the gradient of σ satisfy, in the sense of distributions,

∂tzi + div(zi v) = − div(σ vxi)− div(%̂0
xi
w + %̂0wxi) =: − div(σ vxi) +Ri .

The right-hand side is bounded in Lp(Qt), and the velocity v belongs to W 2,1
p (Qt). Thus, zi is also

a renormalised solution to the latter equation. Without entering the details of this notion, the following
identity is valid in the sense of distributions:

∂tf(z) + div(f(z) v) + (z · fz(z)− f(z)) div v =
3∑
i=1

fzi(z) (− div(σ vxi) +Ri)

for every globally Lipschitz continuous function f ∈ C1(R3). We integrate the latter identity over Qt.
Recall that σ(x, 0) = 0 in Ω by assumption. If f(0) = 0, we then obtain that∫

Ω

f(z(t)) dx+

∫
Qt

(z · fz(z)− f(z)) div v dxds =

∫
Qt

fz(z) · (− div(σ vx) +R) dxds .

By means of a standard procedure, we approximate the function f(z) = |z|p by means of a sequence
of smooth Lipschitz continuous functions {fm}. This yields∫

Ω

|z(t)|p dx+ (p− 1)

∫
Qt

|z|p div v dxds = p

∫
Qt

|z|p−2 z · (− div(σ vx) +R) dxds .

The estimates below will establish that all members in the latter identity are finite. We first use Hölder’s
inequality and note that∣∣∣∣∫

Qt

|z|p−2 z · div(σ vx)

∣∣∣∣ ≤∫
Qt

|z|p−1 (|z| |vx|+ |σ| |vx,x|)

≤
∫
Qt

|z|p |vx| dxds+

∫ t

0

‖vx,x‖Lp(Ω) ‖z‖p−1
Lp(Ω) ‖σ‖L∞(Ω) ds .
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Next, we recall that for a solution to ∂tσ+div(σ v+%̂0w) = 0, the integral
∫

Ω
σ(t, x) dx is conserved

and equal to zero. Due to the Poincaré inequality, we therefore have ‖σ(t)‖Lp(Ω) ≤ c0 ‖z(t)‖Lp(Ω)

and, by the Sobolev embedding, also that ‖σ(t)‖L∞(Ω) ≤ c̃0 ‖z(t)‖Lp(Ω). Thus,∣∣∣∣∫
Qt

|z|p−2 z · div(σ vx)

∣∣∣∣ ≤ ∫ t

0

(‖vx‖L∞(Ω) + c̃0 ‖vx,x‖Lp(Ω)) ‖z‖pLp(Ω) ds .

Moreover, by Young’s inequality,∫
Qt

|z|p−2 z ·Rdxds ≤
∫ t

0

‖z‖pLp(Ω) ds+ cp

∫ t

0

‖R‖pLp(Ω) ds ≤
∫ t

0

‖z‖pLp(Ω) ds

+ cp

∫ t

0

[‖w‖pL∞(Ω) ‖%̂
0
x,x‖

p
Lp(Ω) + 2 ‖%̂0

xwx‖
p
Lp(Ω) + ‖%̂0‖pL∞(Ω) ‖wx,x‖

p
Lp(Ω)] ds .

Further,∫ t

0

‖w‖pL∞(Ω) ‖%̂
0
x,x‖

p
Lp(Ω) ds ≤ ‖w‖

p
L∞(Qt)

‖%̂0‖p
W 2,0
p (Qt)

,∫ t

0

‖%̂0
xwx‖

p
Lp(Ω) ≤ ‖wx‖

p
L∞,p(Qt)

‖%̂0
x‖

p
Lp,∞(Qt)

≤ C ‖%̂0
x‖

p
Lp,∞(Qt)

‖w‖p
W 2,0
p (Qt)

,∫ t

0

‖%̂0‖pL∞(Ω) ‖wx,x‖
p
Lp(Ω) ds ≤ ‖%̂

0‖pL∞(Qt)
‖w‖p

W 2,0
p (Qt)

.

Thus, ∫
Ω

|z(t)|p dx ≤(p− 1)

∫ t

0

[‖vx‖L∞(Ω) + c̃0 ‖vx,x‖Lp(Ω) + p′] ‖z(s)‖pLp(Ω) ds

+ p cp [‖%̂0‖p
W 2,0
p (Qt)

‖w‖pL∞(Qt)
+ ‖%̂0‖p

W 1,1
p,∞(Qt)

‖w‖p
W 2,0
p (Qt)

] .

The claim follows by means of the Gronwall Lemma.

We need next an estimate for the operators (g1)′ and (f 1)′ from the right-hand side of (38), (40).

Lemma 10.2. Let û0 := (q̂0, %̂0, v̂0) ∈ XT,+ with %̂0 ∈ W 2,0
p (QT ). Let (r∗, w∗) ∈ 0YT , and

u∗ := (q̂0 + r∗,C (v̂0 + w∗), v̂0 + w∗) ∈ XT,+ (cf. (43)). Let (r, w) ∈ 0YT , and denote σ the
function obtained via solution of (45) with v∗ = v̂0 +w∗. We define ū := (r, σ, w) ∈ 0XT . Then the
operators (g1)′ and (f 1)′ in the right-hand of (38), (40) satisfy

‖(g1)′(u∗, û0) ū‖pLp(Qt)
+ ‖(f 1)′(u∗, û0) ū‖pLp(Qt)

≤ K∗2(t)

∫ t

0

V p(s)K∗1(s) ds ,

with functions K∗1 ∈ L1(0, T ) and K∗2 ∈ L∞(0, T ). There is a function Φ∗ = Φ∗(t, a1, . . . , a5)
defined for all t, a1, . . . , a5 ≥ 0, continuous and increasing in all arguments, such that for all t ≤ T

‖K∗‖L1(0,t) + ‖K∗2‖L∞(0,t) ≤ Φ∗(t, V ∗(t), ‖û0‖Xt , ‖%̂0‖W 2,0
p (Qt)

, ‖b̃‖W 1,0
p (Qt)

, ‖b̄‖Lp(Qt)) .

Here we used the abbreviations V (t) := V (t; r) + V (t; w) and V ∗(t) := V (t; r∗) + V (t; w∗).

Proof. At first we estimate (g1)′. Starting from (42), we obtain by elementary means that

|(g1)′(u∗, û0) ū| ≤|g1
q (u
∗, û0)| |r|+ |g1

%(u
∗, û0)| |σ|+ |g1

v(u
∗, û0)| |w|

+ |g1
q (u
∗, û0)| |rx|+ |g1

%(u
∗, û0)| |σx|+ |g1

v(u
∗, û0)| |wx| .
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We define z = 3p
3−(5−p)+ , and by means of Hölder’s inequality we obtain first that

‖(g1)′(u∗, û0) ū‖pLp(Qt)
≤
∫ t

0

{‖g1
q‖

p
Lp(Ω) ‖r‖

p
L∞(Ω) + ‖g1

qx‖
p
Lz(Ω) ‖rx‖

p

L
3p

(5−p)+ (Ω)

} ds

+

∫ t

0

{‖g1
v‖

p
Lp(Ω) ‖w‖

p
L∞(Ω) + ‖g1

vx‖
p
Lz(Ω) ‖wx‖

p

L
3p

(5−p)+ (Ω)

} ds

+

∫ t

0

{‖g1
%‖

p
Lp(Ω) ‖σ‖

p
L∞(Ω) + ‖g1

%x‖
p
L∞(Ω) ‖σx‖

p
Lp(Ω)} ds .

Making use of the embeddings W
2− 2

p
p ⊂ L

3p

(5−p)+ and of W 1,p ⊂ L∞(Ω) (recall also that the means
of σ over Ω is zero at every time!), we show that

‖(g1)′(u∗, û0) ū‖pLp(Qt)
≤
∫ t

0

sup
τ≤s
{‖r(τ)‖p

W
2− 2

p
p (Ω)

+ ‖w(τ)‖p
W

2− 2
p

p (Ω)

}K1(s) ds

+

∫ t

0

K2(s) ‖σx(s)‖pLp(Ω) ds ,

K1(s) :=‖g1
q (s)‖

p
Lp(Ω) + C ‖g1

qx(s)‖
p
Lz(Ω) + ‖g1

v(s)‖
p
Lp(Ω) + C ‖g1

vx(s)‖
p
Lz(Ω) ,

K2(s) :=C ‖g1
%(s)‖

p
Lp(Ω) + ‖g1

%x(s)‖
p
L∞(Ω) .

We invoke the Lemmas C.3, C.4 to see that K1 and K2 are integrable functions and their norm are
controlled by the data. Recall also that the minimum and the maximum of the function %∗ := C (v̂0 +
w∗), which enter the estimates via the coefficients, are controlled by a function of V (t; v̂0 + w∗).

For the terms containing σx, we use the result of Lemma 10.1. It yields for s ≤ t in particular that

‖σ(s)‖W 1,p(Ω) ≤K3(s) ‖w‖pL∞(Qs)
+K4(s) ‖w‖p

W 2,0
p (Qs)

,

K3(s) :=C exp(c

∫ s

0

(‖v∗x‖L∞(Ω) + ‖v∗x,x‖Lp(Ω) + 1) dτ) ‖%̂0‖p
W 2,0
p (Qs)

,

K4(s) :=C exp(c

∫ s

0

(‖v∗x‖L∞(Ω) + ‖v∗x,x‖Lp(Ω) + 1) dτ) ‖%̂0‖p
W 1,1
p,∞(Qs)

.

We obtain that∫ t

0

K2(s) ‖σx(s)‖pLp(Ω) ds ≤ max{K3(t), K4(t)}
∫ t

0

K2(s) [‖w‖pL∞(Qs)
+ ‖w‖p

W 2,0
p (Qs)

] ds .

Overall, since ‖w‖L∞(Qs) ≤ c supτ≤s ‖w(τ)‖
W

2− 2
p

p (Ω)
, we obtain that

‖(g1)′(u∗, û0) ū‖pLp(Qt)
≤
∫ t

0

sup
τ≤s
{‖r(τ)‖p

W
2− 2

p
p (Ω)

+ ‖w(τ)‖p
W

2− 2
p

p (Ω)

}K1(s) ds

+ max{K3(t), K4(t)}
∫ t

0

K2(s) [‖w‖pL∞(Qs)
+ ‖w‖p

W 2,0
p (Qs)

] ds

≤c max{1, K3(t), K4(t)}
∫ t

0

V p(s; w) (K1(s) +K2(s)) ds .

We can prove a similar result for f ′1. This finishes to prove the estimate.
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11 Existence of a unique fixed-point of T 1

We are now in the position to prove the continuity estimate for T 1. We assume that (r, σ, w) satisfy
the equations (44),(45), (46) with data (r∗, w∗). We apply the Proposition 7.1 to (44), and making use
of the fact that r(0, x) = 0 in Ω, we get an estimate

V (t; r) ≤C Ψ1,t ‖g1‖Lp(Qt) ≤ C Ψ1,t (‖ĝ0‖Lp(Qt) + ‖(g1)′(u∗, û0) ū‖Lp(Qt)) . (82)

Here Ψ1,t = Ψ1(t, (m∗(t))−1, M∗(t), ‖q0‖
W

2− 2
p

p (Ω)
, V (t; q∗), [%∗]

Cβ,
β
2 (Qt)

, ‖∇%∗‖Lp,∞(Qt)), and

ū := (r, σ, w). We then apply the Proposition 7.6 to (46), and we obtain that

V (t; w) ≤C Ψ̃2,t ‖f 1‖Lp(Qt) ≤ C Ψ̃2,t (‖f̂ 0‖Lp(Qt) + ‖(f 1)′(u∗, û0) ū‖Lp(Qt)) . (83)

Here Ψ̃2,t = Ψ2(t, (m∗(t))−1, M∗(t), sups≤t[%
∗(s)]Cα(Ω)) (1 + sups≤t[%

∗(s)]Cα(Ω))
2
α .

We next raise both (82) and (83) to the p− power, add both inequalities, and get for the function
V (t) := V (t; r) + V (t; w) an inequality

V p(t) ≤ C (Ψp
1,t + Ψ̃p

2,t) (‖ĝ0‖pLp(Qt)
+ ‖f̂ 0‖pLp(Qt)

+ ‖(g1)′(u∗, û0) ū‖pLp(Qt)
+ ‖(f 1)′(u∗, û0) ū‖pLp(Qt)

) .

Then we apply Lemma 10.2 and find

V p(t) ≤C (Ψp
1,t + Ψ̃p

2,t) (‖ĝ0‖pLp(Qt)
+ ‖f̂ 0‖pLp(Qt)

+K∗2(t)

∫ t

0

K∗1(s) V p(s) ds) .

The Gronwall Lemma implies that

V p(t) ≤ C (Ψp
1,t + Ψ̃p

2,t) exp(C (Ψp
1,t + Ψ̃p

2,t)K
∗
2(t)

∫ t

0

K∗1(s) ds) (‖ĝ0‖pLp(Qt)
+ ‖f̂ 0‖pLp(Qt)

) .

We thus have proved the following continuity estimate:

Proposition 11.1. Suppose that (r∗, w∗), (r, w) ∈ 0YT are solutions to (r, w) = T 1(r∗, w∗).
Then there is a continuous function Ψ9 increasing in its arguments such that, for all t ≤ T ,

V (t) ≤Ψ9(t, ‖û0‖Xt + ‖%̂0‖W 2,0
p (Qt)

+ ‖b̃‖W 1,0
p (Qt)

+ ‖b̄‖Lp(Qt), V ∗(t))×

× (‖ĝ0‖Lp(Qt) + ‖f̂ 0‖Lp(Qt)) .

We are now in the position to prove a self-mapping property for sufficiently ’small data’ applying the
Lemma 6.3.

Lemma 11.2. There is R1 > 0 such that if ‖ĝ0‖Lp(QT ) + ‖f̂ 0‖Lp(QT ) ≤ R1, the map T 1 is well
defined and possesses a unique fixed-point.

Proof. We apply the Lemma 6.3 with Ψ(T, R0, R1, η) := Ψ9(T, R0, η)R1. HereR0 = ‖û0‖XT +
‖%̂0‖W 2,0

p (QT ) + ‖b̃‖W 1,0
p (QT ) + ‖b̄‖Lp(QT ).

Thus, there is R1 > 0 such that if ‖ĝ0‖Lp(QT ) + ‖f̂ 0‖Lp(QT ) ≤ R1, we can find η0 > 0 such that T 1

maps the set {ū ∈ 0YT : ‖ū‖YT ≤ η0} into itself.
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Consider the iteration ūn+1 := T 1(ūn) starting at ūn = 0. The sequences (rn, σn, wn), and thus
also (q̂0+rn, C (v̂0+wn), v̂0+wn), are uniformly bounded inXT . We show the contraction property
with respect to the same lower-order norm than in Theorem 9.1. There are k0, p0 > 0 such that the
quantities

En(t) := p0

∫ t+t1

t

{|∇(rn − rn−1)|2 + |∇(wn − wn−1)|2} dxds

+ k0 sup
τ∈[t, t+t1]

{‖(rn − rn−1)(τ)‖2
L2(Ω) + ‖(σn − σn−1)(τ)‖2

L2(Ω) + ‖(wn − wn−1)(τ)‖2
L2(Ω)}

satisfy En+1(t) ≤ 1
2
En(t) for some fixed t1 > 0 and every t ∈ [0, T − t1].

In order to finish the proof of Theorem 2.4, we want to show how to make ‖ĝ0‖Lp(QT ) + ‖f̂ 0‖Lp(QT )

small. We observe that ĝ0 = Ã 1(û0) and that f̂ 0 = A 3(û0). Thus, if an equilibrium solution to
A (ueq) = 0 is at hand, we can expect that A (û0) = A (û0)−A (ueq) will remain small if the initial
data are near to the equilibrium solution.

We thus consider ueq = (qeq, %eq, veq) ∈ W 2,p(Ω; RN−1)×W 1,p(Ω)×W 2,p(Ω; R3) an equilibrium
solution. This means that the equations (12), (13) are valid with the vector ρeq of partial mass densities
obtained from qeq and %eq by means of the transformation of Section 3.

Lemma 11.3. Suppose that ueq ∈ W 2,p(Ω; RN−1) ×W 1,p(Ω) ×W 2,p(Ω; R3) is an equilibrium
solution. Moreover, we assume that the initial data u0 belongs to TrΩ×{0}XT . We assume that the
components %eq, %0 and v0 of ueq and u0 possess the additional regularity

%eq, %0 ∈ W 2,p(Ω), veq ∈ W 3,p(Ω; R3), v0 ∈ W 2,p(Ω; R3) . (84)

Then, there exists R1 > 0 such that if ‖ueq − u0‖TrΩ×{0} XT ≤ R1, then there is a unique global
solution u ∈ XT to A (u) = 0 and u(0) = u0.

Proof. We denote u1 := ueq − u0 ∈ TrΩ×{0}XT . We find extensions q̂1 ∈ W 2,1
p (QT ; RN−1) and

v̂1 ∈ W 2,1
p (QT ; R3) with continuity estimates. For instance, we can extend the components of q1, v1

to elements of W 2−2/p
p (R3), and then solve Cauchy-problems for the heat equation to extend the

functions. Since the assumption (84) moreover guarantees that v1 ∈ W 2,p(Ω), this procedure yields
even v̂1 ∈ W 4,2

p (QT ; R3) at least (cf. [LSU68], Chapter 4, Paragraph 3, inequality (3.3)).

The definitions q̂eq(x, t) := qeq(x) and v̂eq(x, t) := veq(x) provide extensions of q̂eq ∈ W 2,∞
p,∞ and

v̂eq in W 3,∞
p,∞ . We define

q̂0 := q̂eq + q̂1 ∈ W 2,1
p (QT ; RN−1), v̂0 := v̂eq + v̂1 ∈ W 2,1

p (QT ; RN−1) ∩W 3,0
p (QT ; R3) ,

satisfying

‖q̂0 − q̂eq‖W 2,1
p (QT ) + ‖v̂0 − v̂eq‖W 2,1

p (QT ) ≤ C (‖q1‖
W

2− 2
p

p (Ω)
+ ‖v1‖

W
2− 2

p
p (Ω)

) = C R1 , (85)

‖v̂0‖W 3,0
p (QT ;R3) ≤ C (‖veq‖W 3,p(Ω) + ‖v0‖W 2,p(Ω)) . (86)

In order to extend %0, we solve ∂t%̂0 + div(%̂0 v̂0) = 0 with initial condition %̂0 = %0. We clearly
obtain by these means an extension of class W 1,1

p,∞(QT ). Moreover, due to (86), we can show that
%̂0 ∈ W 2,0

p (QT ) (use the representation formula at the beginning of the proof of Prop. 7.7). If we next
choose the extension %̂eq(x, t) := %eq(x) ∈ W 2,∞

p,∞ (QT ), then by definition of the equilibrium solution
we have div(%̂eq v̂eq) = 0 in QT and ∂t%̂eq = 0.
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Thus, the difference %̂1 := %̂0 − %̂eq is a solution to ∂t%̂1 + div(%̂1 v̂0) = − div(%̂0 v̂1). Since
%̂0 ∈ W 1,1

p,∞(QT ) ∩ W 2,0
p (QT ) by construction, the estimate of Lemma 10.1 applies, and invoking

also (85) this gives

‖%̂1‖W 1,1
p,∞(QT ) ≤C exp(c

∫ T

0

[‖v̂0
x‖L∞(Ω) + ‖v̂0

x,x‖Lp(Ω) + 1]ds)×

× (‖%̂0‖p
W 2,0
p (QT )

‖v̂1‖pL∞(QT ) + ‖%̂0‖p
W 1,1
p,∞(QT )

‖v̂1‖p
W 2,0
p (QT )

)

≤CT ‖v̂1‖W 2,1
p (QT ) ≤ CT R1 .

The latter and (85) now entail that

‖q̂0 − q̂eq‖W 2,1
p (QT ) + ‖v̂0 − v̂eq‖W 2,1

p (QT ) + ‖%̂0 − %̂eq‖W 1,1
p,∞(QT ) ≤ C R1 .

Here C is allowed to depend on T and all data in their respective norm. Now recalling the Lemma 5.3
we can verify that

Ã (û0) =Ã (ûeq + û1) = Ã (ûeq + û1)− Ã (ûeq) =

∫ 1

0

Ã ′(ûeq + θ û1) dθ û1 .

Thus ‖Ã (û0)‖ZT ≤ C R1. The definitions of ĝ0 and f̂ 0 in (42) show that

‖ĝ0‖Lp(QT ) + ‖f̂ 0‖Lp(QT ) = ‖Ã 1(û0)‖Lp(QT ) + ‖Ã 3(û0)‖Lp(QT ) ≤ C R1 .

The claim follows from the Lemma 11.1.

A Examples of free energies

1. We consider first h(ρ) :=
∑N

i=1 ni ln ni
nref where for i = 1, . . . , N , the mass and number densities

are related via mi ni = ρi with a positive constant mi > 0. We want to show that h is a Legendre
function on RN

+ . It is at first clear that h is continuously differentiable on RN
+ , and we even have

h ∈ C∞(RN
+ ). The strict convexity of h is obviously inherited from the strict convexity of t 7→ t ln t

on R+. The gradient of h is given by

∂ρih(ρ) =
1

mi

(1 + ln
ni
nref

) .

Thus limk→∞ |∇ρh(ρk)| = +∞ whenever {ρk}k∈N is a sequence of points approaching the bound-
ary of RN

+ . Overall we have shown that h is a continuously differentiable, strictly convex, essentially
smooth function on RN

+ (where essentially smooth precisely means the blow-up of the gradient on
the boundary). Functions satisfying these properties are called of Legendre type (cf. [Roc70], page
258). Moreover, we can directly show that the gradient of h is surjective onto RN , since the equations
∂ρih = µi have the unique solution ρi = mi n

ref emi µi−1 for arbitrary µ ∈ RN .

2. The second example is h(ρ) = F
(∑N

i=1 ni v̄
ref
i

)
+
∑N

i=1 ni ln ni
n

, with the total number density

n =
∑N

j=1 nj . Here F is a given convex function of class C2(R+). We assume that

� F ′′(t) > 0 for all t > 0;

� F ′(t)→ −∞ for t→ 0;
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� 1
t
F (t)→ +∞ for t→ +∞.

In other words, F is a co-finite function of Legendre type on R+. The numbers v̄ref
i are positive con-

stants. Choosing v̄ref
1 = . . . = v̄ref

N = 1 and F (t) = t ln t we recover the preceding example.

The function h is clearly of class C2(RN
+ ). We compute the derivatives

∂ρih(ρ) =F ′(v · ρ) vi +
1

mi

ln
ni
n
,

∂ρi,ρjh(ρ) =F ′′(v · ρ) vi vj +
1

mimj

(
δi,j
nj
− 1

n
) ,

in which we have for simplicity set vi := v̄ref
i /mi. For ξ ∈ RN , we verify that

D2h(ρ)ξ · ξ = F ′′(v · ρ) (v · ξ)2 +
N∑
i=1

(
ξi√
nimi

)2

− 1

n

(
N∑
i=1

ξi
mi

)2

.

With the Cauchy-Schwarz inequality, we see that
∑N

i=1

(
ξi√
nimi

)2

− 1
n

(∑N
i=1

ξi
mi

)2

≥ 0, with

equality only if ξi = λnimi for some λ ∈ R. In this case however, we have ξ · v = λ
∑N

i=1 ρi vi,
so that D2h(ρ)ξ · ξ = λ2 F ′′(v · ρ) (v · ρ)2 ≥ 0, with equality only if λ = 0. This proves that
D2h(ρ)ξ · ξ > 0 for all ξ ∈ RN \ {0}, which implies the strict convexity.

In order to show that h is essentially smooth, we consider a sequence {ρk}k∈N approaching the
boundary of RN

+ . We first consider the case that ρk does not converge to zero. In this case, we clearly
have infk∈N{nk, v · ρk} ≥ c0 for some positive constant c0. Thus

|∇ρh(ρk)| ≥ 1

maxm
sup

i=1,...,N
| lnnki | − |v| sup

k
|F ′(v · ρk)| − 1

minm
sup
k
| lnnk|

≥ 1

maxm
sup

i=1,...,N
| lnnki | − C → +∞ .

The second case is that ρk converges to zero. In this case the fractions nki
nk

might remain all bounded.
But our assumptions on F guarantee that F ′(v · ρk) → −∞ so that |∇ρh(ρk)| → +∞. Thus, the
function h is essentially smooth, and a function of Legendre type on RN

+ .

It remains to prove that ∇ρh is a surjective mapping. We first verify that h is co-finite. In the present

context, it is sufficient to show that limλ→+∞
h(λ y)
λ

= +∞ for all y ∈ RN
+ . This follows directly from

the fact that limt→+∞
F (t)
t

= +∞. We then infer the surjectivity of ∇ρh form Corollary 13.3.1 in
[Roc70].

3. Similar arguments allow to deal with the case h(ρ) =
∑N

i=1Ki ni v̄
ref
i ((ni v̄

ref
i )αi−1+ln(ni v̄

ref
i ))+

kB θ
∑N

i=1 ni ln ni
n

.

B Proof of the Lemma 7.2

The argument is based on covering Qt, t > 0, with sufficiently small sets and localising the problem
therein. This is essentially carried over by standard techniques of meshing, so we will spare these
rather technical considerations. For every r > 0, we can find m = m(r) ∈ N and, for each j =
1, . . . ,m, a point (xj, tj) ∈ Qt and sets Qj that possess the following properties:
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� Qt ⊂
⋃m
j=1 Q

j ;

� sup(x, t)∈Qj |t− tj| ≤ c r and sup(x, t)∈Qj |x− xj| ≤ c
√
r;

� Qj intersects a finite number, not larger than some m0 ∈ N, of elements of the collection
Q1, . . . , Qm. Here m0 is independent on r and t.

For j = 1, . . . ,m, we can moreover choose a non-negative function ηj ∈ C2,1(Qj) with support
in Qj . The family η1, . . . , ηm is assumed to nearly provide a partition of unity, that is, to possess the
following properties:

c0 ≤
m∑
j=1

ηj(x, t) ≤ C0 for all (x, t) ∈ Qt

‖ηx‖L∞(Qj) ≤ C1 r
− 1

2 , ‖ηt‖L∞(Qj) + ‖ηx,x‖L∞(Qj) ≤ C2 r
−1 .

Here c0 > 0 andCi (i = 0, 1, 2) are constants independent on r and t. Moreover we can also enforce
that ν · ∇ηj = 0 on Sj =: Qj ∩ (∂Ω× [0, +∞[). We let Ωj := Qj ∩ (Ω× {0}).

After inversion of R∗q , the vector field q satisfies the equations (51), that is

qt − [R∗q ]
−1 M̃∗︸ ︷︷ ︸

=:A∗

4q = [R∗q ]
−1 g + [R∗q ]

−1∇M̃∗ · ∇q =: g̃ . (87)

Multiplying (87) with ηj , we next derive the identities

ηj qt − ηj Aj4q =ηj g̃ + ηj (A∗ − Aj)4q, Aj := [R∗q ]
−1 M̃∗(xj, tj) . (88)

Making use of the Lemma C.1, the eigenvalues pj1, . . . , p
j
N−1 of Aj are real and strictly positive.

Recalling (52), we have on [0, t] the bound

λ0(t, M̃∗)

λ1(t, R∗q)
≤ pji ≤

λ1(t, M̃∗)

λ0(t, R∗q)
.

Further, there exists a basis ξ1, . . . , ξN−1 ∈ RN−1 of eigenvectors of Aj .

For i = 1, . . . , N − 1, we multiply the equation (88) with ξi. For ui := ξi · q (i = 1, . . . , N − 1) we
therefore obtain that ηj (ui,t − pji 4ui) = ηj ξi · (g̃ + (A∗ − Aj)4q). We define ũji := ui η

j , and
for this function we obtain that

ũji,t − p
j
i 4ũ

j
i =hji := ηj ξi · (g̃ + (A∗ − Aj)4q) + ηjt ui − p

j
i (2ui,x · ηjx +4ηj ui) .

Recall that ν · ∇q = 0 on ST and q(·, 0) = q0 in Ω. Due to our restrictions on the choice of ηj , we
then readily compute that ν ·∇ũji = ν ·∇ηj ξi ·q = 0 on St. Moreover, ũij(0) = ηj(0) ξi ·q0 =: ũ0,j

i

in Ω. Since q0 satisfies the initial compatibility condition, also ũ0,j
i is a compatible data. Standard

results for the heat equation now yield for arbitrary t ≤ T

‖ũji‖W 2,1
p (Qt)

≤ C1
max{1, pji}
min{1, pji}

(pji ‖ũ
0,j
i ‖

W
2− 2

p
p (Ω)

+ ‖hji‖Lp(Qt)) , (89)
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where C1 depends only on Ω (see the Remark B.1). In order to estimate ‖hji‖Lp(Qt), we introduce

Qj
t := Qj ∩Qt and observe that

‖ηj ξi · g̃‖Lp(Qt) ≤C0 ‖g̃‖Lp(Qjt )
,

‖(ηjt − p
j
i 4ηj)ui‖Lp(Qt) ≤C (1 + λmax(Aj)) r

−1 ‖q‖Lp(Qjt )
,

2 pji ‖ui,x · ηjx‖Lp(Qt) ≤C λmax(Aj) r
−1/2 ‖qx‖Lp(Qjt )

≤ C λmax(Aj) (1 + r−1) ‖qx‖Lp(Qjt )
,

‖ηj ξi (A∗ − Aj)4q‖Lp(Qt) ≤C ‖A∗ − Aj‖L∞(Qjt )
‖D2q‖Lp(Qjt )

. (90)

Since, by definition, Aj = [R∗q ]
−1 M̃∗(xj, tj) = A∗(xj, tj), we have

‖A∗ − Aj‖L∞(Qjt )
≤
[
[R∗q ]

−1 M̃∗
]
Cβ,

β
2 (Qt)

r
β
2 . (91)

We call F : R+×RN−1 → RN−1×RN−1 the map (s, ξ) 7→ [Rq(s, ξ)]
−1 M̃(s, ξ). The derivatives

of F satisfy the estimates

|∂sF (%∗, q∗)| ≤ λmax(M̃∗)

λ2
min(R∗q)

|Rq,%(%
∗, q∗)|+ 1

λmin(R∗q)
|M̃%(%

∗, q∗)| ,

|∂ξF (%∗, q∗)| ≤ λmax(M̃∗)

λ2
min(R∗q)

|Rq,q(%
∗, q∗)|+ 1

λmin(R∗q)
|M̃q(%

∗, q∗)| ,

|∂sF (%∗, q∗)|+ |∂ξF (%∗, q∗)| ≤

(
λ1(t, M̃∗)

λ2
0(t, R∗q)

+
1

λ0(t, R∗q)

)
(L∗(t, Rq) + L∗(t, M̃)) =: `∗t .

By standard arguments, we have[
[R∗q ]

−1 M̃∗
]
Cβ,

β
2 (Qt)

≤ `∗t ([%∗]
Cβ,

β
2 (Qt)

+ [q∗]
Cβ,

β
2 (Qt)

) . (92)

Combining (89), (90), (91) and (92), we get

‖ũji‖W 2,1
p (Qt)

≤ C̃1
max{1, λmax(Aj)}
min{1, λmin(Aj)}

×([
(1 + λmax(Aj)) (1 + r−1) {‖q0‖

W
2− 2

p
p (Ωj ;RN−1)

+ ‖q‖W 1,0
p (Q̃j)}+ ‖g̃‖Lp(Q̃j)

]
+ `∗t ([%∗]

Cβ,
β
2 (Qt)

+ [q∗]
Cβ,

β
2 (Qt)

) r
β
2 ‖D2q‖Lp(Q̃j)

)
.

Recall now that ũji = ηj ξi · q = ξi · wj with wj = ηj q. Here {ξi} are eigenvectors of Aj and
form a basis of RN−1. It is moreover shown in the Lemma C.1 that there are orthonormal vectors
v1, . . . , vN−1 such that ξi = Bj vi for i = 1, . . . , N−1, whereBj := [Rq(%

∗(xj, tj), q
∗(xj, tj))]

1
2 .

Thus, wj · ξi = Bjwj · vi. For any norm ‖ · ‖ on vector fields of length N − 1 defined on Qt we then
have

‖q ηj‖ = ‖wj‖ = ‖[Bj]−1Bjwj‖ ≤ |[Bj]−1|∞ ‖Bjwj‖ = |[Bj]−1|∞ ‖
N−1∑
i=1

(vi ·Bjwj) vi‖

≤ c |[Bj]−1|∞
N−1∑
i=1

‖Bj wj · vi‖ = c |[Bj]−1|∞
N−1∑
i=1

‖wj · ξi‖

≤ c1

[λmin(Rq(%∗(xj, tj), q∗(xj, tj)))]
1
2

N∑
i=1

‖ũji‖ ≤
c1

[λ0(t, R∗q)]
1
2

N∑
i=1

‖ũji‖ .
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Choosing ‖ · ‖ = ‖ · ‖W 2,1
p (Qt;RN−1), it follows that

‖q ηj‖W 2,1
p (Qt;RN−1) ≤ C̄1

max{1, λmax(Aj)}
[λ0(t, R∗q)]

1
2 min{1, λmin(Aj)}

×( [
(1 + λmax(Aj)) (1 + r−1) {‖q0‖

W
2− 2

p
p (Ωj ;RN−1)

+ ‖q‖W 1,0
p (Qjt )

}+ ‖g̃‖Lp(Qjt )

]
+ `∗t ([%∗]

Cβ,
β
2 (Qt)

+ [q∗]
Cβ,

β
2 (Qt)

) r
β
2 ‖D2q‖Lp(Qjt )

)
.

We estimate λmin(Aj) ≥ λ0([R∗q ]
−1M̃∗) etc. We recall that for each j there are at most m0 indices

i1, . . . , im0 6= j such that Qj ∩Qik 6= ∅. Thus
∑m

j=1 ‖f‖Lp(Qjt )
≤ (m0 + 1) ‖f‖Lp(Qt). We easily

verify that

‖q ηj‖W 2,1
p (Qt)

≥‖qt ηj‖Lp(Qt) +
∑

0≤α≤2

‖Dα
xq η

j‖Lp(Qt) − c r−
1
2 ‖qx‖Lp(Qjt )

− c r−1 ‖q‖Lp(Qjt )
.

After summing up for j = 1, . . . ,m and using the properties of our covering again, we obtain

‖q‖W 2,1
p (Qt;RN−1)) ≤ C̄1

max{1, λ1(t, [R∗q ]
−1M̃∗)}

λ
1
2
0 (t, R∗q) min{1, λ0(t, [R∗q ]

−1M̃∗)}
×([

(1 + λ1(t, [R∗q ]
−1M̃∗)) (1 + r−1) {‖q0‖

W
2− 2

p
p (Ω;RN−1)

+ ‖q‖W 1,0
p (Qt)

}+ ‖g̃‖Lp(Qt)

]
+ `∗t ([%∗]

Cβ,
β
2 (Qt)

+ [q∗]
Cβ,

β
2 (Qt)

) r
β
2 ‖D2q‖Lp(Qt)

)
.

Since r is a free parameter and t fixed, we can choose

r
β
2 :=

1

2
min{1,

λ
1
2
0 (t, R∗q) min{1, λ0(t, [R∗q ]

−1M̃∗)}
C̄1 max{1, λ1(t, [R∗q ]

−1M̃∗)} `∗t ([%∗]Cβ(Qt) + [q∗]Cβ(Qt))
}

to obtain an estimate

1

2
‖q‖W 2,1

p (Qt;RN−1) ≤ C̄1

max{1, λ1(t, [R∗q ]
−1M̃∗)}

λ
1
2
0 (t, R∗q) min{1, λ0(t, [R∗q ]

−1M̃∗)}
×

[(1 + λ1(t, [R∗q ]
−1M̃∗)) (1 + r−1) {‖q0‖

W
2− 2

p
p (Ω;RN−1)

+ ‖q‖W 1,0
p (Qt)

}+ ‖g̃‖Lp(Qt)] . (93)

Finally, recall the definition of g̃ in (87). Observe that ∇M̃∗ = M̃%(%
∗, q∗)∇%∗ + M̃q(%

∗, q∗)∇q∗.
Thus

‖g̃‖Lp(QT ) ≤
1

λ0(t, R∗q)
(‖g‖Lp(Qt) + ‖∇M̃∗ · ∇q‖Lp(Qt))

≤ 1

λ0(t, R∗q)
(‖g‖Lp(Qt) + L(t, M̃∗) [‖∇%∗ · ∇q‖Lp(Qt) + ‖∇q∗ · ∇q‖Lp(Qt)]) .

We define φ∗0,t and φ∗1,t via (53). Due to Lemma 4.1 and Lemma 4.2 on the coefficients R and M̃ ,
we see that φ∗0,t and φ∗1,t are bounded by a continuous function of ‖%∗‖L∞(Qt), of ‖q∗‖L∞(Qt) and of

[m∗(t)]−1. Moreover φ∗0,t and φ∗1,t is determined only by the eigenvalues of R∗q and M̃∗ and their Lip-
schitz constants over the range of %∗, q∗. In order to obtain a control on sups≤t ‖q(s)‖

W
2− 2

p
p (Ω;RN−1)

,

we apply the inequality (3) of the paper [Sol80] which yields

sup
s≤t
‖q(s)‖

W
2− 2

p
p (Ω;RN−1)

≤ ‖q0‖
W

2− 2
p

p (Ω;RN−1)
+ C ‖q‖W 2,1

p (Qt;RN−1)

for some constant C independent on t, and combine it with (93).
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Remark B.1. Consider the problem λ ∂tu −4u = f in Qt with u(0, x) = u0(x) in Ω and ν(x) ·
∇u = 0 on St. Then ‖u‖W 2,1

p (Qt)
≤ C1

max{1, λ}
min{1,λ} (‖f‖Lp(Qt) + ‖u0‖W 2−2/p

p (Ω)
) with C1 depending

only on Ω.

Proof. We first find an extension û0 ∈ W 2,1
p (Q∞) for u0 such that ‖û0‖W 2,1

p (Q∞) ≤ c ‖u0‖
W

2− 2
p

p (Ω)
.

We then look for the solution v to λ ∂tv − 4v = (f − λ ∂tû0 + 4û0)χ[0,t] =: g in Ω × R+

with v(x, 0) = 0 in Ω and ν(x) · ∇v = 0 on ∂Ω × R+. In order to solve this problem, we scale
time defining ṽ(s, x) := v(λ s, x). Clearly ∂sṽ − 4ṽ = g̃ in Ω × R+ with ṽ(x, 0) = 0 in Ω and
ν(x) · ∇ṽ = 0 on ∂Ω × R+. Thus ‖ṽ‖W 2,1

p (Ω×R+) ≤ C1 ‖g̃‖Lp(Ω×R+) with C1 depending only on
Ω. We rescale time, to obtain

λ1+1/p ‖∂tv‖Lp + λ1/p
∑

0≤|α|≤2

‖Dα
xv‖Lp ≤ C1 λ

1/p ‖g‖Lp(Ω×R+) .

By the uniqueness theorem for the heat equation, we must have u − û0 = v in Qt. Since g = 0 on
]t, +∞[, it follows that

‖u‖W 2,1
p (Qt)

≤ ‖û0‖W 2,1
p (Qt)

+ C1
1

min{λ, 1}
(‖f‖Lp(Qt) + λ ‖∂tû0‖Lp(Qt) + ‖4û0‖Lp(Qt)) .

The claim follows.

C Auxiliary statements

Lemma C.1. Suppose that A, B ∈ RN×N are two positive definite symmetric matrices. Then AB
possesses only real, strictly positive eigenvalues and

λmin(A)λmin(B) ≤ λmin(AB) ≤ λmax(AB) ≤ λmax(A)λmax(B)

Moreover, there are orthonormal vectors η1, . . . , ηN ∈ RN such that the vectors ξi := A
1
2 ηi (i =

1, . . . , N ) define a basis of eigenvectors of AB for RN .

Proof. Define C := A
1
2 BA

1
2 . Since A

1
2 is symmetric, and moreover the matrix B is positive, it

follows that C is symmetric and positive. Thus, since AB = A
1
2 C A−

1
2 , the eigenvalues of AB

are the ones of C . Choose η1, . . . , ηN ∈ RN an orthonormal basis of eigenvectors for C . Then
ξi := A

1
2 ηi is an eigenvector of AB.

Lemma C.2. For 0 ≤ β < min{1, 2− 5
p
} we define

γ :=

{
1
2

(2− 5
p
− β) for 3 < p < 5

(1− β) p−1
3+p

for 5 ≤ p

Then, there is C = C(t) bounded on finite time intervals such that C(0) = C0 depends only on Ω
and for all q∗ ∈ W 2,1

p (Qt)

‖q∗‖
Cβ,

β
2 (Qt)

≤ ‖q∗(0)‖Cβ(Ω) + C(t) tγ [‖q∗‖W 2,1
p (Qt)

+ ‖q∗‖
C([0,t];W

2− 2
p

p (Ω)
)] .

DOI 10.20347/WIAS.PREPRINT.2658 Berlin 2019



D. Bothe, P.-É. Druet 52

Proof. For r = 3p
(5−p)+ and θ := 3

3+p−(5−p)+ the Gagliardo-Nirenberg inequality yields

‖u‖L∞(Ω) ≤ C1 ‖∇u‖θLr(Ω) ‖u‖1−θ
Lp(Ω) + C2 ‖u‖Lp(Ω) .

We want to apply the latter inequality to a difference u = a(t2)− a(t1) for 0 < t1 ≤ t2 ≤ t. By ele-

mentary means a(t2)−a(t1) =
∫ t2
t1
at(s) ds and ‖a(t2)−a(t1)‖Lp(Ω) ≤ (t2−t1)1− 1

p ‖∂ta‖Lp(Qt).
This yields

‖a(t2)− a(t1)‖L∞(Ω) ≤C1 [2‖∇a‖Lr,∞(Qt)]
θ ‖∂ta‖1−θ

Lp(Qt)
(t2 − t1)(1−θ) (1− 1

p
)

+ C2 (t2 − t1)1− 1
p ‖∂ta‖Lp(Qt) .

We define δ := (1 − θ) (1 − 1
p
), and we make use of the continuity of W 2− 2

p (Ω) ⊂ W 1,r(Ω) and
we see that

sup
t2 6=t1

‖a(t2)− a(t1)‖L∞(Ω)

|t2 − t1|δ
≤ ‖∂ta‖1−θ

Lp(Qt)
(2C1C ‖a‖θ

C([0,t];W
2− 2

p (Ω))
+ C2 t

θ (1− 1
p

) ‖∂ta‖θLp(Qt))

≤ C(t) (‖a‖W 2,1
p (Qt)

+ ‖a‖
C([0,t];W

2− 2
p (Ω))

) . (94)

Now we consider a function u = u(x, s) such that u(x, 0) = 0. Using (94) and the embedding

W
2− 2

p
p (Ω) ⊂ W 1,r(Ω) ⊂ Cα(Ω) valid for α := min{1, 2− 5

p
}

‖u(s)‖C0(Ω) = ‖u(s)‖L∞(Ω) ≤ C(t) (‖u‖W 2,1
p (Qt)

+ ‖u‖
C([0,t];W

2− 2
p (Ω))

) sδ

‖u(s)‖Cα(Ω) ≤ C ‖u(s)‖W 1,r(Ω) ≤ C ‖u‖
C([0,s];W

2− 2
p

p (Ω))
.

Introduce α := min{1, 2− 5
p
}. First making use of interpolation inequalities ([Lun09], Example 1.25

with Corollary 1.24) and find for all 0 ≤ β ≤ α ≤ 1 and u ∈ C1(Ω)

‖u‖Cβ(Ω) ≤ c ‖u‖
β
α

Cα(Ω) ‖u‖
1− β

α

C0(Ω) . (95)

Thus, for b := (1− β
α

) δ, it follows from (94) and (95) that for all s ≤ t

‖u(s)‖Cβ(Ω) ≤ C C(t)1− β
α (‖u‖W 2,1

p (Qt)
+ ‖u‖

C([0,t];W
2− 2

p (Ω))
) sb .

For a function q∗ ∈ W 2,1
p (Qt), this induces for all β < α a bound

sup
s≤t
‖q∗(s)‖Cβ(Ω) ≤‖q∗(0)‖Cβ(Ω) + sup

s≤t
‖q∗(s)− q∗(0)‖Cβ(Ω)

≤‖q∗(0)‖Cβ(Ω) + C(t) tb (‖q∗‖W 2,1
p (Qt)

+ ‖q∗‖
C([0,t];W

2− 2
p (Ω))

) .

Moreover, we observe that β < α = min{1, 2 − 5
p
} always implies that β/2 < δ. Thus, invoking

(94) again

sup
x∈Ω

[q∗(x)]Cβ/2([0,t]) = sup
x∈Ω

sup
t2 6=t1

|q∗(x, t2)− q∗(x, t1)|
|t2 − t1|β/2

≤C(t) (‖q∗‖W 2,1
p (Qt)

+ ‖q∗‖
C([0,t];W

2− 2
p (Ω))

) tδ−β/2 .

Thus for all β < α we get

‖q∗‖
Cβ,

β
2 (Qt)

≤ ‖q∗(0)‖Cβ(Ω) + C(t) tγ (‖q∗‖W 2,1
p (Qt)

+ ‖q∗‖
C([0,t];W

2− 2
p (Ω))

) .

with γ being the minimum of δ − β/2 and b = (1 − β
α

) δ. The computation of the exponent is
straightforward.
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We now prove some properties of the lower–order operators defined in (33), (34). Consider first g =
g(x, t, q, %, v, ∇q, ∇v, ∇%) with g defined by (33). The vector field g is defined on the compound
Γ := Q×RN−1×R+×R3×RN−1×3×R3×3×R3 and assumes values in RN−1. As a vector field,
g belongs to C1(Γ; RN−1), because the maps R and M̃ are of class C2 (Lemma 4.1 and Lemma
4.2). The derivatives possess the following expressions

g% =R%,% % div v −R%,q v · ∇q − M̃%,%∇% b̃− M̃%,q∇q b̃− M̃% div b̃+ r̃% ,

gq =(R%,q %−Rq) div v −Rq,q v · ∇q − M̃%,q∇% b̃− M̃q,q∇q b̃− M̃q div b̃+ r̃q ,

gv =−Rq∇q , g%x = −M̃% b̃ , gqx = −Rq v − M̃q b̃ , gvx = (R% %−R) I3×3 ,

in which all non-linear functions R, M̃ , r̃ and their derivatives are evaluated at %, q.

We next want to study the Nemicki operator (q, %, v) 7→ g(x, t, q, %, v, ∇q, ∇%, ∇v) on XT,+.
A boundedness estimate can be obtained for this operator from XT,+ into Lp(QT ; RN−1) via the
Lemma 8.1 (this was applied for instance in the proof of Proposition 8.2). We can apply the same
tool to the derivatives. Choosing G = g% in Lemma 8.1 with r1 = 1, Ḡ(x, t) = |b̃x(x, t)| and
H̄(x, t) := |b̃(x, t)|, we obtain a boundedness estimate for g% as operator between XT,+ and
Lp(QT ; RN−1). With obvious choices, we treat the derivatives gq and gv in the same way. Due to the
simpler expressions, we obtain for the other derivatives continuity estimates:

‖gqx‖L∞,p(QT ) ≤c1((m(T ))−1, M(T ), ‖q‖L∞(QT )) (‖v‖L∞,p(QT ) + ‖b̃‖L∞,p(QT )) ,

‖g%x‖L∞,p(QT ) ≤c1((m(T ))−1, M(T ), ‖q‖L∞(QT )) ‖b̃‖L∞,p(QT ) ,

‖gvx‖L∞(QT ) ≤c1((m(T ))−1, M(T ), ‖q‖L∞(QT )) .

We also remark that if u, u∗ are two points inXT,+ and we expand g(x, t, u, Dxu) = g(x, t, u∗, Dxu
∗)+

g′(u, u∗) (u− u∗) (cf. (41)), then the operators g′(u, u∗) =
∫ 1

0
g′(x, t, θ u+ (1− θ)u∗, θ Dxu+

(1− θ)Dxu
∗) dθ satisfy similar estimates.

We consider next f = f(x, t, q, %, v, ∇q, ∇v, ∇%) with f defined by (34); f belongs toC1(Γ; R3).
The derivatives possess the following expressions

f% =− P%,%∇%− P%,q∇q − (v · ∇)v +R% b̃+ b̄ ,

fq =− P%,q∇%− Pq,q∇q +Rq b̃ ,

fv =− %∇v , f%x = −P% , fqx = −Pq , fvx = −% v .

We discuss these derivatives as Nemicki operators on XT,+ with similar arguments as in the case of
g. We resume our conclusions in the following Lemma.

Lemma C.3. Adopt the assumptions of Theorem 2.1. The maps g and f are defined on XT,+ by the
expressions (33) and (34). Then, g and f are continuously differentiable at every u∗ = (q∗, %∗, v∗) ∈
XT,+. For each u = (q, %, v) ∈ XT,+ the derivatives satisfy

‖gq(u, u∗)‖Lp(QT ) + ‖g%(u, u∗)‖Lp(QT ) + ‖gv(u, u∗)‖Lp(QT )

+ ‖gqx(u, u∗)‖L∞,p(QT ) + ‖gvx(u, u∗)‖L∞(QT ) + ‖g%x(u, u∗)‖L∞,p(QT )

≤ c1(‖u‖XT + ‖u∗‖XT + [inf
QT

inf{%, %∗}]−1 + ‖b̃‖W 1,0
p (QT )) ,

‖fq(u, u∗)‖Lp(QT ) + ‖f%(u, u∗)‖Lp(QT ) + ‖fv(u, u∗)‖Lp(QT )

+ ‖fqx(u, u∗)‖L∞(QT ) + ‖fvx(u, u∗)‖L∞(QT ) + ‖f%x(u, u∗)‖L∞(QT )

≤ c1(‖u‖XT + ‖u∗‖XT + [inf
QT

inf{%, %∗}]−1 + ‖b̃‖Lp(QT ) + ‖b̄‖Lp(QT )) ,

with a continuous function c1 increasing of its argument.
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We can extend this statement to the maps g1 and f 1 introduced in the system (38), (40). Recall first
that

g1 = g −Rq ∂tq̂
0 + M̃ 4q̂0 − M̃%∇% · ∇q̂0 , (96)

in which q̂0 ∈ W 2,1
p (QT ; RN−1) is a given vector field. The boundedness of g1 onXT,+ into Lp(QT )

is then readily verified (Lemma 8.1). The derivatives satisfy

g1
% =g% −R%,q ∂tq̂

0 + M̃%4q̂0 − M̃%,%∇%∇q̂0 − M̃%,q∇q∇q̂0 ,

g1
q =gq −Rq,q ∂tq̂

0 + M̃q4q̂0 − M̃%,q∇%∇q̂0 − M̃q,q∇q∇q̂0 ,

g1
%x =g%x − M̃%∇q̂0 , g1

qx = gqx − M̃q∇q̂0 ,

and g1
v = gv and g1

vx = gvx . These expressions can be estimated as in the case of g (replace b̃ in
these estimates by∇q̂0). Since f 1 = f − %∂tv̂0 + div S(∇v̂0), only the derivative f 1

% = f% − ∂tv̂0

gets a new contribution that is easily estimated.

Lemma C.4. Adopt the assumptions of Theorem 2.1. The maps g and f are defined on XT,+ by
the expressions (33) and (34) and g1 is defined via (96) and f 1 = f − %∂tv̂

0 + div S(∇v̂0), in
which (q̂0, v̂0) is a given pair in YT . Then, g1 and f 1 are continuously differentiable at every u∗ =
(q∗, %∗, v∗) ∈ XT,+. For each u = (q, %, v) ∈ XT,+ the derivatives satisfy

‖g1
q (u, u

∗)‖Lp(QT ) + ‖g1
%(u, u

∗)‖Lp(QT ) + ‖g1
v(u, u

∗)‖Lp(QT )

+ ‖g1
qx(u, u

∗)‖L∞,p(QT ) + ‖g1
vx(u, u

∗)‖L∞(QT ) + ‖g1
%x(u, u

∗)‖L∞,p(QT )

≤ c1(‖u‖XT + ‖u∗‖XT + [inf
QT

inf{%, %∗}]−1 + ‖b̃‖W 1,0
p (QT ) + ‖q̂0‖W 2,1

p (QT )) ,

‖f 1
q (u, u∗)‖Lp(QT ) + ‖f 1

% (u, u∗)‖Lp(QT ) + ‖f 1
v (u, u∗)‖Lp(QT )

+ ‖f 1
qx(u, u

∗)‖L∞(QT ) + ‖f 1
vx(u, u

∗)‖L∞(QT ) + ‖f 1
%x(u, u

∗)‖L∞(QT )

≤ c1(‖u‖XT + ‖u∗‖XT + [inf
QT

inf{%, %∗}]−1 + ‖b̃‖Lp(QT ) + ‖b̄‖Lp(QT ) + ‖v̂0‖W 2,1
p (QT )) ,

with a continuous function c1 increasing of its argument.

References

[BFJ15] P. Bella, E. Feireisl, and B.J. Jin. Robustness of solutions to the compressible Navier-
Stokes system. Math. Ann., 362:281–303, 2015.

[BDa] D. Bothe and P.-E. Druet. The free energy of incompressible liquid mixtures: some math-
ematical insights. In preparation.

[BDb] D. Bothe and P.-E. Druet. On the structure of continuum thermodynamical diffusion fluxes
: A novel closure scheme and its relation to the Maxwell-Stefan and the Fick-Onsager
approach. In preparation.

[BD15] D. Bothe and W. Dreyer. Continuum thermodynamics of chemically reacting fluid mix-
tures. Acta Mech., 226:1757–1805, 2015.

[Bot11] D. Bothe. On the Maxwell-Stefan approach to multicomponent diffusion. In Progress in
Nonlinear differential equations and their Applications, pages 81–93. Springer, 2011.

DOI 10.20347/WIAS.PREPRINT.2658 Berlin 2019



Multicomponent compressible fluids 55

[BP17] D. Bothe and J. Prüss. Modeling and analysis of reactive multi-component two-phase
flows with mass transfer and phase transition – the isothermal incompressible case. Dis-
crete Contin. Dyn. Syst. Ser. S, 10:673–696, 2017.

[BS16] D. Bothe and K. Soga. Thermodynamically consistent modeling for dissolution/growth of
bubbles in an incompressible solvent. In Amann H., Giga Y., Kozono H., Okamoto H.,
Yamazaki M. (eds) Recent Developments of Mathematical Fluid Mechanics, Advances in
Mathematical Fluid Mechanics. BirkhÃd’user, Basel, 2016.

[CCK04] Y. Cho, H.J. Choe, and H. Kim. Unique solvability of the initial boundary value problems
for compressible viscous fluids. J. Math. Pures Appl., 83:243–275, 2004.

[CJ15] X. Chen and A. Jüngel. Analysis of an incompressible Navier-Stokes-Maxwell-Stefan
system. Commun. Math. Phys., 340:471–497, 2015.

[DDGG16] W. Dreyer, P.-E. Druet, P. Gajewski, and C. Guhlke. Existence of weak solutions for
improved Nernst-Planck-Poisson models of compressible reacting electrolytes. Preprint
2291 of the Weierstrass Institute for Applied Analysis and Stochastics, Berlin, 2016. available

at http://www.wias-berlin.de/preprint/2291/wias_preprints_2291.pdf.

[DDGG17a] W. Dreyer, P.-E. Druet, P. Gajewski, and C. Guhlke. Analysis of improved Nernst-Planck-
Poisson models of compressible isothermal electrolytes. Part I: Derivation of the model
and survey of the results. Preprint 2395 of the Weierstrass Institute for Applied Analysis
and Stochastics, Berlin, 2017. available at http://www.wias-berlin.de/preprint/2395/wias_preprints_2395.pdf.

[DDGG17b] W. Dreyer, P.-E. Druet, P. Gajewski, and C. Guhlke. Analysis of improved Nernst-Planck-
Poisson models of compressible isothermal electrolytes. Part II: Approximation and a
priori estimates. Preprint 2396 of the Weierstrass Institute for Applied Analysis and
Stochastics, Berlin, 2017. available at http://www.wias-berlin.de/preprint/2396/wias_preprints_2396.pdf.

[DDGG17c] W. Dreyer, P.-E. Druet, P. Gajewski, and C. Guhlke. Analysis of improved Nernst-Planck-
Poisson models of compressible isothermal electrolytes. Part III: Compactness and con-
vergence. Preprint 2397 of the Weierstrass Institute for Applied Analysis and Stochastics,
Berlin, 2017. available at http://www.wias-berlin.de/preprint/2397/wias_preprints_2397.pdf.

[DGL14] W. Dreyer, C. Guhlke, and M. Landstorfer. A mixture theory of electrolytes containing
solvation effects. Electrochem. Commun., 43:75–78, 2014.

[DGM13] W. Dreyer, C. Guhlke, and R. Müller. Overcoming the shortcomings of the Nernst-Planck
model. Phys. Chem. Chem. Phys., 15:7075–7086, 2013.

[DGM18] W. Dreyer, C. Guhlke, and R. Müller. Bulk-surface electro-thermodynamics and applica-
tions to electrochemistry. Entropy, 20:939/1–939/44, 2018. DOI 10.3390/e20120939.

[DHP07] R. Denk, M. Hieber, and J. Prüss. Optimal Lp − Lq-estimates for parabolic boundary
value problems with inhomogeneous data. Math. Z., 257:193–224, 2007.

[dM63] S. R. deGroot and P. Mazur. Non-Equilibrium Thermodynamics. North Holland, Amster-
dam, 1963.

[FNS14] E. Feireisl, A. Novotny, and Y. Sun. Regularity criterion for the weak solutions to the
Navier-Stokes-Fourier system. Arch. Rational Mech. Anal., 212:219–239, 2014.

DOI 10.20347/WIAS.PREPRINT.2658 Berlin 2019



D. Bothe, P.-É. Druet 56

[FPT08] E. Feireisl, H. Petzeltovà, and K. Trivisa. Multicomponent reactive flows: global-in-time
existence for large data. Commun. Pure Appl. Anal., 7:1017–1047, 2008.

[GG98] H. Gajewski and C. Gröger. Semiconductor equations for variable mobilities based on
Boltzmann statistics or Fermi-Dirac statistics. Math. Nach., 140:7–36, 1898.

[Gio99] V. Giovangigli. Multicomponent Flow Modeling. Birkhäuser, Boston, 1999.

[HMPW17] M. Herberg, M. Meyries, J. Prüss, and M. Wilke. Reaction-diffusion systems of Maxwell-
Stefan type with reversible mass–action kinetics. Nonlinear Analysis: Theory, Methods &
Applications, 159:264–284, 2017.

[Hof12] D. Hoff. Local solutions of a compressible flow problem with Navier boundary conditions
in general three-dimensional domains. SIAM J. Math. Anal., 44:633–650, 2012.

[JS13] A. Jüngel and I. Stelzer. Existence analysis of Maxwell-Stefan systems for multicompo-
nent mixtures. SIAM J. Math. Anal., 45:2421–2440, 2013.

[Jün15] A. Jüngel. The boundedness-by-entropy method for cross-diffusion systems. Nonlinear-
ity, 28:1963–2001, 2015.

[Jün17] A. Jüngel. Cross-diffusion systems with entropy structure. In Proceedings of EQUADIFF
2017, pages 1–10, 2017.
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