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a b s t r a c t

This study presents pseudo-proxy experiments to quantify the reconstruction skill of two climate field
reconstruction methodologies for a marine proxy network subject to age uncertainties. The BARCAST
methodology (Bayesian Algorithm for Reconstructing Climate Anomalies in Space and Time) is tested for
sea surface temperature (SST) reconstruction for the first time over the northern North Atlantic region,
and compared with a classic analogue reconstruction methodology. The reconstruction experiments are
performed at annual and decadal resolution. We implement chronological uncertainties inherent to
marine proxies as a novelty, using a simulated age-model ensemble covering the past millennium. Our
experiments comprise different scenarios for the input data network, with the noise levels added to the
target variable extending from ideal to realistic. Results show that both methodologies are able to
reconstruct the Summer mean SST skillfully when the proxy network is considered absolutely dated, but
the skill of the analogue method is superior to BARCAST. Only the analogue method provides skillful
correlations with the true target variable in the case of a realistic noisy and age-uncertain proxy network.
The spatiotemporal properties of the input target data are partly contrasting with the BARCAST model
formulations, resulting in an inferior reconstruction ensemble that is similar to a white-noise stochastic
process in time. The analogue method is also successful in reconstructing decadal temperatures, while
BARCAST fails. The results contribute to constraining uncertainties in CFR for ocean dynamics which are
highly important for climate across the globe.
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The well-documented changes in a number of observational
variables demonstrate a significant role of anthropogenic activities
in modifying the Earth's climate. Yet, the quantification of natural
variability in the climate system is crucial to put recent and future
climate change into a long-term perspective. Climate Field re-
constructions (CFR) offer critical insights into the range and
geographic characteristics of historical climate variability prior to
the instrumental era, by scaling-up localized and sparse proxy
measurements and providing information that can be compared
with climate model simulation output.
tics and Statistics, UiT - The

r Ltd. This is an open access article
A number of CFRs have been published over the last decades,
quantifying late Holocene climate variations (Masson-Delmotte
et al., 2013; Christiansen and Ljungqvist, 2017). CFR provides a
distinct advantage over averaged climate reconstructions for
instance by studying the response of climate in a region to some
external forcing, such as a large tropical volcanic eruption. A well-
known class of CFR methodology is multivariate linear regression,
where the reconstruction problem can be formulated either using
direct or indirect regression between proxies and the climate var-
iable. Regularization of the problem is needed because the system
of equations is underdetermined. Examples of CFR methodologies
using different regularizations include principal component
regression (Luterbacher et al., 2002), canonical correlation analysis
(Smerdon et al., 2010) and RegEM (Mann et al., 2008, 2009). A
second class of CFR methods includes Bayesian hierarchical models
(BHM). The Bayesian methodology differs from the common
regression-based method in the sense that model parameters are
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formulated in probability statements representing the current state
of knowledge of the climate variable given observation data. This
type of method is probabilistic, resulting in reconstruction en-
sembles (Tingley and Huybers, 2010; Luterbacher et al., 2016;
Werner et al., 2018). Yet another class of CFR methodology com-
prises data assimilation methods (Steiger et al., 2014), typically
combinedwith forward proxy systemmodeling (Hakim et al., 2016;
Tardif et al., 2019). This approach combines a sparse proxy network
with climate model simulations through a prior, mapped to the
proxy space using proxy system modeling. A Kalman filter is typi-
cally used to update the prior. A similar but simpler methodology is
the analogue method, or the proxy surrogate reconstruction
method (Graham et al., 2007; Franke et al., 2011). Relevant differ-
ences between the analogue method and data assimilation tech-
niques are discussed in G�omez-Navarro et al. (2017). Instrumental
observations or climatemodel time slices are used as analogues to a
gridded proxy network, but there is no prior distribution or Kalman
filtering for the analogue method. The reconstruction at every time
step is selected as one single or a function of the closest analogue
time slices.

The existing CFRs defined with annual temporal resolution are
based on dominantly terrestrial proxy records, representing
terrestrial regions (Tingley and Huybers, 2010, 2013; Luterbacher
et al., 2016; Werner et al., 2018), the entire globe (Mann et al.,
2009; Hakim et al., 2016; Tardif et al., 2019; Neukom et al., 2019),
or the global marine realm (Singh et al., 2018). The majority of the
published CFRs exhibits annual reconstructed values over the last
1e2 millennia, and so the SST field reconstruction of Tierney et al.
(2020) differs in comprising only two time slices. One is an average
over the Last Glacial Maximum (LGM) time period 23-19 kyr before
present (BP), and the other is averaged for the late Holocene period
4-0 kyr BP. In summary, there are no time-resolvingmarine CFRs for
the past millennium based on marine proxy data alone. This is
unfortunate because the oceanic impacts on surface air tempera-
ture cannot be independently investigated when using the same,
terrestrial proxies to reconstruct both land and ocean tempera-
tures. Given the importance of circulation patterns and heat con-
tent of the North Atlantic Ocean in regulating atmospheric
variability across the Northern Hemisphere, this missing piece of
paleoclimate information has a central role in improving the un-
derstanding of natural climate variability.

The spatial patterns of North Atlantic sea surface temperature
(SST) and atmospheric sea level pressure gradients drive atmo-
spheric circulation that brings about large-scale changes in pre-
cipitation and temperature across the Northern Hemisphere, the
strength and trajectory of Atlantic storms as well as ocean biolog-
ical productivity (Goldenberg et al., 2001; Reid et al., 2003;
Beugrand and Reid, 2003; Sutton and Hodson, 2005). Long-term
shifts in the distribution of heat in the North Atlantic Ocean could
also have significant socioeconomic impacts across the Northern
Hemisphere, brought about by changes in the strength of the
subpolar gyre and/or associated Atlantic meriodional overturning
circulation (AMOC).

Index reconstructions exist for the AMOC and the Atlantic
multidecadal variability (AMV) (Gray et al., 2004;Mann et al., 2009;
Rahmstorf et al., 2015; Wang et al., 2017). These reconstructions are
based entirely or dominantly on terrestrial data: Mann et al. (2009)
has a proportion of 91% tree-ring records with marine records
constituting just 1.6% of the proxy network. However, we note that
the more recent multi-method CFR ensemble of surface tempera-
ture is improved in this respect with 19% marine records, all
annually resolved (Neukom et al., 2019).

SST reconstruction based on terrestrial proxies relies on docu-
mented ocean-atmosphere teleconnections, with the advantage of
2

high-precision dating and data abundance. The SST is measured
more directly in marine proxy records (Moffa-S�anchez et al., 2019).
The marine records are considered prominent candidates for state-
of-the-art marine CFR in this study. The North Atlantic Ocean
including the Arctic is particularly suitable for initial testing pur-
poses since the extratropical region is subject to high sampling
density, demonstrated by the Ocean2k network (McGregor et al.,
2015). From the total of 57 marine proxy records, 31 of these are
sampled in the North Atlantic and the Arctic Ocean. A number of
these records exhibit subdecadal resolution due to targeted
research efforts on high-accumulation sites. Recent proxy devel-
opment and improved statistical methods in age-model simulation
and CFR contribute to our confidence that the field of northern
North Atlantic SST can be skillfully reconstructed (Pyrina et al.,
2017; Reynolds et al., 2018), despite the shortcomings of the ma-
rine proxy data. Proxy drawbacks include age-uncertainties, poor
spatial availability, depth and seasonality biases. Additionally and
specifically for marine sediment deposits, the proxy forming pro-
cess is comparable to low-pass filtering, resulting in generic low
temporal resolution.

In principle, all types of marine proxy data are subject to chro-
nological uncertainty, either through the age-depth relationship of
marine sediments, or in the form of miscounted bands/layers.
Bivalve records are exceptions exhibiting annual bands, but cross-
dated to achieve absolute dating similar to tree-ring records
(Butler et al., 2013; Pyrina et al., 2017; Reynolds et al., 2017, 2018).
The temporal resolution for deposits is estimated as a function of
depth and accumulation rate. This rate may vary down-core, and is
best constrained by radiometric dating techniques and tephra
layers as absolute age markers. Age-depth models for deposits can
be simulated using Bayesian methods such as BACON (Blaauw and
Christen, 2011). The “Banded archive modeling” (BAM) statistical
method is designed to simulate age model ensembles for annually
banded or layered records such as corals (Comboul et al., 2014).

We propose to generate an entirely marine CFR in this study,
using marine data for reconstruction and targeting the SST variable.
Two state-of-the-art CFR methods are described and tested in
detail, evaluating their skill in reconstructing northern North
Atlantic SST over the past millennium with annual and decadal
resolution. The reconstruction methods to be tested are the
Bayesian Algorithm for Reconstructing Climate Anomalies in Space
and Time (BARCAST) (Tingley and Huybers, 2010), and the analogue
method (Franke et al., 2011). This is the first time that BARCAST
applicability is tested for an SST reconstruction. An extended
version of the methodology is applied, allowing age-uncertain
proxy records following Werner and Tingley (2015). This func-
tionality is critical for handling age uncertainties properly when
reconstructing northern North Atlantic SST. By including ensemble
chronologies and their errors into the Bayesian reconstruction
framework the age-uncertainties are, in theory, reduced compared
to other reconstruction methodologies including the analogue
method, where age-uncertainties will contribute to increased total
uncertainty in the reconstruction (Werner and Tingley, 2015).

Ensembles of annual age-uncertain chronologies are simulated
using the BAM technique. The experiment setup is similar to pre-
vious BARCAST experiments in terms of age-uncertainties, where
the method has proven successful (Werner and Tingley, 2015;
Werner et al., 2018). This bridges the gap between terrestrial and
marine CFR using BARCAST. It is interesting to test for the pseudo-
reality whether the method is able to skillfully reconstruct annual
SST, even if this high resolution is difficult to achieve for existing
marine proxy networks. We have also implemented one set of
pseudo proxy experiments producing decadally-resolved re-
constructions, and another set combining BARCAST with a
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clustering technique, similar to Talento et al. (2019). The recon-
struction skill was demonstrated to be higher for the annually
resolved reconstruction than for decadal resolution in that study,
although the BARCAST implementation was simple (no age-
uncertainty) and the target variable was precipitation instead of
SST.

The temporal resolution of North Atlantic proxy deposits varies
from subdecadal to multicentennial (McGregor et al., 2015). The
BACON technique would produce more realistic age-depth models
for marine sediments than BAM, although with decadal resolution
at best.

The manuscript is structured as follows. Sect. 2 describes the
experiment design, input data and reconstruction methodologies,
including their ensemble chronology extensions. The skill metrics
are also outlined. In Sect. 3 we present the reconstruction skill re-
sults and the implications of age-uncertainties in marine data. A
discussion follows in Sect. 4, before finalizing with concluding re-
marks in Sect. 5.
2. Data and methods

CFRs are generated from a limited number of proxy records, and
validating such reconstructions is non-trivial because there is no
perfect, independent record of the past climate evolution. The
process of pseudo-proxy experiments overcomes this shortcoming
by testing CFR methodologies using data from general circulation
models (GCM) as a pseudo-reality (Mann et al., 2005, 2007; Lee
et al., 2008). Pseudo-proxy experiments are used to test the mean
and spatial skill of novel CFR methodologies as well as the sensi-
tivity to the observation data network (Smerdon et al., 2011;
Smerdon, 2012; Wang et al., 2014; G�omez-Navarro et al., 2017).

The idea behind our idealized pseudo-proxy experiment is to
extract target SST data from a climate model simulation. The target
data is sampled in a spatiotemporal pattern that simulates real
proxy and instrumental networks. The target data representing
proxies are perturbed with noise to simulate real-world proxy data
in a systematic manner, while the pseudo-instrumental data is only
weakly perturbed with noise of magnitude typical for the real-
world instrumental data errors. The pseudo-proxy and pseudo-
instrumental data are used as input to the BARCAST and analogue
reconstruction techniques, and the resulting reconstructions are
compared with the true simulation target. The reconstruction skill
is quantified through statistical metrics for a millennium-long
validation interval.
Fig. 1. The reconstruction region extends from 57.5�W, 47.5�N to 37.5�E, 82.5�N. Dots
denote locations of (pseudo-)instrumental data, squares denote (pseudo-)proxy loca-
tions. (a) Shows the true proxy locations. These are shifted onto the nearest neigh-
boring instrumental grid cell in (b), showing the pseudo-data network. The number of
unique proxy sites is reduced from 22 to 12.
2.1. Model data and target

The target variable for our pseudo-proxy experiment is the
North Atlantic (57.5�W, 47.5�N to 37.5�E, 82.5�N) summer mean
(June, July, August, JJA) SST, originating from one simulation of the
Community Earth System Model, Last Millennium Ensemble
(CESM-LME, run 001), (Otto-Bliesner et al., 2016). The ensemble
simulation covers the time period 850-2005 AD, with transient
forcing series based on reconstructed solar insolation (Vieira et al.,
2011), volcanic activity (Gao et al., 2008), greenhouse gases
(Schmidt et al., 2011), land-use and land cover (Pongratz et al.,
2008; Hurtt et al., 2011), orbital parameters (Berger, 1978) and
prescribed stratospheric aerosols.

The original SST variable has spatial resolution of ~ 1� in the
northern North Atlantic Ocean, and is interpolated to a 5� by 5�

regular grid for reconstruction purposes. This is the same resolution
as the real-world HadSST.4.0.0.0 observation data (Kennedy et al.,
2019).

Confined oceanic regions may be considered less representative
3

of the larger northern North Atlantic, and are excluded from the
reconstruction domain. The excluded regions comprise the Davis
Strait, Baffin and Hudson Bay, the Baltic Sea and the Gulf of Bothnia.
In the real-world scenario, the temperature signal within these
regions is strongly influenced by sea-ice and/or land processes
(Moffa-S�anchez et al., 2019; Stramska and Białstrokogrodzka, 2015).

The target data is perturbed with white additive noise to
simulate all types of errors and uncertainties in the instrumental
and proxy data. This particular type of noise has been implemented
and tested earlier for both methodologies, with satisfactory results
(Nilsen et al., 2018; Talento et al., 2019).

2.2. Resampling the SST field for the pseudo-instrumental period
1850 - 2005 AD

The pseudo-instrumental network is constructed to mimic the
characteristics of the HadSST.4.0.0.0 data set (Kennedy et al., 2019).
It covers the period 1850e2005 in an uniform 5� by 5� grid. The re-
sampled data is perturbed with additive white noise, resulting in
pseudo-instrumental data with signal-to-noise (SNR) ratio of 3 by
standard deviation. The noise represents e.g. measurement un-
certainties and bias corrections in the real-world data.

2.3. Resampling the SST field for the pseudo-proxy period 850-2005
AD

A realistic proxy network is used as the baseline for selecting
pseudo-proxy locations for the time period 850-2005 AD (Fig. 1a,
Table A1). The North Atlantic proxy network comprises 22 records,
with data originating from marine sediment cores or bivalves.
Selected records originate from the North Atlantic Ocean2k



Fig. 2. Correlation of target model SST as function of distance in km. Distances are
grouped into 50-km bins, and the median correlation within each bin is plotted.
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contribution to the PAGES2k archives, denoted by “Ocn_” site IDs in
Table A1 (McGregor et al., 2015; PAGES2k Consortium, 2017).
Ocean2k records were excluded if the locations are outside the grid
specified in Sect. 2.1, or if the dating information is missing from the
age-models of the publications. Additional proxy records are
included in the network even if they are not part of the 2015
version of the Ocean2k database (numbered site IDs in Table A1).
Specifically, we sought for reconstructions published later than
May 2013, which is the cutoff-period for inclusion in the 2k syn-
thesis (McGregor et al., 2015).

The spatial availability of the pseudo-proxy network is made
artificially idealistic with the proxy locations as the baseline. These
adjustments are optional, they may affect the reconstruction
quality but are not critical for the functionality of the reconstruc-
tion methodologies. First, we opt to consider at most one proxy per
grid cell for the pseudo-proxy experiments. Secondly, we reduce
the number of grid cells by shifting the proxy locations onto the
nearest neighboring instrumental location. The reduction of total
number of grid nodes is a manner of easing the pressure on the
computational resources for BARCAST. The resulting grid has 82
nodes in total, with 12 of these classified as unique pseudo-proxy
locations, illustrated in Fig. 1b. The distance between neighboring
pseudo-proxy locations ranges from 213 km to 1190 km.

The pseudo-proxy data are perturbed with additive white noise
to simulate real-world proxy noise for the full simulation period
850-2005 AD. Three different levels of proxy-noise are tested, as
the true SNR of marine proxies is generally unknown and may vary
depending on the archive or proxy type. The noise perturbations
are such that the resulting pseudo-proxies have a SNR of 10, 1 and
0.5 by standard deviation, respectively. The strongest noise level
SNR ¼ 0.5 is considered the most realistic scenario, similar to the
estimates obtained by (Laepple and Huybers 2014) for marine
proxy records.
2.4. Original BARCAST methodology

BARCAST is a Bayesian hierarchical model with three levels:
process, data and prior levels. The evolution of the target variable in
space and time is described at the process level. The data level
describes the relationship between the target and the instru-
mental/proxy data, while the statistical information of the priors is
incorporated into the last level. The hierarchical structure implies
that model parameters are dependent across levels.

The temperature field T is modeled as a multivariate first-order
autoregressive model (AR(1)) in time:

T tþ1 � m ¼ aðT t �mÞ þ εt (1)

Where t denotes time in years, the scalar parameter m is themean of
the process, and a is the AR(1) coefficient. The innovations (in-
crements) εt are assumed to be IID normal draws εt ~ N(0, S). The
spatial covariance matrix depicting the covariance between loca-
tions xi and xj is:

Sij ¼ s2exp
�
� 4

��xi � xj
��� (2)

The spatial e-folding distance is 1/4. The simplicity of the
exponentially decaying covariance structure keeps the computa-
tion time low, while the reconstruction skill is satisfactory ac-
cording to earlier pseudo-proxy studies (Werner et al., 2013; Nilsen
et al., 2018; Talento et al., 2019). The BARCAST assumption fits only
partly with the behaviour displayed by the SST target (Fig. 2). The
correlation is measured for Summer SST between every grid cell in
the reconstruction region, but only the median correlations calcu-
lated within distance bins separated at 50 km are plotted in the
4

figure. Initially, the correlations decrease and reach zero at distance
~2000 km, but they increase again as distances exceed 3000 km.
We will test how well BARCAST reconstructs the SST field given
these teleconnections, that contrasts to some degree the spatial
covariance structures assumed within the BARCAST model Eq. (2).

On the data level, the observation equations for the instru-
mental and proxy data are:

W t ¼
�

HI;t
b1,HP;t

�
T t þ

�
eI;t

eP;t þ b0

�
(3)

Where eI,t and eP,t are multivariate normal draws � Nð0; t2I IÞ and �
Nð0;t2PIÞ.HI,t andHP,t are selection matrices of ones and zeros which
at each year select the locations where there are instrumental/
proxy data. b0 and b1 are parameters representing the bias and
scaling factor of the proxy records relative to the temperatures.

The remaining level is the prior. Weakly informative but proper
prior distributions are specified for the scalar parameters and the
temperature field for the first year in the analysis. The priors for all
parameters except 4 are conditionally conjugate, meaning the prior
and the posterior distribution has the same parametric form. The
Markov-Chain Monte Carlo (MCMC) algorithm known as the Gibbs
sampler (with one Metropolis step) is used for the posterior
simulation (Gelman et al., 2003). Technical details of the Bayesian
inference of BARCAST is found in Tingley and Huybers (2010).

2.4.1. BARCAST extension to probabilistic constraining age-
uncertain proxy records

Age-uncertain proxies are associated with an ensemble of
chronologies: fT k; k ¼ 1;2;…Mg. BARCASTequation (3) is rewritten
so that the proxy observations are conditioned on the selected
chronology T , and considered a function of location s, rather than
the uncertain time point t.

W sjT ; Ts ¼ b0 þ b1,L
T
s ,T s þ es (4)

where

es � N
�
0t2 , I

�

constitute the independent normal errors at location s. LT
s repre-

sents the dependence on the chronology, and replaces HP,t from Eq.
(3). Elements are selected from the true temperature field Ts cor-
responding to the proxy observations Ws, depending on the chro-
nology T .
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A new conditional posterior is defined to update the probabili-
ties on the members of the ensemble T k, see Werner and Tingley
(2015) for technical details.

Overall, the BARCAST model parameters are unchanged, but the
inference on the conditional posteriors now relies also on the
currently selected chronology. The climate process and scalar pa-
rameters are sampled at each iteration step of the MCMC, and a
chronology is then selected according to the conditional posterior.

The so-called “waiting time dilemma” is a deficiency of the
described BARCAST extension, implying that the MCMC sampler
will quickly iterate towards a limited number of the chronologies
that are most compatible with the initial climate estimate. Running
a Metropolis-Coupled MCMC sampler (MC3) compensates this
problem without other complications (Werner and Tingley, 2015,
and references therein). The Metropolis coupling allows parallel
tempering with several “heated” chains, allowing more rapid
exploration of the probability space, coupled with one unheated
chain to retain a stationary distribution of the MCMC (Wong and
Liang, 1997; Li et al., 2009). Coupling is enabled by state-
swapping between neighboring chains, i.e. the current values of
all parameters, temperatures and the selected chronology may be
swapped between parallel runs at certain intervals.

Finally, note that the scalar response parameters b0, b1, and tP
are replaced with vectors in this version. This is in line with the
assumption that individual proxies respond differently to surface
temperature across the reconstruction domain.

2.5. The analogue method

The analogue method was first introduced for weather fore-
casting (Lorenz, 1969), but has since then been modified and
applied for reconstruction purposes. The method has been suc-
cessfully applied to reconstruct SST during the Dansgaard-Oeschger
events 5e8 (Jensen et al., 2018), surface air temperatures and
precipitation during more recent time periods (Franke et al., 2011;
Gomez-Navarro et al., 2015; G�omez-Navarro et al., 2017; Talento
et al., 2019). It relies on the concept of combining proxy data and
a pool of instrumental or model information identifying, for each
time slice in the reconstruction period, one or several time slices in
the instrumental or simulated period that could be considered as a
potential analogue. In this manuscript, we use proxy and instru-
mental data, and denote this basic implementation as the “classic”
analogue method. Along this we introduce a variation taking age-
uncertainties into consideration. In a real-world application this
would result in an analogue reconstruction independent from
climate model simulations, in contrast to the version using a
model-based pool of analogues.

2.5.1. Classic analogue method
To reconstruct the SST field at time t, the set of predictor vari-

ables consists of the individual proxy records at time t.
As a first step, a distancemetric between time t and each ti in the

instrumental period is defined. We select the distance between t
and ti as the Euclidean distance between the vectors of proxy data
at times t and ti:

dðt; tiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK
i¼1

�
Prox

�
lj; t

�
� Prox

�
lj; ti

��2
vuut (5)

where Prox(lj, t) denotes the proxy information at location lj and
time t. l1, …, lK denote the proxy locations (K ¼ 12).

Second, each time slice of the instrumental period is sorted
according to its distance to t. Third, the N closest time-steps of the
instrumental period are selected as analogues. Finally, the SST
5

reconstruction at time t is defined as the average of the instru-
mental SST fields in the N analogues t1, …, tN:

ReconstructionðtÞ ¼ SSTðt1Þ þ/þ SSTðtNÞ
N

(6)

The number of analogues, N, could range between 1 and the
total number of time slices in the instrumental period (156 in the
present study). As N grows, there is a tendency for the recon-
struction to becomemore similar to the instrumental-period mean.
We select N ¼ 20, as it provides the best reconstruction skill results
across the different scenarios tested in this paper.

The analogue method can be used to generate an ensemble
reconstruction in the case proxy data exhibit age uncertainties. The
method is run repeatedly, each time randomly selecting a realistic
set of chronologies for the proxies as described in Sect. 2.6.

2.6. Constructing chronology ensembles

Age-uncertainties are included in the pseudo-proxy experiment
scheme in order to validate the reconstruction skill for a marine
multi-proxy network. We set up one experiment with all pseudo-
proxy records subject to age-uncertainties similar to layered-
counted proxies. This setup is simplistic rather than realistic: we
use the most simple chronology modeling scheme in this initial
analysis, which achieves the goal to quantify the reconstruction
skill given an age-uncertain data network.

Ensembles of chronologies are generated using the BAM time-
scale modeling scheme as inWerner et al. (2018) and Comboul et al.
(2014). BAM models the timescale counting procedure as a super-
position of two cumulative Poisson processes with error rates {Q1,

Q2}. Between the years i and i þ 1, the stochastic processes (PQ1
i )

and ðPQ2
i Þ counts the number of missing years or double-counted

years respectively (Comboul et al., 2014). As a conservative esti-
mate, we assume for our pseudo-proxy experiments that annual
layers are missing or double counted by the same probability
(Q1 ¼ Q2 ¼ 0.02). These probabilities are identical to Werner and
Tingley (2015) for direct comparison. 2% is also the average prob-
ability of miscounting in the lake sediments and ice core proxy
records used for BARCAST reconstruction in Werner et al. (2018).

The time increment di is given by

ci2½1;n�1�; di ¼ 1þ PQ1
i �min

�
PQ2
i ;1

�
(7)

Data and time index i is removed and considered missing from
the pseudo-proxy record if di > 1. On the contrary, data is duplicated
to the record at time i if di < 1. The time increment di will be exactly
one most of the time, and the chronology is unchanged in this case.

One might expect an overall zero-offset due to the symmetry of
the error rates, but this is a potential pitfall as demonstrated by
Comboul et al. (2014) and in our Fig. 3. The mismatch between an
ensemble of 1000 age models and the true age is illustrated for one
arbitrary pseudo-proxy in this figure. As layer counting starts from
the top or the most recent date, the counting errors accumulate
back in time. The possible offset for early dates may have profound
effects on the resulting reconstruction product.

2.7. Metrics for reconstruction skill

The deviations between the reconstruction and the simulation
target can be measured and quantified using a range of metrics.
Using a proper scoring rule is advantageous in the case of a prob-
abilistic forecast, securing that the maximum reward is givenwhen
the true probability distribution is reported (Gneiting and Raftery,
2007). The continuous ranked probability score (CRPS) is a proper



Fig. 3. (a) Trace plots of the age model ensemble generated for one arbitrary pseudo-
proxy located at 12.5�W, 57.5�N. The mismatch between true age and counted age is
shown on the y-axis, as a function of time. The blue, dotted lines constrains the 95%
confidence range of the age models. The trace plot plotted in green (cyan) represents
the single age model which is closest (most distant) from the true age, respectively. (b)
Time series for the same record plotted in blue. The shaded grey area denotes the 95%
confidence range for the age-uncertainties.

T. Nilsen, S. Talento and J.P. Werner Quaternary Science Reviews 265 (2021) 107009
scoring rule, and will be used in the following to quantify the
reconstruction skill for the BARCAST reconstruction ensemble. The
often-used reduction of error (RE) is not a proper scoring rule, and
will not be used. RE ¼ 1 implies a deterministic forecast, but the
maximum score is obtained when themean (a point measurement)
within the probability distribution P is used instead of the predic-
tive distribution P itself. Additionally and for both reconstruction
types, we calculate the Pearson's correlation coefficient and the
root-mean-squared error (RMSE) with the true target, in order to
have skill measures more suited for comparison.

The concept behind the CRPS is to provide a metric of the dis-
tance between the predicted (forecasted) and occurred (observed)
cumulative distribution functions of the variable of interest. The
lowest possible value for the metric corresponding to a perfect
forecast is therefore CRPS ¼ 0. Following Hersbach (2000), the
definition of the CRPS can be defined as follows:

CRPS
�
P; xtarget

�
¼

ð∞

�∞



PðxÞ � u

�
x� xtarget

��2dx (8)

Where x is the variable of interest, xtarget denotes target (validation)
data, u is the unit step function and P(x) is the cumulative distri-
bution function of the forecast ensemble with a probability density
function (PDF) of r(y):
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PðxÞ ¼
ðx

�∞

rðyÞdy (9)

CRPS denotes the temporal average CRPS. CRPS is the sum of the
average reliability and the average potential CRPS:

CRPS ¼ Reliþ CRPSpot (10)

Where the Reli can be interpreted as the validity of the uncertainty
bands, or the mean-squared error of the confidence intervals. The
CRPSpot measures the accuracy of the reconstruction, quantifying
the spread of the ensemble and the mismatch between the best
estimate and the target variable. See Gneiting and Raftery (2007)
for details and elaboration on the CRPS.
3. Results

As mentioned above, pseudo proxy data was generated with
three different SNR (10, 1, 0.5), with the last one being the most
realistic (albeit still optimistic) experiment. For SNR ¼ 0.5, the
experiment was repeated with chronological uncertainties. The
reconstructions were generated using annually and decadally
resolved input data. For each SNR experiment, the successful
BARCAST ensemble of reconstructions consists of ~ 250 members.
Similar ensembles are generated for the analogue method when
implementing chronological uncertainties. The following analyses
are performed on the member-basis, but figures show the
ensemble means.
3.1. Skill metrics

The skill results are shown for the Summer mean re-
constructions in Figs. 4e6. Note that Figs. 5 and 6, depicting RMSE
and CRPS, use the same color bar as in the cross correlation analysis
Fig. 4, but best skill is achieved where the RMSE/CRPS is low as
opposed to best skill for the highest cross correlations.

Significant correlations between 0 and 1 are plotted in color in
Fig. 4. A p-value of 0.05 was used for significance testing, and all
significant correlations are positive. The correlations between
target and reconstruction are highest directly at the pseudo-proxy
locations, and decreases with distance. The correlations also
decrease systematically with increasing levels of proxy noise. Re-
gions of minimum significance are detected for the longitude bands
~ 50�N and ~ 82�N for pseudo-proxies without chronological errors
(Fig. 4aef). BARCAST is unable to produce skillful reconstructions
when all proxies exhibit chronological errors (Fig. 4g), while the
analogue method reconstructs significant, albeit low correlations
for 95% of the grid cells (Fig. 4h). The analoguemethod outperforms
BARCAST for all SNR experiments in terms of area average corre-
lation, visualized by the figure box plots. The correlation skill is
stable within the BARCAST reconstruction ensembles, with
maximum difference in correlation skill of 0.024. The intra-
ensemble skill variance is highest away from pseudo-proxy loca-
tions. The analogue-chronology ensemble has a maximum intra-
ensemble skill difference of 0.31.

Different probabilities for miscounting have been tested for the
simulation of chronology ensembles. Changing P1 and P2 from 2%
to 5% results in a decreased reconstruction skill for the analogue
method, but only minor changes in significance levels. Changing P1
and P2 to 1% is not enough to gain significant skill for BARCAST.

We observe similar skill results for the spatially distributed
RMSEs (Fig. 5). Unexpectedly, the skill does not decrease



Fig. 4. Colored circles show the correlation between the Summer mean pseudo-reconstruction and the target data, for all signal-to-noise ratios (SNR) by standard deviation. Colors
are only shownwhere the correlation is significantly different from zero. Black dots denote reconstructed grid cells, squares indicate pseudo-proxy locations. Panels (a, c, e, g) are for
BARCAST, while panels (b, d, f, h) are for the analogue method. The box plot quantifies the area-average skill.

T. Nilsen, S. Talento and J.P. Werner Quaternary Science Reviews 265 (2021) 107009
monotonically for lower SNR, seen for Fig. 5c,e. The analogue
method performs better than BARCAST for all SNRs considering the
area average skill metric. The intra-ensemble RMSE metrics vary by
< 0.035. The BARCAST scores of correlations and RMSEs for
SNR ¼ 0.5 are inferior to those obtained in Werner et al. (2013),
where the reconstruction target was terrestrial surface air
temperature.

Lastly, CRPSpot and Reli are shown in Fig. 6. All CRPS scores are

limited to <1 degree K, with the area average CRPSpot ranging from

0.45 K to 0.8 K (Fig. 6a, c, e, f). The area average Reli is better than
0.4 K for all SNR experiments (Fig. 6b, d, f, h).
3.1.1. Alternative experiment setups
We dedicated specific experiments to implement (a) decadal

resolution of all input data and the reconstruction, and (b) an initial
clustering step to the data before applying the reconstruction
7

methodologies. The motivation for these implementations is the
potential of increased reconstruction skill, and/or reduced
computation time for BARCAST.

All input data and the chronology ensembles are generated on
the annual scale before averaging to decadal resolution. Chronol-
ogies were simulated using BAM, as for the annual experiments.
The analogue reconstructions are successful using this setup, but
BARCAST fails to produce meaningful posterior parameter esti-
mates. Correlation skill results are therefore only shown for the
analogue method (Fig. 7), while BARCAST is deemed unsuitable for
this particular configuration of decadal SST data. Selected grid cells
in the decadal analogue reconstructions are significantly negatively
correlated with the target (Fig. 7). In general, the box plots show
that the area-average skill is lower than for annual data, and cor-
relations across the region have a larger spread. The number of grid
cells without significant correlation is higher.

The clustering separates the geographical domain of the



Fig. 5. As in Fig. 4, but for the root-mean-square error (RMSE). RMSE values are in temperature units (K).
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northern North Atlantic into C clusters, based on similarities in the
SST regimes during the instrumental period. The distance between
two geographical points is defined as one minus the correlation
between the instrumental SST time series at these locations. Then,
the analogue method or BARCAST is applied inside each of the C
clusters, independently. Finally, the reconstructions obtained
within each cluster are merged together, producing a reconstruc-
tion covering the whole geographical domain. The results show no
improvement in skill when clustering is implemented to the
reconstruction schemes. In fact, the BARCAST skill is deteriorated,
and we therefore regard the clustering approach as redundant for
the SST reconstructions in this study.

In summary, neither the decadal resolution nor the initial
clustering step offers advantages for either method in this pseudo
proxy setting. The remaining results therefore concern annual
Summer mean only.
8

3.2. BARCAST posterior parameters

The mean values for the posterior distributions of the BARCAST
model parameters are listed in Table 1. The SNR of the BARCAST
reconstruction is estimated from the posterior parameters:

SNRrec ¼
b21VarðTtÞ

t2P
(11)

The reconstructed SNR is not monotonically decreasing:
SNRrec ¼ 7.2, 1.8, 2.18 and 0.01. Together with the overestimated
SNRrec ¼ 2.18 we also find an inflated estimate of the instrumental
data error variance t2I ¼0.43 and interpret this as BARCAST incor-
rectly ascribing measurement errors to the SST predictors for the
instrumental period.

The estimated spatial e-folding distance 1/4 ranges from



Fig. 6. As in Fig. 4, but for the continuous ranked probability (C
̄
RPSpot and R

̄
eli) only for BARCAST. CRPS values are in temperature units (K).
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2115 km for SNR ¼ 10, to 8141 km for SNR ¼ 0.5. Ideally, the spatial
correlation structure should not be influenced so strongly from the
proxy noise. The teleconnections observed for the input spatial
network are likely contributing to this instability.

3.2.1. The AR(1) parameter a
The posterior mean AR(1) coefficient a ranges between 0.08 and

0.12 for the SNR experiments. a can be interpreted as a measure of
temporal persistence, where a ~ 0 is similar to a white noise sto-
chastic process. Hence, BARCAST reconstructs the North Atlantic
SSTs as very weakly persistent in time. The parameter estimate is
unexpected because the ocean has a much larger heat capacity than
the atmosphere, and responds more slowly to external forcing. The
expected a estimate should be similar, or even higher than that of
terrestrial BARCAST reconstructions, where a ~ 0.4 (Tingley and
Huybers, 2010; Luterbacher et al., 2016), and a ~ 0.8 (Werner
9

et al., 2018).
Searching to explain the lack of temporal persistence, we

compare the BARCAST posterior a estimates with estimates for the
real-world HadSST data, for the simulatedmodel data, and those for
the analogue reconstruction. The AR(1) parameter is estimated
using the least-squares method and JJA mean SST data. For the
instrumental HadSST data set, the subpolar and Arctic regions are
missing more data points than the temperate region during the
earlier part of the record (figure not shown). The area average a is
estimated to 0.32 when data from the full time period 1850e2018 is
included (Fig. 8a). The estimate increases to 0.48 when only the
past 50 years of data are used for estimation, with better temporal
coverage (Fig. 8b).

The AR(1) coefficients for the CESM-LME simulation data are
estimated on the grid-cell level using the full simulation period
850-2005 AD. This period is most realistic when comparing our



Fig. 7. Colored circles show the correlation between the decadal pseudo-reconstruction and the decadal target data, for all signal-to-noise ratios (SNR) by standard deviation. Colors
are only shown where the correlation is significantly different from zero. Black dots denote reconstructed grid cells, squares indicate pseudo-proxy locations. Crosses indicate
significant negative correlations. The box plot quantifies the area-average skill.

Table 1
Mean of posterior distribution for the BARCAST parameters.

SNRtarget SNRrec a m s2 1/4 t2I b0

10 7.2 0.1 0 1.02 2115 0 �0.03
1 1.766 0.09 0 1.9 4222 0 0.06
0.5 2.18 0.12 0 0.82 8141 0.43 0.03
0.5 (chronological errors) 0.01 0.08 0 1.17 2487 0 0.01

Fig. 8. Maps showing the AR(1) coefficient estimated on the grid-cell level from the instrume
d). The coefficients are plotted in color. The area-average coefficient is denoted by the box
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BARCAST posterior estimate, although it makes the comparison
with HadSST less clear. Spatial resolution of 1� by 1� or 5� by 5�

gives nearly identical estimates of the AR(1) coefficients. The area
average CESM model run AR(1) coefficient is estimated to 0.20
(Fig. 8c). As a validation exercise, we perform the same analysis for
one individual paleoclimate simulation of the MPI-ESM-P (past-
1000 r1, Jungclaus et al. (2014)) (Fig. 8d). The area average a is 0.26
for that run, hence the simulated SST for both model runs exhibit
less temporal persistence than estimated for the existing land-
based BARCAST reconstructions. At the same time, the model SST
ntal HadSST data (a and b), and two millennium-long climate model simulations (c and
plot for each panel.
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data exhibit a higher value of a than the resulting BARCAST pseudo-
reconstruction ensembles.

The area average AR(1) coefficient of the analogue re-
constructions vary between 0.11 and 0.21 for the different SNR
experiments (figure not shown).
3.2.2. Suitability of the BARCAST AR(1) assumption for CESM SST
data

It is possible that the BARCAST AR(1) model assumption itself is
improper for the North Atlantic CESM target SST data, and that
violation of the BARCAST assumptions causes the underestimation
of the posterior AR(1) coefficient a. The AR(1) process is preferred
for BARCAST calculations since it facilitates a reconstruction prob-
lem without supreme complexity. Previous studies show that a
long-range memory (LRM) stochastic model such as the fractional
Gaussian noise (fGn) is more consistent with local instrumental SST
observations and SSTs from control-run simulations over this re-
gion than an AR(1) model (Fredriksen and Rypdal, 2016; Løvsletten
and Rypdal, 2016).

An LRM stochastic process exhibits an autocorrelation function
(ACF) and a power spectral density (PSD) of a power-law form: C(t)
~ tb�1, and S(f) ~ f�b respectively. The spectral exponent b de-
termines the strength of the persistence. Persistence properties of
the target data are analyzed in the spectral domain using the
periodogram as the estimator. Hypothesis testing is used to identify
the most suitable statistical model similar to Nilsen et al. (2018).
See Appendix B for details on how the periodogram is estimated
and on the hypothesis testing.

The hypothesis testing provides important information
regarding the temporal persistence of the target CESM SST data on
the 5� by 5� grid-cell level. The persistence properties vary across
the region, and there is no single preferred statistical model for all
grid cells. In fact, the results cover all possible outcomes approxi-
mately equally: data points consistent with the AR(1) hypothesis
only, data points consistent with the fGn hypothesis only, data
points consistent with both null hypotheses, and data points
inconsistent with both null hypothesis. The AR(1) hypothesis is
most appropriate in the region illustrated by red color in Fig. 8c.
Weak LRM is identified if the fGn model is preferred, b � 0.2.

Results for one arbitrary grid cell off the Norwegian coast are
shown for illustrative purposes in Fig. 9. The AR(1) coefficient a and
the LRM parameter b are estimated. These parameters are used to
generate Monte Carlo ensembles of AR(1)/fGn processes, and
spectra for the 95% confidence ranges of the two processes are
plotted together with the CESM target power spectrum (Fig. 9b and
c). In this particular location, the CESM power spectrum is consis-
tent with the AR(1) process spectra (Fig. 9b), and not with the fGn
process spectra (Fig. 9c). The two processes exhibit spectral dif-
ferences on all frequencies, visible when plotted together (Fig. 9d).
Fig. 9. (a) Arbitrary SST time series of the CESM target data. (b) Log-log power spectra for the
ensembles of AR(1) processes shown as red shading. The dashed line marks the ensemble m
shading and dotted line marks the ensemble mean. (d) Plots (bec) together.
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As a final remark on the results presented in this study, we note
that the skill metric results and posterior parameter estimates are
not automatically transferable to other ocean regions than the
northern North Atlantic. For instance, the temporal covariability of
the tropical Pacific SST are strongly influenced by the El Nino
Southern Oscillation (ENSO), in addition to the year-to-year vari-
ability. Previous results show that the tropical Pacific SSTs are
consistent with an autoregressive process of order 1 (AR(1)) null-
model (Løvsletten and Rypdal, 2016). In contrast, our results
demonstrate only around 25% of the North Atlantic SSTs are
consistent with the AR(1) null-model. The tropical Pacific therefore
complies better with the BARCAST model assumption. When other
conditions are equal, the reconstruction skill may hypothetically be
higher for the Pacific region than the North Atlantic.
4. Discussion

This study lays the groundwork for SST field reconstruction
covering the northern North Atlantic region, using a marine proxy
network subject to age uncertainties. The main objectives have
been to (1) test the reconstruction skill of BARCAST and the
analogue reconstruction methods using pseudo-proxy experi-
ments, in order to determine whether one or both of the meth-
odologies are suitable for SST field reconstruction. Objective (2) was
testing how age-uncertainties in the marine records influence the
reconstruction skill.

We find that both CFR methodologies generate skillful annually
resolved reconstructions when the input data is perfectly dated
(Figs. 4-6a-f). The reconstruction skill decreases away from proxy
locations, and decreases with increased levels of proxy noise. The
intra-ensemble skill variance is highest for the chronology
ensemble version of the analogue method, confirming that
repeated runs with random age-model selection actually inflate the
reconstruction uncertainties as described in Werner and Tingley
(2015). Overall, the analogue method performs better than BAR-
CAST considering both the correlation and the RMSE skill metrics
(Figs. 4 and 5). The superiority of the analogue method is likely
linked to the flexibility in the modeled proxy-temperature rela-
tionship, as the method does not assume a stationary, linear rela-
tionship between proxies and the SST signal. Experimenting with
decadal resolution and spatial clustering does not improve the
reconstruction skill. BARCAST fails to reconstruct decadal temper-
atures, and deteriorates the skill in the case of clustering. The
negative results are in line with Talento et al. (2019), yet we high-
light the importance of performing these exercises because the
spatiotemporal properties of SSTs differ from air temperatures
(Fredriksen and Rypdal, 2016).

As for all CFR products, the reconstructions in our study would
benefit from a higher-density proxy network. However, high-
time series in (a) shown as black dots, and 95% confidence range based on Monte Carlo
ean of the shaded spectra. (c) as in (b), but for fractional Gaussian noise (fGn) as blue
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quality records are preferred for supplementing the network. We
obtain significant skill for most of our experiments using this
network (Figs. 4e6), so the spatial information in the observation
data is considered satisfactory for our purpose.

In addition to the skill results, the posterior estimates of BAR-
CAST parameters also provide indications of the reconstruction
quality. The reconstructed temporal covariance is low compared
with the target data, the ensemble mean posterior AR(1) parameter
a � 0.12. The reason behind this is unclear, but the spatial tele-
connections in the target data could influence the temporal struc-
ture due to the coupled spatiotemporal model formulation of
BARCAST.

Objective 2 is elaborated because BARCAST is unable to recon-
struct skillful annual fields of SST when all proxies are subject to
chronological errors in form of miscounted layers (Fig. 4g). This is
discouraging in the context of real-world SST reconstruction, since
chronological errors occur in the majority of the available marine
proxy records. The earlier successful BARCAST reconstructions that
implemented chronological uncertainties had the advantages of
being applied exclusively to a terrestrial data network and recon-
struction domain, in addition to either an evenly sampled domain
(Werner and Tingley, 2015), or combined with a dominant pro-
portion of absolutely dated proxies (31 out of 44 proxy records
absolutely dated in Werner et al. (2018)). While our marine proxy
network has none of these advantages, the three bivalve mollusc
records stand out as absolutely dated (site IDs 4, 16 and 17,
Table A1). The proxy development for climate reconstruction is
relatively new for bivalves, and has been rapidly progressing over
the past decade (Butler et al., 2019). Independent of the CFR
methodology, prospects are good for a future higher-skill marine
reconstruction under the condition that a predominantly abso-
lutely dated proxy network is applied.

Improved annual reconstruction skill will be difficult to achieve
using a modified chronology modeling scheme such as BACON
instead of BAM, although this modification would imply more
realistic age model ensembles. Further work using BACON for age-
depth modeling could house potential for marine CFR exhibiting
decadal temporal resolution. There are other measures easily
available to improve the annual reconstruction skill for the
analogue method. The analogue implementation can be modified
to construct the pool of analogues from climate model simulations
instead of instrumental data. An optimal model pool comprises
independent simulations originating from different climate
models. This strategy avoids potential influence on the recon-
struction skill frommodel bias. The reconstruction skill is expected
to increase with a larger analogue pool (Bothe and Zorita, 2021),
with the cost that the model-dependent analogue reconstruction
cannot be used for traditional proxy-model comparison studies
(PAGES 2k-PMIP3 group, 2015; Moffa-S�anchez et al., 2019). The size
of the analogue pool may differ by as much as two orders of
magnitudes for the two options. The analogue method was
implemented successfully for land temperatures over Europe in
Bothe and Zorita (2020), facilitating slightly less than 10 000 model
analogues. In comparison, there is only one observed instrumental
data set covering the period back to 1850. Using the analogue
reconstruction method it is possible to rank individual model
simulations by their ability to replicate the climate signal observed
in a known proxy network. This is a useful model evaluation tool,
applicable when the analogue pool consists of climate model time
slices. One strategy for model evaluation is outlined in G�omez-
Navarro et al. (2017), using an analogue pool of 16 simulations
from seven Earth System Models and the surface temperature
proxy archive of PAGES2k Consortium (2013). For every year to
reconstruct, the study finds that the closest analogue time slices
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were selected from each of the simulations at some point, but two
simulations were selected more often than the rest, and two others
were selected less frequently. The target simulation is selected as
one of several ensemble members from a single model, and the
remaining ensemble simulations are not selected more often than
simulations from other models.

Finally, extending the analogue method to search for analogues
in the space of empirical orthogonal functions (EOF) is another
promising option to potentially increase reconstruction skill in the
North Atlantic Ocean (G�omez-Navarro et al., 2017).

5. Conclusions

Pseudo-proxy experiments are helpful tools for ranking the
reconstruction skills of the BARCAST and analogue reconstruction
methodologies in this study. The northern North Atlantic marine
proxy network is subject to age-uncertainties and proxy noise, and
our analyses demonstrate that the analogue method is superior to
BARCAST for SST reconstruction under these premises. A clear
deficiency is that observed teleconnections in the climate model
simulation SSTs are unaccounted for in the spatiotemporal struc-
ture of the BARCAST model assumptions.

Our results suggest that a future annually resolved SST recon-
struction based on the BARCAST methodology should rely on a
marine proxy networkwith dominance of absolutely dated records,
and preferably uniform sampling in space. A smaller reconstruction
region is also recommended without strong teleconnections. The
analogue method is computationally cheap to run, allowing users
to quickly test different modifications and identifying the optimal
implementation for their specific use. The implementation for
northern North Atlantic SST reconstruction will benefit from
exploring a larger analogue pool based on climate model
simulations.

In this study we bridge the gap between terrestrial and marine
CFR for the common era. The research topic benefits from exploring
a range of advanced statistical tools, the analytics are expected to
become wider used in CFR applications after our systematic dem-
onstrations. The experiment results contribute to constraining
uncertainties of natural ocean variability influencing climate across
the globe. Further CFR comparison with climate model runs also
provides an important test bed for understanding multidecadal to
centennial climate variability and the climate sensitivity to external
forcing, while providing an extended context for anthropogenic
warming prior to the instrumental era.

Data availability

The BARCAST code package is available at https://bitbucket.org/
jopewerner/barcast/commits/tag/Nilsen_2021. Codes and input
data to the analogue method are available at https://bitbucket.org/
NilsenT/amcfr/src/master/. All proxy records are previously pub-
lished, references are listed in Table A1. CESM LME model simula-
tion data can be found at https://www.cesm.ucar.edu/projects/
community-projects/LME/data-sets.html. Data for the MPI-ESM
past-1000 r1 simulation is available at https://esgf-data.dkrz.de/
projects/esgf-dkrz/. Other data and codes are available upon
request from the corresponding author.
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Table A1
List of proxy data series for the reconstruction region, including PAGES Ocean 2k records (M
proxy network (Fig. 1b).

Site ID Site name lat (�N), lon (�E) Pro

1 Reykjanes Ridge 58.56, �20.24 Dia
2 Vøring Plateau 66.97, 7.64 Dia
Ocn_055 West Spitzberg, Fram Strait 78.91, 6.77 Din
4 North Icelandic Shelf 66.32, �18.12 Biv
Ocn_032 MD95-2011 66.97, 7.64 Alk
Ocn_040 ODP984 61.43, �24.08 For
7 Gardar Drift 57.26, �27.54 For
8 North Icelandic Shelf 66.51, �17.70 Dia
9 North Icelandic shelf 66.63, �23.85 Dia
10 Reykjanes Ridge 58.76e25.96 Alk
11 Reykjanes Ridge 57.27, �27.55 Dia
12 Southeast Greenland Shelf 67.14, �30.83 Dia
13 Iceland Basin 61.29, �19.32 For
14 Erik Drift 57.30, �48.43 For
15 �Isafjarðardjúp fjord, Northwest Iceland 66.14,-23.16 Alk
16 North Icelandic Shelf 66.32, �18.12 Biv
17 British Continental Shelf 56.40, �6.20 Biv
Ocn_020 Feni Drift 55.65, �13.98 For
Ocn_039 MD992275 66.55, �17.42 Alk
Ocn_058 Western Svalbard 78.91, 6.78 For
Ocn_045 RAPiD-12-1K 62.08, �17.82 For
22 Fram Strait 79.90, 5.20 For
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Appendix A. List of North Atlantic proxy records

Table A1 lists the proxy records used as basis for the applied
pseudo proxy network.
cGregor et al., 2015). The proxy data locations are used for the design of the pseudo-

xy type for SST rec Time (yr CE) References

tom assemblages 18e1582 Berner et al. (2008)
tom assemblages 4e1995 Berner et al. (2011)
ocyst assemblages �289e1943 Bonnet et al. (2010)
alve growth increments 649e2005 Butler et al. (2013)
enones (UK37) 10e1440 Calvo et al. (2002)
aminifera d18O and Mg/Ca 152e1396 Came et al. (2007)
aminifera Mg/Ca 70e1390 Farmer et al. (2008)
tom assemblages 15e1875 Jiang et al. (2015)
tom assemblages 21e1966 Justwan et al. (2008)
enones (UK37) 100e1260 Marchal et al. (2002)
tom assemblages 2e2004 Miettinen et al. (2012)
tom assemblages 6e1910 Miettinen et al. (2015)
aminifera d18O and Mg/Ca 818e1793 Moffa-S�anchez et al. (2014)
aminifera d18O and Mg/Ca 763e1914 Moffa-S�anchez et al. (2014)
enones (UK37) 4e1640 Moossen et al. (2015)
alve d18O 953e2000 Reynolds et al. (2016)
alve d18O 1799e2010 Reynolds et al. (2017)
aminifera d18O and Mg/Ca �368e1998 Richter et al. (2009)
enones (UK37) 1e2001 Sicre et al. (2011)
aminifera Mg/Ca �120e2007 Spielhagen et al. (2011)
aminifera Mg/Ca �9918e1950 Thornalley et al. (2009)
aminifera assemblages �12000e1992 Werner et al. (2016)
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Appendix B. Spectral analysis of temporal persistence and
hypothesis testing

The periodogram is defined here in terms of the discrete Fourier
transform Hm as (Malamud and Turcotte, 1999):

SðfmÞ ¼
�
2
N

�
jHmj2; m ¼ 1;2;…;N=2

For evenly sampled time series x1, x2,….xN. The sampling time is
an arbitrary time unit, and the frequency is measured in cycles per
time unit: fm ¼ m

N . Df ¼ 1
N is the frequency resolution and the

smallest frequency which can be represented in the spectrum.
Log-binned power spectra are visualized in logelog plots (Fig. 9)

since the spectral exponent b can be estimated by a simple linear fit
to the spectrum. Log binning of the periodogram is used for
analytical purposes, this representation weights all frequencies
equally with respect to their contributions to the total variance.

The first null hypothesis tested is that the target data set can be
described using an AR(1) process at all frequencies, with the
parameter a estimated from the CESM SST data on the grid-cell
level. For testing we generate a Monte Carlo ensemble of AR(1)
series with a value of the a parameter identical to the target data.
The power spectrum of each ensemble member is estimated, and
the confidence range for the theoretical spectrum is then calculated
using the 2.5 and 97.5 quantiles of the log-binned periodograms of
the Monte Carlo ensemble. The second null hypothesis is that the
target data set can be described using the fractional Gaussian noise
(fGn) stochastic process at all frequencies, with scaling parameter b
estimated from the power spectrum of the target data at grid-cell
level. The respective null hypothesis is rejected if the log-binned
spectrum of the target data is outside of the confidence range for
the AR(1) or fGn model at any point.
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