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Abstract

The Stefan problem is coupled with a spatially inhomogeneous and anisotropic Gibbs–
Thomson condition at the phase boundary. We show the long-time existence of weak solu-
tions for the non-degenerate Stefan problem with a spatially inhomogeneous and anisotropic
Gibbs–Thomson law and a conditional existence result for the corresponding degenerate Ste-
fan problem. To this end approximate solutions are constructed by means of variational
problems for energy functionals with spatially inhomogeneous and anisotropic interfacial en-
ergy. By passing to the limit, we establish solutions of the Stefan problem with a spatially
inhomogeneous and anisotropic Gibbs–Thomson law in a weak generalized BV -formulation.

1 Introduction

The Stefan problem models phase transitions in materials. To allow for superheating and un-
dercooling the Stefan problem is coupled with a geometrical condition at the phase boundary,
the so-called Gibbs–Thomson law. This condition takes surface tension effects into account such
that the temperature may differ from the melting temperature at the phase boundary. The
Gibbs–Thomson law states that the system is in thermodynamic equilibrium.

The classical Gibbs–Thomson law accounts for isotropic surface tension effects. In this case
the temperature at the interface is proportional to the mean curvature. In many applications,
however, such as the solidification of alloys, the surface energy density is spatially inhomogeneous
and anisotropic, i.e. the density depends on the position in space and on the local orientation
of the interface. This means that the Stefan problem with a generalized Gibbs–Thomson law
has to be considered, see for instance [Gur88, Gur93] for a thermodynamic derivation. The
temperature at the interface is then related to a spatially inhomogeneous and anisotropic mean
curvature.

Heat conduction in materials often takes place on a much faster time scale than the evolution
of the interface. Therefore, a quasi-static version of the Stefan problem, the so-called degenerate
Stefan problem, is often used to describe melting and solidification processes.

To formulate the Stefan problem with Gibbs–Thomson law, let (0, T ) be a given time interval,
Ω ⊂ R

n be a bounded domain with Lipschitz boundary and ΩT := (0, T ) × Ω. The phase field
variables are the temperature

u : ΩT → R

and a phase function
χ : ΩT → R,

where the liquid phase is represented by the set {(t, x) ∈ ΩT : χ(t, x) = 1} and the solid phase
by the set {(t, x) ∈ ΩT : χ(t, x) = 0}.

The (non-degenerate) Stefan problem with isotropic Gibbs–Thomson law is formally de-
scribed by

∂t

(

u + χ
)

−△u = f in ΩT , (1.1)

u = H on Γ, (1.2)

where f : ΩT → R is a given heat source, H : Γ → R is the mean curvature and Γ denotes the
phase boundary.

The degenerate Stefan problem models an infinite fast heat flow in the material, i.e. (1.1) is
replaced by

∂tχ−△u = f in ΩT . (1.3)
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For a general theory of the Stefan problem we refer to [Vis98, Mei92, Gup03]. Global existence
results for the non-degenerate Stefan problem with isotropic Gibbs–Thomson law in a weak
(generalized) BV -formulation are shown in [Luc90, Luc91, Rög04] and with anisotropic Gibbs–
Thomson law in [GS]. For the degenerate Stefan problem, existence of classical solutions locally
in time has been proven by Chen, Hong and Yi [CHY96] and by Escher and Simonet [ES97]. An
existence result for global solutions of the degenerate problem can be found in [Che96], where the
limit of a modified Cahn–Hilliard model is considered. However, the isotropic Gibbs–Thomson
law is only fulfilled in a rather weak and complex formulation. Using the theory of varifolds,
Röger [Rög05] established long-time existence of solutions of the degenerate Stefan problem with
isotropic Gibbs–Thomson law in a weak generalized BV -formulation.

The BV -formulation of the degenerate and non-degenerate Stefan problem with isotropic
Gibbs–Thomson law was introduced by Luckhaus and considered for the non-degenerate problem
in [Luc90, Luc91] and for the degenerate problem in [LS95] (see also [GS98] for a multiphase
version): The temperature and the phase function

u ∈ uD + L2(0, T ; H1
0 (Ω)), uD ∈ H1(0, T ; H1(Ω)), and χ ∈ L∞(0, T ; BV (Ω; {0, 1}))

satisfy for the non-degenerate problem

∫

ΩT

(

u + χ
)

∂tξ +

∫

Ω
χ(0)ξ(0) =

∫

ΩT

∇u∇ξ −
∫

ΩT

fξ (1.4)

for all ξ ∈ C∞
c ([0, T )× Ω),

and for the degenerate problem

∫

ΩT

χ∂tξ +

∫

Ω
χ(0)ξ(0) =

∫

ΩT

∇u∇ξ −
∫

ΩT

fξ (1.5)

for all ξ ∈ C∞
c ([0, T )× Ω),

and for both problems

∫ T

0

∫

Ω

(

∇ · ξ − ∇χ

|∇χ| · ∇ξ
∇χ

|∇χ| + u ξ · ∇χ

|∇χ|

)

|∇χ| dt = 0 (1.6)

for all ξ ∈ C∞
c (ΩT , Rn).

In this BV -setting, global solutions for the non-degenerate case are obtained in [Luc90, Luc91] by
an implicit time discretization method. The time–discrete approximations χh and uh converge
to weak solutions of (1.1) and (1.2). In particular, the exclusion of loss of surface area in the
limit, i.e.

lim
h→0

∫

ΩT

|∇χh| →
∫

ΩT

|∇χ|, (1.7)

arises in a natural way from the discrete minimum problem.

For the degenerate system, i.e. (1.3) and (1.2), property (1.7) is in general not satisfied.
However, assuming (1.7), existence of global solutions can be shown in the BV -setting, see
[LS95]. Conditions of the form as in (1.7) are typical for such kind of geometric problems and
have been applied to several other geometric problems, see [ATW93, LS95, GS98, BGS98, Ott98].
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In this paper we study the degenerate and non-degenerate Stefan problem with spatially in-
homogeneous and anisotropic Gibbs–Thomson law. This generalized Gibbs–Thomson law results
from an inhomogeneous and anisotropic surface energy, i.e.

∫

Γ
σ(x, ν) dHn−1,

where ν is the outer unit normal of the liquid phase, H(n−1) is the (n−1)–dimensional Hausdorff
measure and σ is an anisotropy function satisfying assumption A 2.1, see Section 2.1. The
corresponding generalized Gibbs–Thomson law at the phase boundary reads as

u = Hσ on Γ (1.8)

with
Hσ = ∇Γ·σ,p(x, ν) + σ,x(x, ν)·ν ,

where ∇Γ denotes the tangential gradient of Γ.
The aim of this work is to show existence of weak solutions for the Stefan problem with

spatially inhomogeneous and anisotropic Gibbs–Thomson law and existence of weak solutions
for the corresponding degenerate problem assuming a condition similar to (1.7). The results of
[Luc90, Luc91, LS95, GS] are generalized.

Our main results are under suitable assumptions as follows:

Theorem 1.1
Let Ω ⊂ R

n be a bounded domain with Lipschitz boundary, f ∈ L2(ΩT ), and assumption
A 2.1, see Section 2.1, be satisfied. Furthermore, let uD ∈ H1(0, T ; H1(Ω)) and the initial
data u0 ∈ H1(Ω) ∩ L∞(Ω) and χ0 ∈ BV (Ω; {0, 1}) be given. Then there exist functions χ ∈
L∞(0, T ; BV (Ω; {0, 1})) and u ∈

(

uD + L2(0, T ; H1
0 (Ω))

)

∩ L∞(0, T ; L2(Ω)) which are solutions
of

∫

ΩT

(u + χ)∂tξ +

∫

Ω
χ(0)ξ(0) =

∫

ΩT

∇u∇ξ −
∫

ΩT

fξ (1.9)

for all ξ ∈ C1
c ([0, T )× Ω),

and

∫ T

0

∫

Ω

(

σ
(

·, ν(t, ·)
)

∇·ξ(t, ·) + σ,x(·, ν(t, ·)) · ξ(t, ·)− ν(t, ·) · ∇ξ(t, ·)σ,p(·, ν(t, ·))

− u(t, ·) ξ(t, ·) · ν(t, ·)
)

|∇χ(t, ·) dt = 0 (1.10)

for all ξ ∈ C1
c (ΩT ; Rn) with ν = − ∇χ

|∇χ| .

If, in addition, Ω is a bounded domain with C1–boundary then (1.10) even holds for all ξ ∈
C1(ΩT , Rn) with ξ · νΩ = 0 on ∂Ω, where νΩ is the outer unit normal of ∂Ω.

The above existence result for the non-degenerate system is based on an implicit time discretiza-
tion method. In this case, we obtain for the time discrete approximations χh, h > 0, the following
generalized property of (1.7):

lim
h→0

∫

ΩT

σ(x, νh)|∇χh| →
∫

ΩT

σ(x, ν)|∇χ|, νh := − ∇χh

|∇χh|. (1.11)
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Under this condition we are also able to show existence of weak solutions for the degenerate
problem:

Theorem 1.2
Let Ω ⊂ R

n be a bounded domain with Lipschitz boundary, f ∈ L2(ΩT ) and assumption A 2.1,
see Section 2.1, be satisfied. Furthermore, let uD ∈ W 1,1(0, T ; H1(Ω)) and the initial datum
χ0 ∈ BV (Ω; {0, 1}) be given. If condition (1.11) (see Section 4 for the definition χh) is satisfied
then there exist functions χ ∈ L∞(0, T ; BV (Ω; {0, 1})) and u ∈ uD + L2(0, T ; H1

0 (Ω)) which are
solutions of

∫

ΩT

χ∂tξ +

∫

Ω
χ(0)ξ(0) =

∫

ΩT

∇u∇ξ −
∫

ΩT

fξ (1.12)

for all ξ ∈ C1
c ([0, T )× Ω),

and

∫ T

0

∫

Ω

(

σ
(

·, ν(t, ·)
)

∇·ξ(t, ·) + σ,x(·, ν(t, ·)) · ξ(t, ·)− ν(t, ·) · ∇ξ(t, ·)σ,p(·, ν(t, ·))

− u(t, ·) ξ(t, ·) · ν(t, ·)
)

|∇χ(t, ·)| dt = 0 (1.10)

for all ξ ∈ C1
c (ΩT , Rn) with ν = − ∇χ

|∇χ| .

If, in addition, Ω is a bounded domain with C1–boundary then (1.10) even holds for all ξ ∈
C1(ΩT , Rn) with ξ · νΩ = 0 on ∂Ω, where νΩ is the outer unit normal of ∂Ω.

A major task of the existence results for both problems has been to assure convergence of the
approximate terms which arise from the spatially inhomogeneous character of the interfacial
energy. To handle this convergence problem we work with slicing and indicator measures and
methods of geometric measure theory. We choose the notion of a generalized total variation for
BV -functions. Our results are based on weak convergence theorems for homogeneous functions of
measures, on geometric properties for anisotropic surface energies and on approaches of [GK09].

The paper is organized as follows: In Sections 2.1-2.2 we introduce some notation and the
assumptions. Then we state some properties for anisotropy functions and slicing and indicator
measures, see Sections 2.3-2.4. In Section 3 we establish a suitable weak formulation of the Stefan
problem with spatially inhomogeneous and anisotropic Gibbs–Thomson law in a generalized BV -
setting. Section 4 is devoted to time-incremental minimization problems for energy functionals
with spatially inhomogeneous and anisotropic interfacial energy. We construct time discretized
solutions for (1.9), (1.10) and (1.12), (1.10), respectively. Arguments similarly to [Luc90, Luc91,
LS95, GS] are only sketched. Finally, we pass to the limit in the time discretized problems, cf.
Sections 5.1-5.3, and prove Theorems 1.1 and 1.2 in Section 5.4.

2 Preliminaries

If not otherwise mentioned we assume that Ω ⊂ R
n is a bounded domain with Lipschitz–

boundary. The first and second partial derivatives of a function with respect to the variables s
and p are abbreviated by f,s and f,sp.
We begin with stating the hypotheses for the anisotropy function σ.
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2.1 Anisotropy function

Assumption A 2.1
The anisotropy function σ : Ω× R

n → [0, +∞) satisfies the following properties:

(i) σ ∈ C(Ω× R
n) ,

σ,x, σ,p ∈ C(Ω× R
n\{0}) ,

σ,pp ∈ C(Ω× R
n\{0}).

(ii) σ is 1-homogeneous in the second variable, i.e. σ(x, λp) = λσ(x, p) for all p ∈ R
n and any

λ > 0.

(iii) There exist constants λ1 > 0 and λ2 > 0 such that

λ1|p| ≤ σ(x, p) ≤ λ2|p| for all x ∈ Ω and all p ∈ R
n.

(iv) σ is convex as a 1-homogeneous function in the following sense: There exists a constant
d0 > 0 such that

σ,pp(x, p) q · q ≥ d0|q|2

for all x ∈ Ω and all p, q ∈ R
n with p · q = 0, |p| = 1.

Note, σ,p is not differentiable at 0 ∈ R
n. However, if we set σ σ,p = 0 and g σ,p = 0 at 0 ∈ R

n for
g ∈ C1(Ω) with g = 0 in some neighborhood of 0, then the expressions σ σ,p and g σ,p are well
defined at 0.

2.2 Generalized total variation

To handle the spatially inhomogeneous and anisotropic Gibbs–Thomson law we use the notion
of the generalized total variation of BV -functions introduced in [AB94].

Let σ : Ω × R
n → [0, +∞) be a continuous anisotropy function fulfilling (ii) and (iii) of

assumption A 2.1. Then the dual function σ∗ : Ω× R
n → [0, +∞) is given by

σ∗(x, q) = sup
{

q · p : p ∈ R
n, σ(x, p) ≤ 1

}

= sup

{

q · p
σ(x, p)

: p ∈ R
n\{0}

}

. (2.1)

For any f ∈ BV (Ω) the generalized total variation of f (with respect to σ) in Ω is defined by

∫

Ω
|∇f |σ = sup

{
∫

Ω
f divη dx : η ∈ Kσ(Ω)

}

,

where Kσ(Ω) =
{

η ∈ C1
c (Ω, Rn) : σ∗(x, η(x)) ≤ 1 for a.e. x ∈ Ω

}

. The generalized total
variation can be represented by an integral formula in terms of the measure |∇f |, cf. [AB94,
AB95]:

∫

Ω
|∇f |σ =

∫

Ω
σ(x, s, νf ) |∇f |, (2.2)

where νf (x) = − ∇f
|∇f |(x) for |∇f |–a.e. x ∈ Ω.

We remark,
∫

Ω |∇f |σ is L1(Ω)–lower semicontinuous on BV (Ω).
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2.3 Properties of anisotropy functions

In the sequel, we take advantage from the following properties for anisotropy functions, cf. [BP96],
[Dzi99] and [Gig06]:

Lemma 2.2
Let σ be an anisotropy function satisfying assumption A 2.1. Then there exist constants C1 > 0
and C2 > 0, such that for all x ∈ Ω, ν1, ν2 ∈ S

n−1 and all p, p1, p2 ∈ R
n\{0} the following

properties are fulfilled:

(i)

σ, p(x, p) · p = σ(x, p), σ∗, p(x, p) · p = σ∗(x, p), (2.3)

(ii)

σ(x, ν1)− σ, p(x, ν2) · ν1 ≥ C1|ν1 − ν2|2, (2.4)

(iii)

|σ, p(x, ν1)− σ, p(x, ν2)| ≤ C2|ν1 − ν2|, (2.5)

(iv)

σ, p(x, λp) = σ, p(x, p) for λ > 0, (2.6)

(v)

σ
(

x, σ∗, p(x, p1)
)

= σ∗
(

x, σ, p(x, p2)
)

= 1. (2.7)

(vi)

σ(x, p)σ∗, p
(

x, s, σ, p(x, p)
)

= p, σ∗(x, p)σ, p

(

x, s, σ∗, p(x, p)
)

= p. (2.8)

Anisotropy can be visualized by the Wulff shape W which varies in our situation with x ∈ Ω:

W (x) = {q ∈ R
n : σ∗(x, q) ≤ 1}.

The Wulff shape W is convex and its boundary can be expressed as follows:

∂W (x) =
{

σ, p(x, ν̃) : ν̃ ∈ S
n−1

}

, x ∈ Ω.

The outer unit normal at the point σ,p(x, ν̃) on ∂W (x) is ν̃. For more details on this topic we
refer to [Gur93] and [Gig06].

The following lemma is an essential tool for constructing suitable approximations of the
Cahn-Hoffman vector σ,p, cf. [GK09]. This auxiliary result is utilized to prove convergence of
the time discretized solutions.

Lemma 2.3 (cf. [GK09])
Let σ be an anisotropy function satisfying assumption A 2.1. Then there exists a constant C > 0
such that

C |σ, p(x, ν)− p|2 ≤ σ(x, ν)− p · ν

for all x ∈ Ω, ν ∈ S
n−1 and all p ∈ R

n\{0} with σ∗(x, p) ≤ 1.
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2.4 Slicing and indicator measures

We outline some properties on slicing and indicator measures, which are required in the limit
process of the discrete spatially inhomogeneous and anisotropic Gibbs–Thomson law. For details
we refer to [AFP00], [Eva90], [Fon91] and [Fon92].

Let Θ be a finite, nonnegative Radon measure on Ω× R
n. The canonical projection onto Ω

is denoted by π, i.e.
π(E) := Θ(E × R

n)

for each Borel set E ⊂ Ω.

Proposition 2.4 (cf. [AFP00])
For π–a.e. point x ∈ Ω there exists a Radon probability measure λx on R

n such that

(i) the mapping x →
∫

Rn f(x, y) dλx(y) is π measurable,

(ii)
∫

Ω×Rn f(x, y) dΘ(x, y) =
∫

Ω

( ∫

Rn f(x, y)dλx(y)
)

dπ(x) (Fubini’s decomposition)

for every continuous and bounded function f : Ω× R
n → R.

Let µ̂ be an R
n–valued measure on Ω with polar decomposition dµ̂ = α dµ. Then the indicator

measure of µ̂ is the finite, nonnegative Radon measure Θ on Ω× S
n−1 defined by

〈Θ, f〉 =

∫

Ω
f
(

x, α(x)
)

dµ(x)

for every continuous and bounded function f : Ω × R
n → R. If E ⊂ Ω is a set with finite

perimeter, i.e.

per(E) =

∫

Ω
|∇χE | < ∞, χE : characteristic function of E,

then the indicator measure of ∇χE has the form

〈Θ, f〉 =

∫

∂∗E
f
(

x,−νE(x)
)

dHn−1(x) , νE : unit outer normal of E,

where ∂∗E is the reduced boundary of E, cf. [Giu84, AFP00].

Proposition 2.5 (cf. [AFP00], [Fon92])
Let {µ̂k}k∈N be a sequence of R

n–valued measures on Ω with polar decompositions dµ̂k = αk dµk

and suppose that µ̂k → µ̂ weakly∗ with µ̂ = αµ. Then there exists a subsequence {kj}j∈N and a
nonnegative Radon measure Θ∞ ≡ π∞⊗ λ∞x on Ω× S

n−1, λ∞x being probability measures, such
that

(i) Θkj
≡ µkj

⊗ δαkj
(x) → Θ∞ ≡ π∞ ⊗ λ∞x weakly∗ , δy Dirac mass,

(ii) µkj
→ π∞ weakly∗ ,

(iii) π∞ ≥ µ.

Moreover, for every f ∈ Cc(Ω× R
n)

lim
j→∞

∫

Ω
f
(

x, αkj
(x)

)

dµkj
=

∫

Ω×Sn−1

f
(

x, y
)

dΘ∞(x, y)

=

∫

Ω

(
∫

Sn−1

f
(

x, y
)

dλ∞x (y)

)

dπ∞(x).
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3 Weak and strong formulations

In this section we show that equation (1.10) is in fact a weak formulation of the spatially
inhomogeneous and anisotropic Gibbs–Thomson law, see (1.8). This weak generalized BV -
formulation also includes a boundary condition for the interface with the outer boundary.

Theorem 3.1
Let Ω be a bounded domain with C1–boundary, Γ be a C2–hypersurface and let ∂Γ consists of
a finite number of C1–(n− 2)–dimensional surfaces. If (χ, u) is a solution of (1.9) and (1.10) or
(1.12) and (1.10) then the following conditions are satisfied:

(i) Inhomogeneous and anisotropic Gibbs–Thomson law

σ,x(x, ν(t)) · ν(t) +∇Γ(t) · σ,p(x, ν(t)) = u(t) on Γ(t) H(n−1)–a.e. for a.e. t ∈ (0, T ),

where ∇Γ denotes the tangential gradient of Γ.

(ii) Force balance condition

σ,p(x, ν(t)) · νΩ(t) = 0 on ∂Γ(t) ∩ ∂Ω H(n−2)–a.e. for a.e. t ∈ (0, T ),

where νΩ is the outer unit normal of ∂Ω.

Proof:
The proof is similar to the proof of Theorem 6.1 in [GK09]. We consider equation (1.10) and
take test functions of the structure ξ = ην on Γ, where η is an arbitrary function of C1

c (ΩT , R).
For the first and third summand of the area part of equation (1.10) we derive

∫ T

0

∫

Γ(t)
ν(t) · ∇ξ(t)σ,p(x, ν(t)) dHn−1(t) dt =

∫ T

0

∫

Γ(t)
∇η(t) · σ,p(x, ν(t)) dHn−1(t) dt

and
∫ T

0

∫

Γ(t)
σ(x, ν(t))∇·ξ(t) dHn−1(t) dt

=

∫ T

0

∫

Γ(t)
ν(t) ·

(

∇η(t) · ν(t) + η(t)∇·ν(t)
)

σ,p(x, ν(t)) dHn−1(t) dt

=

∫ T

0

∫

Γ(t)

(

∇η(t)−∇Γ(t)η(t)
)

· σ,p(x, ν(t)) dHn−1(t) dt

+

∫ T

0

∫

Γ(t)
η(t)κ(t)

(

σ,p(x, ν(t)) · ν(t)
)

dHn−1(t) dt,

where κ(t) = ∇Γ(t)·ν(t) is the mean curvature. Applying the divergence theorem on manifolds
yields
∫ T

0

∫

Γ(t)
∇Γ(t)η(t) · σ,p(x, ν(t)) dHn−1(t) dt +

∫ T

0

∫

Γ(t)
η(t) ∇Γ(t)·σ,p(x, ν(t)) dHn−1(t) dt

=

∫ T

0

∫

Γ(t)
∇Γ(t)·

(

η(t)σ,p(x, ν(t))
)

dHn−1(t) dt

=

∫ T

0

∫

Γ(t)
κ(t) η(t)

(

σ,p(x, ν(t)) · ν(t)
)

dHn−1(t) dt.
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We infer

∫ T

0

∫

Γ(t)

(

σ
(

x, ν(t)
)

∇·ξ(t)− ν(t) · ∇ ξ(t)σ,p

(

x, ν(t)
)

)

dHn−1(t) dt

=

∫ T

0

∫

Γ(t)
η(t) ∇Γ(t)·σ,p(x, ν(t)) dHn−1(t) dt.

Since η ∈ C1
c (ΩT ) was arbitrary we end up with

σ,x

(

x, ν(t)
)

· ν(t) +∇Γ(t)·σ,p(x, ν(t)) = u(t)

on Γ(t) Hn−1-a.e. for a.e. t ∈ (0, T ).
To (ii): We choose arbitrary functions ξ ∈ C1(ΩT , Rn) with ξ(t) · νΩ(t) = 0 on ∂Ω for a.e. t ∈
(0, T ) and an orthonormal basis τ1(t) = τΓ(t), τ2(t), . . . , τn−1(t) of the tangent space T Γ(t),
where τΓ(t) is the outer unit normal of ∂Γ(t). Then, using the Einstein sum convention, we may
express ξ in the form ξ = ηνν + ητj

τj . Applying the divergence theorem on manifolds leads to

∫ T

0

∫

Γ(t)
σ(x, ν(t))∇·

(

ητj
(t)τj(t)

)

dHn−1(t) dt

=

∫ T

0

∫

∂Γ(t)
σ(x, ν(t))ητΓ(t) dHn−2(t)

−
∫ T

0

∫

Γ(t)
∇Γ(t)σ(x, ν(t)) · ητj

(t)τj(t) dHn−1(t) dt

+

∫ T

0

∫

Γ(t)
σ(x, ν(t))ητj

(t)ν(t)∇τj(t)ν(t) dHn−1(t)dt.

Since
(

∇(ητj
τj)

)T
ν = −(∇ν)T

(

ητj
τj

)

we have

∫ T

0

∫

Γ(t)
ν(t) · ∇

(

ητj
(t)τj(t)

)

σ,p(x, ν(t)) dHn−1(t) dt

= −
∫ T

0

∫

Γ(t)

(

ητj
(t)τj(t)

)

· ∇ν(t)σ,p(x, ν(t)) dHn−1(t)dt.

Thus we get for (1.10) the following representation
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∫ T

0

∫

Γ(t)

(

σ
(

x, ν(t)
)

∇·ξ(t) + σ,x

(

x, ν(t)
)

· ξ(t)

− ν(t) · ∇ξ(t)σ,p

(

x, ν(t)
)

)

dHn−1(t) dt−
∫ T

0

∫

Γ(t)
u(t) ξ(t) · ν(t) dHn−1(t) dt

=

∫ T

0

∫

∂Γ(t)

(

− ην(t)σ,p(x, ν(t)) · τΓ(t) + σ(x, ν(t)) ητΓ(t)
)

dHn−2(t) dt

+

∫ T

0

∫

Γ(t)
ην(t)∇Γ(t)·σ,p(x, ν(t)) dHn−1(t) dt

−
∫ T

0

∫

Γ(t)

(

∇Γ(t)σ(x, ν(t))−∇ν(t)σ,p(x, ν(t))
)

·
(

ητj
(t)τj(t)

)

dHn−1(t)

+

∫ T

0

∫

Γ(t)
σ(x, ν(t))ητj

(t)ν(t)∇τj(t)ν(t) dHn−1(t) dt

+

∫ T

0

∫

Γ(t)
σ,x

(

x, ν(t)
)

· ξ(t) dHn−1(t) dt−
∫ T

0

∫

Γ(t)
u(t) ην(t)dHn−1(t) dt = 0.

Since

∫ T

0

∫

∂Γ(t)

(

σ(x, ν(t)) ητΓ(t)− ην(t)σ,p(x, ν(t)) · τΓ(t)
)

dHn−2(t)dt

=

∫ T

0

∫

∂Γ(t)
ξ(t)

(

(

σ,p(x, ν(t)) · ν(t)
)

τΓ(t)− ν(t)
(

σ,p(x, ν(t)) · τΓ(t)
)

)

dHn−2(t) dt

we obtain by choosing suitable variations in the neighborhood of points of ∂Γ

(σ,p(x, ν(t)) · ν(t))τΓ(t)− (σ,p(x, ν(t)) · τΓ(t)) ν(t) = l(t) νΩ(t)

with

l(t) = |(σ,p(x, ν(t)) · ν(t))τΓ(t)− (σ,p(x, ν(t)) · τΓ(t)) ν(t)|

on Γ(t) Hn−1-a.e. for a.e. t ∈ (0, T ). It follows

l νΩ · τΓ = σ,p(x, ν) · ν, l νΩ · ν = −σ,p(x, ν) · τΓ, νΩ · τj = 0 for j ∈ {2, . . . , n− 1}

on Γ(t) Hn−1-a.e. for a.e. t ∈ (0, T ). This shows

σ,p(x, ν) · νΩ = (σ,p(x, ν) · ν)(ν · νΩ) + (σ,p(x, ν) · τj) (τj · νΩ)

=
(

− (σ,p(x, ν) · ν)(σ,p(x, ν) · τΓ) + (σ,p(x, ν) · τΓ) (σ,p(x, ν) · ν)
)

/l

= 0

on Γ(t) Hn−1-a.e. for a.e. t ∈ (0, T ). ¥

We remark that the dependence of σ on x has no influence on the boundary condition at
intersections of the interface with the outer boundary.
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4 The discretization

The proofs of the existence theorems are based on minimization problems, cf. [LS95, Luc91,
GS]. For the degenerate problem, we choose an energy functional, which is similar to [LS95].
However, for the non-degenerate problem we introduce an energy functional, which differs from
[Luc91, GS].

Let (0, T ) be the time interval of interest with discretization fineness h = T
M , M ∈ N. We

construct iteratively time discrete solutions χh and uh for time steps h > 0. To this end we
consider the following two minimization problems in each time step:

Degenerate Stefan problem

Minimize Fh
t : BV (Ω; {0, 1}) → R,

Fh
t (χ) =

∫

Ω
|∇χ|σ +

h

2

∫

Ω
∇v∇(v − uh

D(t))−
∫

Ω
χuh

D(t), (4.1)

where v ∈ H1(Ω) is the weak solution of

χ− χh(t− h) = h(△v + fh(t)), v = uh
D(t)|∂Ω. (4.2)

Non-degenerate Stefan problem

Minimize Eh
t : BV (Ω; {0, 1}) → R,

Eh
t (χ) =

∫

Ω
|∇χ|σ +

h

2

∫

Ω
∇v∇(v − uh

D(t)) +
1

2

∫

Ω
v2 −

∫

Ω
(v + χ)uh

D(t), (4.3)

where v ∈ H1(Ω) is the weak solution of

v + χ− χh(t− h)− uh(t− h) = h(△v + fh(t)), v = uh
D(t)|∂Ω. (4.4)

The discretization fh and uh
D of f and uD are chosen such that fh and uh

D are constant on the
intervals ((k − 1)h, kh], k = 1, · · · , M , and fh → f in L2(ΩT ) and uh

D → uD in L2(0, T ; H1(Ω))
as h → 0. We also may assume that the boundary values of uD are extended in Ω such that
△uD(t) = 0 for a.e. t ∈ (0, T ).

Note, (4.2) is the implicit time discretization of (1.3) for χ = χh(t) and v = uh(t), and (4.4)
is the implicit time discretization of (1.1) for χ = χh(t) and v = uh(t).

Lemma 4.1
There exists a minimizer χh ∈ BV (Ω; {0, 1}) of Fh

t .

Proof:
Let {χk}k∈N, χk ∈ BV (Ω; {0, 1}), be a minimizing sequence and {vk}k∈N the corresponding
sequence of weak solutions of (4.2). In view of △uh

D = 0 we estimate

Fh
t (χk) ≥

∫

Ω
|∇χk|σ +

h

2

∫

Ω
|∇(vk − uh

D(t))|2 −
∫

Ω
|uh

D(t)|.

The uniform boundedness of {χk}{k∈N} in L2(Ω; {0, 1}) and the BV (Ω)–compactness imply that
there exists a subsequence (still denoted by {χk}k∈N) such that

χk → χ̂ in L2(Ω) and χ̂ ∈ BV (Ω; {0, 1}).
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In addition, by the uniform boundedness of {vk}k∈N in H1(Ω) and by (4.2) we derive

vk → v̂ in H1(Ω),

where v̂ is the weak solution of (4.2) for χ = χ̂. From this property and the lower semicontinuity
of

∫

Ω |∇χk|σ we conclude that χ̂ is a minimizer of Fh
t . ¥

Lemma 4.2
There exists a minimizer χh ∈ BV (Ω; {0, 1}) of Eh

t .

Proof:
Let {χk}k∈N, χk ∈ BV (Ω; {0, 1}), be a minimizing sequence and {vk}k∈N the corresponding
sequence of weak solutions of (4.4). Due to △uh

D = 0 we have

Fh
t (χk) ≥

∫

Ω
|∇χk|σ +

h

2

∫

Ω
|∇(vk − uh

D(t))|2 +
1

2

∫

Ω
v2
k −

∫

Ω
(|vk|+ 1)|uh

D(t)|.

Since {χk}{k∈N} is uniformly bounded in L2(Ω; {0, 1}) and in BV (Ω) there exists a subsequence
(still denoted by {χk}k∈N) with

χk → χ̂ in L2(Ω) and χ̂ ∈ BV (Ω; {0, 1}).

Moreover, the uniform boundedness of {vk}k∈N in H1(Ω) implies that there exists a subsequence
(still denoted by {χk}k∈N) with

vk ⇀ v̂ in H1(Ω).

Since

∫

Ω
(χk − χl)(vk − vl) = −

∫

Ω
(vk − vl)

2 − h

∫

Ω
|∇(vk − vl)|2 → 0, as k, l →∞,

we conclude

vk → v̂ in H1(Ω),

where v̂ is a weak solution of (4.4) for χ = χ̂. This property and the lower semicontinuity of
∫

Ω |∇χ|σ assures that χ̂ is a minimizer of Eh
t . ¥

From the minimization procedure we obtain iteratively χh and uh (uh is a weak solution of (4.2)
and (4.4), respectively, for χ = χh) at the time steps t = kh, k = 0, . . . , M . We extend χh and
uh by χh(t) = χh(kt) and uh(t) = uh(kt) for t ∈ ((k − 1)h, kh], k = 1, . . . , M , and abbreviate

∂−h
t g(t) := g(t)−g(t−h)

h for a function g.

Next we establish weak formulations of the Euler–Lagrange equations for Fh
t and Eh

t , which
are connected to (1.8) and (1.10), respectively. To determine the first variation of the spa-
tially inhomogeneous and anisotropic interfacial energy we fall back on the following variational
property, cf. [GK09]:
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Lemma 4.3
Let Φ : [−τ0, τ0]× Ω → Ω be a family of diffeomorphisms of Ω onto itself. If g ∈ BV (Ω; {0, 1})
then

d

dτ

∫

Ω

∣

∣∇g
(

Φ−1(τ, ·)
)
∣

∣

σ

∣

∣

∣

∣

τ=0

=

∫

Ω

(

σ
(

Φ(τ, x), Ψ(τ, x)νg(x)
)

tr

(

∂Φ,τ (τ, x)

∂x

)

+ σ,x

(

Φ(τ, x), Ψ(τ, x)νg(x)
)

· d

dτ
Φ(τ, x)

+ σ,p

(

Φ(τ, x), Ψ(τ, x)νg(x)
)

· d

dτ

(

Φ,x(τ, x)
)−T

νg(x)

)
∣

∣

∣

∣

τ=0

∣

∣∇g(x)
∣

∣,

where tr denotes the trace, Ψ(τ, x) = |detΦ,x(τ, x)|
(

Φ,x(τ, x)
)−T

and νg = − ∇g
|∇g| for |∇g|–a.e. x ∈

Ω.

Note that, if M is an n× n–matrix then Id + ηM , η ∈ R, is invertible for |η| sufficiently small.
In addition,

det(Id + ηM) = 1 + ηtr(M) +
1

2
η2

(

(trM)2 − tr(M2)
)

+ O(η3),

and
(Id + ηM)−1 = Id− ηM + η2M2 + O(η3).

Theorem 4.4
Let Ω be a domain with Lipschitz–boundary. Further, let assumption A 2.1 be satisfied. If

χh(t) ∈ BV (Ω; {0, 1}) is a minimizer of Fh
t or Eh

t and uh(t) is the corresponding weak solution
of (4.2) and (4.4), respectively, then

∫

Ω

(

σ
(

·, νh(t, ·)
)

∇ · ξ(·) + σ,x

(

·, νh(t, ·)
)

· ξ(·)− νh(t, ·) · ∇ξ(·)σ,p

(

·, νh(t, ·)
)

)

|∇χh(t, ·)|

−
∫

Ω
uh(t, ·) ξ(·) · νh(t, ·)|∇χh(t, ·)| = 0 (4.5)

for all ξ ∈ C1
c (Ω, Rn), where νh(t) = − ∇χh(t)

|∇χh(t)|
.

If, in addition, Ω is a bounded domain with C1–boundary then (4.5) even holds for all ξ ∈
C∞(Ω, Rn) with ξ · νΩ = 0 on ∂Ω, where νΩ is the outer unit normal of ∂Ω.

Proof:
Let ξ ∈ C1

c (Ω, Rn) and consider
Φ(x ; τ) = x + τ ξ(x) (4.6)

for x ∈ Ω and τ ∈ R. Then Φ(· ; τ) is a diffeomorphism of Ω onto itself if |τ | is sufficiently small.
Via the above diffeomorphism we define

χh
τ (t, x) = χh

(

t, Φ−1(x ; τ)
)

.

Furthermore,

νh
τ (t, x) = − ∇χh

τ (t, x)
∣

∣∇χh
τ (t, x)

∣

∣

.
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We denote the weak solution of (4.2) and (4.4) for χ = χh
τ (t) by uh

τ (t). Since χh(t) = χh
τ (t)|τ=0

is a minimizer of Fh
t and Eh

t , respectively, we obtain

0 =
d

dτ
Fh

t (χh
τ (t))

∣

∣

∣

τ=0
and 0 =

d

dτ
Eh

t (χh
τ (t))

∣

∣

∣

τ=0
, respectively.

Next we compute the above derivatives. Here, we take advantage from the following properties
of Φ:

(i)
∣

∣det Φ,x(x ; 0)
∣

∣ = 1,

(ii) Φ−1
,x (Φ(x ; τ) ; τ) =

(

Φ,x(x ; τ)
)−1

,

(iii) d
dτ (Φ,x(x ; τ))−1

∣

∣

∣

∣

τ=0

= −∇ξ(x).

Lemma 4.3 gives

d

dτ

∫

Ω
σ

(

z,− ∇zχ
h
(

t, Φ−1(z ; τ)
)

∣

∣∇zχh
(

t, Φ−1(z ; τ)
)∣

∣

)

∣

∣∇zχ
h
(

t, Φ−1(z ; τ)
)∣

∣

∣

∣

∣

∣

τ=0

=

∫

Ω

(

σ
(

x, νh(t)
)

∇ · ξ + σ,x

(

x, νh(t)
)

· ξ − νh(t) · ∇ξ σ,p

(

x, νh(t)
)

)

|∇χh(t)|.

In the following, we abbreviate wh
τ (t) = uh

τ (t)−uh
D(t), wh(t) = uh(t)−uh

D(t) and utilize△uh
D(t) =

0. Hence the remaining parts of Fh
t can be rewritten as

h

2

∫

Ω
∇uh

τ (t)∇(uh
τ (t)− uh

D(t))−
∫

Ω
χh

τ (t)uh
D(t)

=
h

2

∫

Ω
|∇wh

τ (t)|2 −
∫

Ω
χh

τ (t)uh
D(t)

=
h

2

∫

Ω
|∇

(

wh
τ (t)− wh(t)

)

|2 + h

∫

Ω
∇

(

wh
τ (t)− wh(t)

)

∇wh(t) +
h

2

∫

Ω
|∇wh(t)|2 −

∫

Ω
χh

τ (t)uh
D(t)

=
h

2

∫

Ω
|∇

(

wh
τ (t)− wh(t)

)

|2 −
∫

Ω
(χh

τ (t)− χh(t))wh(t) +
h

2

∫

Ω
|∇wh(t)|2 −

∫

Ω
χh

τ (t)uh
D(t)

=
h

2

∫

Ω
|∇

(

wh
τ (t)− wh(t)

)

|2 −
∫

Ω
χh

τ (t)uh(t) +

∫

Ω
χh(t)wh(t) +

h

2

∫

Ω
|∇wh(t)|2. (4.7)

Next we compute the τ -derivative of the first term in (4.7).
We denote by C > 0 some constant, which may differ from estimate to estimate. Note,

h

τ

∫

Ω

∣

∣

∣
∇

(

wh
τ (t, z)− wh(t, z)

)

∣

∣

∣

2
dz

= −
∫

Ω

(χh(t, Φ−1(z; τ))− χh(t, z)√
τ

)(wh
τ (t, z)− wh(t, z)√

τ

)

dz

≤ Cδ

∫

Ω

(χh(t, Φ−1(z; τ))− χh(t, z)√
τ

)2
+ δ

∫

Ω

(wh
τ (t, z)− wh(t, z)√

τ

)2
dz

for any δ > 0 and some Cδ > 0. In consequence, by Poincare’s inequality

1

τ

∫

Ω

∣

∣

∣
∇

(

wh
τ (t, z)− wh(t, z)

)

∣

∣

∣

2
dz ≤ C

∫

Ω

(χh(t, Φ−1(z; τ))− χh(t, z)√
τ

)2
dz (4.8)
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for some constant C > 0.
Now we show that the term on the right hand side of (4.8) is uniformly bounded as τ → 0.
Denoting Ω0(t) = {x ∈ Ω : χh(t, x) = 0} and Ω1(t) = {x ∈ Ω : χh(t, x) = 1} we estimate
∫

Ω

(

χh(t, Φ−1(z; τ))− χh(t, z)
)2

dz

≤
∫

Ω
χh(t, Φ−1(z; τ))

(

χh(t, Φ−1(z; τ))− χh(t, z)
)

dz − χh(t, z)
(

χh(t, Φ−1(z; τ))− χh(t, z)
)

dz

≤
∣

∣

∣
Φ−1(Ω0(t); τ))\Ω0(t)

∣

∣

∣
+

∣

∣

∣
Ω1(t)\Φ−1(Ω1(t); τ)

∣

∣

∣

≤ 2

∫

Ω
|∇χh(t, x)|max

x∈Ω

∣

∣

∣
Φ−1(x; τ)− Φ−1(x; 0)

∣

∣

∣

≤ 2

∫

Ω
|∇χh(t, x)|max

x∈Ω

∣

∣

∣
x− Φ(x; τ)

∣

∣

∣

≤ 2

∫

Ω
|∇χh(t, x)|τ max

x∈Ω

∣

∣ξ(x)
∣

∣

≤ Cτ

for some constant C > 0 (independent of t). Hence,

1

τ

∫

Ω

∣

∣

∣
∇

(

wh
τ (t, z)− wh(t, z)

)

∣

∣

∣

2
dz ≤ C.

Furthermore, for any q ∈ (2, 2∗] with 2∗ = 2n
n−p if n ≥ 3 or any q ∈ (2,∞) if n = 2 we obtain

h

τ

∫

Ω

∣

∣∇
(

wh
τ (t, z)− wh(t, z)

)
∣

∣

2
dz

=

∫

Ω

∣

∣

∣

χh(t, Φ−1(z; τ))− χh(t, z)√
τ

∣

∣

∣

∣

∣

∣

wh
τ (t, z)− wh(t, z)√

τ

∣

∣

∣
dz

≤
∣

∣

∣

∣

∣

∣

χh(t, Φ−1(z; τ))− χh(t, z)√
τ

∣

∣

∣

∣

∣

∣

L
q

q−1 (Ω)

∣

∣

∣

∣

∣

∣

wh
τ (t, z)− wh(t, z)√

τ

∣

∣

∣

∣

∣

∣

Lq(Ω)

≤ C
1√
τ
|τ |

q−1
q

∣

∣

∣

∣

∣

∣
∇

(wh
τ (t, z)− wh(t, z)√

τ

)
∣

∣

∣

∣

∣

∣

L2(Ω)

→ 0 for τ → 0.

In consequence,

d

dτ
h

∫

Ω

∣

∣

∣
∇

(

wh
τ (t, z)− wh(t, z)

)∣

∣

∣

2
dz

∣

∣

∣

∣

∣

τ=0

= lim
τ→0

1

τ
h

∫

Ω

∣

∣

∣
∇

(

wh
τ (t, z)− wh(t, z)

)∣

∣

∣

2
dz = 0

In addition,

d

dτ

∫

Ω
χh

τ (t)uh(t)dz

∣

∣

∣

∣

τ=0

=

∫

Ω
χh(t, x)uh(t, x)∇·ξdx +

∫

Ω
χh(t, x)∇uh(t, x)·ξ dx

=

∫

Ω
uh(t) ξ·νh(t)|∇χh(t)| .

(4.9)

This shows the claim for Fh
t since the remaining terms of (4.7) do not depend on τ .
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To verify the claim for Eh
t we observe

h

2

∫

Ω
∇uh

τ (t)∇(uh
τ (t)− uh

D(t)) +
1

2

∫

Ω

(

uh
τ (t)

)2 −
∫

Ω
(uh

τ (t) + χh
τ (t))uh

D(t)

=
h

2

∫

Ω
|∇wh

τ (t)|2 +
1

2

∫

Ω
(wh

τ (t))2 − 1

2

∫

Ω
(uh

D(t))2 −
∫

Ω
χh

τ (t)uh
D(t)

=
h

2

∫

Ω
|∇

(

wh
τ (t)− wh(t)

)

|2 + h

∫

Ω
∇

(

wh
τ (t)− wh(t)

)

∇wh(t) +
h

2

∫

Ω
|∇wh(t)|2 +

1

2

∫

Ω
(wh

τ (t))2

− 1

2

∫

Ω
(uh

D(t))2 −
∫

Ω
χh

τ (t)uh
D(t)

=
h

2

∫

Ω
|∇

(

wh
τ (t)− wh(t)

)

|2 −
∫

Ω

(

wh
τ (t)− wh(t)

)

wh(t)−
∫

Ω
(χh

τ (t)− χh(t))wh(t)

+
1

2

∫

Ω
(wh

τ (t))2 − 1

2

∫

Ω
(uh

D(t))2 +
h

2

∫

Ω
|∇wh(t)|2 −

∫

Ω
χh

τ (t)uh
D(t)

=
h

2

∫

Ω
|∇

(

wh
τ (t)− wh(t)

)

|2 +
1

2

∫

Ω
(wh

τ (t)− wh(t))2 +
1

2

∫

Ω
(wh(t))2 −

∫

Ω
χh

τ (t)uh(t)

+

∫

Ω
χh(t)wh(t)− 1

2

∫

Ω
(uh

D(t))2 +
h

2

∫

Ω
|∇wh(t)|2. (4.10)

Since

h

∫

Ω

∣

∣∇(wh
τ (t, z)− wh(t, z))

∣

∣

2
dz +

∫

Ω
(wh

τ (t, z)− wh(t, z))2dz

= −
∫

Ω

(

χh(t, Φ−1(z; τ))− χh(t, z)
)(

wh
τ (t, z)− wh(t, z)

)

dz

we may use the same argumentation as before to derive

d

dτ

(

h

∫

Ω

∣

∣

∣
∇

(

wh
τ (t, z)− wh(t, z)

)
∣

∣

∣

2
dz +

∫

Ω

∣

∣

∣

(

wh
τ (t, z)− wh(t, z)

)
∣

∣

∣

2
dz

)
∣

∣

∣

∣

∣

τ=0

= 0

Due to (4.9) the assertion also follows for Eh
t since the remaining terms of (4.10) do not depend

on τ .
If Ω is a bounded domain with C1–boundary we may choose a family of diffeomorphisms Φ(τ, ·),
τ ∈ [−τ0, τ0], of Ω onto itself given by the initial value problem

Φ(0, x) = x and Φ,τ (τ, x) = ξ(Φ(τ, x)), x ∈ Ω,

with ξ ∈ C1(Ω, Rn) and ξ · νΩ = 0 on ∂Ω. Then Φ also fulfills the above properties (i)–(iii) and
|Φ(x; τ)− Φ(x; 0)| ≤ τ maxx∈Ω |ξ(x)|. Thus

∫

Ω

(

σ
(

·, νh(t, ·)
)

∇ · ξ(·) + σ,x

(

·, νh(t, ·)
)

· ξ(·)− νh(t, ·) · ∇ξ(·)σ,p

(

·, νh(t, ·)
)

)

|∇χh(t, ·)|

−
∫

Ω
uh(t, ·) ξ(·) · νh(t, ·)|∇χh(t, ·)| = 0

for all ξ ∈ C1(Ω, Rn) with ξ · νΩ = 0 on ∂Ω, as required. ¥
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5 Convergence to solutions

5.1 The degenerate case

We are going to establish compactness of the discrete solutions χh, h > 0, in L1(ΩT ) similarly
to [LS95].

Lemma 5.1 (Uniform bound)
There exists a constant C > 0 (depending only on

∫

Ω |∇χ(0)|σ, ||uD||W 1,1(0,T ;H1(Ω)), ||f ||L2(ΩT ))
such that

ess supt∈(0,T )

∫

Ω
|∇χh(t)|σ +

∫

ΩT

|∇uh(t)|2 ≤ C. (5.1)

Proof:
We first like to mention that for weak solutions ũh(t), h > 0, of −△v = fh(t) with v = uh

D(t)|∂Ω

it holds
∫ T

0
||ũh(t)||2H1(Ω) dt ≤ D1,

where D1 > 0 is some constant. In view of Fh
t (χh(t)) ≤ Fh

t (χh(t− h)) we obtain

∫

Ω
|∇χh(t)|σ+

h

2

∫

Ω
∇uh(t)∇

(

uh(t)− uh
D(t)

)

≤
∫

Ω
|∇χh(t− h)|σ +

h

2

∫

Ω
fh(t)

(

ũh(t)− uh
D(t)) +

∫

Ω

(

χh(t)− χh(t− h)
)

uh
D(t).

By Young’s and Poincaré’s inequality we estimate

∫

Ω
|∇χh(t)|σ + hD2

∫

Ω
|∇uh(t)|2 ≤

∫

Ω
|∇χh(t− h)|σ + hD3||fh(t)||2L2(Ω) + hD3 ||uh

D(t)||2H1(Ω)

+ h||ũh(t)||2L2(Ω) +

∫

Ω

(

χh(t)− χh(t− h)
)

uh
D(t) (5.2)

with some constants D2, D3 > 0. Since

∫ jh

0

∫

Ω
|∂−h

t uh
D(t)| ≤

∫ jh

0

∫

Ω
|∂tuD(t)|,

we obtain for k = 1, 2, . . . , j, j ≤ M ,

j
∑

k=1

∫

Ω

(

χh(kh)− χh((k − 1)h)
)

uh
D(kh)

= −
∫ jh

h

∫

Ω
∂−h

t uh
D(t)χh(t− h) +

∫

Ω
χh(jh)uh

D(jh)−
∫

Ω
χh(0)uh

D(h)

≤
∫ jh

h

∫

Ω
|∂−h

t uh
D(t)| + 2 ||uD||L∞(0,T ;L1(Ω))

≤ D4||uD||W 1,1(0,T ;L1(Ω)),
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where D4 > 0 is some constant.
Now we take inequality (5.2) iteratively for t = kh, k ∈ N, and sum over k = 1, 2, . . . , j, j ≤ M ,
which leads to

∫

Ω
|∇χh(jh)|σ + D2

∫

Ωjh

|∇uh(t)|2 ≤
∫

Ω
|∇χ(0)|σ + D3

∫ T

0
||f ||2L2(Ω)dt

+ D5 ||uD||W 1,1(0,T ;H1(Ω)) + D6

for some constants D5 > 0 and D6 > 0. Hence the assertion is obvious. ¥

The following lemma is used to control time differences of χh, see [LS95].

Lemma 5.2 ([LS95])
Let ϕ ∈ BV (Ω) with ||ϕ||L∞(Ω) ≤ M for some constant M > 0. Then there exist constants
C > 0 and ρ0 > 0 (depending only on Ω and M) such that for all ρ ≤ ρ0

∫

Ω
|ϕ| ≤ ρ

(

∫

Ω
|∇ϕ|+ CHn−1(∂Ω)

)

+
C

ρ
||ϕ||H−1(Ω).

Lemma 5.3 (Compactness in L1(ΩT ))
(i) (Compactness in space)

The discrete solutions χh, h > 0, are bounded in L1(0, T ; BV (Ω)).

(ii) (Compactness in time, cf. [LS95])
The discrete solutions χh, h > 0, fulfill

∫ T−τ

0

∫

Ω
|χh(·+ τ)− χh(·)| ≤ Cτ1/4.

for some C > 0.

In consequence,
χh → χ in L1(ΩT ) (5.3)

for a subsequence as h → 0.

Proof:
To (i): This property immediately follows from Lemma 5.1.
To (ii): Without loss of generality we may assume τ = kh and t = lh. From (4.2) and Lemma
5.1 we infer

||χh(t + τ)− χh(t)||H−1(Ω) = sup
||g||

H1
0(Ω)

=1

∣

∣

∣

∣

∫

Ω

(

χh(t + τ)− χh(t)
)

g

∣

∣

∣

∣

= sup
||g||

H1
0(Ω)

=1

∣

∣

∣

∣

∫ t+τ

t

∫

Ω

χh(s)− χh(s− h)

h
g ds

∣

∣

∣

∣

≤
∫ t+τ

t

∣

∣

∣

∣

∣

∣

∣

∣

χh(s)− χh(s− h)

h

∣

∣

∣

∣

∣

∣

∣

∣

H−1(Ω)

ds

≤ τ
1
2

(
∫ t+τ

t

(

||uh(s)||2H1(Ω) + ||fh(s)||2L2(Ω)

)

)
1
2

≤ Cτ
1
2 .

(5.4)
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Choosing ρ = τ1/4 in Lemma 5.2 shows (ii).

We infer from (i) and (ii) that {χh} is relatively compact in L1(ΩT ) (cf. [Sim78, Sim87]), i.e.
there exists a subsequence {χhk}{k∈N} such that

χhk → χ in L1(ΩT ).

¥

5.2 The non-degenerate case

To pass to the continuous problem we first establish a priori estimates for uh and χh.

Lemma 5.4 (Uniform bound)
There exists a constant C > 0 (depending only on

∫

Ω |u(0)|2,
∫

Ω |∇χ(0)|σ, ||uD||H1(0,T ;H1(Ω)),
||f ||L2(ΩT )) such that

ess supt∈(0,T )

(
∫

Ω

(

(uh(t))2 + |∇χh(t)|
)

)

+

∫

ΩT

|∇uh(t)|2 ≤ C (5.5)

and
∫ T

0
||∂−h

t

(

uh(t) + χh(t)
)

||2H−1(Ω) ≤ C. (5.6)

Proof:

Equation (4.4) yields

h

2

∫

Ω

∣

∣∇
(

v − uh
D(t)

)∣

∣

2
= −1

2

∫

Ω

(

v + χ− uh(t− h)− χh(t− h)
)(

v − uh
D(t)

)

+
h

2

∫

Ω
fh(t)

(

v − uh
D(t)

)

. (5.7)

Utilizing (5.7), Eh
t can be rewritten in the following form:

Eh
t (χ) =

∫

Ω
|∇χ|σ +

1

2

∫

Ω

(

uh(t− h) + χh(t− h) + hfh(t)
)(

v − uh
D(t)

)

− 1

2

∫

Ω

(

v + χ
)(

v − uh
D(t)

)

+
1

2

∫

Ω
v2 −

∫

Ω
(v + χ)uh

D(t)

=

∫

Ω
|∇χ|σ +

1

2

∫

Ω

(

uh(t− h) + χh(t− h) + hfh(t)
)(

v − uh
D(t)

)

− 1

2

∫

Ω
vuh

D(t)− 1

2

∫

Ω
χ
(

v + uh
D(t)

)
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Note,

Eh
t (χh(t− h)) =

∫

Ω
|∇χh(t− h)|σ −

1

2

(

ûh(t)− uh(t− h)
)(

ûh(t)− uh
D(t)

)

+
h

2

∫

Ω
fh(t)

(

ûh(t)− uh
D(t)

)

+
1

2

∫

Ω

(

ûh(t)
)2 −

∫

Ω

(

ûh(t) + χh(t− h)
)

uh
D(t)

=

∫

Ω
|∇χh(t− h)|σ +

1

2

∫

Ω

(

uh(t− h) + hfh(t)
)(

ûh(t)− uh
D(t)

)

− 1

2

∫

Ω

(

ûh(t) + χh(t− h)
)

uh
D(t)− 1

2

∫

Ω
χh(t− h)uh

D(t),

(5.8)

where ûh(t) is the weak solution of

v − uh(t− h) = h
(

△v + fh(t)
)

, v = uh
D(t)|∂Ω. (5.9)

Due to Eh
t (χh(t)) ≤ Eh

t (χh(t− h)) we conclude

2

h

(

Eh
t (χh(t))− Eh

t (χh(t− h))
)

=

2

h

∫

Ω

(

|∇χh(t)|σ − |∇χh(t− h)|σ
)

−
∫

Ω

χh(t)− χh(t− h)

h
uh(t)

+

∫

Ω

(

uh(t− h) + hfh(t)
)uh(t)− ûh(t)

h

−
∫

Ω

(

uh(t)− ûh(t)

h
+

χh(t)− χh(t− h)

h

)

uh
D(t) ≤ 0.

(5.10)

Multiplying (4.4) with (uh(t)− uh
D(t)) gives

uh(t)− uh(t− h)

h
uh(t)− uh(t)− uh(t− h)

h
uh

D(t) +
χh(t)− χh(t− h)

h

(

uh(t)− uh
D(t)

)

= −
∫

Ω
|∇

(

uh(t)− uh
D(t)

)

|2 +

∫

Ω
fh(t)

(

uh(t)− uh
D(t)

)

. (5.11)

In addition, testing (5.9) with
(

ûh(t)− uh
D(t)

)

yields

ûh(t)− uh(t− h)

h
ûh(t)− ûh(t)− uh(t− h)

h
uh

D(t)

= −
∫

Ω
|∇

(

ûh(t)− uh
D(t)

)

|2 +

∫

Ω
fh(t)

(

ûh(t)− uh
D(t)

)

. (5.12)

Adding (5.11) and (5.12) shows

−
∫

Ω
|∇

(

uh(t)− uh
D(t)

)

|2 −
∫

Ω
|∇

(

ûh(t)− uh
D(t)

)

|2 +

∫

Ω
fh(t)

(

uh(t)− 2uh
D(t) + ûh(t)

)

=
1

h

(

(

uh(t)
)2 − uh(t− h)uh(t) +

(

ûh(t)
)2 − uh(t− h)ûh(t)

−
(

uh(t)− 2uh(t− h) + ûh(t)
)

uh
D(t) + h ∂−h

t χ
(

uh(t)− uh
D(t)

)

)

≥ 1

h

(

(

uh(t)
)2 −

(

uh(t− h)
)2 − uh(t− h)

(

uh(t)− ûh(t)
)

−
(

uh(t)− 2uh(t− h) + ûh(t)
)

uh
D(t) + h ∂−h

t χh(t)
(

uh(t)− uh
D(t)

)

)

.

(5.13)
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Moreover, adding (5.10) and (5.13) leads to

2

h

∫

Ω

(

|∇χh(t)|σ − |∇χh(t− h)|σ
)

− 2

∫

Ω
∂−h

t

(

uh
D(t)(uh(t) + χh(t))

)

+ 2

∫

Ω
∂−h

t uh
D(t)

(

uh(t− h) + χh(t− h)
)

+

∫

Ω

(uh(t))2 − (uh(t− h))2

h

≤ −
∫

Ω

(

|∇(uh(t)− uh
D(t))|2 + |∇(ûh(t)− uh

D(t))|2
)

+ 2

∫

Ω
fh(t)

(

ûh(t)− uh
D(t)

)

.

From (4.4) we deduce

||ûh(t)− uh(t)||2L2(Ω) ≤ ||χh(t)− χh(t− h)||L2(Ω) ||ûh(t)− uh(t)||L2(Ω)

− h||∇
(

ûh(t)− uh(t)
)

||2L2(Ω)

and therefore

||ûh(t)− uh(t)||L2(Ω) ≤ ||χh(t)− χh(t− h)||L2(Ω).

Hence we obtain
∫

Ω
|fh(t)

(

ûh(t)− uh
D(t)

)

| ≤ ||fh(t)||L2(Ω)||xh(t)− xh(t− h)||L2(Ω)

+ Cδ||fh(t)||2L2(Ω) + δ||uh(t)− uh
D(t)||2L2(Ω)

for any δ > 0 and some Cδ > 0. Note,

∫ t

0

∫

Ω
|∂−h

t uh
D(s)|2 ≤ ||∂tuD||2L2(Ωt)

.

By means of Poincaré’s and Young’s inequality we finally establish

ess supt∈(0,T )

(

∫

Ω

(

(uh(t))2 + |∇χh(t)|
)

)

+

∫ T

0

∫

Ω
|∇uh(t)|2dx dt

≤ C1

(
∫

Ω
|∇χ(0)|σ +

∫

Ω
|u(0)|2 + ||uD||2H1(0,T ;H1(Ω)) + ||f ||2L2(ΩT )

)

+ C2,

where C1, C2 > 0 are some constants and (5.5) is established.
Due to (4.4) we obtain for η ∈ H1

0 (Ω) with ||η||H1
0 (Ω) ≤ 1

∫

Ω
∂−h

t

(

uh(t) + χh(t)
)

η ≤
(

∫

Ω

(

|∇uh(t)|2 + |fh(t)|2
)

)1/2

.

From (5.5) we infer
∫ T

0
||∂−h

t

(

uh(t) + χh(t)
)

||2H−1(Ω) ≤ C3

for some constant C3 > 0. ¥

Next we take advantage from an L1-bound for fractional time derivatives of χh and uh (see
[Luc90, Luc91] ), which ensures compactness of χh and uh in L1(ΩT ).
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Lemma 5.5 (Compactness in time, cf. [Luc90, Luc91])
Let Ω ⊂ R

n be a bounded domain with Lipschitz-boundary. Furthermore, let

uD ∈ H1(ΩT ), u ∈ L∞(0, τ ; L2(Ω)), u− uD ∈ L2(0, T, H1
0 (Ω)),

χ ∈ L∞(0, T ; BV (Ω; {0, 1}))

and

∂t(u + χ) ∈ L2(0, T ; H−1(Ω)).

Then there exists a constant C > 0 (depending on the above norms) such that

∫ T−τ

0
|χ(·+ τ)− χ(·)|+ |u(·+ τ)− u(·)| ≤ Cτ δn

with 1/δn = 13− 8
n .

Due to the a priori estimates and Lemma 5.5 we can select (weakly) convergent subsequences:

Corollary 5.6
There exist

u ∈
(

uD + L2(0, T ; H1
0 (Ω))

)

∩ L∞(0, T ; L2(Ω)), uD ∈ H1(ΩT ),

and

χ ∈ L∞
(

0, T ; BV (Ω; {0, 1})
)

such that

(i) uh ⇀ u in L2
(

0, T ; H1(Ω)
)

,

(ii) uh → u in L1
(

0, T ; L1(Ω)
)

,

(iii) χh → χ in L2
(

0, T ; L2(Ω)
)

,

(iv) uh(t) → u(t) in L1(Ω) for a.e. t ∈ (0, T ),

(v) χh(t) → χ(t) in L2(Ω) for a.e. t ∈ (0, T )

for some subsequence as h →∞.

In the following lemma we show that for the non-degenerate problem loss of surface area is
excluded in the limit.

Lemma 5.7
The functions χh(t), h > 0, fulfill for a.e. t ∈ (0, T ):

∫

Ω
|∇χh(t)|σ →

∫

Ω
|∇χ(t)|σ as h → 0 .
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Proof:
Since χh(t) → χ(t) in L2(Ω) for a.e. t ∈ (0, T ) we immediately obtain

∫

Ω
|∇χ(t)|σ ≤ lim inf

h→0

∫

Ω
|∇χh(t)|σ for a.e. t ∈ (0, T )

by the lower semicontinuity property of
∫

Ω |∇χh(t)|σ.
Now we prove the opposite inequality. Since

Eh
t

(

χh(t)
)

≤ Eh
t

(

χ(t)
)

we derive
∫

Ω

(

|∇χh(t)|σ +
1

2
(uh(t))2 +

h

2

∣

∣∇(uh(t)− uh
D(t))

∣

∣

2 −
(

uh(t) + χh(t)
)

uh
D(t)

)

≤
∫

Ω

(

|∇χ(t)|σ +
1

2
v2(t) +

h

2

∣

∣∇(v(t)− uh
D(t))

∣

∣

2 −
(

v(t) + χ(t)
)

uh
D(t)

)

, (5.14)

where v(t) is the weak solution of

v − uh(t− h)

h
+

χ(t)− χh(t− h)

h
= △v + fh(t), v(t) = uh

D(t)|∂Ω.

Note, from (4.4) we conclude
∫

Ω

(

uh(t)− v(t)
)2

= −
∫

Ω

(

χh(t)− χ(t)
)(

uh(t)− v(t)
)

− h

∫

Ω
|∇

(

uh(t)− v(t)
)

|2.

In consequence,

||uh(t)− v(t)||L2(Ω) ≤ ||χh(t)− χ(t)||L2(Ω) → 0 as h → 0,

and v(t) = u(t) a.e. in Ω for a.e. t ∈ (0, T ). We estimate
∣

∣

∣

∣

∫

Ω

(1

2
uh(t)− uh

D(t)
)

uh(t)−
∫

Ω

(1

2
u(t)− uh

D(t)
)

u(t)

∣

∣

∣

∣

≤ ||uh
D(t)||L2(Ω)||uh(t)− u(t)||L2(Ω) +

1

2

∫

Ω

(

|uh(t)|+ |u(t)|
)

|uh(t)− u(t)| → 0 as h → 0,

and
∣

∣

∣

∣

∫

Ω

(

χh(t)− χ(t)
)

uh
D(t)

∣

∣

∣

∣

≤ ||χh(t)− χ(t)||L2(Ω) ||uh
D(t)||L2(Ω) → 0 as h → 0

for a.e. t ∈ (0, T ) since uh(t) → u(t), χh(t) → χ(t) and uh
D(t) → uD(t) in L2(Ω) for a.e. t ∈ (0, T ).

In addition,
∣

∣

∣

∣

h

∫

Ω

∣

∣∇(u(t)− uh
D(t))

∣

∣

2 − h

∫

Ω

∣

∣∇(uh(t)− uh
D(t))

∣

∣

2
∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ω

(

(u(t))2 − (uh(t))2 −
(

uh(t− h) + uh
D(t)

)(

u(t)− uh(t)
)

− hfh(t)
(

u(t)− uh(t)
)

−
(

χ(t)− χh(t)
)

uh
D(t) + χ(t)u(t)− χh(t)uh(t)− χh(t− h)

(

u(t)− uh(t)
)

)

∣

∣

∣

∣

→ 0 as h → 0
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for a.e. t ∈ (0, T ). From (5.14) we conclude

∫

Ω
|∇χ(t)|σ ≥ lim sup

h→0

∫

Ω
|∇χh(t)|σ

for a.e. t ∈ (0, T ). ¥

5.3 The spatially inhomogeneous and anisotropic Gibbs–Thomson law

Before we pass to the limit in the weak formulation of the discrete spatially inhomogeneous and
anisotropic Gibbs–Thomson law, we show some approximation properties.

Lemma 5.8
Suppose

∫

Ω
σ(·, νh(t, ·))

∣

∣∇χh(t, ·)
∣

∣ →
∫

Ω
σ(·, ν(t, ·))

∣

∣∇χ(t, ·)
∣

∣, h → 0, (5.15)

for a.e. t ∈ (0, T ), where νh = −∇χh/|∇χh| and ν = −∇χ/|∇χ|.
Then, using the same notation as in Proposition 2.5:

(i)
∫

Ω×Sn−1 σ (·, ·)dΘ∞(t, ·, ·) ≤
∫

Ω σ(·, ν(t, ·))|∇χ(t, ·)| for a.e. t ∈ (0, T ).

(ii) There exists a sequence {gl
t}l∈N of functions gl

t ∈ C1
c (Ω), t ∈ (0, T ), such that

gl
t → σ,p(·, ν(t, ·)) in L1(|∇χ(t, ·)|)

for a.e. t ∈ (0, T ).

(iii) λ∞x (t) = δy=ν(t,x) for |∇χ(t)|-a.e. x ∈ Ω and a.e. t ∈ (0, T ).

Proof:
To (i): Due to Proposition 2.5 we infer

∫

Ω×Sn−1

σ (·, ·) dΘ∞(t, ·, ·) ≤ lim inf
j→∞

∫

Ω×Sn−1

σ(·, ·) dΘhj
(t, ·, ·)

= lim inf
j→∞

∫

Ω
σ(·, νhj (t, ·))

∣

∣∇χhj (t, ·)
∣

∣

=

∫

Ω
σ(·, ν(t, ·)) |∇χ(t, ·)|

for a.e. t ∈ (0, T ).
To (ii): Smooth approximations gl

t for the Cahn–Hoffman vector σ, p can be constructed as
follows: Due to (2.2) there exists for every δ > 0 and a.e. t ∈ (0, T ) approximative functions
gδ
t ∈ Kσ such that

∫

Ω

(

σ(·, ν(t, ·))− gδ
t (·) · ν(t, ·)

)

|∇χ(t, ·)| ≤ δ2.

Thus, by Lemma 2.3,
∫

Ω
|σ,p(·, ν(t, ·))− gδ

t (·)| |∇χ(t, ·)| ≤ C1 δ
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for some constant C1 > 0 and a.e. t ∈ (0, T ). This implies the existence of a sequence {gl
t}l∈N,

gl
t ∈ C1

c (Ω, Rn), with gl
t → σ,p(·, ν(t, ·)) in L1( |∇χ(t, ·)|) for a.e. t ∈ (0, T ) since δ > 0 may be

chosen arbitrarily small.
To (iii): Since χh(t) → χ(t) in L1(Ω) for a.e. t ∈ (0, T ) and lim suph→0

∫

Ω

∣

∣∇χh(t)
∣

∣ is bounded
for a.e. t ∈ (0, T ) we obtain

∇χh(t) → ∇χ(t) weakly∗

for a.e. t ∈ (0, T ). Hence, we can choose a set S ⊂ (0, T ) of Lebesgue measure zero such that
χh(t) → χ(t) in L1(Ω) and ∇χh(t) → ∇χ(t) weakly∗ for t ∈ (0, T )\S.
From Proposition 2.5 we conclude that there exist a sequence {hj}j∈N and a nonnegative Radon
measure Θ∞(t) ≡ π∞(t)⊗ λ∞x (t) on Ω× S

n−1, t ∈ (0, T )\S, such that

(a) Θhj
(t) ≡ |∇χhj (t)| ⊗ δ

νhj (t)
→ Θ∞(t) ≡ π∞(t)⊗ λ∞x (t) weakly∗, δy Dirac mass,

(b) |∇χhj (t)| → π∞(t) weakly∗,

(c) π∞(t) ≥ |∇χ(t)|,

(d)

lim
j→∞

∫

Ω
F

(

x, νhj (t, x)
)

|∇χhj (t, x)| =
∫

Ω×Sn−1

F
(

x, y
)

dΘ∞(t, x, y)

=

∫

Ω

(
∫

Sn−1

F
(

x, y
)

dλ∞x (t, y)

)

dπ∞(t, x)

for any F ∈ Cc(Ω× R
n) and all t ∈ (0, T )\S.

For any x̂ ∈ Ω we take r > 0 such that B(x̂, r) = {x ∈ R
n : ||x− x̂|| < r} ⋐ Ω and set

Fg(x, y; t) = Φ1(x)Φ2(y)|σ,p(x, y)− gt(x)|2,

where Φ1 ∈ Cc(Ω) with 0 ≤ Φ1 ≤ 1 in Ω and Φ1 ≡ 1 in B(x̂, r) and Φ2 ∈ Cc(R
n) with Φ2(y) = 0

in {y ∈ R
n : ||y|| < h} for some h > 0, Φ2(y) = 1 on S

n−1 and gt ∈ Kσ(Ω). Consequently,
Fg(·, · ; t) ∈ Cc(Ω× R

n). Proposition 2.5 assures (modulo a subsequence)

∫

Ω
Φ1(x)

(
∫

Sn−1

Φ2(y)|σ,p(x, y)− gt(x)|2dλ∞x (t, y)

)

∣

∣∇χ(t, x)
∣

∣

≤
∫

Ω
Φ1(x)

(
∫

Sn−1

Φ2(y)|σ,p(x, y)− gt(x)|2dλ∞x (t, y)

)

dπ∞(t, x)

= lim
j→∞

∫

Ω
Φ1(x)Φ2(ν

hj (t, x))|σ,p(x, νhj (t, x))− gt(x)|2|∇χhj (t, x)|

≤ lim
j→∞

∫

Ω
|σ,p(x, νhj (t, x))− gt(x)|2|∇χhj (t, x)|

(5.16)
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for every t ∈ (0, T )\S. Taking advantage from Lemma 2.3 we estimate

lim
j→∞

∫

Ω
C |σ,p(x, νhj (t, x))− gt(x)|2|∇χhj (t, x)|

≤ lim
j→∞

∫

Ω

(

σ(x, νhj (t, x))− gt(x) · νhj (t, x)
)

|∇χhj (t, x)|

=

∫

Ω

(

σ(x, ν(t, x))− gt(x) · ν(t, x)
)

|∇χ(t, x)|

≤
∫

Ω

∣

∣σ,p(x, ν(t, x))− gt(x)
∣

∣|∇χ(t, x)|
(5.17)

for every t ∈ (0, T )\S, where C > 0 is some constant. Hence, (ii) combined with (5.16) and
(5.17) shows

∫

Ω
Φ1(x)

(
∫

Sn−1

|σ,p(x, y)− σ,p(x, ν(t, x))|2dλ∞x (t, y)

)

|∇χ(t, x)| = 0

for t ∈ (0, T )\S. In particular

∫

Ω
Φ1(x)

(
∫

Sn−1

|σ,p(x, y) · y − σ,p(x, ν(t, x)) · y|2dλ∞x (t, y)

)

|∇χ(t, x)| = 0

for t ∈ (0, T )\S. This implies, according to Lemma 2.2 (ii),

∫

Sn−1

∣

∣ν(t, x)− y
∣

∣

4
dλ∞x (t, y) = 0 for |∇χ(t)|–a.e. x ∈ B(x̂, r) and t ∈ (0, T )\S.

Hence we obtain that λ∞x is a Dirac mass, i.e. λ∞x (t) = δy=ν(t,x), for |∇χ(t)|–a.e. x ∈ B(x̂, r)
and t ∈ (0, T )\S and the claim follows as x̂ ∈ Ω was arbitrary. ¥

Lemma 5.9
Let Ω be a bounded domain with Lipschitz–boundary and suppose assumption A 2.1 is satisfied.

If χh(t) ∈ BV (Ω; {0, 1}) is a minimizer of Fh
t and condition (5.15) is satisfied, or if χh(t) ∈

BV (Ω; {0, 1}) is a minimizer of Eh
t , then

lim
h→0

∫

ΩT

(

σ
(

·, νh(t, ·)
)

∇· ξ(t, ·)+σ,x

(

·, νh(t, ·)
)

· ξ(t, ·)− νh(t, ·) ·∇ξ(t, ·)σ,p

(

·, νh(t, ·)
)

)

|∇χh(t, ·)|

=

∫

ΩT

(

σ
(

·, ν(t, ·)
)

∇ · ξ(t, ·) + σ,x

(

·, ν(t, ·)
)

· ξ(t, ·)− ν(t, ·) · ∇ξ(t, ·)σ,p

(

·, ν(t, ·)
)

)

|∇χ(t, ·)|

(5.18)

for all ξ ∈ C1
c (ΩT , Rn), where νh = − ∇χh

|∇χh|
and ν = − ∇χ

|∇χ| .

If, in addition, Ω is a bounded domain with C1–boundary then (5.18) is satisfied for all ξ ∈
C1(ΩT , Rn) with ξ · νΩ = 0 on ∂Ω, where νΩ is the outer unit normal of ∂Ω.
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Proof:
In view of Lemma 5.8 (i) we have

∫

Ω×Sn−1

σ(x, y) dΘ∞(t, x, y) ≤
∫

Ω
σ(x, ν(t, x))|∇χ(t, x)|

for a.e. t ∈ (0, T ). Since, by Lemma 5.8, λ∞x (t) = δy=ν(t,x) for
∣

∣∇χ−(t)
∣

∣–a.e. x ∈ Ω and
a.e. t ∈ (0, T ), we infer from Lemma 2.5

∫

Ω
σ(x, ν(t, x))|∇χ−(t, x)| =

∫

Ω

(
∫

Sn−1

σ(x, y) dλ∞x (t, y)

)

∣

∣∇χ−(t, x)
∣

∣

=

∫

Ω

(
∫

Sn−1

σ(x, y) dλ∞x (t, y)

)

g(t, x) dπ∞(t, x)

≤
∫

Ω×Sn−1

σ(x, y) dΘ∞(t, x, y),

where g is the density of |∇χ−| with respect to π∞ and 0 ≤ g(t, x) ≤ 1 for π∞–a.e. x ∈ Ω and
a.e. t ∈ (0, T ). Consequently, as

∫

Sn−1 σ(x, y) dλ∞x (t, y) > 0 for π∞–a.e. x ∈ Ω and a.e. t ∈ (0, T )
we deduce

g ≡ 1 and |∇χ−| = π∞ for π∞–a.e. x ∈ Ω and a.e. t ∈ (0, T ).

Moreover, Θhj
(t, Ω× S

n−1) =
∣

∣∇χhj (t)
∣

∣(Ω) converges to |∇χ(t)|(Ω) = Θ∞(t, Ω× S
n−1) for a.e.

t ∈ (0, T ).
Next we utilize the property that limj→∞Θhj

(t, Ω × S
n−1) = Θ∞(t, Ω × S

n−1) and Θhj
(t) →

Θ∞(t) weakly∗, t ∈ (0, T ), implies

lim
j→∞

∫

Ω×Sn−1

u(x, y) dΘhj
(t, x, y) =

∫

Ω×Sn−1

u(x, y)Θ∞(t, x, y)

for every continuous and bounded function u : Ω× S
n−1 → R. We conclude

lim
j→∞

∫

Ω
f(x, νhj (t, x))

∣

∣∇χhj (t, x)
∣

∣ = lim
j→∞

∫

Ω×Sn−1

f(x, y) dΘhj
(t, x, y)

=

∫

Ω×Sn−1

f(x, y)Θ∞(t, x, y) =

∫

Ω
f(x, ν(t, x))|∇χ(t, x)|

for every continuous and bounded function f : Ω× S
n−1 → R and a.e. t ∈ (0, T ). Thus we infer

lim
h→0

∫

Ω
σ
(

x, νh(t, x)
)

∇ · ξ(t, x)|∇χh(t, x)| =
∫

Ω
σ
(

x, ν(t, x)
)

∇ · ξ(t, x)|∇χ(t, x)|

lim
h→0

∫

Ω
σ,x

(

x, νh(t, x)
)

· ξ(t, x)|∇χh(t, x)| =
∫

Ω
σ,x

(

x, ν(t, x)
)

· ξ(t, x)|∇χ(t, x)|

lim
h→0

∫

Ω
νh(t) · ∇ξ(t, x)σ,p

(

x, νh(t)
)

|∇χh(t, x)| =
∫

Ω
ν(t, x) · ∇ξ(t, x)σ,p

(

x, ν(t, x)
)

|∇χ(t, x)|

for h → 0 and the claim is established by Lebesgue’s convergence theorem. ¥
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5.4 Proofs of Theorems 1.1 and 1.2

Now we are well prepared to prove Theorems 1.1 and 1.2.

Proof of Theorems 1.1 and 1.2: From Lemma 5.1 and Lemma 5.4, respectively, we conclude

uh ⇀ u in L2(0, T ; H1(Ω)) and χh → χ in L2(0, T ; L2(Ω)).

The weak compactness of L2(0, T ; H1
0 (Ω)), in turn, implies

u ∈ uD + L2(0, T ; H1
0 (Ω)).

To establish (1.12) and (1.9), respectively, we consider the time discretization of the diffusion
equations, see (4.2) and (4.4), for χ = χh(t) and v = uh(t). Discrete integration of the terms
∫

ΩT
∂−h

t (χh)ξ and
∫

ΩT
∂−h

t

(

uh + χh
)

ξ by parts and passing to the limit h → 0 in (4.2) and (4.4)
shows (1.12) and (1.9), respectively.
Now we show equation (1.10). From (5.18) of Lemma 5.9 we derive the convergence of the
discrete curvature term to the corresponding expression in (1.10). In addition,

lim
h→0

∫

ΩT

uh(t, ·) ξ(t, ·)· νh(t, ·)
∣

∣∇χh(t, ·)
∣

∣ = lim
h→0

∫

ΩT

div
(

uh(t, ·) ξ(t, ·)
)

χh(t, ·)

=

∫

ΩT

div
(

u(t, ·) ξ(t, ·)
)

χ(t, ·) =

∫

ΩT

u(t, ·) ξ(t, ·)· ν(t, ·)
∣

∣∇χ(t, ·)
∣

∣.

Hence the assertion follows. ¥

5.5 Conclusion

The Stefan problem with Gibbs–Thomson law has many applications in material sciences, i.e. de-
scribing melting and solidification processes in materials. It has been addressed mathematically
by several authors. For a realistic modeling, such as solidification of alloys, it is quite important
to take surface tension effects into account, which are spatially inhomogeneous and anisotropic.

In this work we have presented existence results for Stefan problems with spatially inhomo-
geneous and anisotropic Gibbs–Thomson law. Previous results to this topic (cf. [Luc90, Luc91,
LS95, GS]) have been generalized. We like to mention that in contrast to the isotropic case
we cannot apply the Reshetnyak convergence theorem [AFP00]. To tackle both inhomogeneity
and anisotropy we have used slicing and indicator measures and methods of geometric measure
theory.
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