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Abstract

The Kurzweil integral technique is applied to a class of rate independent
processes with convex energy and discontinuous inputs. We prove existence,
uniqueness, and continuous data dependence of solutions in BV spaces. It is
shown that in the context of elastoplasticity, the Kurzweil solutions coincide with
natural limits of viscous regularizations when the viscosity coefficient tends to
zero. The discontinuities produce an additional positive dissipation term, which
is not homogeneous of degree one.

Introduction

As an extension of [6], we propose here the Kurzweil integral approach to rate inde-
pendent processes in a reflexive Banach space X that may formally be described by
the inclusion

0 € OE(,E(t) + IMiy(E(1)) (0.1)
where FE is an energy functional and Mg is a dissipation potential represented
by the Minkowski functional of a moving convex closed set K(t). Recall that the
Minkowski functional My : X — [0, 00] of a convex closed set K C X containing 0
is defined as

Mk(x):inf{s>0 : %xek} . (0.2)
Inclusion (0.1) can be considered as a constitutive law of nonlinear elastoplasticity with
or without hardening/softening. The energetic method for solving such problems has
been developed in [10] under the hypothesis that the dependence ¢ — E(t, ) for fixed
¢ is absolutely continuous and K is fixed. An extension to moving state dependent
sets K has been done in [9] as an energetic reformulation of the quasivariational
inequality considered in |2]|. The results of [6] were stated in terms of the Young
integral in the case that K is independent of ¢, and E is quadratic in £ and regulated
(cf. Definition 1.7) in ¢. Since the Young integral is a special case of the Kurzweil
integral (see |7]) and the Kurzweil calculus is simpler, we decided for the latter and
show that the Kurzweil integral setting (2.8)—(2.10) explained below allows to remove
some restrictions on E and K, and solve a more general problem in the space of left
continuous functions of bounded variation. It is true, however, that our technique does
not cover the whole range of problems treated in [10], in particular further constraints
on the state space or nonstrictly convex energies.

The solution is constructed first for piecewise constant inputs; the general case then
follows from the convergence properties of the Kurzweil integral. If we reformulate
the problem in the energetic setting of [9, 10|, it turns out that the dissipation is no
longer homogeneous of degree one as in the continuous case, but additional dissipation



terms related to the discontinuities occur. For a quadratic energy E, this dissipation
is quadratic and can be obtained as a limit of the viscous dissipation as the viscosity
parameter tends to zero. We propose an example (Example 4.2) showing that this
additional dissipation cannot be neglected.

The following text is divided into four sections. In Section 1, we give a brief overview
of the Kurzweil theory of integration as presented in [13|. The main results are stated
in Section 2. Section 3 is devoted to the existence and uniqueness proof in the general
case. In Section 4, we prove the viscous approximation result for quadratic energies.

1 The Kurzweil integral

In this section we recall the definition and some basic properties of the Kurzweil
integral introduced in |8| as a framework for solving ODEs with singular right hand
sides. We cite most of the results without proof, and an interested reader can find
more information also in [5, 7, 14, 15].

The basic concept in the Kurzweil integration theory is that of a d-fine partition.
Consider a nondegenerate closed interval [a,b] C R, and denote by D, the set of all
divisions of the form

d=A{to,...,tm}, a=ty <ty <...<t, =0 (1.1)
With a division d = {tg,...,t,} € D,p we associate partitions D defined as
D={(r,[ti—,t;]): j=1,....m}; 7€ [tj1, 8] Vi=1,...,m. (1.2)
We define the set
I'(a,b) :== {6 : [a,b] > R: §(t) > 0 for every ¢ € [a,b]}. (1.3)
An element § € T'(a,b) is called a gauge. For t € [a,b] and § € T'(a,b) we denote
Is(t) == (t=46(t),t+6(t)). (1.4)

Definition 1.1. ([13]) Let ¢ € I'(a,b) be a given gauge. A partition D of the form
(1.2) is said to be §-fine if for every 7 =1,...,m we have

7 € [ti1, 1] C Is(7),
and the following implications hold:
Ti=tiaa=>j=1 1=t =75=m
The set of all ¢ -fine partitions is denoted by Fs(a,b).

It is easy to see that Fs(a,b) is nonempty for every § € I'(a,b); this follows e.g.
from |5, Lemma 1.2|.



Consider a reflexive Banach space X endowed with a norm |z| for z € X. The
duality between X and its dual X* will be denoted by (-,-), and |- |. will be the
dual norm in X*. For given functions f : [a,b] — X*, ¢ : [a,b] — X, and a partition
D of the form (1.2) we define the Kurzweil integral sum Kp(f,g) by the formula

= (f( —g(tj-1)) - (1.5)

J=1

Definition 1.2. Let f: [a,b] — X* and g : [a,b] — X be given. We say that J € R
is the Kurzweil integral over [a,b] of f with respect to g and denote

b
7= [ 0. dete), (1.6
if for every € > 0 there exists 0 € I'(a,b) such that for every D € Fs(a,b) we have

|J — Kp(f,9)|<e. (1.7)

Using the fact that the implication
0 <min{éy, s} = Fs(a,b) C Fs,(a,b) N Fs,(a,b) (1.8)

holds for every 4, d1, 9, € I'(a,b), we easily check that the value of J in Definition 1.2
is uniquely determined.

We list below in Propositions 1.3, 1.4 some standard properties common to most
integral concepts.

Proposition 1.3. Let f, fi, fo : [a,b] — X*, g,01,92 : [a,b] — X be any functions.
Then the following implications hold.

(i) 1 J2 (), dg D), [2 Cfalt), da(t)) exist, then [* (f(6) + fo(t), da(t)) exists and

b b
/ r(t) + folt), dg(t)) = / (i (1), dg(t)) + / (o). dg(t)).  (19)

(ii) ]ff t),dgi(t)), fb (f(t),dgo(t)) emist, then fab (f(t),d(g1+ g2)(t)) exists and

/ (), d(gr + 62)(8)) = / (1), dga(8)) + / F0).dga().  (1.10)

(iii) If fab (f(t),dg(t)) exists, then fab ()\f(t),dg(t)),fab (f(t),dAg(t)) exist for every

constant A € R and

| orw.dgw) = [ so.go) =2 [ rw.agy.

Proposition 1.4. Let [ : [a,b] — X*, g : [a,b] — X be given functions and let
€ (a,b) be given.



(i) Assume that [*(f(t),dg(t)) ezists. Then [*(f(t),dg(t)), [°(f(t),dg(t)) exist.

(ii) Aszume that [°(f(t),dg(t)), [*(f(t),dg(t)) exist. Then [°(f(t),dg(t)) exists

/ (1), dg(t)) = /s<f<t>,dg<t>>+ / F0).dg().  (112)

In order to preserve the consistency of (1.12) also in the limit cases s = a and s =,
we set

/8 (f(t),dg(t)) =0 Vs ¢€la,b], Vf:]a,b] — X*, g:]a,b] — X. (1.13)

Let us recall some typical formulas. We denote by yq the characteristic function of a

set Q C [0,77.
Proposition 1.5. For every g : [a,b] — X, a <r <s<b and v € X* we have

(i) J7 (oxia (1), dg(t)) = (v, g) (s+) — (v, g) (s—),
(ii) 7 (0Xtre) (1), dg(t)) = (v, g) (s—) — (v, g) (r+),

provided the limits on the right-hand sides exist, with the convention (v,g)(a—) =
(v.g(a)), (v,g) (b+) = (v, (b))
Proposition 1.6. For every f:[a,b] - X*, a <r <s<b and v e X we have

0 s € (a,b),
() [P, d(oxg) () = —(fla),0) s =a,
(f(b),v)  s=b.

(ii) [*(F(t),d(vxoe (D)) = (£(r) = £(5),v).

We now introduce the concept of regulated functions, which goes back to |1].

Definition 1.7. Let Y be a Banach space with norm |- |y . We say that a function
f o la,b] — Y is regulated if for every t € [a,b] there exist both one-sided limits
f(t+), f(t—) € Y with the convention f(a—)= f(a), f(b+)= f(b).

We denote by G(a,b;Y) the set of all regulated functions f : [a,b] — Y, and by
Gr(a,b;Y) and Ggr(a,b;Y) the space of left continuous and right continuous regulated
functions on [a,b], respectively. The space BV (a,b;Y’) of all functions of bounded
variation with values in Y is included in G(a,b;Y). As an important example of
regulated functions, let us mention step functions w of the form

w(t) = ZékX{tk}(t) + chX(tk,l,tk)(t% S [CL, 6]7 (114)
k=0 k=1
where d = {to, ...,tm} € D,y is a given division, and ¢, ..., ¢np,¢1,..., ¢y are

given elements from Y. We further set BV (a,b;Y) = BV (a,b;Y)NGL(a,b;Y), and
BVg(a,b;Y) = BV(a,b;Y)NGg(a,b;Y). On G(a,b;Y’) we introduce a norm || - [|[q3
by

[/ s == sup{|f(7)ly : 7 € [a,b]}. (1.15)



Lemma 1.8.

(1) Every regulated function is bounded.

(ii) The space G(a,b;Y) is complete and non-separable with respect to the norm
I Nat) -
11) Given C' > 0, the set Vo = {9 € BV(a,b;Y) : Varj,yg < C} is closed in
[a,b]
G(a,bY).

(iv) For every f € G(a,b;Y) and € > 0 there exists a step function w of the form
(1.14) such that || f — w||jap < €, w(t) € Urelau{f(7)} for every t € [a,b], and
Var (g5 w < Var g f .

Theorem 1.9. If f € G(a,b; X*) and g € BV (a,b;X) or f € BV(a,b; X*) and

g € G(a,b; X), then fab (f(t),dg(t)) exists and satisfies the estimate

b
[ 0,000 < win {1y, (176 + 1701+ Yar 1) lallon -
(1.16)

The following identity explains the motivation for a Kurzweil solution to the process
(0.1) defined in (2.8)—(2.10) below.

Proposition 1.10. If f € G(a,b; X*) and g € Whi(a,b; X), then

b b
(/<ﬂ®ﬂﬁﬂ%:@[/<ﬂﬂyﬁ»&,

where (L) denotes the Lebesgue integral.

The next Proposition 1.11 plays a key role in the construction of a solution to (0.1).

Proposition 1.11. Consider f, f, € G(a,b; X*) and g,g, € BV (a,b; X) for n € N
such that

lim ||f = falllws) =0, lim ||g — gnlljan) = 0, suIN) \[/abl}"gn =C < 0.
n—o0o n—o0 neN la,

Then
(fa(t),dgn(t)) - (1.17)

n—0o0

b b
[ 0. dg(o) =t
The integration by parts formula for the Kurzweil integral contains additional jump

terms and reads as follows. The proof is the same as for the Young integral in [6,
Theorem 3.14].

Proposition 1.12. For every f € G(a,b; X*) and g € BV (a,b; X) we have

b b
/QWMMW+/@@AN»=U@MW—U@y@>
S () — FE-),g(6) — alt-)) — () — (1), g(t+) — g()) ).

te(a,b]



Note that only countably many points ¢ enter into the sum, which is finite due to
the bounded variation of g¢.

For a continuously differentiable mapping FEj, : X — R, the following integration
formula holds.

Corollary 1.13. For every g € BV (a,b; X) we have
b
[ (Ea(e4).dg(0) = Enf(v) - + 3 Algltglt-)), (11
a tela,b]

where Ej is the Fréchet derivative of Ey and
A(&m) = (E(&),€ —m) — Eo(§) + Eo(n) for &me X.

Indeed, this can directly be checked for every step function w of the form (1.14)
using Propositions 1.3-1.6, which yield, after setting ¢y = ¢y, i1 = ¢, that

b m
/ (Ey(w(t+)),dw(t)) = (Ey(ém), ém) = (Egler), o) + Y (Eoler) — Eylcrr), cx)
m+1
= > (Ejlen)s e — cxn)
k=1
= Eo(ém) — Eo(éo) + Y Alck, k1),

which is precisely (1.18). If g is an arbitrary BV -function, then it suffices to use the
approximation and convergence argument of Lemma 1.8 (iv) and Proposition 1.11.

2 Statement of the problem and main results

In addition to X, X*, consider further Banach spaces U,V endowed with norms |- |y,
| - |v, respectively, and their closed subsets Uy C U,V C V playing the role of
parameter sets. By Lin (X — X*) we denote the space of continuous linear mappings
from X to X*, endowed with the norm ||-|[. For v > 0, we denote by Sym. (X — X*)
the set of all F' € Lin (X — X*) such that

(F&m) = (Fn,€), (FEE 2 vIEfF VEneX. (2.1)

Indeed, if SymV (X — X*) is nonempty, then X can be considered as a Hilbert space
endowed with the scalar product (§,n), = (F§,n) with some fixed F' € Sym_ (X —
X7).

We are given a family K (v) C X of convex closed sets depending on a parameter
v € Vg, and assume that 0 € K(v) for all v € V. The polar set K*(v) C X* of K(v)
is defined as

K(v)={ye X*: (y,§) <1 V€€ K(v)}. (2.2)
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Since K (v) is convex, closed, and contains 0, we have (K*(v))* = K(v). This and
other convex analysis concepts and results used here can be found in [12] and |3,
Chapter 2|.

To measure the distance between sets in X*, we define the Hausdorff distance
dy (A, B) of the sets A, B C X* as

dy(A, B) = max{supdist (a, B),supdist (b, A)},

acA beB

where dist (a, B) = inf{|a—0b|. : b € B} etc. For each v € V), we define the projection
Q.(x) of an element x € X* onto K*(v) as the set of all z € K*(v) such that

|z — 2], = min{|z — 2|, : 2’ € K*(v)}. (2.3)
For v, vy € Vj we obviously have the implication
r € K'(v1),2 € Quur = |z —z| < dg(K*(v1), K*(v2)). (2.4)
We will assume in the sequel that there exists a constant C'yz > 0 such that

dH(K*(’Ul),K*(’UQ)) < CH |’Ul — ’UQ|V Vvl,vg S ‘/0 . (25)

Assume that F : Uy x X — R is a functional, which with each v € U, and
¢ € X associates the stored energy corresponding to u and &. The conjugate energy
functional E* : Uy x X* — R is defined by the Legendre transform

E*(u,y) = 23)12{@,5) — B(u,§)}  for (u,y) €Uy x X*. (2.6)

We assume the following hypothesis to hold.
Hypothesis 2.1. Let O:E : Uy x X — X*, 0fE : Uy x X — Lin(X — X*) denote
the first and the second partial Fréchet derivatives of E with respect to &.

(i) There exists a constant L > 0 such that for every uy,us € Uy and £ € X we
have

|0 E(u1,§) — O E(us, §)| < Lluy — uzly

(ii) There exists a constant oy > 0 such that O E(u,§) € Sym, (X — X*) for every
(u, f) S Uo x X.

(iii) For every R > 0 there exists C(R) > 0 such that for all uy,us € Uy and
£1,& € X, & < R for i=1,2, we have

|02 E (uy, &1) — O E(us,&)|| < C(R) (Jur — uzlu + €1 — &) -

As a consequence of Hypothesis 2.1, we see that both FE(u,-) and E*(u,-) are
strictly convex and twice continuously differentiable. As a classical property of the
Legendre transform, we have

r=0:Eu,§) <= £=0,E"(u,x). (2.7)
The symmetry of 8€2E in (ii) follows indeed from the continuity property (iii).
The Kurzweil integral setting of Problem (0.1) is defined as follows.
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Problem 2.2. For given input functions v € BVy(0,T;Uy), v € BV, (0,T;Vy) and
initial condition xy € K*(vg), we look for a function £ € BVL(0,T; X) such that

o) = GE(ult),£(t) € K*(w(t))  Vie[0,T]. (2.8)
O E(u(0),£(0)) = 20, (2.9)
/0 (a(t+) — y(t),dE®) < 0 (2.10)

for every y € G(0,T; X*) such that y(t) € K*(v(t+)) for every t € [0,T].

Note that every solution to Problem 2.2 has the property

t
[ tatr4) = y(.dm) < 0 @.11)
for every test function y as in Theorem 2.3 and for every 0 < s <t < T'. Indeed, it
suffices to set
B y(T) for T € [s,t),
g(r) =

x(t+) for 7€[0,s)U[t,T],
and check, by virtue of Propositions 1.4-1.5 and the left continuity of &, that

0> [ talr) - 504600 = [ (o)) ~ u(r), a0
-/ el +) = y(r),de() + | (am)etr) — yo).ae)
- [ xanie) - o). dem)
= [ tatr) et

Proposition 1.10 enables us to understand the relation between (2.8) (2.10) and
(0.1). In fact, we can formally rewrite (2.8)—-(2.10) as

§(t) € Oy (=0 E(u(t), £(1))) (2.12)

where I is the indicator function of an arbitrary set K, and this is in turn equivalent
to

—0:E(u(t),§(t)) € OM_k @y (§(1)) (2.13)
which is precisely (0.1) with K(¢) replaced by —K(v(t)).

We prove the following existence and uniqueness result.

Theorem 2.3. Let Hypothesis 2.1 and inequality (2.5) be fulfilled. Then for every
u € BV(0,T;Uy), v € BVL(0,T;Vy), and xg € K*(vg), Problem 2.2 has a unique



solution £ € BV (0,T; X). Moreover, for every D > 0 there exists Cp > 0 such that
for all input functions w;,v;, 1 = 1,2, such that

||u2-||[07T} -+ ||Uz‘||[0,T} + Var[O,T] u; + Var[oﬂ v, < D , 1= 1, 2 ,

the solutions & and & corresponding to ui, vy and usg,vo and to initial conditions

20,29, respectively, satisfy the inequality

161 — &l < Cb (|2] — 2512 + llug — walljor) + [lor — valljory) - (2.14)

Let now Ky C X be a fixed convex closed set containing 0. We define the K-
variation of a function £ : [0,7] — X on an interval [s,¢] C [0,7] by the formula

VarKO —supZMKO Uz) 5(0'1'_1)),
[5,t] i=1

the supremum being taken over all divisions s = 09 < 0y < -+ < 0, = t. For a left
continuous function &, an equivalent definition reads

Varg, & = sup {/ (y(r),d&(7)) ry € G(s,t; X¥),y(1) € Kj Vr € [s,t]}. (2.15)

[s:t]

Consider the special case of Problem 2.2, where E is of the form E(u,§) = Ey(§) —
(u,&) for u € U := X* and € € X, and K(v) = —K,. According to [10], the
energetic solution to (2.13) with an absolutely continuous input w is defined by the
stability condition

(8)  E(u(t),£(t) < E(u(t),n) + Mi,(n—¢&(t))  ae. Vne X,

and by the energy inequality

(€)  E(u®),£(t)) — E(u(s),&(s)) + Varg, § < —(L)/ (€(7), a(r))dr

[5:1]
forall 0 <s<t<T,

where the right hand side corresponds to the energy supply, Varg, £ is the dissipation,
and the symbol (L) denotes again the Lebesgue integral. For differentiable energies,
condition (§) is equivalent to the inclusion O E(u(t),£(t)) € —K(, which is precisely
(2.8).

Let 0 < s < t < T be arbitrarily chosen. For ¢ € BVy(0,7;X) and u €
BVL(0,T; X*) we have, by Proposition 1.12 and Corollary 1.13, that

0
0,7
/ () + / (@), du(r)) = (u(t), £0) — (u(s).£()) . (2.16)

an

/ (DeEo(&(r+)),dé(r)) = Eo(£(t) = Eo(E(s)) + Y AE(T+).€(m),  (2.17)

TE[s,t]



with
AEn) = (OcFy(),€ —n) — Bol€) + Fofn) 2 2l —nf*  VeneX.

Using (2.15), we can take the supremum in (2.11) over all regulated functions y with
values in —K and obtain

/t (x(m4),d&(T)) + Varg, £ < 0.

[s:t]

Since z(7+) also belongs to —K{;, we have in fact the identity

/ (x(74),d&(T)) + Varg, £ = 0. (2.18)

[s.t]

From identities (2.16)—(2.18) we derive for the process described by (2.8)-(2.10) the
energy balance equation in the form

E(u(t),£(t)) = E(u(s),&(5) + Y AE(r+),&(7)) + Varg, € = —/ {€(7), du(r)) -
} S

TE[s,t [s.1]
(2.19)
Conversely, the energy inequality

T
E(u(T),&(T)) = E(u(0),£(0) + > A(E(r+),£(7)) + Varg, € < —/ (€(7), du(r))
€(0,7] [0.1] 0
(2.20)
implies (2.10) by virtue of (2.15)—(2.17).

If we compare (2.19) or (2.20) with the condition (£), we see that in addition to
the homogeneous dissipation Varg, { of degree 1, there is in the discontinuous case
a nonhomogeneous jump dissipation Y A(&(7+),£(7)). We show below in Example
4.2 that it cannot be omitted.

As an even more special case, we assume now that X is a Hilbert space with scalar
product (-,-) and norm |£| = /({,&), U = X, and Ky C X is a bounded convex
closed set containing 0. Then there exists r > 0 such that

B,(0) C K, (2.21)
where B,.(0) is the ball centered at 0 with radius r.

Let us consider the energy functional

B(,€) = JeP ~ (u.6) (2.22)
For a given initial condition zy € —Kj, Problem 2.2 then has the form
x(t) = &(t) —u(t) € —K; vVt € 0,77, (2.23)
£(0) = u(0) + 2o (2.24)
T
| tute) = et~ u(o.ac@) > 0 (2.29

for every y € G(0,T; X) such that y(¢) € K for every t € [0,T7],

10



which can formally be written similarly to (2.12) (2.13) as

OMi, (E(1)) +E(1) 3 ult) <= &(t) € Al (ult) — (1)) (2.26)

We compare the solution & to (2.23) (2.25) with the solution & to the regularized
problem

OMicy (€(1)) + € (1) + &(1) 2 u(?) (2.27)

with € > 0 and the same initial condition
£:(0) = u(0) + xg . (2.28)

In mechanical interpretation, (2.26) is the constitutive relation of a parallel elasto-
plastic model, where u stands for the dimensionless stress, £ is the strain, K is the
admissible plastic stress domain, and its boundary 0K is the yield surface. Inclusion
(2.27) can again be interpreted as a parallel viscoelastoplastic constitutive relation
between the dimensionless stress u and strain &, with a viscosity coefficient .

Theorem 2.4. Let u € G(0,T;X) and zo € —K be given. Then problem (2.23)
(2.25) admits a unique solution & € BV (0,T;X), problem (2.27) (2.28) admits a
unique solution & € WH(0,T; X) for every € > 0, and we have

lim [&.(t) —&(t)] =0 vVt € [0,7]. (2.29)

e—0+

Moreover, for every 0 < s <t <T we have

lim ( / |E.(7)|2dT + Varg, g€> == ) ) — &) + Varg, £, (2.30)

[s,t] TEst [s,t]

In Theorem 2.4, we do not have to assume that u has bounded variation. This is
due to the regularizing property of the nonempty interior condition (2.21), see |6]. It
would be interesting to establish a similar result for the general system (2.8)-(2.10).

We focus here on the case that w is allowed to be discontinuous. It cannot be
expected that the convergence & — £ is uniform, since all & are continuous, while
the discontinuities of u give rise to discontinuities of £.

The right hand side of (2.30) is the rate independent dissipation as in (2.19), while
the left hand side is the dissipation of the approximating process (2.27). We see that
the second order jump dissipation can be interpreted as the remainder of the viscous
one when the viscosity coefficient ¢ tends to zero.

Theorem 2.3 will be proved in the next section, the proof of Theorem 2.4 is postponed
to Section 4.

11



3 Proof of Theorem 2.3

Consider first step functions v and v of the form

u(t) = uoxqop(t) + >k Xt ) (1) (3.1)
k=1
o(t) = wvoxqop(t) + Z Uk Xt (£) 5 (3.2)
k=1
where uq, ..., uy, € Uy and vy, ..., v, € Vo aregiven, and 0 =ty <t; < ---<t,, =T

is a division of the interval [0,7]. By virtue of Propositions 1.5-1.6, the function

£t) = Loxo®) + > & X (t) (3.3)
k=1
is a solution to Problem 2.2 if and only if
Ty, :85E(uk,§k) S K*(’Uk) for k=0,1,...,m, (34)
(T —y, & — &k—1) < 0 for every y € K*(v) ,k=1,...,m. (3.5)

By (2.7), we have

For k = 0, this gives the initial value &. For k > 1, we check that x; satisfies
(3.4) (3.5) if and only if it is the (unique) solution of the minimization problem

x, = argmin (z — E*(up, @) — (2, &1) + T (7)) - (3.7)
Indeed, if (3.7) holds, then x, € K*(v;), and
E*(ug, x) — (@n, Epm1) < B (ug, v + oy — xp)) — (o + aly — 2%),&6—1)  (3.8)
for all y € K*(v) and « € (0,1]. This yields, letting « tend to 0+, that
(OnE™ (ug, xr) — 1,2, —y) < 0, (3.9)

which is precisely (3.4)—(3.5). The inverse implication (3.4)—(3.5) = (3.7) follows from
the convexity of E*(uy,-).

We will make repeated use of the following “discrete Gronwall lemma”.

Lemma 3.1. Let g, € X and Fj, € Sym, (X — X*) be given for k € NU{0}. Let
there exist constants B, M > 0 such that

> |IF: — Fieall < B,
k=1

12



and

k
S (Figig;—gi1) < M VkeN.

j=1
Then there exists a constant C' > 0 depending only on B and -y, such that

l9x1> < C((Fogo, 90) + M) .
Proof of Lemma 3.1. Using the elementary identity

1 1
(Fk Gk, 9k — Gr—1) — 3 (Fk 9, 9k) + 3 (Fe—1 Gk-1, k—1)

1 1
= —(Fp (9 — Gr-1), 9k — Ge—1) + 5 (Fy—1 — Fx) gk—1, k1)

2
we obtain
1 1 1<
5 (Fr 9k, 9k) — B (Fo 90, 90) < M + 3 ; ((F; — Fj—1) gj—1,95-1) Vk eN.

For j € N set

B = F; — Fil
Then

k
Bra1 1 1 3
N (Fr 9ks 1) < Brg1 [ M + 5 (Fo 90, 90) + 5 ; o (Fj_19j-1,95-1) | -
Put
k1 3,
T = Z EJ <F’j_1 9j—1>9j—1> for ke NU {0} .
=1
Then . X
T — Th—1 < Brt1 (M + 3 (Fo 9o, 90) + ;Tk_1> for ke N.
Set
k+1 3,
Ay = H <1 + —]) ;
Y

J=1

i.e. Ay > 1 for all k. Then for all £ € N we have

Tk Tk—1 < 5k+1 (
A Arr T A

1
M+§<F0g07g0>) )

hence

k
1 .
ry < Ag (To + <M-|— B (Fy 90790>) ; ﬁ;;j)

1
< A (7“0+B <M+§ <F090790>)) -

13
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Note that

B B
log Ay = Zlog (1—|— ) Zﬁ] < ;, ro < §(F090790> .
7=1

The assertion now follows directly from (3.12). [

We now use the above result to prove the following “Gronwall-Kurzweil” lemma.

Lemma 3.2. Let g € BVy(0,7;X) and F € BV.(0,T;Sym, (X — X*)) be given
such that g(0) = 0. Assume that

/Ot (F(r)g(r+),dg(r)) < 0 Vte[o,T]. (3.13)
Then g(t) =0 for all t € [0,T7].

The relation between Lemma 3.2 and the classical Gronwall lemma can easily be seen
if F' and g are absolutely continuous. Then we may rewrite (3.13) using Proposition
1.10 as

3 (F@g(t).9) = 5(0) [ (F@ar).ar))dr = (@) [ (Plr)g(o).a(m)ar <o

with F'in L'(0,7;Lin (X — X*)).

Proof of Lemma 3.2. It suffices to prove that g(7) = 0. Let € > 0 be arbitrarily
given. By Lemma 1.8 (iv), we find step functions of the form

9t = goxp(t) + D gk X (1) (3.14)
F(t) = Fyxqot)+ Z Fi Xt ) () 5 (3.15)
k=1

analogous to (3.1)-(3.2) and such that, taking into account Theorem 1.9,
g90=0, gm:g(T)>

sup |g(t) —g(t)| <e, sup |F(t)—F(t)| <e,
te[0,T] t€[0,T]

Var[O,T] g S Var[O,T] g, Var[O,T] F = Z ||Fk - Fk_1|| S Var[O,T] F,
k=1

/Ot (F(t+)g(t+),dg(r)) < e  Vtel[0,T].

For all k=1,...,m we have

Mw

o
/ <F(T+) T+),dg(r (Fi95,9; — gj—1) < €.
0

J=1



By Lemma 3.1, we have |g,,|> < Ce. Since ¢ is arbitrary, we obtain the assertion. W

As a next step, we compare the solutions §ki of the form (3.3) corresponding to dif-

ferent input sequences u((]),ugz),ug), - € Uy and UO ,vgz),vé), - € Vp, and different

initial conditions x(()), 1 =1,2. We do not specify the lengths and consider possibly

infinite sequences. We will assume that there exist constants Cy, Cy, > 0 such that
STl —ul iy < Coy D — oy < Oy for i=1,2. (3.16)

In the inequalities (3.5) for f,(:), we choose y € @ ) (:E,(Ql), and obtain, using Hypoth-
k
esis 2.1 (i) and (2.4) (2.5), that

716 =P < (OB &) - 0Bl €). 6 — &)

S <$Z _xk 1, gk 1>+L|uk _uk 1|U|€ k)l
<y Z ) kZ _ (Z) >_|_L|uk ul(;zl|U |§](;) _ 5](;21|
(Llu — o+ Curlof? — o 1) 160 — €], (3.17)

hence,
L @ |y (3.18)

In particular,

L C i i L C
Z\gk D<=y +—HCV, sup|g§>|g|gg>\+—cU+—Hcv for i=1,2.
y keN Y
(3.19)
We now set o
R = max{|¢"], ¢ I Ley +—H0v (3.20)

In the following estimate, we proceed similarly, choosing y € @ o) (x,(f)) and y €
k

Q (2)(1,](:)) in inequality (3.5) for 5121), ]iz), respectively. Summing up the two resulting
Uk
inequalities, we obtain from (2.4) (2.5) that

(a0 = o2 67—, — ¢+ 62,) < Culol? —of IvZ)ék LA CRY

Note that the difference x,(cl) — x,(f) can be written as

) — o = (9B, &) - 0B, 7)) + (9B, 67) - 0B, ¢)) |
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where

8§E(u§€ )’ P ) 0, E(uk ,fk ) = /0 <8€ (uk , 22) + S( (1) gl(f)))jgl(;) . ]g?)> ds.
We define the mapping Fj € Lin (X — X*) by the formula
/ O2E + s —¢?))ds. (3.22)

The above computations and Hypothesis 2.1 (i) yield

1 2 1 2 1 2
(Poel” —eP),6” — &0 — e +¢2,)

< (Ll = u@lo + Cu o = o1y ) Z e - e, (3.23)
To simplify the notation, we introduce the sequences
we = Juy) =l + o — oy
ar = max(u — v+ [ — vl lv)
o = & -8,
By virtue of (3.18), inequality (3.23) can be written in the form
(Fi Gk, g — gr—1) < Chag wy (3.24)

for every k € N with a constant C; > 0. Hypothesis 2.1 (ii) (iii) together with (3.20)
imply that we may use Lemma 3.1 to conclude that there exists a constant Cy > 0
such that |ge|* < Ca(]go|* + sup;cy w;) . In other words, we have the inequality

1 2 1 2 1 2 1 2
suplel) = 67 < Cu (1af? — 4 sup (1 = ol + 1Y = o) ) 329
keN keN

with a suitable constant C3 > 0.

We are now ready to finish the proof of Theorem 2.3. Let u € BVy(0,T;U,),
v € BVL(0,T;Vy), and zg € K*(vg) be arbitrarily given. We first prove the unique-
ness. Let &,& be two solutions with the expected regularity, and set z;(t) =

E(u(t),&(t)) € K(v(t)) for i =1,2 and t € [0,7]. We may set y(7) = z1_;(7+) in
the equation (2.11) for & on the interval [0,¢], and obtain

0o > /0 (x1(T4) — 2o(74),d (& — &) (7))
- /0 (F(14+) (&1(m+) — &(m4)),d(& — &)(1)) (3.26)
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with
F(r) = / GRE(u(r), &x(r) + s(6a(r) — Eu(r))) .

and it suffices to use Lemma 3.2 and Hypothesis 2.1 (iii) to obtain & = &.

To prove the existence, we use Lemma 1.8 (iv) to find sequences of step functions
u™ € BVL(0,T;Uy), v™ € BV,(0,T;V;) such that ™ (0) = u(0), v™(0) = v(0),
Vary 1 u < Varjo rju, Varj v < Var(y v, and

lim sup |[u™(t) —u(t)|y =0, lim sup [v™(t) —v(t)|y =0.
=00 ¢€0,T) =0 tel0,T)

We know by (3.18) that the corresponding solutions ¢™ € BV;(0,T; X) have uni-
formly bounded variation. Let n,n’ € N be arbitrarily chosen indices. By inserting
additional division points ¢;, if necessary, we may assume that u™ v ) ) are
of the form (3.1)-(3.2) with the same division 0 =ty < t; < --- <t,, =T. It follows
from (3.25) that

sup [€00(t) €MD) < Oy ( sup (Ju(t) = u™) (1) + o)1) = o (B)lv)

t€[0,T] te[0,T]

(3.27)
with a constant C'3 independent of n. Hence, {5(”)} is a Cauchy sequence with respect
to the sup-norm and admits a uniform limit £ € BV7(0,7; X). Using the continuity
of 0¢F and Proposition 1.11, we may pass to the limit as n — oo in (2.8) (2.10)
for £ and check that ¢ is the desired solution. The Holder property (2.14) of the
solution mapping follows immediately from (3.25).

4 Proof of Theorem 2.4

In the Hilbert framework, the projection Qg: : X — K analogous to (2.3) can be
characterized as

z € K

2 =Qk;(r) {(x—z,z—i) >0 Vze K. (4.1)

We denote Pg:(r) = v — Qg (x), and recall that for every » € X and a > 0, the
projection has the property

Qr:(ar + (1 —a)Qk: (7)) = Q:(x), (4.2)

or equivalently

PKS(QKS(I) —|—OéPK5(fL’)) = OéPKg(fL’) . (43)
Note also the following easy relation between the Minkowski functional M, and the
projection Qg :

Vo,y € X w € OMk,(y) <= = =CQx;(r+y). (4.4)
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We see in particular that OMp, (y) C K for every y € X . Moreover, for every y € X
we have

v € OMy,(y) = (x,y) = Mk, (y) = sup (z,9) (4.5)

2€Kj

Since Mp, is 1-homogeneous, we may rewrite (2.27) as

ut) = &(t) —e&(t) € OMp,(e€(1)), (4.6)
which is, by virtue of (4.4), in turn equivalent to
55&@) = PKg (u(t> - £€(t>> . (47)

The existence and uniqueness of a global absolutely continuous solution & to (4.7)
follows from the Lipschitz continuity of the mapping Pg:. Furthermore, by (2.21)
and |6, Proposition 2.2 and Theorem 2.4|, for every u € G(0,7;X) there exists a
unique solution £ € BV (0,7;X) to (2.23)-(2.25). As in the previous section, the
convergence analysis starts with left continuous step functions of the form

u(t) = uo (o3 (t) + Dtk X(tp_r.t) (1) » (4.8)
k=1
where wug,uq,...,u, are given elements of X, and 0 =ty < t; < --- < t,, =T is

a division of the interval [0,7]. If w is as in (4.8), then, by |6, Proposition 4.3|, the
unique solution & of (2.23)-(2.25) has also the form of (4.8), more specifically

£(t) = o xqoy () + Z Ek X(tyo,t) (1) 5 (4.9)
k=1
where
So=ug+ o, & = &1 + PKg(uk — gk—l) for k=1,...,m. (4.10)

This is in fact nothing but the classical Moreau formula (see [11]|) for time-discrete
approximations of a sweeping process. Here, however, it provides the ezact solution
for piecewise constant inputs.

We first prove the following result.

Lemma 4.1. Let u be as in (4.8), let & be given by (4.9), and let & € Wh>°(0,T; X)
be the solution to (2.27)-2.28) for ¢ > 0. Then

1i1g1Jr |€(t) —&(t)] =0 vVt € [0,7]. (4.11)
Proof. Let us denote
& =& (ty) for k=0,1,...,m. (4.12)

For t € (tx_1,tx], Eq. (4.7) has the form
e&elt) = Plur—&(1), &) =&, (4.13)
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We claim that the solution of (4.13) can be represented in closed form as

t—tp_1

() = g;_1+(1—e— ! )PKa(uk—S,i_l) for t€ [tp_1, i (4.14)

Indeed, assuming (4.14), we have by (4.3) that

—t

Prg(ue — &(8) = Pg; (QKS‘ (e =&y et Preg (ur, — 57;_1)>

it c
= e -« PKg(Uk—fk—l),

hence (4.13) holds.

It suffices to prove the convergence (4.11) only for ¢ = T' (the process is causall).
In other words, we have to check that

. e _ _
61_1)%1_}_ €5, — &ml 0. (4.15)
To this end, we set for k =1,...,m
c e e B e U
p=up— &k, Zp=ur— &, e, =¢e " =, z5=—xg = up — . (4.16)

We then have for all £ =1,...,m that

2L = QKS (Zk_1 + up — uk_l), Zz = QKS (Zli—l + up — uk_l) + €2PK5 (Z,i_l + up — uk_l) .

(4.17)
This yields in particular that
2y — 25 (1= e3) Prs (25 g +up — up1) = ugp — U1 - (4.18)
On the other hand, from (4.17) and (4.3) it follows that
Prs(2) = e Prg (271 +up — ug—1) (4.19)
hence
e e 1— 62 e
2 — %1+ = Pres (2) = up — up—1 - (4.20)
k

We have <PK5(Z), z> > 0 for every z € X . Testing Eq. (4.20) by z{, we thus obtain

|2kl < 2oy + we — up—a| < [ziq| + uk — we—] (4.21)

and, in particular,
241 < lool + Yar u (4.22)
for every k =1,...,m. Both Qk; and Pk; are nonexpansive mappings, PK;;(O) =0.

Using (4.17) and (4.22), we thus have

125 = 2] < J2hoy = 2] (o] 2 Var w) e (4.23)
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Summing up over k we obtain the final estimate

m

2z — Zm| < (x| +2 Var u e, 4.24
02l < (ol + 2 ) Y (4.2

and (4.15) follows. ]

To prove Theorem 2.4, we fix a sequence {u(”)} of left continuous step functions of
the form (4.8) and such that

lim sup |u™(t) —u(t)| = 0, (4.25)
n—=0¢el0,7]

and denote by €™ ¢™ the respective solutions to (2.23)-(2.25) and (2.27)-(2.28),
with u replaced by u( . By |6], there exists a constant C' > 0 independent of n such
that
Var €W < ¢ lim sup |[€™(t) —&(t)| =0. (4.26)
(0,77 N0 10,1
To estimate the total variation of §§">, we use a similar argument as in [6| that goes
back to Section 19.2 of the pioneering Krasnosel’skii and Pokrovskii monograph [4].
As mentined on p. 261 of the Russian edition, this part of the book was written by
Alexander Vladimirov. We fix a division 0 = sy < sy < --- < sy = T such that

s <T<t<s; = |u(t)—u(r) < g , (4.27)

where r is as in (2.21). Let now u* be an arbitrary left continuous regulated function
such that

sup |u*(t) —u(t)] < <. (4:28)
te[0,T 6
and let & be the solution to (2.27) (2.28) corresponding to u*. We have
(W@ -gt)-2) = &P ae (4:29)
for every z € K. In every interval (s;_1,s;|, we may choose in particular
r
2(t) = =p(t) + u*(t) —u*(sj_1+), (4.30)

2

where

£ (t) S

0 otherwise .

p(t) =

For all t € (s;_1,s;] we then have |z(t)] < r, hence z(t) € K}, and from (4.29) we
obtain

P + D] + 1 (st —€OP < 0 (431
a.e. in (s;_1,s;]. Hence,
roVar & |ut(sjot) = &(s)1F < Jut(sjoat) = E(s5-1) (4.32)

[55—1,55]
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forall j=1,...,0. Set zj = u*(s;+) — &(s;). From (4.32) it follows

* * * * * r
23] < Ju(sj-1) = w™(s5 )| + |2 | < lulsjat) —ulssH)[ +lajal + 5, (4.33)

hence |z7] < C, for all j =0,1,...,¢, where C, > 0 is a constant depending only on
u and the fixed division sg, s1,...,s,. Using (4.32) once more, we obtain

Var £ < (C2. 4.34

rVar & < (G, (4.34)

We now choose ng € N sufficiently large such that (4.28) holds with u* = u™ for all
n > ng. For all such n we have by virtue of (4.34) that

Var €™ < ¢ 4.35
[O%é <, (4.35)

with a constant C' > 0 independent of n and e. Furthermore, the mapping y —
OMk,(y) + ey is monotone, hence the equivalent formulation (2.27) of (4.7) yields

(€99(1) = &), u™ (1) = ult) - € + &) = 0 ace. (4.36)
that is,
%%liﬁ")(t) — &P < (1K@ +IEDOD™ (@) —u(®)]  a.e. (4.37)
From (4.34) we conclude that
sup [€(6) — €0 < 2% sup [u(e) —u(t). (4.38)
te[0,T] T telo,T]

To obtain the convergence (2.29), we have to check that for every 6 > 0 and every
t € [0, T] there exists eq such that for all € € (0,&7) we have

|§=(t) = &(1)] < 6. (4.39)

This follows immediately from Lemma 4.1 and from the uniform convergences §§”) —

& and €M — ¢

[t remains to prove the convergence in (2.30). Following (2.19), we can rewrite (2.25)
in energetic form for every 0 < s <t < 7T as

SIEDI — {u(t), £(1)) — G + (u(s),E()) + 3 3 Jelr+) — £ + Var, €
]

2 TE[s,t [s:t]

=~ [ tem.aury. (4.40)
In the simple case (4.8), the energy balance reads
16l — (i, €6) — 2[6ema? (s, Gut) + 316 — Gl + M (6 — 64
= — (&1, Uk — Up—1) (4.41)
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forevery k=1,...,m.

We now derive the energy balance for Eq. (4.7). By definition of P, we have

<€€(t),u(t)—§€(t)—eéa(t)—z> >0 ae. (4.42)

for every z € K, which in view of (4.5) yields

(£, ut) ~ &) = )P + Mg (1) ace. (1.3

hence for every 0 < s <t <T we have

SO = ((0).6:0) = FIeclo)F + {us). (5D + = [ Jelr)Plr + Var &

[5,1]
- - / (7). du(r)) . (4.44)

We see that (2.30) follows from (2.29), (4.40), and (4.44), provided we check for every
0<s<t<T that

Vo >0 Jgg >0 Ve<eg: /t ((&e(m) = &(1)),du(T)) < 9. (4.45)

By (4.35) and Lemma 1.8 (iii), the functions & and &, as well as their variations
Var ;4§ and Var,§, are uniformly bounded by a constant C' independent of .
Using Lemma 1.8 (iv), we find a step function w such that |ju — w4 < 6/(12C).
By Theorem 1.9, we have

N S

/ (€(r) — £(r)). d(u — w)(r)) < 6C ||u— wlljng <

Since w is a step function, we may refer to Proposition 1.6, and conclude from the
pointwise convergence &.(7) — &(7) that

t

lim [ ((&(7) = &(7)), dw(T)) = 0,

e—0+ s

whence (4.45) follows. Theorem 2.4 is proved. [

The following example shows that uniqueness of the solution ¢ is lost if the jump
dissipation term is omitted in (2.20).

Example 4.2. Consider the simple case X =R, Ky = K} =[—1,1], and

o U for t e [O,to]
u(t) = { 0  for t € (ty, T]
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with some given ¢, € (0,7) and uy > 3. We look for a left continuous solution ¢ to
the problem

u(t) —£(t) € K¢ vt € 10,7 )

1 2 1 2

SIECO — (). €0) = ISP + u(o). €01 + Vi as)
< —/ (€(7), du(r)) W <s<t<T,

with initial condition £(0) = wg. Every solution £ is necessarily constant in every
interval, where u is constant. Indeed, this follows from the inequality

1

SIEO = (€0 — SIEG + (&) = 5 {60) — £(5), €0+ €(5) — )

Mg, (€(1) = £(5)) -

IA

Hence, ¢ must have the form

[ uy  for te0,t)
§t) = { 6 for te (tnT)

with & € [—1,1]. By a counterpart of (4.41) without the quadratic dissipation term,
we see that & is a solution of (4.46) if and only if

1 1
55% - 5“(2) +ug + 6 —uol < ug. (4.47)

This inequality is satisfied for all £ € [—1,1]. Hence, we have a continuum of distinct
solutions.

The situation is even worse if we replace (4.46) by

u(t) —£(t) € K¢ vt € 10,7 )
SIEDI — {u(t), €0)) — SIE)? + {uls) £()) + Vi, € s
< —/ (€(r+), du(r) . W<s<t<T.

Inequality (4.47) is now replaced by
Lo 1o o
551 — 5t T U T & — ol < uoés, (4.49)

which is never satisfied for §; € [—1,1]. Hence, there exists no solution to Problem

(4.48) for £(0) = ug.

Acknowledgments. The authors appreciate stimulating discussions with Alexan-
der Mielke on this and related subjects.

23



References

1]

2]

3]

4]

1]

6]

7]

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

G. Aumann: Reelle Funktionen. Springer-Verlag, Berlin — Gottingen — Heidelberg, 1954
(in German).

M. Brokate, P. Krejé¢i, and H. Schnabel: On uniqueness in evolution quasivariational
inequalities. J. Conver Anal. 11 (2004), 111 130.

P. Drabek, P. Krejéi, and P. Taka¢: Nonlinear Differential Equations. Research Notes
in Mathematics, Vol. 404, Chapman & Hall/CRC, London, 1999.

M. A. Krasnosel’skii and A.V. Pokrovskii: Systems with Hysteresis. Nauka, Moscow,
1983 (In Russian; English edition Springer 1989).

P. Krejéi and J. Kurzweil: A nonexistence result for the Kurzweil integral. Math. Bohem.
127 (2002), 571 580.

P. Krejéi and Ph. Laurengot: Generalized variational inequalities. J. Convex Anal. 9
(2002), 159 183.

P. Krejéi: The Kurzweil integral with exclusion of negligible sets. Math. Bohem. 128
(2003), 277-292.

J. Kurzweil: Generalized ordinary differential equations and continuous dependence on
a parameter. Czechoslovak Math. J. 7 (82) (1957), 418-449.

A. Mielke and R. Rossi: Existence and uniqueness results for a class of rate-independent
hysteresis problems. Math. Models Methods Appl. Sci. 17 (2007), 81 123.

Y

A. Mielke and F. Theil: On rate-independent hysteresis models. NoDEA Nonlinear
Differential Equations Appl. 11 (2004), 151-189.

J.-J. Moreau: Evolution problem associated with a moving convex set in a Hilbert space.
J. Diff. Eq. 26 (1977), 347-374.

R.T. Rockafellar: Convex Analysis. Princeton University Press, 1970.

S. Schwabik: On a modified sum integral of Stieltjes type. Casopis Pést. Mat. 98 (1973),
274-2717.

S. Schwabik: Generalized ordinary differential equations. Series in Real Analysis, Vol. 5.
World Scientific Publishing Co., Inc., River Edge, NJ, 1992.

M. Tvrdy: Regulated functions and the Perron-Stieltjes integral. Casopis Pést. Mat.
114 (1989), 187 209.

24



