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Abstract

We derive the boundary conditions for the contact between an electrolyte and a solid
electrode. At first we revisit the thermodynamic consistent complete model that resolves
the actual electrode–electrolyte interface and its adjacent boundary layers. The width of
these layers is controlled by the Debye length that is typically very small, leading to strongly
different length scales in the system. We apply the method of asymptotic analysis to derive
a simpler reduced model that does not resolve the boundary layers but instead incorporates
the electrochemical properties of the layers into a set of new boundary conditions. This
approach fully determines the relation of bulk quantities to the boundary conditions of the
reduced model. In particular, the Butler-Volmer equations for electrochemical reactions,
which are still under discussion in the literature, are rational consequences of our approach.
For illustration and to compare with the literature, we consider a simple generic reaction.

1 Introduction

In this paper we derive a thermodynamically consistent model that is capable to give a detailed
description of the contact between two different electrochemical systems. Here we consider an
electrolyte and a solid electrode. Figure 1 serves to exhibit both the subtleties of the problem and
our solution strategies.

The domains of the electrode, the electrolyte and their (actual) interface are indicated by Ω+, Ω−

and S, respectively. Figure 1left shows the three domains. From left to right we have the electrode
(yellow), the interface (black solid line) and the electrolyte (gray). Electrode and electrolyte are
described as mixtures consisting of various constituents. The interface S itself also may be a
carrier of constituents and is thus considered as a substance. Each of the three substances are
described by a mixture model relying on equations of balance for the two bulk domains while on
the interface we have jump conditions that are derived from surface balance equations.

Figure 1left shows the possible behavior of a generic field u from our list of state variables. In
the bulk domains on the left and right sides of the interface we observe the indicated variation.
Across the interface S the field u has a discontinuity described by the double bracket [[u]]. Its
determination relies mainly on the jump conditions.

The field equations for the variables contain a parameter λ with 0 < λ � 1 implying that
the variation of u is restricted to a small neighborhood of the interface S. In other words, the
parameter λ induces boundary layers on the left and right sides of S. Let L0 be a typical length
scale of the system, then λL0 characterizes the width of the layers and is known as the Debye
length. This fact is indicated in Figure 1middle. Two different expansions of the variable u are
introduced: for the approximation inside the boundary layers one defines an expansion ũ in terms
of rescaled variables. In the bulk part a different approximation is used that by abuse of notation
is again denoted by u.

One of the main objectives of this study is the description of the boundary layers in the limit
λ→ 0. The limit procedure will lead to a new interface I with a new jump that we denote by the
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Figure 1: Generic field variable u for an electrochemical system of two substances in contact with
the interface S (left). Boundary layers due to a small parameter λ in the model equations (middle).
In a simplified model for λ→ 0, modified jump conditions contain the relevant information of the
double layer that is not resolved any more.

triple bracket [[[u]]]. On the scale of the limiting case the original interface S with its discontinuity
[[u]] is not resolved anymore, as indicated in Figure 1right.

Among the results of the mathematical limit λ → 0 we have in the bulk regions Ω± (i) local
charge neutrality in Ω±, (ii) a simple relation between the electric current and the electric field
(Ohm’s law), and (iii) quasi-static mechanical equilibrium. Obviously, this is expected in advance.
Moreover the limit λ → 0 uniquely determines new jump conditions at the interface I , c.f.
Fig. 1right, from the original jump conditions at the interface S, see Fig. 1left. This result is the
essential contribution of our approach. In particular, the new jump conditions represent the
basis for a rational derivation of the so called Butler-Volmer equations describing interfacial
electrochemical reactions.

Outline. In the following section, we introduce thermodynamically consistent models for elec-
trochemical systems in contact with interfaces. The derivation of these models is postponed to
the Sections 4 and 5. On the basis of the reduced model, we derive in Section 3 Butler-Volmer
equations and discuss differences to the equations found in the literature. The derivation is moti-
vated by a simple prototype of a generic redox reaction and illustrated with different examples.
Section 4 contains the derivation of the complete thermodynamically consistent model. Finally,
in Section 5 we introduce a scaling in terms of the small parameter λ and carry out the formal
asymptotic analysis that leads to the reduced model.

2 Mixture models for an electrochemical interface

This section contains an introduction and a brief summary of two models: on the one hand the
complete model that is a thermodynamically consistent model for two electrochemical systems
that are separated by an interface. On the other hand the reduced model that is derived from the
complete model by the method of formal asymptotic analysis. Both models are put side by side
for comparison and discussion.

In this section we do not give any derivation of the models; this will be the subject of later
sections. Herein we assume some preliminary knowledge of the reader. In order to avoid the
geometric subtleties of curved interfaces, we restrict ourselves to a plane interface and derive the
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jump conditions under the simplifying assumptions that there is no mass, momentum or energy
transport tangential to the interface. We only consider the isothermal case, thus the temperature
T features only as a constant in the formulas.

2.1 Description of the mixtures and of the electrochemical interface

First we have to introduce the essential quantities describing electrochemical systems in in-
teraction with interfaces. According to Figure 1 we consider two regions Ω± ⊆ R3 which are
separated by an interface ∂Ω+ ∩ ∂Ω−. To emphasize the differences between the models, we
denote the interface either by S in the case of the complete model or by I in the reduced model.

Assumptions on the interfaces. For the applications at hand we will consider the one-
dimensional case only. For this reason we simplify the geometric properties of S and I by
assuming:

(i) The interfaces S and I are plane and lie parallel to the coordinate plane (x2, x3) whose
normal vector ν is oriented in x1 direction.

(ii) The interface velocityw lies in normal directionw = wν ν.

(iii) There are no tangential fluxes of mass, momentum, energy or charge.

Given a parametrization (t, x2, x3)→ (xS(t), x2, x3) of the interfaces S or I respectively, we
have

w = wν ν =
dxS
dt
ν . (1)

Jumps at interfaces. Next we introduce the boundary values and the jump of a generic
function u(t, x) in Ω± across the interfaces. The Figure 1 suggests that the jumps of u(t, x)
are different for the actual interface S and the interface I of the reduced model. In fact, it would
be more correct to refer to the function as uλ in the complete model and as u0 in the reduced
model. For notational convenience we omit the superscript indices and instead highlight the
difference between the models by introducing different notations of jump brackets. For S, i.e. in
the complete model, we define

u|±S = lim
x∈Ω±→S

u and [[u]] = u|+S − u|
−
S , (2)

while at the interface I of the reduced model we write

u|±I = lim
x∈Ω±→I

u and [[[u]]] = u|+I − u|
−
I . (3)

In case the function u is not defined in either Ω+ or in Ω−, we set the corresponding value in (2)
and in (3) to zero.
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Constituents and chemical reactions. In each of the two domains Ω+ and Ω− and –depending
on the model– on the interface S or I , we consider a mixture of several constituents. The
total number of constituents in the system is denoted by N and the set of constituents is
M = {A1, A2, · · · , AN}, usually indexed by α ∈ {1, 2, · · · , N}. In general we have different
constituents in Ω+, Ω− and on S or I , but for the simplicity of notation this fact will only be
indicated if necessary. Then, we use subsetsM+,M− ⊂M for the constituents in Ω+ and
Ω−, respectively. We assume that each constituent on S or I is also constituent of Ω+ or Ω−, for
the constituents that are exclusively on the interface we introduceMS =M\ (M+ ∪M−).

For quantities defined in the bulk domains there will often be corresponding quantities on the
interfaces S or I , indicated by a subscript s.

Among constituents we may have chemical reactions. There are M (bulk) reactions and in
addition there may be MS surface reactions of the general form

ai
1A1 + · · ·+ ai

NAN

Rif−−⇀↽−−
Rib

bi
1A1 + · · ·+ bi

NAN for i ∈ {1, · · · ,M}, (4a)

a
s

i
1A

s
1 + · · ·+ a

s

i
NA

s
N

Rif
s−−⇀↽−−
Rib
s

b
s

i
1A

s
1 + · · ·+ b

s

i
NA

s
N for i ∈ {1, · · · ,MS}. (4b)

The constants (aiα)α=1,2,··· ,N , (biα)α=1,2,··· ,N are positive integers and γiα = biα − aiα denote
the stoichiometric coefficients of the reactions. The reaction from left to right is called forward
reaction with reaction rate Ri

f > 0. The reaction in the reverse direction with rate Ri
b > 0 is the

backward reaction.

The constituents have (atomic) masses (mα)α=1,2,··· ,N and may be carrier of charges (zαe0)α=1,2,··· ,N .
The positive constant e0 is the elementary charge and zα are positive or negative integers includ-
ing the value zero. All constituents may consist of polarizable matter, but magnetization is not
considered here.

Basic quantities. At any time t ≥ 0, the thermodynamic state of Ω± is described by the
number densities (nα)α=1,2,··· ,N , the velocities (vα)α=1,2,··· ,N of the constituents, the electric
field E and the temperature T of the mixture. The electric field is often represented by its
potential ϕ. At the same time, the thermodynamic state of the interface S or I is characterized
by the number densities of the interfacial constituents, (n

s
α)α∈{1,2,··· ,N}, the interface speed

w = (wν , 0, 0) and the electric fieldE. Recall that we only consider isothermal processes, so
T appears only as a constant parameter in the following equations. Furthermore, the interfacial
temperature T

s
is also just a constant parameter. Obviously we have T

s
= T .

In general, the introduced quantities may be functions of time t ≥ 0 and space x ∈ R3. On S
and I , the basic variables are functions of time only, due to the assumptions above. Multiplication
of the number densities nα and partial velocities vα by mα gives the partial mass densities and
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mass fluxes:

ρα = mαnα and jα = ραvα , (5a)

ρ
s
α = mαn

s
α . (5b)

The mass density of the mixture and the barycentric velocity are defined by

ρ =
N∑
α=1

ρα and v =
1

ρ

N∑
α=1

ραvα , (6a)

ρ
s

=
N∑
α=1

ρ
s
α . (6b)

Total free charge density and total free current are calculated by

nF =
N∑
α=1

zαe0nα and jF =
N∑
α=1

e0zα
mα

jα , (7a)

n
s

F =
N∑
α=1

zαe0n
s
α . (7b)

The application of Maxwell’s theory to continuous matter shows that the total electric charge
density ne and the total electric current je consist of two additive contributions. We write

ne = nF + nP and je = jF + jP , (8a)

n
s

e = n
s

F + n
s

P . (8b)

Besides free charge densities and free currents, there are charge densities and currents due to
polarization and magnetization but herein we do not consider magnetization. Then the represen-
tation of charge and current due to polarization read, c.f. [Mül85],

nP = −div(P ) and jP =
∂P

∂t
+ curl(P × v) , (9a)

n
s

P = −[[P · ν]]. (9b)

where P denotes the vector of polarization. Polarization embodies phenomena caused by
microscopic charges, for example, atomic dipoles within atoms and molecules. Recall that on
the interfaces we ignore tangential currents. There are only normal currents across the interface,
which leads to the simple law (9b) for the polarization charge.

In the bulk, we define diffusion fluxes Jα of constituent Aα as

Jα = ρα(vα − v) implying
N∑
α=1

Jα = 0 . (10)
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Free energy and chemical potentials. Remarkably, the constitutive behavior is fully deter-
mined by the free energy density ρψ of the bulk and the free energy density ψ

s
of the interface. In

order to embody a wide class of different materials we use free energy functions of the general
forms

ρψ = ρψ̂(T, ρ1, . . . , ρN)− 1
2
ε0χ|E|2 , (11a)

ψ
s

= ψ̂
s
(T
s
, ρ
s

1, . . . , ρ
s
N) . (11b)

In isothermal processes, the temperatures T and T
s

are identical. The contribution of the electric

field to the bulk free energy is made explicit and represents the simplest polarizable matter. The
constant parameter χ denotes the electric susceptibility of the material. The chemical potentials
of the bulk and surface materials and the polarization vector in the bulk are defined by means of
the free energies, i.e.

µα =
∂ρψ

∂ρα
and P = −∂ρψ

∂E
= ε0χE , (12a)

µ
s
α =

∂ρ
s
ψ
s

∂ρ
s
α

. (12b)

Note that the assumption of a constant susceptibility χ implies that the chemical potentials in the
bulk do not depend on the electric field. Moreover, we ignore tangential dipoles on the interface,
therefore there is no electric contribution to ψ

s
.

2.2 Summary of the mixture models

The models introduced in this section are thermodynamically consistent mixture models for an
electrochemical interface between two arbitrary mixtures. The complete model describes bulk
materials that exhibit boundary layers at the physical interface. These layers are due to a small
dimensionless parameter λ in the model equations that defines a characteristic length scale

λL0 =

√
kTε0

e2
0n0

(13)

of the interface. Here k is the Boltzmann constant and L0 and n0 denote characteristic values
for the number density and a length of the system. For example, L0 can be the distance between
two electrodes and n0 can be related to the anion and cation density in an electrolyte. Then,
the length λL0 represents the well known Debye length that controls the width of the boundary
layers as it is indicated by Figure 1. For solution of 0.1mol per liter λL0 ≈ 1.5 · 10−10m.

In the following the notations λ > 0 and λ→ 0 indicate the complete model and the reduced
model, respectively. The detailed derivation of the complete model equations is found in Chapter
4 and the limit procedure λ→ 0 for the reduced model is carried out in Chapter 5.

The objective is the determination of the densities (nα)α=1,2,··· ,N , the velocity v and the electric
potential ϕ in the bulk and of the densities (n

s
α)α=1,2,··· ,N , the speed w and the electric potential
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ϕ
s

on the interface S and I , respectively. Their isothermal evolution in time and space relies on

the balance equations for mass and momentum and on the Poisson equation. In addition to the
assumptions on the interface we restrict ourselves in the following on the one-dimensional case
only.

Poisson equation. The determination of the electric potential ϕ relies on the Poisson equation
which is considerably reduced by the limit λ→ 0. We have

λ > 0
∥∥∥ λ→ 0∥∥∥−∂x

(
(1 + χ)ε0∂xϕ

)
= nF

∥∥∥ 0 = nF (14)∥∥∥[[(1 + χ)ε0∂xϕ]] = n
s

F
∥∥∥ 0 = n

s

F (15)∥∥∥[[ϕ]] = 0, i.e. ϕ
s

= ϕ|±S
∥∥∥ (16)

Observe that the reduced model λ→ 0 implies local electro-neutrality in the bulk regions and
on the interface I . The continuity of ϕ across S is postulated. In the reduced model, ϕ will in
general be discontinuous.

Mass balances. There are N partial mass balance equations in the bulk regions Ω± that are
of the same structure in both the complete and the reduced model. In Ω± we have

∂t(mαnα) + ∂x(mαnαv + Jα) =
M∑
i=1

γiαmαR
i for α = 1, . . . , N , (17)

where Ri = (Ri
f −Ri

b) denotes the chemical reaction rates. Also the interfacial mass balances
seem to be identical at first glance. Using an analogue definition of the reaction rates on the
surfaces, we have for α = 1, . . . , N

λ > 0 ∂t(mαn
s
α) + [[mαnα(v − w)]] + [[Jα]] =

MS∑
i=1

γ
s
αmαR

s

i , (18a)

λ→ 0 ∂t(mαn
s
α) + [[[mαnα(v − w)]]] + [[[Jα]]] =

MS∑
i=1

γ
s
αmαR

s

i . (18b)

The essential difference between (18a) and (18b) is indicated by the different notation of the
jump brackets [[.]] and [[[.]]]. Recall that taking a generic function u in the complete model and
denoting the corresponding function in the reduced model by the same symbol u, we have in
general [[u]] 6= [[[u]]]. This fact is visualized in the sequence of picture 1. In many cases (18a) and
(18b) are used in a simplified version. If the surface densities n

s
α are constant in time, only the

jumps of bulk quantities will remain in (18a) and (18b). Then these equations are often called
jump conditions because they determine the discontinuities of bulk quantities.
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Like the mass balances, also the constitutive laws for the diffusion fluxes Jα remain formally
unchanged in the limit λ→ 0. For both models there holds

Jα = −
N−1∑
β=1

Mαβ

(
∂

∂x

(µβ − µN
T

)
+

1

T

(zβe0

mβ

− zNe0

mN

)∂ϕ
∂x

)
, α ∈ {1, · · · , N − 1} .

(19)

Here, Mαβ are the components of the positive definite mobility matrix that might depend on
arbitrary combinations of the other variables. Note that there are only N − 1 diffusion fluxes
given by (19) and the N th diffusion flux is determined by the side condition

∑N
α=1 Jα = 0.

Moreover, together with the mass conservation of the chemical reactions, one of the partial mass
balances can be replaced by the sum of all mass balances. We obtain the total mass balance of
the mixture

∂tρ+ ∂x(ρv) = 0 . (20)

In the bulk domains, the constitutive laws for the chemical reaction rates Ri are of the same
structure. For both models we get

Ri
b

Ri
f

= exp
(Ai
kT

N∑
α=1

γiαmαµα

)
, (21)

where Ai denote positive kinetic coefficients. Whereas in general it is possible to write the
corresponding constitutive relations on the interfaces in the same structure for both models, we
introduce a strongly different form for the reduced model, viz.

λ > 0
R
s

i
f

R
s

i
b

= exp

(
−
A
s

i

kT

∑
α∈M

γ
s

i
αmαµ

s
α

)
, (22a)

λ→ 0
R
s

i
f

R
s

i
b

= exp

(
−
A
s

i

kT

∑
α∈MS

γ
s

i
αmα

(
µ
s
α + zαe0

mα
ϕ
s

)

−
A
s

i

kT

∑
α∈M+∪M−

γ
s

i
αmα

(
µα|±I + zαe0

mα
ϕ|±I
))

. (22b)

The limit equation (22b) forms the basis of Butler-Volmer equations. The reaction rates (22a) of
the complete model λ > 0 are exclusively dependent on the chemical potentials µ

s
α defined

on the interface S. Thus the reaction rates depend on the particle densities n
s
α but not on the

potential ϕ
s

of S. The properties of the reaction rates (22b) of the reduced model are quite

different. Particularly the second sum in (22b) over the constituents of the bulk regions brings an
additional dependence of the reaction rates on the electric potentials ϕ|+I and ϕ|−I which are
unequal in general. This fact gains in importance if there are no constituents exclusively on S.
Then, the first sum disappears and reaction rates are fully determined by bulk quantities.
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The equations (21)–(22b) alone cannot uniquely determine the evolution of chemical reactions.
They are merely sufficient conditions which guarantee thermodynamic consistency of the reaction
model. In order to close the system, we need a constitutive law either for the forward or for
the backward reaction rate. Then the other reaction rate is already determined by the ratio. In
Section 3 we will describe a corresponding ansatz that yields a generalization of the well-known
Butler-Volmer equations.

Momentum balance. In the momentum balance we use Σ for a rather general description of
all kind of stresses, including Maxwell stresses. We observe that the reduced model λ → 0
contains only the quasi-static momentum balance in the bulk and on the surfaces

λ > 0
∥∥∥ λ→ 0∥∥∥0 =∂t(ρv) + ∂x(ρv

2 − Σ)
∥∥∥ 0 =∂xΣ (23)∥∥∥

0 =∂t(ρ
s
w) + [[ρv(v − w)]]− [[Σ]]

∥∥∥∥∥ 0 =[[[Σ]]] (24)∥∥∥
Σ = ρψ̂ −

N∑
α=1

mαnαµα + 1
2
(1 + χ)ε0(∂xϕ)2

∥∥∥ Σ = ρψ̂ −
N∑
α=1

mαnαµα (25)

The limit λ→ 0 considerably simplifies the constitutive law for the total stress tensor because
the Maxwell stress due to the electric field disappears in this limit. Moreover, the quasi-static mo-
mentum balance on the surface imply that the interfacial speed w is already uniquely determined
by the jump conditions (18b) for the masses.

Kinetic relations. The model is closed by so called kinetic relations which are determined in a
thermodynamically consistent way. For simplicity we only consider the quasi-static variant

λ > 0
∥∥∥ λ→ 0∥∥∥µ

s
α = µα|±S + 1

2
(v|±S − w)2

∥∥∥ µ
s
α +

zα
mα

ϕ
s

= µα|±I +
zα
mα

ϕ|±I (26)

It will turn out in Section 5 that the reduced kinetic relations (26)2 are of essential importance
to derive the representation (22b) of the ratio of reaction rates. Thus they are also of essential
importance to formulate the Butler-Volmer equations, which is the subject of Section 3.

2.3 Discussion and Remarks

The presented asymptotic limit λ→ 0 is intimately connected to the chosen characteristic scales
of time, length, diffusion velocity, reaction rates etc. In particular, it is essential how the scales
are linked to the parameter λ. Other choices are possible, but would lead to different models.
The details of these remarks are found in Chapter 5.
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Characterization of the scaling.

(i) The characteristic length of the system is sufficiently large so that charged boundary layers
may emerge.

(ii) The characteristic time is of order of seconds.

(iii) Reactions rates and diffusion velocities are of the same order, and they are observable on
the chosen time scale.

Remark concerning the electrochemical potentials. In the derivation of the reduced model,
the electrochemical potentials play an essential role. They are defined as a combination of
chemical potentials and electric potential, i.e.

µe
α = µα +

zαe0

mα

ϕ. (27)

The electrochemical potentials occur twice. Their gradient is the driving force of the diffusion
fluxes in the bulk regions. Moreover, the electrochemical potential represents the essential
quantity in the boundary layers. According to the asymptotic procedure and the chosen scaling,
see Chapter 5, the electrochemical potential is a constant with respect to the normal distance
to the interface S. This is the essential property leading to the kinetic relations (26)2 and the
representation (22b) of the reaction rates.

Remarks on the electric current. A further crucial quantity in electrodynamics is the electric
current je as defined by the equations (7a)–(9a). For the complete model and the reduced model
respectively, we obtain the following representations:

λ > 0
∥∥∥ λ→ 0∥∥∥

je =
N∑
α=1

zαe0

mα

(mαnαv + Jα)− ε0χ
∂2ϕ

∂t∂x

∥∥∥∥ je =
N∑
α=1

zαe0

mα

Jα . (28)

In the limit λ → 0 the leading contribution to the electric current is due to the diffusion of the
charged constituents. For the chosen scaling, the polarization current ε0χ

∂2ϕ
∂t∂x

and the convective
current zαe0nαv do not contribute in the limiting case. This result is also a consequence of the
chosen scaling, see Section 5. Particularly, the choice of the characteristic time of the system,
which is in the order of seconds, is essential. If the characteristic time were given due to a high
frequent alternating current, the polarization current would contribute to je.

Moreover, the representations (28)2 of the electric current and the mass fluxes (19) in the reduced
model imply

λ→ 0

je = −
N−1∑
α,β=1

Mαβ

(
zαe0

mα

− zNe0

mN

)(
∂

∂x

(µβ − µN
T

)
+

1

T

(zβe0

mβ

− zNe0

mN

)∂ϕ
∂x

)
. (29)

10



In a system where the gradients of the chemical potentials and of the temperature are zero, we
obtain Ohm’s law, je = −κ∂xϕ with the conductivity κ.

Finally, we observe that due to electro-neutrality of the reduced model (14)2

λ > 0
∥∥∥ λ→ 0∥∥∥

∂tn
e + ∂x(n

ev + je) = 0

∥∥∥∥ ∂xj
e = 0 (30)

Thus for λ→ 0 the electric current is spatially constant in the bulk but might be time dependent.

Remarks on the chemical equilibrium. The necessary conditions for chemical equilibrium
are R

s

i
f = R

s

i
b, so from (22a) we obtain for the interface S and from (22b) for the interface I

λ > 0 0 =
∑
α∈M

γ
s

i
αmαµ̄

s
α, (31a)

λ→ 0 0 =
∑
α∈MS

γ
s

i
αmα

(
µ̄
s
α +

zαe0

mα

ϕ̄
s

)
+
∑

α∈M+∪M−

γ
s

i
αmα

(
µ̄α|±I +

zαe0

mα

ϕ̄|±I
)
. (31b)

The algebraic equations (31a) and (31b) are the laws of mass action for the interfaces S and I ,
respectively.

3 Butler-Volmer equations

The above models form the basis to develop a rational derivation of general Butler-Volmer
equations for interfacial electrochemical reactions. Here the notion Butler-Volmer equation refers
to an equation that determines an interfacial reaction rate R

s
by the temperature, the particle

densities nα at the interface, and a potential difference ηS . We write

Rf
s

−Rb
s

= R
s
(T, nα, ηS) . (32)

Existing Butler-Volmer equations have one principle in common. The forward as well as the
backward reaction rates are given by Arrhenius-type laws leading to the general structure

R
s

= R0
f exp

(αfe0ηS
kT

)
−R0

b exp
(−αbe0ηS

kT

)
. (33)

HereinR0
f/b are called exchange rates. The parameter αf and αb are considered as phenomeno-

logical coefficients, sometimes restricted by the condition αf + αb = 1. Frequently, (33) is used
to establish a relation between the potential difference ηS and the electric current density je

instead of R
s

. Then, the coefficients R0
f/b are replaced by the exchange current densities i0b/f .

The literature provides a variety of Butler-Volmer equations, a generally accepted representation
is missing. Even if the Butler-Volmer equations look similar to (33), they crucially differ in the
way functions for the exchange rates and exchange currents or the potentials are defined. For
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an overview over the literature see e.g. textbooks like [BRGA01, NTA04] and the survey in
[BVSB09].

The potential difference ηS plays a crucial role in the general Butler-Volmer equation. For some
controversial discussion of different explicit definitions we refer to [BCB05, LZ11, LZ13]. Often
ηS is called driving force of the electrochemical reaction. According to Newman[NTA04], see also
[BRGA01], ηS represents the deviation from the equilibrium potential, and the exchange rates
R0
b,f and exchange currents i0b,f are considered as general functions of temperature and particle

densities.

The design of the function R
s

or the coefficients R0
f/b presupposes a careful attention of two

facts:

1. The ratio of R
s
f and R

s
b is given by (22b), which restricts the generality of R

s
. Thus only

one of the two reaction rates R
s
f and R

s
b is available for a thermodynamically consistent

constitutive modeling.

2. The definition of the potential difference ηS is a priori not given in the complete model. It
requires some connection between variables of the bulk regions and the surface reactions.

From our point of view, the essential criticism of the treatment in the existing literature has
to be that it ignores the dependence between those functions appearing in the Butler-Volmer
equation and the corresponding functions in the bulk regions. That connection is enforced by the
equations of balance and the 2nd law of thermodynamics. In our model this fact is highlighted by
the relations (22a) and (22b). Thus our objective is a rational grounded derivation of this explicit
dependence in the definition of the exchange rates and the identification of the relevant potential
difference.

Remark on the relation of the complete model to the reduced model. The general Butler-
Volmer equation (33) relates the reaction rate to a potential difference ηS . If we compare (33) with
our relation (22a) of the complete model λ > 0, we observe that the electric potential ϕ does not
explicitly appear in (22a). Moreover, according to (16) the electric potential is continuous across
the interface S. We are thus confronted with the question, which potential difference drives the
the chemical reaction at the interface? For these reasons it becomes evident that the model
λ > 0 does not imply the general Butler-Volmer relation (33). Rather it can be deduced only
within the setting of the reduced model λ→ 0. Only in the limit λ→ 0 and with respect to the
new interface I we observe a dependence of the reaction rate (22b) from the electric potentials
ϕ|±I of the bulk regions.

In the following sections we consider at first a simple chemical reaction to describe the essential
steps of a thermodynamically consistent modeling of the reaction rates. Hereafter we generalize
our results within the reduced model λ→ 0. Then, for further illustration, we apply the results to
the electroplating of metals and to the charging-discharging process of a lead-acid battery.
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3.1 Motivation – a simple reaction

To illustrate the strategy, we consider a simple generic redox reaction of the form

O + n e−
Rf−−⇀↽−−
Rb

R . (34)

The constituents R and e− may represent the metallic ions and free electrons of electrodes,
n ∈ N and O are cations that exist in an electrolyte. The stoichiometric coefficients of the
reduced and oxidized constituents and the electron are γO

s
= −1, γe

s
= −n and γR

s
= +1.

The condition (22b), which restricts the interfacial reaction rates, reads for the given reaction

R
s
f

R
s
b

= exp

(
−

A
s

kT

[
Γe0 (ϕE − ϕS) +

∑
α=e−,R,O

γα
s
mαµα

])
. (35)

To indicate the electric potentials of the electrode (E) and the electrolytic solution (S), we have
used the notations ϕE and ϕS . The quantity Γ is defined as Γ =

∑
α=e−,R γα

s
zα = −γO

s
zO.

For an equilibrium state with the corresponding potentials ϕ̄E , ϕ̄S and µ̄α, we use the law of
mass action (31b) for the interface I to calculate the equilibrium potential

U0 := ϕ̄E − ϕ̄S = − 1

Γ e0

∑
α∈e−,R,O

γ
s
αmαµ̄α . (36)

Then, we may write (35) as

R
s
f

R
s
b

= exp

(
−

A
s

kT

[
Γe0 (ϕE − ϕS − U0) +

∑
α=e−,R,O

γα
s
mα(µα − µ̄α)

])
. (37)

General Form. Next we model one of the two reaction rates, either R
s
f or R

s
b, then the other

rate is determined by the condition (37) that guarantees thermodynamic consistency. Motivated
by the Arrhenius-law we propose the following ansatz for the forward rate and calculate the
backward rate from (37):

R
s
f = R

s
0 exp

( A
s

kT

[
(β − 1) Γe0(ϕE − ϕS − U0) +

∑
α=e−,R,O

(βα − 1) γα
s
mα(µα − µ̄α)

])
(38a)

R
s
b = R

s
0 exp

( A
s

kT

[
β Γe0(ϕE − ϕS − U0) +

∑
α=e−,R,O

βα γα
s
mα(µα − µ̄α)

])
. (38b)

HereinR
s

0, β and (βα)α=e−,R,O are introduced as phenomenological coefficients for the reaction

components. To write the result according to the general Butler-Volmer structure (33), we

13



introduce the definitions

R0
f = R

s
0 exp

( A
s

kT

∑
α=e−,R,O

(βα − 1) γα
s
mα(µα − µ̄α)

)
, αf = A

s
(β − 1) Γ (39a)

R0
b = R

s
0 exp

( A
s

kT

∑
α=e−,R,O

βα γα
s
mα(µα − µ̄α)

)
, αb = −A

s
β Γ (39b)

and identify the potential difference by

ηS = ϕE − ϕS − U0 . (39c)

Note that the exchange reaction rates R0
f/b depend on the particle densities, according to (12a),

but they do not depend on the electric potential.

Specific material model. We consider the reaction (34) for a metallic electrode consisting of
ions, R, and free electrons, e−. The oxidized species O represents the cations of an electrolyte.
In addition the electrolyte consists of anions, A, and the solvent, S.

At first we discuss the chemical potentials for the metal which is described as a binary mixture.
The electro-neutrality condition (14)2 and the plausible assumption that the particle density of the
metallic ions does not depend on space, implies that also the electron density ne− is a constant.
Thus in an isothermal process, the chemical potentials are constants in space and time

µα = µ̄α for α = e−,R . (40)

The same assumptions are also made for hydrogen fuel cells in [BVSB09]. We assume that the
electrolyte is a ternary ideal mixture. In this case the chemical potentials are represented by

µα = gα +
kT

mα

ln yα for α = O,A, S . (41)

Here yα = nα/n denotes the mole fraction of constituent α and gα is the Gibbs free energy
of the corresponding pure substance. The quantity n =

∑
α nα is the total particle density of

the mixture. Note that gα may depend on temperature and pressure. In general the pressure
dependence is of outmost importance, see [DGM13], which contains more information on the
thermodynamic modeling of electrolytes.

Inserting the constitutive laws into (39a) and (39b) yield explicit representations of the exchange
rates. We obtain (with γO

s
= −1 as above and γA

s
= γS

s
= 0)

R0
f = R

s
0

(
yO
ȳO

)A
s

(1−βO)

and R0
b = R

s
0

(
yO
ȳO

)−A
s
βO

. (42)

In summary, the Butler-Volmer equation for the reaction (34) with a specific material model (40),
(41) is

R
s

= R
s

0

(
yO
ȳO

)A
s

(1−βO)

exp

(
A
s

(β − 1) Γe0ηS

kT

)
−R

s
0

(
yO
ȳO

)−A
s
βO

exp

(−A
s
β Γe0ηS

kT

)
.

(43)
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3.2 Discussion.

At first, let us compare our representation of the Butler-Volmer equation with the corresponding
equation (8.16) from the textbook by J. Newman and K. E. Thomas-Alyea, [NTA04]. In our
notation the authors write:

Newman & Thomas-Alyea : R
s

= R0

[
exp

(
(1− β)ne0ηS

kT

)
− exp

(
− βne0ηS

kT

)]
.

(44)
There is only a single exchange rate in (44) and it is given by

R0 = kβf k
1−β
b nβRn

1−β
O . (45)

Newman and Thomas-Alyea call the parameter β symmetry factor. Moreover they introduce
kf/b as to constants related to the forward and backward reaction, respectively. The potential
difference ηS is defined identical to (39c).

A comparison of the general Butler-Volmer equation (33) with the coefficients from (39) shows
essential differences. The two exchange rates R0

f/b in (44) are equal, R0
f = R0

b = R0. However,
this violates the condition (35), which we introduced to guarantee thermodynamic consistency.
Moreover, the form how the exchange rates in (45) depend on the particle densities nR and nO
assumes already a specific constitutive model like (41). In contrast, our version (39) is more
general since the exchange rates depend on the particle densities via the chemical potentials.
But even in this simple case of (42) where we consider the electrolyte as an ideal mixture and
have constant chemical potentials in the metal, we observe essential differences between (42)
and the exchange rates according (45).

Another concept is used for the generalized Frumkin-Butler-Volmer equation (gFBV), see
[BVSB09]. There, the potential difference is defined as the voltage over the Stern-layer. This
definition was motivated by the aim to include effects of diffusive polarization layers at the elec-
trodes into the equations. Since diffuse layers are not resolved in standard models based on
local electro-neutrality, the combination of this gFBV with a microscopic model that resolves
space charge layers was proposed in [IKV77] and analyzed in in detail in [BCB05]. There, also
asymptotic limit equations for thin diffuse layers are derived and analyzed. This limiting procedure
corresponds to the formal asymptotic analysis in Chapter 5 below.

We did not introduce a Stern layer into our models because –contrary to the standard Poisson-
Nerst-Planck model– the complete model of Section 2 is already fully capable to describe diffuse
layers correctly, including boundedness of the concentrations and pressure effects that becomes
most important in the layers [DGM13]. For saturation effects at the electrodes see [DGL13].
Moreover, there is not a problem of missing boundary conditions for the Poisson equation that
would require the introduction of a Stern layer condition. On the other hand, the reduced model
fulfills local electro-neutrality in the bulk but the boundary conditions incorporate all effects of the
diffusive space charge layers. Moreover the bulk variables are linked to the interface reactions in
a thermodynamically consistent way.
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3.3 General Butler-Volmer equation

Now we consider the general chemical reaction (4b) to generalize our results of the last section.
We start with a summary of the two essential steps that lead to the Butler-Volmer equation for
the simple reaction (34):

1. We choose a suitable reference state to characterize an equilibrium. Then we use (31b) to
introduce in (22b) the potential difference ηiS between the actual state and the equilibrium
state. It follows

R
s

i
f

R
s

i
b

= exp

(
−
A
s

i

kT

(
Γie0η

i
S +

∑
α∈MS

γ
s

i
αmα

(
µ
s
α − µ̄

s
α

)
+

∑
α∈M+∪M−

γ
s

i
αmα

(
µα|±I − µ̄α|

±
I

)))
. (46)

Herein the potential difference is given by

ηiS =
(
ϕ|+I −ϕ|

−
I − (ϕ̄|+I − ϕ̄|

−
I )
)
− 1

Γi

∑
α∈MS

γ
s

i
αzα

(
ϕ|−I −ϕ

s
− (ϕ̄|−I − ϕ̄

s
)
)
, (47)

where the coefficient Γi is introduced as an abbreviation, Γi =
∑

α∈M+
γ
s

i
αzα. Due to

charge conservation in every reaction we have

Γi = −
∑

α∈M−\M+

γ
s

i
αzα −

∑
α∈MS

γ
s

i
αzα. (48)

Note that in general the potential difference ηiS depends on the surface potential ϕ
s

. Only if

there are no pure interfacial constituents, i.e.MS = ∅, or if the total charge of the pure
interfacial constituents is zero, i.e.

∑
α∈MS

γ
s

i
αzα = 0, the second term in (47) disappears

so that ηS becomes the same for all surface reactions i = 1, 2...,MS . In this case the
potential difference ηS describes the deviation of the actual potential difference ϕ|+I −ϕ|

−
I

from the equilibrium voltage U0 = ϕ̄|+I − ϕ̄|
−
I of the bulk phases.

2. In this step we propose a forward and backward reaction rates so that the exponential
condition (22b) between the rates and the potential remains preserved. Then the net
reaction rate R

s

i can be written as a generalized Butler-Volmer equation,

R
s

i = R0,i
f exp

(αife0ηS

kT

)
−R0,i

b exp
(−αibe0ηS

kT

)
. (49)

The newly introduced coefficients are

αif = A
s

i(βi − 1)Γi and αib = A
s

iβiΓi , (50)
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and the exchange rates are identified as

R0,i
f = R

s

i
0 exp

(
A
s

i

kT

[ ∑
α∈MS

(βiα − 1)γ
s

i
αmα

(
µ
s
α − µ̄

s
α

)
+

∑
α∈M+∪M−

(βiα − 1)γ
s

i
αmα

(
µα|±I − µ̄α|

±
I

)])
(51)

R0,i
b = R

s

i
0 exp

(
A
s

i

kT

[ ∑
α∈MS

βiαγ
s

i
αmα

(
µ
s
α − µ̄

s
α

)
+

∑
α∈M+∪M−

βiαγ
s

i
αmα

(
µα|±I − µ̄α|

±
I

)])
. (52)

Thus in this step we have introduced the new phenomenological coefficients R
s

i
0, βi and

(βiα)α∈M.

The equations (49)–(52) represent a thermodynamically consistent formulation of interfacial
reaction rates R

s

i. The rates explicitly depend on the electric potentials of the bulk phases.

Moreover they additionally depend via the chemical potentials on the bulk concentrations.

A further important observation that is often ignored in the literature is this: The reaction rates
(49), the diffusion fluxes (19), the chemical potentials and the stress tensor (25) are related to
each other, hence they cannot be chosen independent of each other. The three quantities follow
from the same free energy function ρψ. Once this function is given, only the phenomenological
coefficients in the diffusion fluxes and the reaction rates can be still independently chosen. In
particular, if the diffusion equations are explicitly given, the reaction rates are also fixed in the
above sense.

3.4 Example I – Electroplating

The electroplating of metals serves as a simple example of an electrochemical process with a
surface reaction of the type (34). Moreover it has the advantage that it can be described by a
steady state.

We consider a situation with an aqueous copper sulfate solution in the domain Ω, bounded by
two parallel copper platesA and C as shown in Figure 2. If the plates are sufficiently large the
process is one dimensional and stationary. When a current is applied to the electrodes, copper
is oxidized at the anodeA and the copper ions are dissolved from the the anode interface IA
into the electrolyte. On the other side, at the interface IC , the copper ions for Ω are reduced and
incorporated into cathode C. The reactions at both electrodes can be written as

Cu2+
aq + e− −−⇀↽−− Cu+ at IA and IC , (53)

where the forward reaction is dominant at the cathode C and the backward reaction at the
anodeA. We model copper electrodes as a binary mixture of free electrons e− and copper ions
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2H O

Cu
+

ν ν

Figure 2: Experimental setup for electroplating: aqueous copper sulfate solution bounded by two
copper electrodes. The role of the electrodes as anode or cathode depends on the sign of the
applied current je. The surface normal ν always points to the electrolyte.

Cu+ which are the reduced species R. The electrolyte consists of the ions Cu2+
aq , that form the

oxidized species O and sulfate ions SO2−
4 and water H2O , in the following denoted by A and S,

respective.

R: Cu+ e− A: SO2−
4 O: Cu2+

aq S: H2O

γR
s

= +1 γe
s

= −1 γA
s

= 0 γO
s

= −1 γS
s

= 0

zR = +1 ze = −1 zA = −2 zO = +2 zS = 0

Table 1: Stoichiometric coefficients and charge numbers for the chemical species at the interfaces.

In a steady state, the boundary conditions (18b) at the interfaces IA and IC reduce to

mαγα
s
R
s
A/C = [[[mαnα (v − wA/C) + Jα]]] . (54)

Taking a linear combination of these conditions for the electrode species R and e−, it turns out
that reaction rates R

s
A/C are related to the electric current je. We set R

s
:= RA

s
= −RC

s
and get

R
s

= − 1

γe
s
zee0 + γR

s
zRe0

je = − 1

2e0

je . (55)

The species A, O and S of the electrolyte satisfy the stationary version of the mass balance
equations (17) where we replaced the partial balance of S by the total mass balance (20). In the
bulk region we have

∂x (mAnAv + JA) = 0 , (56a)

∂x (mOnOv + JO) = 0 , (56b)

∂x (ρv) = 0 , (56c)

together with nF = e0zAnA + e0zOnO = 0 according to (14). As in [DGM13], we get from
the momentum balance (23) that the pressure is constant p = p0 and moreover, for an ideal
mixture of compressible fluids, n = nA + nO + nS can be related to p and hence n is also
constant. With these relations, nA and nS can be expressed as functions of nO. Summing (54)
for α = A,O, S and using (56), it follows that wA = wC =: w. Choosing a coordinate system
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that moves with the interface IA, we have w = 0. Then we easily derive from a combination of
(54) and (56) that

ρ v = mOγO
s
R
s

=
mO

2e0

je . (57)

This identity can be used to reduce (56) to a system of two nonlinear coupled second order
differential equations for the variables nO and ϕ, viz.

∂x

(
− zO
zA
mAnO v(nO) + JA(nO, ϕ)

)
= 0 , (58a)

∂x

(
mOnO v(nO) + JO(nO, ϕ)

)
= 0 . (58b)

For the diffusive fluxes we choose a diagonal mobility matrix with Mαα = BαTm
2
αnα. With

chemical potentials of the form (41) we have

JA(nO, ϕ) =
zO
zA
BA

(
∂xnO −

mA

mS

nO
nS(nO)

∂xnS(nO) + zA nO ∂xϕ

)
, (59a)

JO(nO, ϕ) = − BO

(
∂xnO −

mO

mS

nO
nS(nO)

∂xnS(nO) + zO nO ∂xϕ

)
. (59b)

The explicit boundary conditions (54) for the particle fluxes nαv + Jα, α = A,O are

zO
zA
mAnOv(nO) + JA(nO, ϕ) = 0 at IA , (60a)

mOnOv(nO) + JO(nO, ϕ) =
mO

2e0

je at IA , (60b)

−zO
zA
mAnOv(nO) + JA(nO, ϕ) = 0 at IC , (60c)

mOnOv(nO) + JO(nO, ϕ) = −mO

2e0

je at IC . (60d)

In addition there are two more constraints. First, we have to specify the total amount NO of
cations in the electrolyte. Second, an absolute reference value for ϕ has to be define, e.g. ϕ = 0
at IC . For the Butler-Volmer equation we have Γ = 2 and γO = −1. We choose A

s
= 1 and

β = 1/2 to get

R
s

= R0

(
nO
n̄O

)(1−βO)

exp

(
1

2

2e0

kT
ηS

)
−R0

(
nO
n̄O

)−βO
exp

(
−1

2

2e0

kT
ηS

)
(61)

where ηS = ϕE−ϕS−U0 with the equilibrium potential U0 = ϕ̄E− ϕ̄S = 0.16 V, c.f. [Hay10].

The system (58)–(61) can be solved numerically, solutions are plotted in Figure 3. The voltage
ϕA − ϕC of the galvanic cell is defined as the difference between the potentials on the electrode
side of IA and IC . For very low cation concentrations, i.e. strongly diluted electrolytes, the con-
vective flux nOv and the influence of the solvent S can be neglected in (58). This approximation
leads to a linear spacial distribution of nO with a slope proportional to the imposed current je.
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A: SO2–
4 O: Cu2+

aq S: H2O

mA = 96.078 u mO = 63.546 u mS = 18.015 u
BA = 3.36× 1011 s/kg BO = 5.61× 1011 s/kg –

Table 2: Material parameters used for the calculations, c.f. [Hay10].
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Figure 3: Solution of (58)–(61) over space for different applied currents. Left: We observe almost
linear concentration profiles nO with slope related to je . Right: Electrostatic potential ϕ in the
electrolyte and the jump across the Interfaces IA and IC according to (61).

When nO approaches 0 at the cathode, the voltage ϕA − ϕC has to blows up. This motivates
the definition of a limiting current as in [BCB05]

je
d :=

4zOe0 kT BONO

L
. (62)

In fact, for strongly diluted electrolytes with a very low total amount NO of cations, we observe a
blow up of the cell voltage that occurs close to je = je

d, see Figure 4. For less diluted electrolytes
it is possible to increase the applied current beyond je

d. This is due to fact that convective fluxes
and the influence of the solvent, can no longer be ignored as NO is increased.

For the choice βO = 0, the Butler-Volmer equation (61) has a similar structure as the generalized
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Figure 4: Polarographic curves for different choices of the parameter βO. Left: βO = 0; right:
βO = 1. Independent of βO but depending on the ion concentration NO, we observe a blow up
of the cell voltage for different applied current je.
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Figure 5: Polarographic curves for the same situation as in Fig. 4 but this time the current is
scaled by the limiting current je

d defined in (62). Left: βO = 0; right: βO = 1.

Frumkin-Butler-Volmer equation used in [BCB05, BVSB09], c.f. the discussion at the end of
Section 3.1. But for a comparison of the results one has to keep in mind that the bulk equations
used there differ from (58), because convective fluxes and the solvent are neglected and the
potential difference is taken at the Stern layer. Nevertheless, there is some overlap: in the
Helmholtz limit of infinite Stern layer capacitance, the potential difference over the Stern layer
coincides with the potential difference at an interface I . Then, for a strongly diluted electrolyte
and applying a thin layer limit that corresponds to our asymptotic analysis below, the models and
results become similar. There are also other choices of a Stern layer analyzed in [BCB05] that can
not be justified by derivation of the models proposed here. E.g. there is also the Gouy-Chapman
limit of vanishing Stern layer capacitance. This singular limit gives raise to a different limiting
current in case of small reaction rates at the interfaces. Neither the Helmholtz limiting model nor
our model show a comparable reaction limited current.

3.5 Example II – Lead acid battery

With a second example, we want to suggest that the proposed reduced model and the Butler-
Volmer equations are capable to model and simulate by far more complex situations than the
simple reaction of Section 3.1. To describe a lead acid battery, we use the same one–dimensional
geometric setting but now consider two electrodes of different material. The lead electrode is
modeled by a mixture of Pb2+ and free electrons e−. The other electrode consists of lead oxide
PbO2. In between we have a solution of sulfuric acid H2SO4 water H2O. The species are
label by E and S respective. The sulfuric acid dissociates into anions SO2−

4 and cations H3O+,
denoted by A and C respective. From the surface reactions

Pb2+ + SO2−
4
−−⇀↽−− PbSO4 (63a)

PbO2 + 2 e− + SO2−
4 + 4 H3O+ −−⇀↽−− PbSO4 + 6 H2O (63b)
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we derive the Butler-Volmer equations. At the lead electrode we have U0 = 0.35 V, γA = −1,
zA = −2 and hence Γ = −2. We choose A

s
= 1 and β = 1/2 to get

R
s

= R0

(
nA
n̄A

)(1−βA)

exp
(
− e0

kT
ηS

)
−R0

(
nA
n̄A

)−βA
exp

( e0

kT
ηS

)
. (64a)

At the lead oxide electrode we have U0 = −1.67 V, γA = −1, zA = −2, γC = −4, zA = 1
and hence Γ = 2. With the same choice of A

s
and β we get

R
s

= R0

(
nA
n̄A

)(1−βA)(
nC
n̄C

)4(1−βC)

exp
( e0

kT
ηS

)
−R0

(
nA
n̄A

)−βA (nC
n̄C

)−4βC

exp
(
− e0

kT
ηS

)
.

(64b)

If the electrodes are not connected by an outer circuit the system will reach an equilibrium where
R
s

= 0 and the ion concentrations are constant in space. Combing both equations (64a) and

(64b), one can calculate the open circuit voltage (OCV) for for given concentration nE and nC of
sulfuric acid (E) that has partially dissociated into cations (C) and anions, see Figure 6.

To simulate charging and discharging of the lead acid battery one has to solve the full system of
instationary equations (14), (17) and (23). In addition to the surface reactions above, one also
has to consider dissociation reactions in the bulk

H2SO4 + 2 H2O −−⇀↽−− 2 H3O+ + SO2−
4 . (65)

The results of the simulation show the qualitative behavior as expected from experiments, see
Figure 6. For more details of the system and the numerical solution we refer to [DGM14].
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Figure 6: Left: OCV of a lead acid battery over the electrolyte concentration calculated from (64).
The dashed lines mark the range within that a battery is operated. Right: Cell voltage during
charge–discharge cycles for different imposed currents. When the imposed current is increased
we observe a larger gap between the curves for charging and discharging.
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4 Thermodynamically consistent modeling of mixtures sep-
arated by an electrochemical interface

In this section we describe the thermodynamical consistent derivation of the complete model
from Section 2. For notation and the assumptions we refer to Section 2.1. The coupled system of
equations for the basic variables rely on partial equations of balance, i.e. on the conservation
laws for the mass of the constituents and the balance equations for the momentum of the mixture.
Recall that we do not take into account tangential fluxes on the interfaces, see section 2.1.

Equations for the electric field. We consider quasi-static electric fields only. In this case the
Maxwell equations in the bulk regions and for interfaces reduce to

ε0 div(E) = ne , E = −∇ϕ , (66a)

[[ε0E]] = (n
s

F + n
s

P)ν . (66b)

The interfacial charge density due to polarization is determined by the jump condition

ν × [[P × v]]− [[P ]]wν = n
s

Pwνν . (67)

Later on we will derive further interface conditions where the electric potential ϕ explicitly appears.
For this reason we also need a jump condition for ϕ. We choose

[[ϕ]] = 0 , (68)

which is only possible if interfacial polarization charges, n
s

P are exclusively induced due to different

polarizations of the bulk phases. Thus we assume that the interface itself is not a double layer,
i.e. there is no surface density of dipoles on S. Finally, in accordance with (68) we introduce the
definition

ϕ
s

= ϕ|±S . (69)

Equations of balance. With the definitions (10) and (7a) we can split the mass flux of species
α into ραvα = ραv + Jα. In each of the subdomains Ω± as well as on the interface S, the
partial mass balances may be written as

∂tρα + div(ραv + Jα) = rα , for α = 1, 2, · · · , N (70a)

∂tρ
s
α + [[ρα(v −w) · ν]] + [[Jα · ν]] = r

s
α , for α = 1, 2, · · · , N . (70b)

Herein rα and r
s
α denote the mass production rate of constituent Aα or A

s
α respective. Forward

and backward reactions contribute to the mass production rate of the constituent. The corre-
sponding reactions rates give the number of forward and backward reactions per time and per
volume respective per surface area. We write

rα =
M∑
i=1

mαγ
i
α(Ri

f −Ri
b) , r

s
α =

MS∑
i=1

mαγ
s

i
α(R

s

i
f −R

s

i
b) . (71)
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The conservation laws of charge and mass for every single reaction i ∈ {1, 2, · · · ,M} in the
bulk read

N∑
α=1

zαγ
i
α = 0 and

N∑
α=1

mαγ
i
α = 0 , implying

N∑
α=1

rα = 0 . (72)

Analogous relations hold for the surfaces. The balance equations for momentum read

∂tρv + div(ρv ⊗ v −Σ) = ρb , (73a)

∂t(ρ
s
wν) + [[ρv · ν(v −w) · ν]]− [[νT ·Σ · ν]] = ρb

s
, (73b)

where Σ := σ + ε0(E ⊗ E − 1
2
|E|21) is the total stress consisting of a part given by the

Cauchy stress tensor σ and the Maxwell stress due to quasi-static Lorentz forces. 1 denotes the
unit matrix. The force densities ρb and ρb

s
are due to gravitation and inertia. In the following we

set b = b
s

= 0.

Variants of the equations of balance. For explicit calculations there are useful alternatives
of the equations of balance. Instead of the N partial mass balances we use the mass balance
for the total mass density of the mixture and the remaining N − 1 mass balances serve as the
basis for the diffusion equations.

∂tρα + div(ραv + Jα) = rα for α = 1, 2, · · · , N − 1 , (74a)

∂tρ+ div(ρv) = 0 . (74b)

Summing up the partial mass balances yields the interfacial balance for the total mass density,

∂tρ
s
α + [[ρα(v −w) · ν]] + [[Jα · ν]] = r

s
α for α = 1, 2, · · · , N − 1 , (74c)

∂tρ
s

+ [[ρ(v −w) · ν]] = 0 . (74d)

Constitutive model in Ω±. The variables (ρα)α=1,2,··· ,N , v andE are not the only quantities
in the equations of balance. There are further quantities that must be given by thermodynamically
consistent constitutive equations, so that the equations of balance become system of partial
differential equations for the variables. Our constitutive model describes a viscous and reacting
polarizable mixture with volume changes and diffusion under isothermal conditions.

The corresponding constitutive model starts from a free energy density function of the general
form

ρψ = ρψ̃(T, ρ1, ρ2, · · · , ρN ,E) . (75)

At first we present the results of the 2nd law of thermodynamics, that are based on the general
function (75),[dM63, MR59, Mül85]:

1. Chemical potentials and polarization:

µα =
∂ρψ

∂ρα
, P = −∂ρψ

∂E
. (76)
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2. The stress can be decomposed into elastic and viscous parts. We write σ = σE + σNS and
call the viscous part the Navier-Stokes stress. The representation of the elastic stress reads:

σ =
(
ρψ −

N∑
α=1

ραµα

)
1 +E ⊗ P . (77)

3. Representation and sign of the entropy production due to (i) diffusion, (ii) chemical reactions
and (iii) viscous flow:

ξ = −
N∑
α=1

Jα

(
∇
(µα
T

)
+

1

T

zα
mα

∇ϕ
)
− 1

T

M∑
i=1

( N∑
α=1

mαγ
i
αµα

)(
Ri
f−Ri

b

)
+

1

T
σNS : ∇v .

(78)
The entropy production must be non negative for every solution of the balance equations, ξ ≥ 0.
Equilibrium is a solution of the balance equations with ξ = 0.

The representation of ξ is important because it allows to formulate constitutive relations for
the diffusion flux, the reaction rates and the viscous part of the stress tensor that guarantee
ξ ≥ 0. In this case we say that the constitutive functions are compatible with the 2nd law of
thermodynamics.

The simplest choice of constitutive functions for (N − 1) diffusion fluxes (Jα)α=1,2,··· ,N−1 are

Jα = −
N−1∑
β=1

Mαβ

(
∇
(µβ − µN

T

)
− 1

T

( zβ
mβ

− zN
mN

)
E

)
, α = 1, 2, · · · , N−1 . (79)

The kinetic matrix Mαβ must be positive definite.

It is important to note that only (N − 1) diffusion fluxes are given by constitutive laws. Due
to the side condition (7a), the flux JN is expressed by the other (N − 1) fluxes according to
JN = −

∑N−1
α=1 Jα .

The constitutive for the Navier-Stokes stress is constructed in an analogous manner [Mül85],

σNS = νdivv 1 + η
(
∇v +∇vT

)
with ν +

2

3
η ≥ 0 and η ≥ 0 . (80)

Bulk viscosity ν and shear viscosity η are considered as constants here.

Finally we read off from (78) an ansatz for the reaction rates guaranteeing a non-negative entropy
production.

Ri
f

Ri
b

= exp
(
− Ai

kT

N∑
α=1

γiαmαµα

)
with Ai ≥ 0. (81)

Herein Ai are introduced as a further phenomenological constants. It is crucial to recognize
that the ratio of forward and backward reaction is determined by (81). Further constitutive
assumptions can only be introduced in agreement with (81). For a more detailed discussion of
chemical reactions in the context of the 2nd law of thermodynamics we refer the reader to [BD13].
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Up to now the constitutive model is quite general. The special material properties for the mixture
at hand are embodied in the free energy function (75). In the following we restrict the generality
of that function by assuming a simple dependence on the electric field, viz.

ρψ = ρψ̂(T, ρ1, ρ2, · · · , ρN)− 1

2
ε0χE

2, (82)

with a constant susceptibility χ. This law implies a simple polarization model where the po-
larization is proportional to the electric field because from (76)2 we obtain P = ε0χE. The
constancy of χ implies that the combination ρψ̂ −

∑N
α=1 ραµα does not depend on the electric

field. Therefore the quantity

p = −ρψ̂ +
N∑
α=1

ραµα (83)

is called the material part of the elastic pressure and (83) is called the Gibbs-Duhem equation.

Concerning the density dependence of the free energy function we still remain in the general
setting.

Constitutive model on S. As in the bulk, the interfacial variables are not the only quantities
in the equations of balance. There are further quantities that must be given by thermodynami-
cally consistent constitutive equations. Our interfacial constitutive model describes a reacting
polarizable mixture under isothermal conditions.

The corresponding constitutive model starts from an interfacial free energy density function of
the general form

ρ
s
ψ
s

= ρ
s
ψ
s
(T
s
, ρ
s

1, ρ
s

2, · · · , ρ
s
N). (84)

In contrast to the bulk, see (75), the electric field does not appear in (84). This reflects our as-
sumption that interfacial polarization charges are exclusively induced due to different polarizations
of the bulk phases as it is described by the jump condition (67).

The exploitation of the general function (84) by the axioms of the 2nd law of thermodynamics for
interfaces implies the following constitutive model, [Mül85, Dre03, DG13]:

1. Interfacial chemical potentials:

µ
s
α =

∂ρ
s
ψ
s

∂ρ
s
α

α = 1, . . . , N . (85)

2. Representation and sign of the interfacial entropy production:

ξ
s

= − 1

T

N∑
α=1

[[(
µ
s
α − µα − 1

2

(
(v −w)

)2 − 1
ρ
νT · σNS · ν

)
ṁα

]]
− 1

T
s

MS∑
i=1

( N∑
α=1

mαγ
s

i
αµ
s
α

)(
R
s

i
f −R

s

i
b

)
≥ 0 . (86)
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where the normal mass flux across S is abbreviated as ṁα =
(
ρα(v −w) + Jα

)
· ν. The

interfacial entropy production ξ
s

must be non negative for every solution of the balance equations.

Interfacial equilibrium is a solution of the balance equations with ξ
s

= 0.

Because the isothermal interface S is not equipped with viscous flow, there are only two dissi-
pative mechanisms, namely adsorption/desorption of species on the interface S and chemical
reaction on S. Moreover, we assume that on S the adsorption reactions are much faster estab-
lished than chemical reaction on S. As a good approximation we then have at any time the two
conditions

µ
s
α − µ±α −

1

2

(
(v −w) · ν

)2 − 1

ρ±
νT · σNS,± · ν = 0 . (87)

The general case with dynamical adsorption reactions where the left side of (87) is not zero but
related to the corresponding mass fluxes ṁ±α is treated in [Dre03, DG13].

The chemical contribution to the interfacial entropy production (86) is formally the same as in the
bulk. Hence in analogy to (81) we conclude that

R
s

i
f

R
s

i
b

= exp

(
−
A
s

i

kT

N∑
α=1

γ
s
αmαµ

s
α

)
with A

s

i ≥ 0 . (88)

is compatible with a non-negative entropy inequality. The quantities A
s

i are phenomenological

coefficients.

5 Derivation of the leading order problem

It is well known that the adjacent regions of an interface between two different electrochemical
mixtures form thin layers, where the electric potential and the particle densities exhibit variations
with steep gradients. The method of formal asymptotic analysis is well established in electro-
chemistry to analyze the boundary layers at an interface, [BCB05, New65]. In [DGM13] we used
this method to describe the electrochemical phenomena within the layers. However, in that paper
we only considered equilibria and moreover we ignored chemical reactions. In the current study
we remove these limitations and apply the method of asymptotic analysis to the model of Section
4.

In preparation of the formal asymptotic analysis it is necessary to transform the equations into a
dimensionless quantities and to identify the small parameters of the system.

Dimensionless quantities. To this end we introduce scaling constants L0, t0, n0, R0, p0, M0,
m0 and ν0 that are related to characteristic length, time, particle density, reaction rate, pressure,
mobility, molecular weight and viscosity. With the Boltzmann constant k and the temperature T
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of the isothermal system we substitute in the bulk regions Ω±:

x → L0x , t → t0t , v → L0

t0
v ,

mα → m0mα , nα → n0nα , ρ → n0m0ρ ,

σ → ν0
t0
σ , ν → ν0ν , η → ν0η ,

ρψ → n0kTρψ , µα → kT
mα
µα , Σ → p0Σ ,

E → kT
e0L0

E , ϕ → kT
e0
ϕ , P → ε0kT

e0L0
P ,

Mαβ →M0Mαβ , Ri
f/b → R0R

i
f/b , nF → n0e0n

F ,

je → e0kTn0M0

L0
je , Jα → mαkTn0M0

L0
Jα .

(89)

On the interface S we introduce a dimensionless constant δ to relate bulk and corresponding
surface quantities to each other. Then, we substitute:

w → L0

t0
w , µ

s
α → kT

mα
µα
s
,

n
s
α → δL0n0n

s
α , ρ

s
→ δL0n0m0ρ

s
,

n
s

F/P → δL0n0e0n
s

F/P R
s

i
f/b → δL0R0R

s

i
f/b , ρ

s
ψ
s
→ δL0n0kTρ

s
ψ
s
.

(90)

The scalings (89) generate the following six characteristic dimensionless numbers:

λ2 =
kTε0

e2
0n0L2

0

, a2 =
p0

n0kT
, κ2 =

kT t0M0

L2
0

,

τ 2 =
m0L

2
0

t20kT
, ζ2 =

ν0

t0n0kT
, ω2 =

t0R0

n0

. (91)

Summary of model equations in dimensionless form. From now on we study for simplicity
the one-dimensional version of the model. We agree that space dependent functions exclusively
depend on the coordinate x1 = x which is normal to the interface S. After introduction of the
dimensionless numbers in the model equations of section 4 we are then lead to the following
model. In the subdomains Ω± we have

∂tnα + ∂x(nαv) + κ2∂xJα = ω2

M∑
i=1

γiαR
i α = 1, . . . , N , (92a)

τ 2∂t(ρv) + ∂x(τ
2ρv2 − a2Σ) = 0 , (92b)

−λ2(1 + χ)∂xxϕ = nF, (92c)
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where the constitutive equations read in dimensionless form

Jα = −
N−1∑
β=1

Mαβ
∂

∂x

(
µβ −

mβ

mN

µN +
(
zβ − zN

mβ

mN

)
ϕ

)
, α = 1, · · · , N − 1,

(93a)

JN = −
N−1∑
α=1

Jα , (93b)

a2Σ = ρψ̂ −
N∑
α=1

nαµα + ζ2(ν + 2η)∂xv + λ2 1
2
(1 + χ)(∂xϕ)2 , (93c)

Ri = (Ri
f −Ri

b) with
Ri
f

Ri
b

= exp
(
− Ai

N∑
α=1

γiαµα

)
. (93d)

The dimensionless jump conditions on the interface S read

δ∂tn
s
α + [[nα(v − w)]] + κ2[[Jα]] = δω2

MS∑
i=1

γ
s

i
αR
s

i α = 1, · · · , N ,

(94a)

δτ 2∂t(ρ
s
w) + τ 2[[ρv(v − w)]]− a2[[Σ]] = 0 , (94b)

[[ϕ]] = 0 , (94c)

λ2[[(1 + χ)E]] = δn
s

F , (94d)

1

mα

(
µ
s
α − µ±α

)
− τ 2

2
(v± − w)2 − ζ2

ρ±
(ν + 2η)(∂xv)± = 0 , (94e)

which are supplemented by the dimensionless constitutive equations for surface reaction rates

R
s

i = (R
s

i
f −R

s

i
b) with

R
s

i
f

R
s

i
b

= exp
(
− A

s

i

N∑
α=1

γ
s
αµ
s
α

)
. (95)

Characteristic numbers. In order to determine the six dimensionless numbers (91) appearing
in the model equations we fix the following quantities:

L0 = 10−2 m , t0 = 10 s , n0 = 1028 1
m3 ,

m0 = 1.66× 10−27 kg , R0 = 1023 1
m3s

, M0 = 1012 s
kg
,

ν0 = 8.91× 10−4 kg
m s

, T = 298.15 K , p0 = 105 Pa .

(96)

Then the dimensionless numbers assume the values

λ = 1.19× 10−9 , a = 4.93× 10−2 , κ = 2.03× 10−2 ,

τ = 6.35× 10−7 , ζ = 1.47× 10−6 , ω = 1.00× 10−2 . (97)
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We observe that the parameter λ, τ and ζ are much smaller than a, κ and ω. We already know
from [DGM13] that λ generates the boundary layers, and because we prefer to deal with a single
smallness parameter only, we set

τ = λτ̄ and ζ = λζ̄ . (98)

Finally we use a surface parameter δ with the property

δ � λ. (99)

5.1 Method of asymptotic analysis

The main idea of the formal asymptotic analysis is to assume for a generic function uλ the
existence of two different expansions. The outer expansion approximates uλ in the bulk of the
domain without the boundary layers. For the inner expansion to approximate uλ inside the
boundary layer, a rescaled space variable is used that is related to the width λ of the layer. Then
the expansions are entered into the equations and terms related to the same powers of λ are
connected with matching conditions. A detailed description of the method of asymptotic analysis
can be found in [CF88]. Using the equations in the layers and the original interface conditions at
the interface S it is possible to formulate new jump conditions that model the behavior of physical
quantities across boundary layers including the interface S.

Expansions of outer and inner solutions. We denote the solutions of (92a)-(95) by ϕλ, nλα,
vλ, n

s

λ
α and xλS , and we assume that these solutions can be expanded into power series with

respect to λ. According to [DGM13] we expect boundary layers where the solutions have very
steep gradients.

In the bulk regions of Ω± we approximate a generic function uλ by

uλ(t, x) = u(0)(t, x) + u(1)(t, x)λ+O(λ2) . (100)

Within the boundary layers we introduce a new coordinate z such that for x ∈ Ω±

z =
x− xλS
λ

. (101)

We define inner solutions ũλ by

ũλ(t, z) = uλ(t, xλS + λz) . (102)

As in the bulk regions we likewise assume the existence of power series of the inner solutions,

ũλ(t, z) = ũ(0)(t, z) + ũ(1)(t, z)λ+O(λ2) . (103)

Moreover we assume that also the surface densities n
s

λ
α and the parametrization xλS of S can be

expanded,

n
s

λ
α = n

s

(0)
α + n

s

(1)
α λ+O(λ2) , (104)

xλS = x
(0)
S + x

(1)
S λ+O(λ2) . (105)
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Matching conditions. The relation (102) between inner and outer solutions and the expansions
imply so called matching conditions. In [CF88, Peg89] the matching conditions are introduced as
asymptotic expansions that are formally achieved by (i) inserting the corresponding expansions
into the left and right hand sides of (102) and (ii) a subsequent comparison of powers of λ. The
result is

ũ(0)(t, z)
z→±∞→ u(0),±(t, x

(0)
S ) , (106a)

∂zũ
(0)(t, z)

z→±∞→ 0 , (106b)

∂zzũ
(0)(t, z)

z→±∞→ 0 , (106c)

ũ(1)(t, z)− ∂xu(0),±(t, x
(0)
S )(z + x

(1)
S )

z→±∞→ u(1),±(t, x
(0)
S ) , (106d)

∂zũ
(1)(t, z)

z→±∞→ ∂xu
(0),±(t, x

(0)
S ) , (106e)

ũ(2)(t, z)− ∂xu(1),±(t, x
(0)
S )(z + x

(1)
S )

z→±∞→ u(2),±(t, x
(0)
S ) . (106f)

The bulk equations in the leading orders. The equations (92a)–(92c) yield in the leading
order

∂tρ
(0) + ∂x(ρ

(0)v(0)) = 0 , (107a)

∂tn
(0)
α + ∂x(n

(0)
α v(0)) + κ2∂xJ

(0)
α = ω2

M∑
i=1

γiαR
i,(0) for α ∈ {1, . . . , N − 1} , (107b)

∂xΣ
(0) = 0 , (107c)

0 = nF,(0) . (107d)

The mass fluxes and the total stress tensor have the following expansions:

J (0)
α = −

N−1∑
β=1

Mαβ
∂

∂x

((
µ

(0)
β −

mβ

mN

µ
(0)
N

)
+
(
zβ − zN

mβ

mN

)
ϕ(0)

)
α = 1, · · · , N − 1 , (108a)

a2Σ(0) = p(0) . (108b)

The leading order of the reaction rates is represented by

Ri,(0) = (R
i,(0)
f −Ri,(0)

b ) with
R
i,(0)
f

R
i,(0)
b

= exp
(
− Ai

N∑
α=1

γiαµ
(0)
α

)
. (109)
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The inner equations in the leading order. The relevant equations of the boundary layers
result from the equations (92a)–(92c) in the inner coordinate (101). In the leading order we obtain

∂z
(
ρ̃(0)(ṽ(0) − w(0))

)
= 0 (110a)

∂zJ̃
(−1)
α = 0 α = 1, . . . , N − 1 , (110b)

∂zΣ̃
(0) = 0 , (110c)

−(1 + χ)∂zzϕ̃
(0) = ñF,(0) , (110d)

with the corresponding constitutive laws

J̃ (−1)
α = −

N−1∑
β=1

Mαβ
∂

∂z

((
µ̃

(0)
β −

mβ

mN

µ̃
(0)
N

)
+
(
zβ − zN

mβ

mN

)
ϕ̃(0)

)
α = 1, · · · , N − 1 (111a)

a2Σ̃(0) = p̃(0) + 1
2
(1 + χ)(∂zϕ̃

(0))2 . (111b)

These equations are exploited as follows. At first we combine the momentum equation (110c),
the Poisson equation (111b) and the constitutive law (111b) with the Gibbs-Duhem equation (83)
to obtain the important identity

0 = −
N∑
α=1

ñ(0)
α ∂z

(
µ̃(0)
α + zαϕ̃

(0)
)

(112)

Next the matching conditions (106a) and (106b) are used to derive from (110b) with (111a) the
identities

0 =
∂

∂z

(
µ̃(0)
α + zαϕ̃

(0)
)
− mN

mα

∂

∂z

(
µ̃

(0)
N + zN ϕ̃

(0)
)

α = 1, . . . , N − 1 . (113)

We immediately observe that the equations (112) and (113) imply the constancy of the elec-
trochemical potentials µ̃(0)

α + zαϕ̃
(0) within the boundary layers. The integration constants are

determined by the matching conditions (106a) and we obtain

µ̃(0)
α + zαϕ̃

(0) = µ(0),±
α + zαϕ

(0),± α ∈ {1, . . . , N} . (114)

We have already used the constancy of the leading order of the total stress. The corresponding
integration constant follows likewise from the matching conditions (106a),

Σ̃(0) = Σ(0),± . (115)

Finally we derive from (110a) by means of (106a) and (106b) the conservation law of mass within
the boundary layers. It reads

ρ̃(0)(ṽ(0) − w(0)) = ρ(0),±(v(0),± − w(0)) . (116)
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The inner equations in higher orders. Further useful relations within the boundary layers are
achieved when we consider higher orders of the equations (92a) and (92b).

At first we study the equation (92a) in the order λ−1. Application of the matching conditions
yields after some simple but cumbersome calculations the relation

ñ(0)
α

(
ṽ(0) − w(0)

)
+ κ2J̃ (0)

α = n(0),±
α

(
v(0),± − w(0)

)
+ κ2J (0),±

α (117)

Its detailed derivation is not of value here. The interested reader is referred to [DG13, DGK13]
where the necessary steps can be found. Moreover, the explicit constitutive function that relates
inner flux J̃ (0)

α to the variables is not need in further development of the theory. It is therefore
omitted here.

Leading order jump conditions at the interfaceS. Finally we use the asymptotic expansions
(104) and (105) to achieve from the jump conditions (94a)–(95) the following results in the leading
order:

δ∂tn
s

(0)
α = δω2

MS∑
i=1

γ
s

i
αR
s

i,(0) − [[ñ(0)
α (ṽ(0) − w(0))]]− κ2[[J̃ (0)

α ]] α = 1, · · · , N , (118a)

0 = [[Σ̃(0)]] , (118b)

0 = [[ϕ̃(0)]] , (118c)

0 = n
s

F,(0) , (118d)

0 = µ
s

(0)
α − µ̃(0),±

α , (118e)

and the constitutive equation for interfacial reaction rate is given by

R
s

i,(0) =
(
R
s

i,(0)
f −R

s

i,(0)
b

)
with

R
s

i,(0)
f

R
s

i,(0)
b

= exp
(
− A

s

i

N∑
α=1

γ
s

i
αµ
s

(0)
α

)
. (119)

Interface conditions at the new interface I . The original jump conditions (118a)–(119)
across the interface S and the inner equations (110a)–(117) for the boundary layers form
the basis for the new jump conditions across the interface I from Figure 1right.

To this end we introduce new jump brackets. For a generic function u of the regions Ω± we
define

u(0)|±I = lim
z→±∞

ũ(0) = lim
x→I±

u(0) and [[[u(0)]]] = u(0)|+I − u
(0)|−I . (120)

In an analogous manner to (2)2 we agree on the following. If the function u is only defined either
in Ω+ or in Ω−, we set the corresponding value in (120)2 equal to zero.

It is important to note: The new jump bracket [[[u(0)]]] represents the jump of a quantity u across
the double layer while the original bracket [[u]] is a jump across the actual interface S.
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There are four different kinds of interface conditions at the new interface I . At first we have the
jump conditions arising from the balance equations for mass and momentum, (118a)–(118b). By
means of the inner equations (115)–(117) we obtain

δ∂tn
s

(0)
α = δω2

MS∑
i=1

γ
s

i
αR
s

i,(0) − [[[n(0)
α (v(0) − w(0))]]]− κ2[[[J (0)

α ]]] for α ∈ {1, · · · , N} ,

(121a)

0 = [[[Σ(0)]]] , (121b)

The following conditions require the introduction of three groups of constituents,M+,M− and
MS , defined in section 2.1. Then, due to the continuity of the electrical potential across S, (69),
the inner equations (118e) and (114) can be written as

µ
s

(0)
α + zαϕ

s

(0) = µ(0),±
α + zαϕ

(0),± for α ∈M+,M− . (122)

The third kind of conditions concerns the interfacial reaction rates (119). As before we use
(114) and(118e) to rewrite the exponential term in (119)2. Furthermore we take into account
that chemical reactions conserve the electric charge, i.e.

∑N
α=1 γ

s

i
αzα = 0, to obtain R

s

i,(0) =

(R
s

i,(0)
f −R

s

i,(0)
b ) with

R
s

i
f

R
s

i
b

= exp

(
−A

s

i
( ∑
α∈MS

γ
s
α(µ

s

(0)
α +zαϕ

s

(0))+
∑

α∈M−∪M+

γ
s
α(µ(0),±

α +zαϕ
(0),±)

))
. (123)

Hence the reaction rates on the interface S depend on the bulk values of potentials at the
boundaries of the layers.

Finally equation (118d) yields that the total interfacial charge density is zero,

n
s

F,(0) = 0 . (124)
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