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SINR percolation for Cox point processes
with random powers
Benedikt Jahnel, András Tóbiás

Abstract

Signal-to-interference plus noise ratio (SINR) percolation is an infinite-range dependent variant of
continuum percolation modeling connections in a telecommunication network. Unlike in earlier works,
in the present paper the transmitted signal powers of the devices of the network are assumed ran-
dom, i.i.d. and possibly unbounded. Additionally, we assume that the devices form a stationary Cox
point process, i.e., a Poisson point process with stationary random intensity measure, in two or higher
dimensions. We present the following main results. First, under suitable moment conditions on the
signal powers and the intensity measure, there is percolation in the SINR graph given that the device
density is high and interferences are sufficiently reduced, but not vanishing. Second, if the interference
cancellation factor γ and the SINR threshold τ satisfy γ ≥ 1/(2τ), then there is no percolation for
any intensity parameter. Third, in the case of a Poisson point process with constant powers, for any in-
tensity parameter that is supercritical for the underlying Gilbert graph, the SINR graph also percolates
with some small but positive interference cancellation factor.
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1 Introduction and main results

Let Xλ = {(Xi, Pi)}i∈I be an i.i.d. marked Cox point process (CPP) in Rd × [0,∞) for d ≥ 2, with
directing measure λΛ⊗ ζ where Λ is stationary with E[Λ(Q1)] = 1 and Qn = [−n/2, n/2]d for n > 0.
We consider the SINR graph with vertex set given by the first component of Xλ, which we denote by Xλ.
Here, every pair Xi 6= Xj ∈ Xλ of vertices is connected by an edge if and only if

Pi`(|Xi −Xj|) > τ
(
N + γ

∑
k∈I\{i,j}

Pk`(|Xk −Xj|)
)

and

Pj`(|Xi −Xj|) > τ
(
N + γ

∑
k∈I\{i,j}

Pk`(|Xk −Xi|)
)
.

(1.1)

In (1.1), τ > 0 is fixed and called the SINR threshold, N ≥ 0 represents noise, r 7→ `(r) ∈ [0,∞) is
referred to as the path-loss function and γ ≥ 0 is called the interference-cancellation factor. The random
variables {Pi}i∈I are often called random powers and the term

I(Xi, Xj,Xλ) =
∑

k∈I\{i,j}

Pk`(|Xk −Xj|)

is referred to as interference. We will use the notation g(γ,ζ)(Xλ) to indicate the SINR graph, suppressing
the dependencies on τ , N and `, but highlighting the dependence on γ and the distribution of the powers
ζ . We refer to [DBT05, Section 1] for further interpretation of the modeling parameters.

The SINR graph has a nice interpretation in the study of device-to-device telecommunication systems
where the devices Xλ can communicate directly with each other if their mutual distance, represented by
the path-loss function, and their individual powers, are sufficiently strong to overcome thermal noise plus
all the interference coming from the other devices. If this is the case, then the possibility to communicate
is represented by an undirected edge. The SINR graph has been the subject of, by now, a large body of
works, which we will further elaborate on in Section 2.

Our main interest lies in percolation properties of the SINR graph, as has been first studied in [DBT05,
DFM+06, FM07]. We say that g(γ,ζ)(Xλ) percolates if g(γ,ζ)(Xλ) contains an unbounded connected com-
ponent. Here we focus on the following key quantities. First, the critical interference-cancellation factor is
defined as

γζ(λ) = sup
{
γ > 0: P(g(γ,ζ)(Xλ) percolates ) > 0

}
. (1.2)

In words, it represents the maximal amount of interference that can be added to the system and still main-
tain percolation. Second, the critical intensity is defined as

λζ = inf{λ > 0: γζ(λ
′) > 0, ∀λ′ > λ}, (1.3)
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SINR percolation with random powers 3

which describes the smallest intensity such that for all larger intensities the addition of a small amount of
interference does not destroy percolation.

For the statement of our first main result, we assume certain decorrelation and connectivity properties for
the directing measure Λ of the underlying CPP. The precise definitions for Λ to be stabilizing, b-dependent
or asymptotically essentially connected will be presented in Definitions 2.1 and 2.2 in Section 2, where
we will also mention a number of relevant examples of random measures satisfying these definitions. We
denote by Po a generic power random variable distributed according to ζ . We put Psup = ess sup ζ . Our
first result establishes existence of a supercritical regime of percolation for the SINR graph based on CPPs
with random powers.

Theorem 1.1. Let d ≥ 2, N , τ > 0, Psup = ∞, and let Λ be stabilizing. Further, let ` satisfy the following
assumptions:

(i) ` is continuous, constant on [0, do] for some do ≥ 0, and on [do,∞)∩supp(`) it is strictly decreasing,

(ii)
∫∞
0

`(r)dr < ∞, and

(iii) 1 ≥ `(0).

Then λζ < ∞ holds if at least one of the following conditions is satisfied:

1 ` has unbounded support,Λ is b-dependent, andE[exp(αΛ(Q1))] < ∞ as well asE[exp(αPo)] <
∞ holds for some α > 0, or

2 ` has bounded support, E[Po] < ∞, and Λ is asymptotically essentially connected, or

3 ` has bounded support, E[Po] < ∞, and sup supp(`) is sufficiently large depending on Λ.

The proof of Theorem 1.1 uses some arguments of the proof of a previous result, Proposition 2.3, which
covers the case of bounded powers but does not tell anything about the case Psup = ∞. We will discuss
the relation to these results in detail in Section 2.

Our second main result establishes a uniform upper bound on the critical interference-cancellation factor.

Theorem 1.2. Let d ≥ 1, N ≥ 0 and τ > 0, then γζ(λ) ≤ 1/(2τ).

Note that we do not require any stabilization or connectedness. The proof of Theorem 1.2 rests on
showing absence of percolation in the SINR graph with a maximal degree given by 2.

Finally, our third main result states that the critical intensity parameter for the SINR graph can be rep-
resented as the critical threshold for percolation of an associated Gilbert graph in any dimension. For this
we assume a simpler setting in which Λ(dx) equals the Lebesgue measure dx, i.e., the CPP is in fact a
Poisson point process (PPP), and the powers are non-random and given by P > 0. The associated SINR
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B. Jahnel, A. Tóbiás 4

graph is denoted by g(γ,P )(X
λ) and correspondingly we write λP for the critical intensity. Then, note that

for γ = 0, the SINR graph is in fact a Poisson–Gilbert graph (see [Gil61]) with connectivity threshold given
by

rB = `−1(τN /P ). (1.4)

We denote this Gilbert graph by grB(X
λ). It is a standard result in continuum percolation that for the

Poisson–Gilbert graph with connectivity threshold 0 < r < ∞, there exists a unique critical intensity
0 < λc(r) < ∞ that separates a supercritical regime, where λ > λc(r), in which the Gilbert graph
percolates with probability one and a subcritical regime, where λ < λc(r), in which the Gilbert graph does
not percolate almost surely, see for example [MR96, Section 3].

Theorem 1.3. Let d ≥ 2, N , τ, P > 0 and Λ(dx) = dx. Further, if ` satisfies the assumption stated in
Theorem 1.1, then λP = λc(rB).

Theorem 1.3 extends the result [DFM+06, Theorem 1] to dimensions d ≥ 3 using new techniques, see
Section 2 for details.

In the following section, we lay out the strategies for the proofs of our main results, make references to
preceding work and comment on limitations and further extensions of the statements presented.

2 Strategy of proofs

The study of percolation properties of random graphs traces back many decades and results are available in
textbooks, see for example [MR96, Gri99]. The first results for percolation in the continuum were presented
in the landmark paper by Gilbert [Gil61], where non-trivial percolation was established for the Poisson–
Gilbert graph gr(X

λ), consisting of vertices given by a homogeneous PPP Xλ in R2 with intensity λ > 0
and edges connecting any pair of vertices with distance less than r > 0. The context of telecommunications
was already mentioned there.

Recently, in [HJC19], existence of a unique non-trivial critical intensity threshold was established for
Gilbert graphs where the underlying point process is a stationary CPP with directing measure λΛ under
some conditions on Λ that we state here for subsequent reference. Let Qn(x) = Qn + x denote the box
with side length n, centered at x ∈ Rd, and dist(x,A) = inf{|x− y| : y ∈ A}.

Definition 2.1 (Stabilization). The random measure Λ is called stabilizing if there exists a random field of
stabilization radii R = {Rx}x∈Rd defined on the same probability space as Λ such that, writing

R(Qn(x)) = sup
y∈Qn(x)∩Qd

Ry, n ≥ 1, x ∈ Rd,

the following hold.

1 (Λ, R) is jointly stationary,
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SINR percolation with random powers 5

2 limn↑∞ P(R(Qn) < n) = 1, and

3 for all n ≥ 1, non-negative bounded measurable functions f , and finite ϕ ⊂ Rd with dist(x, ϕ \
{x}) > 3n for all x ∈ ϕ, the following random variables are independent:

f(ΛQn(x))1{R(Qn(x)) < n}, x ∈ ϕ.

A strong form of stabilization is when Λ is b-dependent for some b > 0, that is, the restrictions ΛA

and ΛB of Λ to the measurable sets A,B ⊂ Rd are independent whenever dist(A,B) > b. For b-
dependence of subsets ofZd we will use the analogous definition but with dist replaced by the `∞-distance.

Definition 2.2 (Asymptotic essential connectedness). The stabilizing random measure Λ with stabilization
radii R is asymptotically essentially connected if for all n ≥ 1, whenever R(Q2n) < n/2, we have that

1 supp(ΛQn) contains a connected component of diameter at least n/3,

2 any two connected components of supp(ΛQn) of diameter at least n/9 are contained in the same
connected component of supp(ΛQ2n).

The class of stabilizing random measures includes a number of interesting and relevant examples,
for instance directing measures given via random tessellations based on PPPs. As already mentioned
in [HJC19], for example the edge-length measures of Poisson–Voronoi and Poisson–Delaunay tessella-
tions are asymptotically essentially connected but not b-dependent. However, the edge-length measures of
Poisson line tessellations in R2 are not even stabilizing. Stabilizing random measures that are absolutely
continuous with respect to the Lebesgue measure are, e.g., the directing measure of some modulated
PPPs or shot-noise fields with compactly supported kernel. In particular, a modulated PPP [CSK+13, Sec-
tion 5.2.2] can be defined with directing Λ(dx) = λ11{x ∈ Ξ}dx+ λ21{x 6∈ Ξ}dx, for some Poisson–
Boolean model Ξ, see Section 3.3 for a proper introduction, and λ1, λ2 ≥ 0, in which case it is even
b-dependent. Here we see that if λ1 and λ2 are positive, then Λ is asymptotically essentially connected
and there exist examples, both for λ1 > 0 and λ2 = 0 as well as λ1 = 0 and λ2 > 0, such that asymptotic
essential connectedness fails. However, if Ξ is in the supercritical regime for percolation and λ1 > 0, then
it can be seen that Λ is asymptotically essentially connected. Also shot-noise fields are not asymptotically
essentially connected in general, see [HJC19], but in some relevant cases they are, see [Tób19a, Section
2.5.1]. Moreover, they are always b-dependent.

For a stabilizing directing measure and fixed connectivity threshold r ≥ 0, in [HJC19] it was proved
that for sufficiently small intensity λ the process is subcritical. On the other hand, for any r > 0 and
asymptotically essentially connected directing measures, [HJC19] establishes existence of a supercritical
percolation phase. It will be important for our proofs that in [Tób19a] it was additionally verified that for all
sufficiently large r > 0 the requirement of asymptotically essentially connectedness can be replaced by
stabilization and still existence of a supercritical percolation regime is guaranteed for sufficiently large λ.

In the context of telecommunications, the extension of Poisson–Gilbert graphs towards Gilbert graphs
based on CPPs allows to study long-range communication properties in device-to-device networks where
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devices are placed according to a PPP in random environment that is represented by the directing measure
Λ. Standard examples of asymptotically-essentially-connected environments with applications in telecom-
munications are Poisson-Voronoi, or Poisson-Delaunay tessellations, see for example [HJC19, CGH+18].
However, the edge-drawing mechanism in these Cox–Gilbert graphs remains as in the classical case.

Another line of research aimed towards a different kind of extension of the Poisson–Gilbert graph with
respect to the edges. Starting with the papers [DBT05, DFM+06], still based on a homogeneous PPP in
R2, the edge-drawing mechanism was replaced by the one described in (1.1) with constant powers, giving
rise to the SINR graph on PPPs, or the Poisson-SINR graph. This introduces long-range dependencies for
the construction of edges into the system. However, using comparison techniques with the Poisson–Gilbert
graph, again non-trivial percolation properties could be established. Let us mention that the SINR graph
has very different monotonicity properties compared to the Poisson–Gilbert graph. To see this, note that
in the presence of interference, an increase of the intensity λ also leads to an increase of the interference
and thus to the potential loss of edges. On the other hand, for the Poisson–Gilbert graph, the connectivity
increases with the intensity.

In [Tób19a], the two extensions described above were for the first time considered jointly, giving rise to
the SINR graph based on CPPs, the Cox-SINR graph. There it was established, in the case for non-random
powers P > 0, that for sufficiently large λ and asymptotically essentially connected directing measures Λ,
the graph g(γ,P )(Xλ) percolates almost surely at least for some γ > 0, and thus in particular λP < ∞ in
all dimensions d ≥ 2 in case Λ(dx) = dx.

So far, none of the presented graphs used an additional randomness for the construction of edges, other
than the vertex positions. A canonical way to introduce such a randomness is by marking every vertex Xi

with an i.i.d. random variable Pi, its power. This power value defines the connection radius `−1(τN0/Pi)
corresponding to Xi (cf. (1.4)). In the context of the Poisson–Gilbert graph, two vertices may be connected
if and only if their distance is smaller than the sum of their connection radii. The percolation properties of
the associated Poisson–Gilbert graph with random radii is well-understood, see [MR96]. Corresponding
general results for the Cox–Gilbert graph with random radii are not available in the literature yet. However,
using couplings with Cox–Gilbert graphs with constant radii, it is easy to derive existence of a supercritical
phase under stabilization assumptions on Λ and lower bounds on the essential infimum of ζ , cf. [Tób19b,
Section 4.2.3.4], but the main questions around existence of a subcritical phase for unbounded radii are
completely open.

For the case of the SINR graph with random powers based on PPPs, or Poisson–SINR graph with
random powers, the paper [KY07] presents first results similar to the assertions presented in [DBT05,
DFM+06] under very strong boundedness assumptions on the powers. In [Tób19b, Section 4.2.3.4] a short
explanation is provided on how to lift those results to the Cox setting. Let us note that the definition of an
SINR graph with random powers already occurs in [DBT05], but the only proven result of this paper for the
setting with random radii is about degree bounds (cf. Section 2.2). The first steps towards understanding
the case of unbounded powers were made recently in [Löf19]. In this master thesis, supervised by the
authors, it was shown that in the case for PPP and d ≥ 2, finiteness of λζ < ∞ holds under stronger
assumptions than presented in Theorem 1.1. [Löf19] also provides sufficient conditions for the absence of
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SINR percolation with random powers 7

percolation for small intensities λ.

After having introduced some important definition, examples and general context, we now give further
details about our three main results.

2.1 Strategy for the proof of Theorem 1.1

The statement of Theorem 1.1 is an extension of the results of [Löf19] to the case of stabilizing CPPs.
For the proof, we combine the approach used for [Löf19, Theorem 4.5] for handling random radii and the
approach used for [Tób19a, Theorem 2.4] for dealing with the spatial correlations of the directing measure
Λ of the CPP. To begin with, by an easy coupling argument, [Tób19b, Section 4.2.3.4] implies that as long
as the powers are bounded, all positive results of [Tób19a] about percolation in the Cox-SINR graph for
asymptotically essentially connected Λ are applicable. More precisely, we have the following proposition
for the Cox-SINR graph with random bounded powers.

Proposition 2.3. [Tób19a] Let d ≥ 2, N , τ > 0, P(Po > 0) > 0, Λ be stabilizing and ` satisfy the
assumption stated in Theorem 1.1. If Psup < ∞ and `(0) > τN /Psup, then λζ < ∞ holds if at least one
of the following conditions is satisfied:

1 ` has unbounded support, Λ is b-dependent and E[exp(αΛ(Q1))] < ∞ holds for some α > 0,
and at least one of the following conditions hold: Λ is asymptotically essentially connected, or Psup

is sufficiently large, or

2 ` has bounded support, and Λ is asymptotically essentially connected, or

3 ` has bounded support, and sup supp(`) and Psup are both sufficiently large.

Note that we have formulated the condition (1) in Proposition 2.3 more generally than what was stated
in [Tób19a]. However, the proof from [Tób19a] can also be adapted to this more general case. Given
Proposition 2.3, in the present paper it suffices to consider the case when Psup = ∞, hence the formulation
of Theorem 1.1.

Let us comment on some aspects of Theorem 1.1. First, as for condition (2) in Theorem 1.1, an extension
to the general stabilizing case is not possible in general. Indeed, even if Po has very heavy tails, as soon as
supp(`) is bounded, the radii of the associated Cox–Gilbert graph with random radii are bounded. Then, it
is not hard to exhibit examples of stabilizing directing measures Λ, such that λc(r) = ∞, see the examples
in [Tób19a, Section 2.5.1].

Second, if Λ is such that Λ(Q1) is almost surely bounded, then the exponential-moment condition

E[exp(αΛ(Q1))] < ∞ (2.1)

of condition (1) in Theorem 1.1 clearly holds for all α > 0. E.g., this is the case for the modulated PPP
with λ1, λ2 ≥ 0. Further, (2.1) holds for shot-noise fields for all α > 0, see e.g. [Tób19a, Section 2.5.1].
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For Poisson–Voronoi and Poisson–Delaunay tessellations, the b-dependence assumption in (2.1) fails, and
hence percolation in the SINR graph can only be concluded for compactly supported `. On the other hand,
it was verified in [JT19] that for these two kinds of tessellations in two dimensions, E[exp(αΛ(Q1))] < ∞
holds for all α > 0; it is not known whether the same holds in higher dimensions.

Third, the moment conditions on Po may look surprising at first. Indeed, why do we need to upper bound
moments of Po in order to guarantee percolation in an SINR graph? This is indeed counterintuitive in view
of the Gilbert graph since there larger radii would lead to better connectivity. However, in the SINR graph,
as mentioned above, larger powers also increase interference and thus also might decrease connectivity.
The classical approach used in [DFM+06, BY13, Tób19a] to establish percolation in SINR graphs is to
show that the underlying Gilbert graph satisfies some strong connectivity properties and at the same time
the interferences can be uniformly bounded on large connected areas. We follow this approach as well,
however, the random powers dictate several workarounds.

Finally, the condition (1) in Theorem 1.1 is not necessarily optimal. However, we believe that if percola-
tion with unbounded supp(`) and without exponential moments of Po is possible, then the proof for this
statement must be rather different from ours. An interference-control argument may not be possible at all,
instead one should be able to show that the SINR values are sufficiently large for many transitions yielding
satisfactory connectivity of the network for percolation. Let us mention a similar problem. It was conjectured
in [DBT05] that in the case with constant powers, in order to have percolation in the SINR graph for large λ,
` has only to have integrable tails but it may explode at zero. However, the setting where limr↓0 `(r) = ∞
is such that the classical interference-control argument, as exhibited in [DFM+06] and adapted to the case
of random powers in Section 3.1.1, certainly cannot work. Indeed, the interferences are almost-surely finite
but they have infinite expectation, see [Dal71], hence there is no hope to apply a version of the exponen-
tial Markov inequality. Let us also note that the results of [Dal71] also imply that, if the tails of ` are not
integrable, then SINR graphs with γ > 0 have no edges. We prove Theorem 1.1 in Section 3.1.

2.2 Strategy for the proof of Theorem 1.2

As already pointed out in [DBT05, Theorem 1], for γ > 0, all degrees in g(γ,ζ)(Xλ), where Xλ is a PPP,
are less than 1 + 1/(τγ) for any choice of λ, τ > 0 and N ≥ 0. In other words, all vertices in g(γ,ζ)(Xλ)
have at most 1 + 1/(τγ) neighbors. It is not hard to see that this property remains true if the PPP is
replaced by a CPP, or even any simple point process, see [Tób19b, Section A.3]. Thanks to the degree
bounds, any such Cox-SINR graph with random powers for which γ ≥ 1/τ has no infinite cluster since it
has degrees bounded by 1. For γ ∈ [1/(2τ), 1/τ), we have an a priori degree bound of 2, which implies
that all maximal connected components of SINR graphs are finite cycles or paths that are infinite in zero,
one or two directions. This reminds of a one-dimensional percolation model, and thus the conjecture is
that it contains no infinite clusters under general assumptions on the directing measure of the CPP, see
Figure 1 for an illustration. The following proposition shows that this is indeed true for the Cox-SINR graph
with random powers.

Proposition 2.4. Let d ≥ 1, N ≥ 0, τ > 0 and γ ≥ 1/(2τ), then

P(g(γ,ζ)(Xλ) percolates) = 0.

DOI 10.20347/WIAS.PREPRINT.2659 Berlin 2019



SINR percolation with random powers 9

Figure 1: A typical realization of a Cox-SINR graph (with blue vertices and black edges) with directing
measure given by the edge-length measure of a two-dimensional Poisson–Voronoi tessellation (in red) in
a box, with N = Po = τ = 1 and a suitable path-loss function `. The interference-cancellation factor
is set to γ = 1/(2τ). We see only a few vertices having degree two, the largest connected component
is of size three, and there are no cycles in the graph. As indicated by Proposition 2.4 the graph is highly
disconnected.

The statement of Theorem 1.2 is an immediate consequence of Proposition 2.4, the proof of which
can be found in Section 3.3. The proof of non-percolation employs a fine configuration-wise analysis of the
SINR graph, which seems to be new in the literature. Moreover, we expect the proof to hold for SINR graphs
based on general simple nonequidistant stationary point processes, where nonequidistance is defined in
Section 3.2.

2.3 Strategy for the proof of Theorem 1.3

As mentioned previously, we have g(0,P )(X
λ) = grB(X

λ) for all λ > 0 in the Poisson-SINR graph with
fixed powers, where rB is defined in (1.4). Moreover, note that the increase of the interference-cancellation
factor γ can only lead to edges being removed from the graph and hence there is a monotonicity of
g(γ,P )(X

λ) with respect to γ. Additionally, there is a monotonicity of grB(X
λ) with respect to λ, which

together implies that λP ≥ λc(rB). We have the following equivalence result from [DFM+06] for the two-
dimensional Poisson-SINR graphs.

Theorem 2.5. [DFM+06] Let d = 2, N , τ, P > 0 and Λ(dx) = dx. Further, let ` satisfy the assumption
stated in Theorem 1.1. Then λP = λc(rB).

In words, this result states that for any λ > 0 such that the Poisson–Gilbert graph grB(X
λ) is super-

critical, there exists γ > 0 such that also the Poisson-SINR graph g(γ,P )(X
λ) percolates. In an extended

context of SINR graphs, it was shown that this percolation is preserved if the transmitters forming a PPP
experience additional interference coming from a weakly α-sub-PPP, see [BY13].
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The proof of Theorem 2.5 employs Russo–Seymour–Welsh type arguments about the Poisson–Gilbert
graph in two dimensions, see [MR96, Section 4] and [DFM+06, Section 3]. These arguments do not have
a known analogue in the Poisson case for d ≥ 3, or in the general Cox case even for d = 2. Note that
the results of [Tób19a] only imply that λP < ∞ for d ≥ 3 and Λ(dx) = dx. However, [HJC19] includes
some further observations about Gilbert graphs in d ≥ 3 dimensions, originating from results of [PP96],
that allow us to conclude the analogue of Theorem 2.5 for the higher-dimensional Poisson case. The proof
of Theorem 1.3 will be carried out in Section 3.3.

3 Proofs

For the proofs it will be convenient to define the SINR of Xi 6= Xj ∈ Xλ via

SINR(Xi, Xj,Xλ) =
Pi`(|Xi −Xj|)

N + γ
∑

k∈I\{i,j} Pk`(|Xk −Xj|)
. (3.1)

3.1 Proof of Theorem 1.1

Let us first carry out the proof under Condition (1) in Section 3.1.1. The proof under Condition (2) is pre-
sented in Section 3.1.2.

3.1.1 Proof of Theorem 1.1 part (1)

For fixed λ and γ, in order to show that g(γ,ζ)(Xλ) percolates, it suffices to verify that a subgraph of it
contains an infinite cluster. Our proof consists of four steps. First, for γ, λ > 0, we define a subgraph
that is included in a Cox–Gilbert graph with constant radii. Second, we map this subgraph to a lattice
percolation model and show that this discrete model percolates for large λ for a suitable choice of auxiliary
parameters. In particular, since Λ is only assumed stabilizing, the connection radius of the Gilbert graph
must be large enough so that the graph percolates for large λ. In this step, we are able to employ multiple
arguments of [DFM+06, HJC19, Tób19a]. Our interference-control assertion, Proposition 3.2, is presented
here. Third, using the subgraph, we make a choice of γ > 0 such that percolation in the discrete model
implies percolation in the SINR graph g(γ,ζ)(Xλ), which is done analogously to [DFM+06]. Fourth, we carry
out the proof of Proposition 3.2, combining arguments of [DFM+06, Tób19a] for SINR graphs with constant
powers and arguments used in [Löf19] for Poisson-SINR graphs with random powers.

STEP 1. A subgraph of the SINR graph.

We first present a general construction of a subgraph of g(γ,ζ)(Xλ) for γ, λ > 0. Let ro > do. Since
both Po and supp(`) are unbounded, we have

p(ro) = P
(
`−1

(
τN /Po

)
≥ ro

)
> 0.
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SINR percolation with random powers 11

Let us define the independent thinning

Xλ,− = {Xi ∈ Xλ : `−1
(
τN /Pi

)
≥ ro}

of Xλ with survival probability p(ro). Now, let us define a subgraph g−(γ,ζ)(X
λ) of g(γ,ζ)(Xλ) as follows.

The vertex set is Xλ,−, and two vertices Xi, Xj ∈ Xλ,−, i 6= j, are connected by an edge if and only if

SINR−(Xi, Xj,Xλ) =

(
τN /`(ro)

)
`(|Xi −Xj|)

N + γ
∑

k∈I\{i,j} Pk`(|Xk −Xj|)
> τ. (3.2)

Note that for Xi, Xj ∈ Xλ,−, in the numerator of SINR(Xi, Xj,Xλ), for the power of Xi we have
Pi ≥ τN /`(ro), whereas the denominators of (3.1) and (3.2) are equal. Hence, g−(γ,ζ)(X

λ) is indeed a

subgraph of g(γ,ζ)(Xλ) for any γ ≥ 0. As for γ = 0, g−(0,ζ)(X
λ) equals the Cox–Gilbert graph gro(X

λ,−)

with constant radius ro and vertex set Xλ,−. In words, in order to obtain g−(γ,ζ)(X
λ) from g(γ,ζ)(Xλ), one

first thins out vertices with small powers, in order to get rid of vertices with small values of the connection
radius riB, where

riB = `−1(τN /Pi). (3.3)

Then, one bounds the powers of the remaining vertices by τN /`(ro) from below.

STEP 2. Mapping the subgraph to a lattice-percolation problem and percolation on the lattice.

Now we are in a position to adapt to the setting of [Tób19a, Section 3.2.2] and use strong connectivity
of gro(X

λ,−) in case ro is sufficiently large and λ is chosen according to ro. Together with an interference-
control argument presented below, this will allow us to verify Theorem 1.1 part (1).

For % > 0, let Y % be a PPP with intensity measure (directing measure) %Leb. Let %c(1) be such that the
Poisson–Gilbert graph g1(Y

%c(1)) is critical. Then, due to the scale invariance of Poisson–Gilbert graphs
[MR96, Section 2.2], for % > %c(1), we can choose a smaller intensity %′ < % such that g1(Y %′) is still
supercritical. Now, for r > do, we define λ(r) = %′r−d, ro(r) = r%/%′ and P (r) = τN /`(ro(r)).
Then r−1gr(X

λ(r),−) converges to the supercritical graph g1(Y
%′) on compact sets, as r tends to infinity,

see [HJC19, Section 7.1]. Further, recalling that R denotes the stabilization radii of Λ, we put R(Q) =
supx∈Q∩Qd Rx for any measurable set Q ⊆ Rd.

Using these notions, we construct a renormalized percolation process on Zd as follows. For n ≥ 1 and
r > do, the site z ∈ Zd is (r, n)-good if

1 R(Q6rn(rnz)) < rn/2,

2 Xλ(r),− ∩Qrn(rnz) 6= ∅, and

3 every Xi, Xj ∈ Xλ(r),− ∩Q3rn(rnz) are connected by a path in gr(X
λ(r),−) ∩Q6rn(rnz).
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The site z ∈ Zd is (r, n)-bad if it is not (r, n)-good. Note that the process of (r, n)-good sites is 7-
dependent thanks to the definition of stabilization. The following lemma has been verified in [Tób19a,
Section 3.2.2] based on arguments of [HJC19, Section 5.2].

Lemma 3.1. [Tób19a] Assume that the conditions of Theorem 1.1 part (1) hold. Then, for all sufficiently
large λ > 0 and for all n ≥ 1 and r > do with rn sufficiently large, there exists qA = qA(λ, rn) < 1 such
that for any N ∈ N and pairwise distinct z1, . . . , zN ∈ Zd,

P(z1, . . . , zN are all (r, n)-bad) ≤ qNA .

Further, for any ε > 0, one can choose λ and rn sufficiently large such that qA < ε.

We further proceed similarly to [DFM+06, Tób19a] by defining ‘shifted’ versions of the path-loss function
`. For a ≥ 0, define

`a(r) = `(0)1
{
r < a

√
d/2

}
+ `

(
r − a

√
d/2

)
1
{
r ≥ a

√
d/2

}
. (3.4)

Note that `0 = `. Now, we define the shot-noise processes

Ia(x) =
∑

Xi∈Xλ Pi`a(|x−Xi|), I(x) =
∑

Xi∈Xλ Pi`(|x−Xi|), x ∈ Rd,

and note that I0(x) = I(x). By the triangle inequality, for a ≥ 0, I(x) ≤ Ia(z) holds for any z ∈ Rd

and x ∈ Qa(z). Now, the interference-control argument consists in verifying the following proposition. For
z ∈ Zd, let us write Br,n,M(z) = {I6rn(rnz) ≤ M}.

Proposition 3.2. Assume that the conditions of Theorem 1.1 part (1) hold. Then, for all λ > 0, for all
n ≥ 1 and r > do with rn sufficiently large and for all M > 0 sufficiently large, there exists qB =
qB(λ, rn,N) < 1 such that for all N ∈ N and for all pairwise distinct z1, . . . , zN ∈ Zd we have

P(Br,n,M(z1)
c ∩ . . . ∩Br,n,M(zN)

c) ≤ qNB . (3.5)

Further, for any ε > 0 and λ > 0, one can choose rn and M sufficiently large such that qB < ε.

The proof of this proposition is postponed until Step 4. Once we have shown Proposition 3.2, one can
derive the following corollary using a standard argument (see e.g. the proof of [DFM+06, Proposition 3]
or the one of [Tób19a, Proposition 3.1]). For z ∈ Zd let us define Cr,n,M(z) = {z is (r, n)-good} ∩
{I6rn(rnz) ≤ M}.

Corollary 3.3. Assume that the conditions of Theorem 1.1 part (1) hold. Then, for all sufficiently large
λ > 0, for all r > do and n ≥ 1 with rn sufficiently large and for all M > 0 sufficiently large, there exists
qC = qC(λ, rn,M) < 1 such that for all N ∈ N and for all pairwise distinct z1, . . . , zN ∈ Zd we have

P(Cr,n,M(z1)
c ∩ . . . ∩ Cr,n,M(zN)

c) ≤ qNC .

Further, for any ε > 0, one can choose λ, rn,M sufficiently large such that qC < ε.
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SINR percolation with random powers 13

STEP 3. Percolation in the subgraph of the SINR graph.

Having Corollary 3.3 and employing a Peierls argument (cf. [Gri99, Section 1.4]), we conclude that for
λ, rn,M sufficiently large, the process of (r, n)-good sites z ∈ Zd such that I6rn(rnz) ≤ M percolates.
Using arguments of [HJC19, Section 5.2], this implies percolation of the Cox–Gilbert graph g−(0,ζ)(X

λ(r)) =

gro(r)(X
λ(r),−). From this point of the proof it is classical to derive that g−(γ,ζ)(X

λ(r)) percolates for small

γ > 0, see [DFM+06, Section 3.3]. For the convenience of the reader, let us give the details here. We
define

γ′ =
N

P (r)M

( `(r)

`(ro(r))
− 1

)
=

`(ro(r))

τM

( `(r)

`(ro(r))
− 1

)
> 0,

where the strict inequality holds because ro(r) > r > do and ` has unbounded support. Then we have

P (r)`(r)

N + γ′P (r)M
= τ.

Now, let Xi, Xj ∈ Xλ(r),− be situated in Qrn(rnz) respectively Qrn(rnz
′) for some sites z, z′ ∈ Zd

included in the same infinite cluster of the process of (r, n)-good sites z ∈ Zd satisfying I6rn(rnz) ≤ M
such that |Xi −Xj| < r. Then, for γ < γ′, we have

SINR(Xi, Xj,Xλ) ≥ SINR−(Xi, Xj,Xλ) >
P (r)`(r)

N + γ′P (r)M
= τ.

Thus, Xi and Xj are connected by an edge in g−(γ,ζ)(X
λ). Hence, g(γ,ζ)(Xλ) also percolates. Thus, we

can conclude Theorem 1.1 as soon as we have verified Proposition 3.2.

STEP 4. Proof of Proposition 3.2: the interference-control argument.

Similarly to [Tób19a, Section 3.1.1], we split the interference into two parts. For x ∈ Rd, n ≥ 1 and
r > 0, we put

I in6rn(x) =
∑

Xi∈Xλ∩Q12rn
√
d(x)

`6rn(|Xi − x|), Iout6rn(x) =
∑

Xi∈Xλ\Q12rn
√
d(x)

`6rn(|Xi − x|).

Then, for M > 0, if I6rn(x) > M , then I in6rn(x) > M/2 or Iout6rn(x) > M/2. Using a union bound and
the fact that in Proposition 3.2, M can be chosen arbitrarily large, it suffices to conclude the proposition
both with Br,n,M(zi) replaced by Bin

r,n,M(zi) and with Br,n,M(zi) replaced by Bout
r,n,M(zi) everywhere

in (3.5) for all i ∈ {1, . . . , N}, where for z ∈ Zd we write Bin
r,n,M(z) = {I in6rn(rnz) ≤ M} and

Bout
r,n,M(z) = {Iout6rn(rnz) ≤ M}. Indeed, having these assertions, we can combine them similarly to

Corollary 3.3.

We now verify Proposition 3.2 with Br,n,M(·) replaced by Bin
r,n,M(·) everywhere. For this assertion,

instead of the assumption that Po and Λ(Q1) have some exponential moments, it suffices if they have a
first moment (for Λ(Q1) this is automatic since E[Λ(Q1)] = 1 by assumption). To be more precise, we
prove the following lemma.
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Lemma 3.4. Assume that for ` the conditions of Theorem 1.1 part (1) hold. Further, let Λ be stabilizing
and E[Po] < ∞. Then, for all λ > 0, for all n ≥ 1 and r > do with rn sufficiently large and for all M > 0
sufficiently large, there exists qB = qB(λ, rn,N) < 1 such that for all N ∈ N and for all pairwise distinct
z1, . . . , zN ∈ Zd we have

P(Bin
r,n,M(z1)

c ∩ . . . ∩Bin
r,n,M(zN)

c) ≤ qNB . (3.6)

Further, for any ε > 0 and λ > 0, one can choose rn and M sufficiently large such that qB < ε.

Proof. We use the following auxiliary discrete percolation process. A site z ∈ Zd is (r, n)-tame if

1 R(Q12rn
√
d(rnz)) < rn/2, and

2 I in6rn(rnz) ≤ M .

A site z ∈ Zd is (r, n)-wild if it is not (r, n)-tame. The process of (r, n)-tame sites is d12
√
d + 1e-

dependent according to the definition of stabilization. Thus, it follows from dependent-percolation the-
ory [LSS97, Theorem 0.0] that, in order to verify Lemma 3.4, it suffices to show that for all λ > 0,
P(o is (r, n)-wild) can be made arbitrarily close to zero by choosing first rn sufficiently large and then
M large enough accordingly. We have

P(o is (r, n)-wild) ≤ P(R(Q12rn
√
d(rnz)) ≥ rn/2) + P(I in6rn(rnz) > M).

The first term can be made arbitrarily small by choosing rn large enough, thanks to the definition of stabi-
lization. Moreover, by the definition of `a, see (3.4),

I in6rn(o) =
∑

Xi∈Xλ∩Q12rn
√
d(o)

Pi`6rn(|Xi|) ≤ `(0)
∑

Xi∈Xλ∩Q12rn
√
d(o)

Pi.

In particular, using that the point process Xλ is independently marked with Pi having marginal distribution
ζ , and that Λ is stationary with E[Λ(Q1)] = 1, it follows that

E[I in6rn(o)] ≤ `(0)λE[Po]E[Λ(Q12rn
√
d)] = (12rn

√
d)d`(0)λE[Po].

Thus, for any n ≥ 1 and r > 0, P(I in6rn(o) > M) can be made arbitrarily small by choosing M large
enough, given that E[Po] < ∞. Thus, the lemma follows.

It remains to verify Proposition 3.2 with Br,n,M(·) replaced by Bout
r,n,M(·) everywhere. More precisely,

thanks to the exponential-moment and b-dependence assumption on Λ, the proof can be completed anal-
ogously to the proof of [Tób19a, Proposition 3.3] starting from [Tób19a, Equation (3.15)], as soon as we
have verified the following lemma.
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Lemma 3.5. Under the assumptions of Theorem 1.1 part (1), there exists a constant co = co(ζ, `) > 0
such that for all sufficiently small s > 0, for all λ > 0, n ≥ 1 and r > do with rn > 0 sufficiently large
and for all large enough M > 0, for all N ∈ N and pairwise distinct z1, . . . , zN ∈ Zd we have

P(Bout
r,n,M(z1)

c ∩ . . . ∩Bout
r,n,M(zN)

c)

≤E
[
exp

(
coλs

N∑
i=1

∫
Rd\Q12rn

√
d(rnzi)

`6rn(|rnzi − x|)Λ(dx)
)]

.
(3.7)

Proof. We start with an estimate originating from [DFM+06, Section 3.2]. By Markov’s inequality, for any
s > 0,

P(Bout
r,n,M(z1)

c ∩ . . . ∩Bout
r,n,M(zN)

c) = P(Iout6rn(rnz1) > M, . . . , Iout6rn(rnzN) > M)

≤ P
( N∑

i=1

Iout6rn(rnzi) > NM
)

≤ e−sNME
[
exp

(
s

N∑
i=1

∑
Xk∈Xλ\Q12rn

√
d(nzi)

Pk`6rn(|rnzi −Xk|)
)]

. (3.8)

The randomness of the power values Pk prevents us from continuing the proof analogously to [DFM+06,
Tób19a]. On the other hand, similarly to [Löf19, Section 4.3] in the Poisson case, we can argue as follows.
According to the Marking Theorem [Kin93, Section 5.2], the independently marked CPP Xλ = (Xi, Pi)i∈I
is a CPP in Rd× [0,∞) with directing measure Λ⊗ζ , where we recall that ζ = P◦P−1

o is the distribution
of Po. Hence, applying the Laplace functional of a CPP (cf. [Kin93, Sections 3.2, 6]) to the function f : Rd×
[0,∞) → [0,∞),

f(x, p) = s
N∑
i=1

p`6rn(|x− rnzi|)1{x ∈ Rd \Q12rn
√
d(rnzi)},

we obtain

E
[
exp

(
s

N∑
i=1

∑
Xk∈Xλ\Q12rn

√
d(rnzi)

Pk`6rn(|rnzi −Xk|)
)]

(3.9)

= E
[
exp

(
λ

∫
Rd\Q12rn

√
d(rnzi)

∫ ∞

0

(
exp

(
sp

N∑
i=1

`6rn(|rnzi − x|)
)
− 1

)
ζ(dp)Λ(dx)

)]
.

Thanks to the exponential-moment assumption on Po from (1), the moment-generating function

α 7→ E[exp(αPo)] =

∫ ∞

0

eαpζ(dp)
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is infinitely differentiable atα = 0with first derivative
∫∞
0

pζ(dp) = E[Po] < ∞. Note that
∑N

i=1 `6rn(|rnzi−
x|) is uniformly bounded in x ∈ Rd, rn, N and pairwise distinct z1, . . . , zN , see [Tób19a, Lemma 3.6].
Consequently, for any C > 1, the following holds for all sufficiently small s > 0 (depending on C),

∫ ∞

0

(
exp

(
sp

N∑
i=1

`6rn(|rnzi − x|)
)
− 1

)
ζ(dp) ≤ CsE[Po]

N∑
i=1

`6rn(|rnzi − x|). (3.10)

For such s, plugging (3.10) back into (3.9), starting from (3.8) we obtain

P(Bout
r,n,M(z1)

c ∩ . . . ∩Bout
r,n,M(zN)

c)

≤ E
[
exp

(
CE[Po]λs

N∑
i=1

∫
Rd\Q12rn

√
d(rnzi)

`6rn(|rnzi − x|)Λ(dx)
)]

, (3.11)

which is (3.7) with co = CE[Po]. With this we conclude the lemma.

3.1.2 Proof of Theorem 1.1 part (2).

Since Λ is asymptotically essentially connected, λc(r) < ∞ holds for any r > 0 according to [HJC19,
Theorem 2.4]. Note further that the connection radii (riB)i∈I , defined in (3.3), are bounded by dmax =
sup{x ≥ 0: x ∈ supp(`)}. The proof of Theorem 1.1 part (2) can be obtained as an adaptation of the
proof of part (1) of the same theorem as follows.

First, one defines the subgraph of the SINR graph analogously to Step 1 of the proof of Theorem 1.1
part (1). Next, one takes the Step 2 but for r ∈ (do, dmax) arbitrary and fixed instead of letting r ↑ ∞, and
for ro(r) > r such that ro(r) still lies in the interval (do, dmax) on which ` is strictly decreasing. This way,
choosing rn sufficiently large will be equivalent to choosing n large enough (for fixed r). Further, one alters
the choice of λ(r): now, λ(r) has to be chosen so large that the process of (r, n)-good sites percolates
for some n ≥ 1, which is possible for any fixed r ∈ (do, dmax) since Λ is asymptotically essentially
connected, cf. [HJC19, Section 5.2]. Next, Step 3 is also applicable for all choices of the parameters where
the underlying discrete model percolates. Finally, let us explain how to complete the proof of Proposition 3.2
under the mere assumption that E[Po] < ∞. Since supp(`) is bounded, for all sufficiently large n ≥ 1
the following holds for all z ∈ Zd

I6rn(rnz) =
∑

Xi∈Xλ∩Q6rn+2dmax (rnz)

Pi`6rn(|Xi − rnz|)

≤
∑

Xi∈Xλ∩Q12rn
√
d(rnz)

Pi`6rn(|Xi − rnz|) = I in6rn(rnz).
(3.12)

Hence, it remains to control the inner part of the interference, which can be done analogously to Lemma 3.4
once E[Po] < ∞, given that Λ is stabilizing. Hence, we conclude Theorem 1.1 part (2).
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3.1.3 Proof of Theorem 1.1 part (3).

In the case when Λ is only stabilizing and Psup = ∞, we observe that the proof of Theorem 1.1 part (1)
stays valid if supp(`) is bounded but the following assumption holds: sup supp(`) is sufficiently large such
that

sup supp(`) > inf{r > 0: there exists n ≥ 1 and λ > 0 such that (r, n)-good sites percolate},

where the infimum is finite because Λ is stabilizing. Indeed, in this situation, Lemma 3.1, as in [Tób19a,
Section 3.2.2], holds as well. Further, (3.12) holds for all sufficiently large n for all z ∈ Zd, and therefore
one can complete the proof under the assumptions of Lemma 3.4, i.e., for Λ stabilizing and Po such that
E[Po] < ∞, without requiring b-dependence of Λ or existence of exponential moments of Λ(Q1) or Po.

3.2 Proof of Proposition 2.4

We can assume that P(Po > 0) > 0 it what follows, since otherwise the statement is trivially true. We start
the proof with the following lemma, which excludes infinite paths that have an endpoint in case the degrees
are bounded by two, in a substantially more general setting.

Lemma 3.6. Let g(X) be a random graph based on a stationary marked point processX = {(Xi,Mi)}i∈I ,
with vertex set X = {Xi}i∈I such that the degree of all Xi ∈ X , deg(Xi), is bounded by 2, almost surely.
Let X have a finite intensity and consider the point process of degree-one points in infinite clusters

X0 =
∑
i∈I

δXi
1{deg(Xi) = 1, Xi is part of an infinite cluster in g(X)}.

Then, P(X0(Rd) = 0) = 1.

Proof. First, using the union bound and stationarity, it is enough to show that E[X0(Q1)] = 0. Let us
define the point process of points in infinite clusters in Q1 that are at distance equal to k ∈ No from a point
in X0,

Xk =
∑
i∈I

δXi
1{Xi is part of an infinite cluster and has graph distance k from X0}.

Thanks to the degree bound, every infinite cluster has at most one point inX0 andE[Xk(Q1)] = E[X0(Q1)],
for all k ∈ No, by stationarity. However,

∑
k≥0 E[Xk(Q1)] ≤ E[X(Q1)] < ∞ and thus E[X0(Q1)] =

0.

Let Xλ,∗ denote the Palm version [HJC19, Section 2.2] of Xλ. Note that Xλ,∗ can be interpreted as
a CPP conditioned to have a point at the origin, in particular it is a simple point process. Further, it is
almost-surely nonequidistant, i.e., for any Xi, Xj, Xk, Xl ∈ Xλ,∗, |Xi −Xj| = |Xk −Xl| > 0 implies
{i, j} = {k, l}. Let Xλ,∗ = {(Xi, Pi)}i∈J be an independently-marked point process with {Xi}i∈J =
Xλ,∗ and conditional on Xλ,∗, {Pi}i∈J are i.i.d. ζ-distributed random variables. Then Xλ,∗ is the Palm
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version of Xλ with respect to the Xi-coordinate, which has a point of the form (o, P∗) where P∗ is ζ-
distributed and independent of Xλ,∗ and all other power values. In particular, thanks to the simpleness of
Xλ,∗, g(γ,ζ)(Xλ,∗) has degrees bounded by two under the assumptions of Proposition 2.4. Now, Lemma 3.6
implies the following.

Corollary 3.7. Under the assumptions of Proposition 2.4, almost surely, the cluster containing o in the
SINR graph g(γ,ζ)(Xλ,∗) is finite or it consists only of points of degree two.

Proof. Assume otherwise and let C denote the cluster containing o in g(γ,ζ)(Xλ,∗). We have

P
(
#C = ∞ and C contains a point of degree 1

)
> 0.

But then, according to the definition of the Palm version, it follows that

E[#{Xi ∈ Xλ ∩Q1 : the cluster of Xi in g(γ,ζ)(Xλ) is infinite

and contains a point of degree 1}] > 0

holds, which contradicts with Lemma 3.6. This implies the corollary.

Proof of Proposition 2.4. Using Palm calculus, it suffices to show that

P(#C = ∞) = 0. (3.13)

We view Xλ,∗ as the canonical process Xλ,∗(ω) = ω on the set N∗ of marked point configurations ω in
Rd × supp ζ ⊆ Rd × [0,∞) such that ω = {xi : (xi, pi) ∈ ω} is an infinite locally-finite simple and
nonequidistant point configuration on Rd such that o ∈ ω. The set of such point configurations ω will be
denoted by N∗. We equip N∗ and N∗ with the corresponding evaluation σ-fields. We can then assume that
P is the distribution of ω. Note that if ω,ω′ ∈ N∗ are such that ω ⊆ ω′, then for any x, y ∈ ω such that
SINR((x, p), (y, q),ω′) > τ , we also have SINR((x, p), (y, q),ω) > τ . Hence, g(γ,ζ)(ω) contains all
edges of g(γ,ζ)(ω′) that connect two points of ω.

For a given configuration ω = {(xi, pi)}i∈J ∈ N∗ and a point xo ∈ ω, we can uniquely order the
points according to the transmitted signal strength received at xo. More precisely, let us write V(xo,ω) =
((xo, po), (x1, p1), (x2, p2), . . . ) for the vector of marked points such that the following conditions are
satisfied:

1 i 7→ pi`(|xi − xo|) is decreasing on N, and

2 for all i, j ∈ N with i < j and pi`(|xi − xo|) = pj`(|xj − xo|), we have |xi − xo| < |xj − xo|.

Let us write V(xo,ω) for the vector of the first components of V(xo,ω) and Vi(xo,ω) for the i-th entry
of V(xo,ω), which we call the i-th strongest transmitter towards xo. In particular, V0(xo,ω) = xo. We
will use the notation Vi(ω) = Vi(o,ω) and also write Vi(xo,ω) for the i-th entry of V(xo,ω).
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Note also that despite the nonequidistance condition, ties of the form pi`(|xi − xo|) = pj`(|xj − xo|)
may occur with probability one for example if ` has bounded support. Also, in case of a constant signal
power Po, Vi(xo,ω) is simply the i-th nearest neighbor of xo in ω with respect to Euclidean distance.

It was noted in [Tób19b, Section A.3] that the degree bound of two holds for every realization of
g(γ,ζ)(Xλ,∗) under the assumption that γ ≥ 1/(2τ). Thus, the following can be derived analogously to
[Tób19a, Section 2.4.1], where the case of constant powers was considered. For such γ, if o has degree
two in g(γ,ζ)(Xλ,∗), then o must be connected by an edge to both V1 = V1(Xλ,∗) and V2 since the degree
bound applies already for the edges towards o. Moreover, both V1 and V2 must also have o as one of their
first two strongest transmitters towards them, that is,

o ∈
{
V1(Vi(Xλ,∗),Xλ,∗),V2(Vi(Xλ,∗),Xλ,∗)

}
,

for all i ∈ {1, 2}. These strongest-transmitter relations hold almost surely, in particular for every simple and
nonequidistant configuration of Xλ,∗. The goal of using the configuration space N∗ is to entirely exclude
configurations that offend the degree bound or the strongest-transmitter relations.

Hence, Proposition 2.4 immediately follows once we have verified the following proposition. For this recall
that C denotes the cluster attached to o in g(γ,ζ)(Xλ,∗).

Proposition 3.8. Let us define the random variable

I = inf{i ≥ 3: Vi ∈ C}

and the set A = {#C = ∞}. Then, for any i ≥ 3, we have

P(A ∩ {I = i}) = 0. (3.14)

Indeed, using a union bound and noting that A ⊂ {I < ∞}, Proposition 3.8 implies P(A) = 0, which
is (3.13) and thus finishes the proof of Proposition 2.4.

Proof of Proposition 3.8. Thanks to Corollary 3.7, in the event A, o is connected by an edge both to V1

and V2 in this SINR graph. Further, thanks to the degree bound of 2, in the event A, V1 and V2 have no
further joint neighbor in the SINR graph since otherwise C has a loop and can not be infinite by the degree
bound. This way, for any i ≥ 3, there exists j ∈ {1, 2} such that Vi and Vj are not connected by an edge
in g(γ,ζ)(Xλ,∗). Let us denote the corresponding Vj by Mi, and define Mi = V1 if neither V1 nor V2 is
connected to Vi by an edge. The element of {V1,V2} not being equal to Mi is denoted by Ni. We will
write Q for the power value associated to Mi.

Let us fix i ≥ 3. Let ω ∈ A be such that I(ω) = i. Let us define a thinned configuration

ωi = ω \ {(Mi(ω), Q),V3(ω), . . . ,Vi−1(ω)}.

We claim that ωi ∈ N∗. Indeed, for any ω ∈ N∗, ω minus a finite set of points in Rd \ {o} is an element
of N∗, which holds in particular for ωi.

Next, we claim for P-almost all ω ∈ A, ωi ∈ A. Indeed, thanks to Corollary 3.7, for P-almost all ω ∈ A
with I(ω) = i, the following two conditions are both satisfied.

DOI 10.20347/WIAS.PREPRINT.2659 Berlin 2019



B. Jahnel, A. Tóbiás 20

(i) There are precisely two edge-disjoint infinite paths in g(γ,ζ)(ω) starting from o. Hence, in particular,
at least one of these paths does not pass through Mi(ω),

(ii) V3(ω), . . . ,Vi−1(ω) /∈ C(ω) by the definition of I and the fact that I(ω) = i.

Now, for ω satisfying (i) and (ii), since all edges between two points of ωi in g(γ,ζ)(ω) also exist in
g(γ,ζ)(ω

i), we conclude that #C(ωi) = ∞ in g(γ,ζ)(ω
i). This implies the claim.

Our next claim is that for ω satisfying (i) and (ii), ω or ωi is contained in

B = {η : #C(η) = ∞ and C(η) contains a point of degree 1} ⊂ A,

which is a P-nullset. The proof of this claim in the simplest case i = 3 is illustrated in Figure 2. Indeed,

o V1 = M3V2 = N3V3

Figure 2: An illustration of the case I = i = 3. V3 is contained in the infinite cluster C including o, and it is
not a neighbor of M3, which in this example equals V1, whereas V2 = N3. Hence, if V3 has degree two in
C, then there are various possibilities respecting the degree bound of 2 to connect V3 to C so that it is not
connected to M3 by an edge. V3 can either be a direct neighbor of V2 (see dashed line) or a later point of
the path from o to infinity starting with the edge from o to V2 (dash-dotted lines) or a non-direct neighbor of
V1 on the path from o to infinity starting with the edge from o to V1 (dotted lines). Now, removing M3 from
the realization, both edges adjacent to V3 are preserved. Also all edges from o to infinity starting with the
edge from o to V2 are preserved, hence o is still contained in an infinite cluster, but the edge from o to V1 is
removed. In the obtained new configuration, the second-strongest transmitter towards o is V3, and hence
this is the only point of the configuration that could be connected to o by an edge. But V3 still cannot have
degree 3 or more, hence it cannot be connected to o, which implies that the new configuration is contained
in the nullset where o is in an infinite cluster containing a point of degree 1.

recall that o cannot have degree higher than two in g(γ,ζ)(ω
i), whereas it has degree at least one and its

cluster C(ωi) is infinite. Note also that the edge between o and Ni(ω) still exists in g(γ,ζ)(ω
i). Further, if o

has degree two in g(γ,ζ)(ω
i), then it is connected to the second-nearest transmitter towards o in ωi, which

is V2(ω
i) = Vi(ω), whereas V1(ω

i) = Ni(ω). Now, there are two possibilities. If ω ∈ B, then there is
nothing to show. Else, since ω /∈ B, ω ∈ A and Vi(ω) ∈ C(ω), it follows that Vi(ω) has degree equal
to two in g(γ,ζ)(ω). Further, it is neither connected to Mi(ω) by an edge nor to o in this graph. Hence, both
edges adjacent to Vi(ω) also exist in g(γ,ζ)(ω

i). But since Vi(ω) has degree at most two in g(γ,ζ)(ω
i), it

follows that o and Vi(ω) are not connected by an edge in this graph. Hence, ωi ∈ B, which implies the
claim.
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Summarizing, in the event {I = i} ∩ A, (Xλ,∗)i is contained in the P-nullset B. In other words, since
Xλ,∗ is the canonical process on N∗ with distribution P,

P
({

ωi : ω ∈ A ∩ {I = i}
})

= 0. (3.15)

This implies (3.14) and concludes the proof of Proposition 3.8 as soon as the following lemma is verified.

Lemma 3.9. For any i ≥ 3, P(A ∩ {I = i}) > 0 implies P
({

ωi : ω ∈ A ∩ {I = i}
})

> 0.

By Lemma 3.9, where we show that if the collection of thinned configurations is contained in a P-nullset,
also the non-thinned configurations form a P-nullset, we see that (3.15) implies (3.14), which concludes the
proof of Proposition 3.8.

Proof of Lemma 3.9. Let us fix i ≥ 3 and assume that P(A ∩ {I = i}) > 0. Then, by continuity of
measures, there exists K > 0 such that

P
({

ω ∈ A : I(ω) = i, Vj(ω) ∈ BK(o), ∀j ∈ {1, . . . , i}
})

> 0,

where BK(o) denotes the open Euclidean ball of radius K in Rd. Hence, there exists n ≥ i such that
P(Ci,K,n) > 0, where

Ci,K,n =
{
ω ∈ A : I(ω) = i, #

(
ω ∩BK(o)

)
= n+ 1 and Vj(ω) ∈ BK(o),

∀j ∈ {1, . . . , i}
}
.

Conditional on the event Ci,K,n, the marked CPP (Xλ,∗ \ {o, P∗}) ∩ BK(o) has precisely n points
X1, . . .Xn. Let us define a random thinning function F : Ci,K,n → N∗ such that it discards each point
of (Xλ,∗ \ {o, P∗}) ∩ BK(o) independently with probability 1− p and keeps the rest of the points. To be
more precise, we choose a set {I1, . . . In} of i.i.d. Bernoulli random variables with parameter p ∈ (0, 1)
(with a slight abuse of notation we let P also govern this i.i.d. sequence), and we define

F (ω) = {(o, P∗)} ∪ (ω \BK(o)) ∪ {Xi(ω) : Ii = 1}, for all ω ∈ Ci,K,n.

Now we have that

P({F (ω) : ω ∈ Ci,K,n}) ≥ P(Ci,K,n ∩ {F (ω) = ω}) = P(Ci,K,n)p
n > 0,

and thus we can use elementary conditioning to conclude

P
({

ωi : ω ∈ A ∩ {I = i}
})

≥ P({ωi : ω ∈ Ci,K,n})
≥ P

(
{F (ω) : ω ∈ Ci,K,n, F (ω) = ωi}

)
= P

(
{F (ω) : ω ∈ Ci,K,n, F (ω) = ωi}|{F (ω) : ω ∈ Ci,K,n}

)
≥ P(Ci,K,n)p

npn−i+2(1− p)i−2 > 0.

(3.16)

This implies the lemma.
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3.3 Proof of Theorem 1.3

This proof is similar to the one of Theorem 1.1 part (1) but simpler. The new proof ingredient that we use
here is the strong connectivity of any supercritical Poisson–Boolean model [PP96] in case d ≥ 2, which
allows us to improve the result that λP < ∞ to λP = λc(rB). First we introduce an adequate discrete
percolation model and then we control the interferences.

Throughout the proof Xλ = {Xi}i∈I denotes a homogeneous PPP with intensity λ in Rd. Let us intro-
duce the notion and elementary properties of Boolean models with constant radius r > 0. The Poisson–
Boolean model B(Xλ, r) is defined as

B(Xλ, r) =
⋃
i∈I

Br(Xi) = Xλ ⊕Br(o).

Connecting any two different points Xi, Xj ∈ Xλ by an edge whenever

|Xi −Xj| < 2r, (3.17)

we obtain the Poisson–Gilbert graph g2r(Xλ) with connection radius 2r. Percolation in this Gilbert graph is
equivalent to the existence of an unbounded connected component in B(Xλ, r), which we also refer to as
percolation. This way, one can speak about subcritical, critical and supercritical Poisson–Boolean models.

Recall the definition of the radius rB from (1.4) and let us fix λ > λc(rB) for the remainder of this
section. Thanks to scale invariance of Poisson–Boolean models [MR96, Section 2.2] and our assumptions
on `, we can fix r ∈ (do, rB) such that the Poisson–Boolean model B(Xλ, r/2) associated to gr(X

λ) is
still supercritical. The next lemma is an immediate consequence of the results in [PP96, Section 1].

Lemma 3.10 ([PP96]). Let B(Xλ, r/2) be a supercritical Poisson–Boolean model and let x ∈ Rd. With
probability tending to one as n ↑ ∞, we have that

(1) B(Xλ, r/2) ∩Qn(x) contains a connected component of diameter at least n/3,

(2) any two connected components of B(Xλ, r/2) ∩Qn(x) of diameter at least n/9 each are contained
in the same connected component of B(Xλ, r/2) ∩Q2n(x).

Using Lemma 3.10, we construct a renormalized percolation process on Zd. For z ∈ Zd, let Ξn(z)
denote the union of all connected components of B(Xλ, r/2) ∩Qn(z) that are of diameter at least n/3.
For n ≥ 1, we say that the site z ∈ Zd is n-good if

(1) Ξn(nz) 6= ∅, and

(2) for any z′ ∈ Zd with |z − z′|∞ ≤ 1, it holds that all pairs of connected components C of Ξn(nz) and
C ′ of Ξn(nz

′) are contained in the same connected component of B(Xλ, r/2) ∩Q6n(nz).

The site z ∈ Zd is n-bad if z is not n-good. We have the following lemma.
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Lemma 3.11. For all n ≥ 1 sufficiently large, there exists qA = qA(λ, n) ∈ (0, 1) such that for any
N ∈ N and pairwise distinct z1, . . . , zN ∈ Zd we have

P(z1, . . . , zN are all n-bad) ≤ qNA .

Further, for any ε > 0, for all large enough n one can choose qA such that qA < ε.

Proof. For z ∈ Zd, 1{z is n-good} is measurable with respect to Xλ ∩ (Q6n(nz) ⊕ Br/2(o)), which
is contained in Xλ ∩ Q7n(nz) for all n large enough, hence for all sufficiently large n the process of n-
good sites is 7-dependent thanks to the independence property of the PPP Xλ. Hence, using arguments
of [DFM+06, Section 3.2.], it suffices to verify that

lim sup
n↑∞

P(o is n-bad) = 0. (3.18)

The limit (3.18) can be verified along the lines of the proof of [HJC19, Theorem 2.6] using an adequate
interpretation of the Poisson–Boolean model. More precisely, in view of Definition 2.2, the assertion of
Lemma 3.10 is equivalent to the statement [HJC19, Section 2.1] that the b-dependent directing random
measure Λ given as Λ(dx) = λ11{x ∈ B(Xλ, r/2)}dx is asymptotically essentially connected, where
λ1 > 0 is such that E[Λ(Q1)] = 1.

The other essential proof ingredient is the interference control. We recall the “shifted” path-loss functions
`a (3.4) and the shot-noise processes Ia(x), I(x) from Section 3.1, and also that by the triangle inequality,
for a ≥ 0, I(x) ≤ Ia(z) holds for any z ∈ Rd and x ∈ Qa(z).

For n ≥ 1 and M > 0, we say that z ∈ Zd is (n,M)-tame if I7n(nz) ≤ M and (n,M)-wild
otherwise. Then we have the following assertion, which holds for all λ such thatB(Xλ, r/2) is supercritical.

Lemma 3.12. [Tób19a] For fixed n ≥ 1, for all sufficiently large M > 0, there exists qB = qB(λ, n,M) ∈
(0, 1) such that for any N ∈ N and pairwise distinct z1, . . . , zN ∈ Zd we have

P(z1, . . . , zN are all (n,M)-wild) ≤ qNB .

Further, for ε > 0, for any n ≥ 1, for all sufficiently large M one can choose qB such that qB < ε.

Equipped with these results, we can now prove our main theorem.

Proof of Theorem 1.3. For n ≥ 1 and M > 0, we say that the site z ∈ Zd is (n,M)-nice if it is
both n-good and (n,M)-tame. We claim that for all sufficiently large n and accordingly chosen large
enough M , the process of (n,M)-nice sites percolates. Indeed, this follows by combining the estimates
of Lemmas 3.10 and 3.12 similarly to Corollary 3.3 and carrying out a Peierls argument.

We claim that this assertion implies percolation in g(γ,P )(X
λ) for small γ > 0. Indeed, let n,M be so

large that the process of (n,M)-nice sites percolates, and such that Q6n(o)⊕Br/2(o) ⊆ Q7n(o). Using
a standard argument [DFM+06], one can choose γ > 0 sufficiently small such that for any (n,M)-tame
site z, all connections in gr(X

λ) ∩Q7n(nz) also exist in g(γ,P )(X
λ) ∩Q7n(nz).
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Now, analogously to [HJC19, Section 5.2], we can argue as follows. Let C be an infinite connected
component of the process of sites that are (n,M)-nice. Let z, z′ ∈ C and {z0 = z, z1, . . . , zk−1, zk = z′}
a path in C connecting z and z′. Then, thanks to n-goodness, for any j = 0, . . . , k and for any Xj ∈ Xλ

such that Br/2(Xj) ∩ Qn(nzj) ⊆ Ξn(nzj) we have that Xj and Xj+1 are in the same connected
component of B(Xλ, r/2)∩Q6n(nzj). In other words Xj and Xj+1 are connected in the Poisson–Gilbert
graph gr(X

λ) via a path in Q7n(nzj), where the additional unit of n comes from the fact that centers of
balls in the Boolean model might lie in a neighboring box. Hence, using (n,M)-tameness, we conclude
that all edges of this path in gr(X

λ) also exist in g(γ,P )(X
λ). Thus, g(γ,P )(X

λ) also percolates. Since
λ > λc(rB) was arbitrary, the theorem follows.
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