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Abstract. We consider here operators which are sum of (possibly) fractional derivatives, with (possibly
different) order. The main constructive assumption is that the operator is of order 2 in one variable. By
constructing an explicit barrier, we prove a Lipschitz estimate which controls the oscillation of the solutions
in such direction with respect to the oscillation of the nonlinearity in the same direction.

As a consequence, we obtain a rigidity result that, roughly speaking, states that if the nonlinearity is
independent of a coordinate direction, then so is any global solution (provided that the solution does not
grow too much at infinity). A Liouville type result then follows as a byproduct.

1. Introduction

Recently a good deal of research has been performed about nonlocal operators of fractional type, also
in consideration of their probabilistic interpretation of Lévy processes. In this framework, it is natural
to consider the superposition of different nonlocal operators in different directions, possibly with different
(fractional) orders, in relation with the nonlocal diffusive equations in anisotropic media.

A first attempt to systematically study these anisotropic fractional operators was given in [5, 8, 6]. In
particular, the regularity theory of these anisotropic operators is perhaps harder than expected, it still
presents several open questions and some lack of regularity occurs in concrete examples (for instance,
solutions of rather simple equations with smooth data and smooth domains may fail in this case to be
smooth, see Theorem 1.2 in [8]). Roughly speaking, the lack of regularity may be caused by the combination
of the nonlocal properties of the operator and the anisotropic structure of the operator. Namely, first the
nonlocal feature may cause the solution to be only Hölder continuous at the boundary; then the anisotropic
structure may relate the solution in the interior to values at (or close to) the boundary, and the nonlocal
effect can somehow “propagate” the boundary singularity towards the interior, making a smooth interior
regularity theory false in this case (see [8] for more details about it).

The goal of this paper is to provide a very simple approach to a Lipschitz-type regularity theory for a
family of anisotropic integro-differential operators, obtained by the superposition of different operators in
different coordinate directions, and possibly with different order of differentiation.

The main structural assumption that we take is that there is one “special” coordinate (say the last one)
in which the operator is local and of second order. In this framework, we will control the derivative of the
solution in this variable by uniform and universal quantities, depending on the data of the problem.

More precisely, the mathematical framework in which we work is the following. We denote by {e1, . . . , en}
the Euclidean base of Rn. Given a point x ∈ Rn, we use the notation

x = (x1, . . . , xn) = x1e1 + · · ·+ xnen,

with xi ∈ R.
We divide the variables of Rn into m subgroups of variables, that is we consider m ∈ N and N1, . . . , Nm ∈

N, with N1 + · · · + Nm−1 = n − 1. For i ∈ {1, . . . ,m}, we use the notation N ′i := N1 + · · · + Ni, and we
1
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take into account the set of coordinates

X1 := (x1, . . . , xN1) ∈ RN1

X2 := (xN1+1, . . . , xN ′2) ∈ RN2

...

Xi := (xN ′i−1+1, . . . , xN ′i ) ∈ RNi

...

Xm−1 := (xN ′m−2+1, . . . , xN ′m−1
) ∈ RNm−1

and Xm := xn.

(1)

Given i ∈ {1, . . . ,m − 1} and si ∈ (0, 1] we will consider the (possibly fractional) si-Laplacian in the ith
set of coordinates Xi. For this scope, given y = (y1, . . . , yNi) ∈ RNi it is useful to consider the increment
induced by y with respect to the ith set of coordinates in Rn, that is one defines

(2) y(i) := y1eN ′i−1+1 + · · ·+ yNieN ′i ∈ Rn.

With this notation, one can define the Ni-dimensional (possibly fractional) si-Laplacian in the ith set of
coordinates Xi, for a (smooth) function u : Rn → R by

(3) (−∆Xi)
siu(x) :=





−∂2
xN′

i−1
+1
u(x)− . . . − ∂2

xN′
i

u(x) if si = 1,

cNi,si

∫

RNi

2u(x)− u(x+ y(i))− u(x− y(i))

|y(i)|Ni+2si
dy(i) if si ∈ (0, 1),

The quantity cNi,si in (3) is just a positive normalization constant, whose explicit1 value for N ∈ N and
s ∈ (0, 1) is taken to be

(4) cN,s :=
22s−1 Γ(s+ N

2
)

π
N
2 |Γ(−s)|

,

where Γ is the Euler’s Gamma Function. We refer to [4, 9, 3] and to the references therein for further
motivations about fractional operators.

In this paper we consider a pseudo-differential operator, which is the sum of (possibly) fractional Lapla-
cians in the different coordinate directions Xi, with i ∈ {1, . . . ,m − 1}, plus a local second derivative in
the direction xn. The operators involved may have different orders and they may be multiplied by possibly
different coefficients: that is, given a1, . . . , am−1 > 0 and a > 0, we define

L :=
m−1∑

i=1

ai(−∆Xi)
si − a∂2

xn

=
m∑

i=1

ai(−∆Xi)
si ,

(5)

where in the latter identity we used the convention that am := a, s1, . . . , sm−1 ∈ (0, 1] and sm := 1.
Given the operator in (5), we stress that a very important structural difference with respect to the

classical local case is that fractional objects are in general not reduced to the sum of their directional
components2

1We wrote the value of cN,s as in (4) to be consistent with the literature, see e.g. notation of [2]. Of course, such value
can be equivalently written in other forms, according to the different tastes. The explicit value of the normalization constant
in (4) plays no major role in this paper, but it is useful for consistency properties as si → 1.

2That is, if x = (x1, . . . , xn) ∈ Rn the following formulas are false, unless s = 1:

(−∂2
x1

)s + · · ·+ (−∂2
xn

)s = (−∆x)s

and (−∆(x1,...,xN ))s + (−∆(xN+1,...,xN+K))s = (−∆(x1,...,xN+K))s.
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The main result that we prove in this paper is a Lipschitz regularity theory in the last coordinate variable
that extends the one of [1] (which was obtained in the classical setting of local operators). To this goal, we
denote by BN

r the open ball of RN centered at the origin and with radius R. Also, given d1, . . . , dm > 0,
we set d := (d1, . . . , dm) and

Qd := BN1
d1
× · · · ×BNm−1

dm−1
× (−dm, dm) =

m∏

i=1

BNi
di
,

where in the latter identity we used the convention that Nm := 1.
Also, given κ > 0 we denote by Qd,κ the dilation of factor κ in the last coordinate (leaving the others

fixed), that is

Qd,κ := BN1
d1
× · · · ×BNm−1

dm−1
× (−κdm, κdm).

Of course, by construction Qd,1 = Qd. In accordance with the constant fixed in (3), it is also convenient
to introduce the following notation3 for a suitable universal quantity, for any i ∈ {1, . . . ,m}:

(6) ηi :=
Γ
(
Ni
2

)

22si Γ(si + 1) Γ
(
si + Ni

2

) .

With this notation, we have the following result:

Theorem 1.1. Let f : Qd,2 → R and u : Rn → R be a solution of Lu = f in Qd,2. Then, for any t ∈
(−dm, dm),

(7)
|u(ten)− u(−ten)|

|t| 6 dm S

a
+
C̃ dm ‖u‖L∞(Rn)

min
i∈{1,...,m}

(ηid
2si
i )

,

where

S := sup
(x,t)∈Qd×(0,dm)

|f(x+ ten)− f(x− ten)|,

and C̃ :=
2(a1 + · · ·+ am)

a
+ 1.

Higher regularity results (for different types of nonlocal anisotropic operators) have been obtained in [5, 8]
(indeed, general anisotropic operators can be considered in [5, 8], but only the kernel with the same
homogeneity were taken into account). Some advantages are offered by Theorem 1.1 with respect to the
other results available in the literature. First of all, Theorem 1.1 comprises the case of operators of different
orders (e.g. the si can be all different and both local and nonlocal operators can be superposed). Moreover,
Theorem 1.1 may select the “local” coordinate direction independently on the others, in order to take into
account the behavior of the nonlinearity in this single coordinate and detect its effect on the oscillation
of the solution (notice in particular the term S appearing in Theorem 1.1, which only depends on the
oscillation of f in the last coordinate direction). As a matter of fact, the diffusive operators in the other
variables can also degenerate (indeed ai may vanish for some i ∈ {1, . . . ,m− 1}).

In addition, all the constants appearing in Theorem 1.1 can be computed explicitly without effort and the
proof is rather simple and it makes use only of one explicit barrier (the barrier will be given in formula (18)
and, as a matter of fact, this argument may be seen as the fractional counterpart of the regularity theory
developed by [1] in the local framework).

As a technical remark, we point out that, for simplicity, the notion of solution in Theorem 1.1 is taken
in the classical sense, i.e. the function u will be implicitly assumed to be smooth enough to compute the
operator L pointwise (in this sense, formula (7) reads as an “a priori estimate”). Nevertheless, the same
argument that we present goes through, for instance, by applying the operator to smooth functions that
touch the solution from above/below, that is one can assume simply that the solution in Theorem 1.1 is
taken in the viscosity sense (in this case, formula (7) reads as an “improvement of regularity”).

3We observe that ηi = 1/(2Ni) if si = 1, since Γ
(
1 + Ni

2

)
= Ni

2 Γ
(
Ni

2

)
.
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We point out that, as a simple consequence of Theorem 1.1, we obtain an interior Lipschitz estimate in
the last variable:

Corollary 1.2. Let u : Rn → R be a solution of Lu = f in B1. Then

(8) ‖∂xnu‖L∞(B1/2) 6 C
(
‖f‖L∞(B1) + ‖u‖L∞(Rn)

)
,

for some C > 0, depending on a1, . . . , am, s1, . . . , sm−1, and N1, . . . , Nm−1.

As a matter of fact, when s1 = · · · = sm = 1, Corollary 1.2 reduces to the classical Lipschitz regularity
theory as presented in [1].

We observe that the regularity results obtained in this paper can be also combined efficiently with other
results available in the literature, possibly leading to higher regularity results. To make a simple example
of this feature, we give the following result:

Corollary 1.3. Let s ∈ (0, 1), a1, . . . , am−1, a > 0 and

(9) L∗ :=
m−1∑

i=1

ai(−∆Xi)
s − a∂2

xn .

Let f ∈ L∞(Rn) be Lipschitz continuous in B1 with respect to the variable xn. Let u : Rn → R be a solution
of L∗u = f in Bn−1

1 × R. Then

‖u‖Cγ(B1/2) 6 C
(
‖f‖L∞(Rn) + ‖∂xnf‖L∞(B1) + ‖u‖L∞(Rn)

)
,

where

γ :=

{
2s if s 6= 1/2,

1− ε if s = 1/2

for some C > 0, depending on a1, . . . , am, s, and N1, . . . , Nm−1 (with the caveat that when s = 1/2, one
can choose ε arbitrarily in (0, 1) and C will also depend on ε).

We observe that if s > 1/2 in Corollary 1.3, then γ = 1 +η, with η = 2s−1 ∈ (0, 1), hence Corollary 1.3
gives that the solution lies in C1+η(B1/2).

Another interesting consequence of Theorem 1.1, is also the following rigidity result, valid when all the
fractional exponents are larger than 1/2:

Theorem 1.4. Let f : Rn → R. Assume that

σ := 2 min{s1, . . . , sn} − 1 > 0.

Let u : Rn → R be a solution of Lu = f in the whole of Rn. Assume that f does not depend on the nth
coordinate and that4

(10) ‖u‖L∞(BR) = o(Rσ)

as R→ +∞.
Then u does not depend on the nth coordinate.

Remark 1.5. A simple, but interesting, consequence of Theorem 1.4 is that if (10) holds and f is identically
zero, then

L∗u = 0 in Rn−1,

where we used the notation in (9). Therefore, if L∗ enjoys a Liouville property, then u is necessarily
constant.

This feature holds, in particular, when L∗ = (−∂2
x1

)s + · · ·+ (−∂2
xn−1

)s, see Theorem 2.1 in [5].

4As customary, the notation in (10) simply means that

lim
R→+∞

‖u‖L∞(BR)

Rσ
= 0.
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Remark 1.6. The observation in Remark 1.5 also says that, if (10) is satisfied and L∗ enjoys a Liouville
property, then the problem Lu = f possesses a unique solution, up to an additive constant.

The rest of the paper is organized as follows. The proof of Theorem 1.1, based on the barrier method
of [1], is contained in Section 2. Then, in Section 3, we combine our results with those of [5] and we prove
Corollary 1.3. The proof of Theorem 1.4, which combines our result with a cutoff argument, is contained
in Section 4.

2. Proof of Theorem 1.1

2.1. A useful explicit barrier. We recall here a useful barrier. Here and in what follows we use the
standard “positive part” notation for any t ∈ R, i.e.

t+ := max{t, 0}.
We will also exploit the notation in (1) and (6).

Lemma 2.1. Let si ∈ (0, 1] and di > 0. For any x = (X1, . . . , Xm−1, xn) ∈ Rn let

Φdi(z) := ηi (d
2
i − |Xi|2)si+ .

Then, for any x ∈ Rn with Xi ∈ BNi
di

, we have that

(−∆Xi)
sΦdi(x) = 1.

Proof. The result is obvious for si = 1 (recall the footnote on page 3), hence we suppose si ∈ (0, 1). We
let Ψdi := η−1

i Φdi(z) = (d2
i −|Xi|2)si+ . By scaling variables x∗ := x

di
, X∗,i := Xi

di
and ζ∗ := ζ

di
, we obtain that

(−∆)siΨdi(x) = cNi,si

∫

RNi

2(d2
i − |Xi|2)si+ − (d2

i − |Xi + ζ|2)si+ − (d2
i − |Xi − ζ|2)si+

|ζ|Ni+2si
dζ

= cNi,si d
2si
i dNii

∫

RNi

2(1− |X∗,i|2)si+ − (1− |X∗,i + ζ∗|2)si+ − (1− |X∗,i − ζ∗|2)si+
dNi+2si
i |X∗,i|Ni+2si

dζ∗

= (−∆Xi)
siΨ1(x∗)

=
22si Γ(si + 1) Γ

(
si + Ni

2

)

Γ
(
Ni
2

) ,

see for instance Table 3 of [2] for the last identity (here, we used the notation Ψ1 to denote Ψdi when di =
1). �
2.2. Completion of the proof of Theorem 1.1. For any t ∈ R, we define5

(11) u±(x, t) := u(x± t+en) = u(x1, . . . , xn−1, xn ± t+).

Similarly, we define f±(x, t) := f(x± t+en). Let also

v(x, t) := u+(x, t)− u−(x, t) and g(x, t) := f+(x, t)− f−(x, t).

We fix ν ∈ (0, a) (to be taken as close to a as we wish in what fallows). Recalling (5), we introduce the
operator

L∗ := L+ ν∂2
xn − ν∂2

t

=
m∑

i=1

ai(−∆Xi)
si − ν (−∂2

xn)− ν∂2
t

=
m−1∑

i=1

ai(−∆Xi)
si − (a− ν)∂2

xn − ν∂2
t .

(12)

5As a technical remark, we point out that the assumption that the operator is “local” in the last coordinate is used at this
point, since if t > 0 we have that u±(x, t) = u(x±ten), and so, if we differentiate with respect to t in the domain {t ∈ (0, dm)},
we have that ∂tu±(x, t) = ±∂xn

u(x± ten).
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Notice that L∗ is an operator with one variable more than L (namely, the new variable t ∈ R). We claim
that

(13) L∗v = g

for any (x, t) ∈ Qd×(0, dm). To check (13), we first notice that if (x, t) ∈ Qd×(0, dm) then x± ten ∈ Qd,n,2,
and we know that Lu = f in the latter set. Also, since the (fractional) Laplacian is translation invariant,

(14) (−∆Xi)
siu± =

(
(−∆Xi)

siu
)±

for any i ∈ {1, . . . ,m} and any (x, t) ∈ Qd × (0, dm) (notice that the variable t plays the role of a fixed
parameter here). Moreover

(15) ∂2
t u
± =

(
∂2
xnu
)±

for any (x, t) ∈ Qd × (0, dm). In turn, we see that (12), (14) and (15) imply that

L∗u
± = (Lu)±

and thus, by linearity,

L∗v = L∗(u
+ − u−) = (Lu)+ − (Lu)− = f+ − f− = g,

which establishes (13). Now we set

co :=
m∑

i=1

ηid
2si
i +

d2
m

2
=

m−1∑

i=1

d2si
i + d2

m

and A0 :=
m∑

i=1

ai.

(16)

Let also

A1 := A0A2 + ‖g‖L∞(Qd×(0,dm)) + (a− ν),

where A2 :=
‖v‖L∞(Rn+1)

min
i∈{1,...,m}

(ηid
2si
i )

.(17)

We consider the barrier

Φ(x, t) :=
A1

ν
Φ1(t) + A2Φ2(x, t)

with Φ1(t) :=
t+ (dm − t)+

2

and Φ2(x, t) = Φ2(X1, . . . , Xm−1, Xm, t) := co −
m∑

i=1

ηi(d
2
i − |Xi|2)si+ −

(d2
m − t2)+

2
.

(18)

Notice that Φ1 > 0 and also, by (16),

Φ2 > co −
m∑

i=1

ηid
2si
i −

dm
2

= 0.

Consequently,

(19) Φ > 0

Moreover, using the notation of Lemma 2.1, we see that

Φ2(x, t) = co −
n∑

i=1

Ψdi(xi)−Ψdm(t).
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Therefore, making use of Lemma 2.1, we conclude that, for any (x, t) ∈ Qd × (0, dm),

L∗Φ(x, t) =
m∑

i=1

ai(−∆Xi)
siΦ(x, t) + ν∂2

xnΦ(x, t)− ν∂2
t Φ(x, t)

= A2

m∑

i=1

aiA2(−∆Xi)
siΦ2(x, t) + A2ν∂

2
xnΦ2(x, t)− ν∂2

t Φ(x, t)

= −A2

m∑

i=1

ai − A2ν + ν

(
A1

ν
+ A2

)

= −A2

m∑

i=1

ai + A1.

That is, recalling (16) and (17),

L∗Φ(x, t) = −A2A0 + A1 = ‖g‖L∞(Qd×(0,dm)) + (a− ν)

> ±g(x, t) + (a− ν) = ±L∗v(x, t) + (a− ν),
(20)

for any (x, t) ∈ Qd × (0, dm), where we used (13) in the last step.
Now we claim that

(21) Φ(x, t)± v(x, t) > 0 for any (x, t) ∈ Rn+1 \
(
Qd × (0, dm)

)
.

To check this, we take (x, t) outside Qd × (0, dm), and we distinguish three cases: either t 6 0, or t > dm,
or x ∈ Rn \Qd.

First, when t 6 0, we have that t+ = 0, so we use (11) to see that u+(x, 0) = u(x) = u−(x, 0) and
so v(x, 0) = 0. Then ±v(x, 0) = 0 6 Φ(x, 0) in this case, thanks to (19) and this establishes (21)
when t 6 0.

Now, let us deal with the case in which t > dm. In this case (d2
m − t2)+ = 0, hence, by (18),

Φ(x, t) > A2Φ2(x, t)

= A2

[
co −

m∑

i=1

ηi (d
2
i − |Xi|2)si+

]

> A2

[
co −

m∑

i=1

ηid
2si
i

]

=
A2d

2
m

2
> ‖v‖L∞(Rn+1)

> ±v(x, t),

as desired. It remains to consider the case x ∈ Rn \ Qd. Under this circumstance, we have that there
exists io ∈ {1, . . . ,m} such that |Xio| > dio . Accordingly

m∑

i=1

(d2
i − |Xi|2)si+ =

∑

16i6m
i6=io

(d2
i − |Xi|2)si+ 6

∑

16i6m
i6=io

d2si
i ,
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and so

Φ(x, t) > A2Φ2(x, t)

> A2


co −

∑

16i6m
i 6=io

ηid
2si
i −

d2
m

2




= A2ηiod
2sio
io

> ‖v‖L∞(Rn+1)

> ±v(x, t),

which completes the proof of (21).
Now we show that the inequality in (21) propagates inside Qd × (0, dm), namely that

(22) Φ(x, t)± v(x, t) > 0 for any (x, t) ∈ Rn+1.

The proof of (22) is mostly Maximum Principle. The details are as follows. Suppose, by contradiction,
that (22) were false. Then we set h := Φ ± v. Notice that, since u is assumed to be continuous, so is h,
due to (11), and then (21) would imply that

min
Qd×(0,dm)

h =: µ < 0.

Let p̄ := (x̄, t̄) attaining the minimum of h, that is

(−∞, 0) 3 µ = h(p̄) 6 h(ξ),

for any ξ ∈ Rn+1. By (21), we have that p̄ lies in Qd × (0, dm), hence, by (20),

(23) L∗h(p̄) > a− ν > 0.

On the other hand, recalling the notation in (2), for any i ∈ {1, . . . ,m− 1} and any y ∈ RNi , we have that

2h(p̄)− h(p̄+ y(i))− h(p̄− y(i)) 6 0,

due to the minimality of p̄. Similarly (−∂2
xj

)h(p̄) 6 0 for any j ∈ {1, . . . , n}, as well as (−∂2
t )h(p̄) 6 0.

Therefore (−∆Xi)
si(p̄) 6 0, for any i ∈ {1, . . . ,m}. Consequently, by (12), we infer that L∗h(p̄) 6 0. The

latter inequality is in contradiction with (23) and thus we have proved (22).
By choosing the sign in (22), we deduce that

(24) |v(x, t)| 6 Φ(x, t) for any (x, t) ∈ Rn+1.

Moreover, recalling (18) and (16), for any t ∈ (0, dm),

Φ2(0, t) = co −
m∑

i=1

ηid
2si
i −

(d2
m − t2)+

2

=
d2
m

2
− (d2

m − t2)
2

=
t2

2
.

In addition,

Φ1(t) 6 dmt+,

therefore, by (18), for any t ∈ (0, dm),

Φ(0, t) 6 A1dmt

ν
+
A2t

2

2
.
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This and (24) imply that, for any t ∈ (0, dm),

|u(ten)− u(−ten)|
|t| =

|u+(0, t)− u−(0, t)|
t

=
|v(0, t)|

t
6 Φ(0, t)

t

6 A1 dm
ν

+
A2 t

2

=

[
A0A2 + ‖g‖L∞(Qd×(0,dm)) + (a− ν)

]
dm

ν
+
A2 t

2
.

Now we observe that the first term in the above inequality remains unchanged if we replace t with −t, and
therefore the inequality is valid for any t ∈ (−dm, dm). Furthermore, we can now take ν as close to a as
we wish (recall that A0 and A2 do not depend on ν), hence we obtain that, for any t ∈ (−dm, dm),

|u(ten)− u(−ten)|
|t|sn 6

[
A0A2 + ‖g‖L∞(Qd×(0,dm))

]
dm

a
+
A2 t

2

6
[
A0A2 + ‖g‖L∞(Qd×(0,dm))

]
dm

a
+
A2 dm

2

=
‖g‖L∞(Qd×(0,dm)) dm

a
+ A2 dm

(
A0

a
+

1

2

)

=
‖g‖L∞(Qd×(0,dm)) dm

a
+
‖v‖L∞(Rn+1) dm

min
i∈{1,...,m}

(ηid
2si
i )

(
a1 + · · ·+ am

a
+

1

2

)
.

This completes the proof of Theorem 1.1.

3. Proof of Corollary 1.3

The proof combines Corollary 1.2 here with Theorem 1.1(a) in [5]. To this goal, fixed t ∈
[
− 1

1000
, 1

1000

]

(to be taken arbitrarily small in the sequel) we define

(25) u](x) :=
u(x+ ten)− u(x)

t
and f](x) :=

f(x+ ten)− f(x)

t
.

By formula (8) in Corollary 1.2, we already know that

(26) ‖u]‖L∞(Rn) 6 ‖∂xnu‖L∞(Rn) 6 C
(
‖f‖L∞(Rn) + ‖u‖L∞(Rn)

)
.

Also, we point out that L∗u] = f] in B99/100, and so, using again Corollary 1.2,

‖∂xnu]‖L∞(B97/100) 6 C
(
‖f]‖L∞(B99/100) + ‖u]‖L∞(Rn)

)
.

This, combined with (26), gives that

sup
x∈B97/100

∣∣∣∣
∂xnu(x+ ten)− ∂xnu(x)

t

∣∣∣∣ = ‖∂xnu]‖L∞(B97/100)

6 C
(
‖∂xnf‖L∞(B1) + ‖f‖L∞(Rn) + ‖u‖L∞(Rn)

)
.

Hence, taking t to the limit,

(27) sup
x∈B97/100

|∂2
xnu(x)| 6 C

(
‖∂xnf‖L∞(B1) + ‖f‖L∞(Rn) + ‖u‖L∞(Rn)

)
.

Now, given i ∈ {1, . . . ,m−1} we consider the sphere SNi−1 in the Euclidean space RNi (of course, if Ni = 1,
then SNi−1 reduces to two points).

We also set Sn−2 := {(x1, . . . , xn−1) s.t. x2
1 + · · ·+x2

n−1 = 1} and we observe that each SNi−1 is naturally
immersed into Sn−2 (in the same way as RNi−1 is immersed into Rn−1).
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We denote by Hi the (Ni − 1)-dimensional Hausdorff measure restricted to SNi−1 (if Ni = 1, we replace
it by the Dirac’s delta on the two points given by SNi−1). Then we consider the measure

µ :=
m−1∑

i=1

ai cNi,si
2
Hi.

We fix x̃n ∈
[
− 1

100
, 1

100

]
and we set

ũ(x1, . . . , xn−1) := u(x1, . . . , xn−1, x̃n)

and f̃(x1, . . . , xn−1) := f(x1, . . . , xn−1, x̃n) + a∂2
xnu(x1, . . . , xn−1, x̃n).

We use (3) and polar coordinates on RNi to see that, for any x̃ = (x1, . . . , xn−1) ∈ Bn−1
99/100,

L̃ũ(x̃) :=

∫

Sn−2

[∫

R

(
ũ(x̃+ θr) + ũ(x̃− θr)− 2ũ(x̃)

) dr

|r|1+2s

]
dµ(θ)

=
m−1∑

i=1

ai cNi,si
2

∫

SNi−1

[∫

R

(
ũ(x̃+ θr) + ũ(x̃− θr)− 2ũ(x̃)

) dr

r1+2s

]
dHi(θ)

=
m−1∑

i=1

ai cNi,si

∫

SNi−1

[∫ +∞

0

(
ũ(x̃+ θr) + ũ(x̃− θr)− 2ũ(x̃)

) dr

r1+2s

]
dHi(θ)

=
m−1∑

i=1

ai cNi,si

∫

RNi

ũ(x̃+ y(i)) + ũ(x̃− y(i))− 2ũ(x̃)

|y(i)|Ni+2s
dy(i)

=
m−1∑

i=1

ai (−∆Xi)
siũ(x̃)

= L∗ũ(x̃) + a∂2
xnu(x̃, x̃n)

= f(x̃, x̃n) + a∂2
xnu(x̃, x̃n)

= f̃(x̃).

Notice that, with this setting, the operator L̃ satisfies formula (1.1) in [5].
Furthermore, we have that

(28) inf
ν∈Sn−2

∫

Sn−2

|ν · θ| dµ(θ) > λ,

for some λ > 0. To prove it, we observe that if ν = (ν1, . . . , νn−1) ∈ Sn−2, we have that |νj| > (n− 1)−1/2,
for at least one j ∈ {1, . . . , n− 1}. Up to relabeling variables, we assume that j = 1, and thus

∫

Sn−2

|ν · θ|2s dµ(θ) > a1 cN1,s1

2

∫

SN1−1

|ν1θ1|2s dµ(θ)

> a1 cN1,s1

2 (n− 1)s

∫

SN1−1

|θ1|2s dµ(θ),

which proves (28).
In addition,

µ(Sn−2) 6
m−1∑

i=1

ai cNi,si
2
HNi−1(SNi−1) < +∞.

From this and (28), we conclude that condition (1.2) in [5] is satisfied. Accordingly, we can exploit
Theorem 1.1(a) in [5] and conclude that

‖ũ‖Cγ(Bn−1
3/4

) 6 C
(
‖ũ‖L∞(Rn) + ‖f̃‖L∞(Bn−1

4/5
)

)

6 C
(
‖u‖L∞(Rn) + ‖f‖L∞(B1) + ‖∂2

xnu‖L∞(B97/100)

)
.
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This and (27) imply that

‖ũ‖Cγ(Bn−1
3/4

) 6 C
(
‖∂xnf‖L∞(B1) + ‖f‖L∞(Rn) + ‖u‖L∞(Rn)

)
.

This gives the desired regularity in the set of variables (x1, . . . , xn−1). The regularity in the last variable
follows from (27) and so the proof of Corollary 1.3 is complete.

4. Proof of Theorem 1.4

4.1. A cutoff argument. The purpose of this section is to localize the estimate of Theorem 1.1 by using
a cutoff function. As customary in the fractional problems, regularity estimates cannot be completely
localized, due to nonlocal effect, nevertheless our objective is to give quantitative bounds on the contri-
bution “coming from infinity”. For this scope, we use the notation smin := min{s1, . . . , sn} and smax :=
max{s1, . . . , sn} (a similar notation will also be exploited in the sequel for amin := min{a1, . . . , am} and
amax := max{a1, . . . , am}).
Lemma 4.1. Let R > 1. If w vanishes identically in (−3R, 3R)n, then

‖Lw‖L∞((−R,R)n) 6 Co

∫ +∞

2R

‖w‖L∞(B2ρ\Bρ/2)

ρ1+2smin
dρ,

where

(29) Co := 2
n∑

i=1

aicNi,siHNi−1(SNi−1).

Proof. Let x ∈ (−R,R). We claim that

(30) |(−∆Xi)
siw(x)| 6 2cNi,si HNi−1(SNi−1)

∫ +∞

2R

‖w‖L∞(B2ρ\Bρ/2)

ρ1+2si
dρ

for each i ∈ {1, . . . ,m}. To prove this, we notice that if si = 1 then the fact that w vanishes identically in
a neighborhood of x implies that −∆Xiw(x) = 0, and so (30) is obvious in this case. Thus, we can suppose
that si ∈ (0, 1), and we observe that, if y(i) ∈ [−2R, 2R]Ni then x+y(i) ∈ (−3R, 3R)n and so w(x+y(i)) = 0.
From this, it follows that

(31) (−∆Xi)
siw(x) = cNi,si

∫

RNi∩{|y(i)|>2R}

−w(x+ y(i))− w(x− y(i))

|y(i)|Ni+2si
dy(i).

Also, if |y(i)| > 2R then |y(i)| > 2|x|, thus

|x± y(i)| > |y(i)| − |x| > |y
(i)|
2

and |x± y(i)| 6 |x|+ |y(i)| < 2|y(i)|,
and so |w(x± y(i))| 6 ‖w‖L∞(B

2|y(i)|\B|y(i)|/2). As a consequence of this and of (31), we obtain

|(−∆Xi)
siw(x)| 6 2cNi,si

∫

RNi∩{|y|>2R}

‖w‖L∞(B2|y|\B|y|/2)

|y|Ni+2si
dy

= 2csi HNi−1(SNi−1)

∫ +∞

2R

‖w‖L∞(B2ρ\Bρ/2)

ρ1+2si
dρ,

which proves (30). The desired claim then follows recalling (5) and adding up the estimate in (30). �
Corollary 4.2. Let R > 1. There exists ηR ∈ C∞(Rn) such that

ηR = 1 in (−3R, 3R)n, ηR = 0 in Rn \ (−6R, 6R), and(32)

‖Lu− L(ηRu)‖L∞((−R,R)n) 6 Co

∫ +∞

2R

‖u‖L∞(B2ρ\Bρ/2)

ρ1+2smin
dρ,(33)

with Co as in (29).
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Proof. Let ηo ∈ C∞(R, [0, 1]) with ηo = 1 in (−1, 1) and ηo = 0 outside (−2, 2). Let

ηR(x) :=
n∏

i=1

ηo

( xi
3R

)
.

Then ηR satisfies (32). Also, if we set w := (1 − ηR)u, we have from (32) that w = 0 in (−3R, 3R)n.
Thus, the estimate in (33) follows by writing u − ηRu = w, using the linearity of the operator L and
Lemma 4.1. �

By combining Theorem 1.1 and Corollary 4.2, we can obtain a refined estimate in which the “contribution
from infinity” in the right hand side of (7) is weighted “ring by ring”:

Theorem 4.3. Let R > 1 and f : B6
√
nR → R. Let u : Rn → R be a solution of Lu = f in B6

√
nR. Then,

for any t ∈ (− R
6
√
n
, R

6
√
n
),

|u(ten)− u(−ten)|
|t| 6 C

(
R sup

(x,t)∈BR×(0,R)

|f(x+ ten)− f(x− ten)|

+
R ‖u‖L∞(B6R)

R2smin
+R

∫ +∞

2R

‖u‖L∞(B2ρ\Bρ/2)

ρ1+2smin
dρ

)
,

(34)

where C > 0 here only depends on n, smin, smax, amin and amax.

Proof. In this argument, we will take the freedom of renaming constants as we please, line after line, by
keeping the same name C. Using the notation of Corollary 4.2, we define ũ := ηRu and, for any x ∈ B6

√
nR,

f̃(x) := Lũ(x). Let also g̃ := Lũ− Lu. By Corollary 4.2,

‖g̃‖L∞((−R,R)n) 6 C

∫ +∞

2R

‖u‖L∞(B2ρ\Bρ/2)

ρ1+2smin
dρ.

By construction f̃ = f + g̃, therefore

sup
(x,t)∈(− R

6
√
n
, R
6
√
n

)n×(0, R
6
√
n

)

|f̃(x+ ten)− f̃(x− ten)|

6 sup
(x,t)∈(− R

6
√
n
, R
6
√
n

)n×(0, R
6
√
n

)

|f(x+ ten)− f(x− ten)|+ 2‖g̃‖L∞((− R
3
√
n
, R
3
√
n

)n)

6 sup
(x,t)∈BR×(0,R)

|f(x+ ten)− f(x− ten)|+ C

∫ +∞

2R

‖u‖L∞(B2ρ\Bρ/2)

ρ1+2smin
dρ.

Notice also that ũ = u in (−R,R)n and ũ = 0 outside B6R. Thus, by applying Theorem 1.1 (here
with d1 = · · · = dm = R

3
√
n
) to the function ũ, for any t ∈ (− R

6
√
n
, R

6
√
n
) we obtain that

|u(ten)− u(−ten)|
|t| =

|ũ(ten)− ũ(−ten)|
|t|

6 CR sup
(x,t)∈(− R

6
√
n
, R
6
√
n

)n×(0, R
6
√
n

)

|f̃(x+ ten)− f̃(x− ten)|+ CR ‖ũ‖L∞(Rn)

R2smin

6 CR sup
(x,t)∈BR×(0,R)

|f(x+ ten)− f(x− ten)|+ CR

∫ +∞

2R

‖u‖L∞(B2ρ\Bρ/2)

ρ1+2smin
dρ+

CR ‖u‖L∞(B6R)

R2smin
,

as desired. �
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4.2. Completion of the proof of Theorem 1.4. Using L’Hôpital’s Rule, we see that

lim
R→+∞

R

∫ +∞

2R

‖u‖L∞(B2ρ\Bρ/2)

ρ1+2smin
dρ = lim

R→+∞

∫ +∞

2R

‖u‖L∞(B2ρ\Bρ/2)

ρ1+2smin
dρ

R
= lim

R→+∞

‖u‖L∞(B4R\BR)

(2R)1+2smin

R−2
= 0,

and lim
R→+∞

R ‖u‖L∞(B6R)

R2smin
= 0,

thanks to (10). So, we can use Theorem 4.3 and pass formula (34) to the limit as R → +∞, and obtain
that

|u(ten)− u(−ten)|
|t| = 0,

for any fixed t ∈ R. This says that u(ten) = u(−ten) for any t ∈ R
Since the problem is translation invariant, we can apply the argument above in the neighborhood of any

point, so we obtain that

(35) u(p+ ten) = u(p− ten)

for any p ∈ Rn and any t ∈ R
Now take any point x ∈ Rn and any ρ ∈ R. We take p := x + ρ en

2
and t := ρ

2
. Notice that p− ten = x

and p + ten = x + ρen, therefore (35) implies that u(x) = u(x + ρen), which completes the proof of
Theorem 1.4.
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