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Abstract

We study the time-averaged flow in a model of particles that randomly hop on a finite directed
graph. In the limit as the number of particles and the time window go to infinity but the graph
remains finite, the large-deviation rate functional of the average flow is given by a variational
formulation involving paths of the density and flow. We give sufficient conditions under which
the large deviations of a given time averaged flow is determined by paths that are constant in
time. We then consider a class of models on a discrete ring for which it is possible to show
that a better strategy is obtained producing a time-dependent path. This phenomenon, called a
dynamical phase transition, is known to occur for some particle systems in the hydrodynamic
scaling limit, which is thus extended to the setting of a finite graph.

Keywords Large deviations - Particle systems - Phase transitions

Mathematical Subject Classification 60F10 - 05C21 - 82C22 - 82C26

1 Introduction

One of the main challenges of statistical mechanics is to understand the thermodynamics
of particle systems that are not in detailed balance. A violation of detailed balance means
that even in a steady state, there can be non-trivial net flows. It is therefore natural to study
flows, currents and their corresponding large deviations, which is the basis of macroscopic
fluctuation theory [4]. Various limits and large deviations of flows and currents have been
studied in the literature, e.g. steady-state or pathwise large deviations as the number N of
particles and/or lattice sites goes to infinity, e.g. [4,13], or large deviations of time-averaged
flows as time T goes to infinity, e.g. [5,6]. In this work we are concerned with large deviations

Communicated by Eric A. Carlen.

B D. R. Michiel Renger
renger @wias-berlin.de

Davide Gabrielli
davide.gabrielli @univaq.itline

L' Universita dell’ Aquila, Via Vetoio, Loc. Coppito, 67010 L’ Aquila, Italia
2 WIAS Berlin, Mohrenstrasse 39, 10117 Berlin, Germany

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10955-020-02667-0&domain=pdf
http://orcid.org/0000-0003-3557-3485

2354 D. Gabrielli, D.R. M. Renger

of time-averaged flows ]7 f g ON (1) dt, where first the number N of particles and then the
time horizon T is sent to infinity, as for example in [1-3,8,9]. This yields a large deviation
principle of the type:

N—o0

—\ T— — 7
Prob( 4, QY () dr ~7) TR VTV,

with

1 T
Y(g) := lim inf — [ L(p(),q@))dt,
@ = fim  nf g /0 (0(1). 4 (1))

L aw dr=g,

H(1)+div g(1)=0
where the infimum ranges over paths of particle densities p(¢) and particle flows ¢(¢), and
L is some non-negative cost function.

In many cases, the infimum over paths is attained or approximated by constant paths,
i.e. p(t) constant and ¢(¢) constant and divergence free. In this case the above expression
simplifies to W(g) = inf, L(p, ) [8]. Such simplification will fail if a time-dependent flow
g (t) is significantly less costly than its corresponding time-averaged flow ¢g. In that case
we say that a dynamical phase transition occurs (the transition being in parameter gq), see
Definition 3.1.

Dynamical phase transitions have been shown to occur for systems like exclusion processes
with an external bulk force [9] or the KMP model [2], in the hydrodynamic scaling limit.
See also [17] for numerial simulations and [15,28] and references therein for problems of
this type for different models. In this case the mesh of the underlying graph goes to zero
in the many-particle limit, yielding quadratic large-deviation cost functions, i.e. L(p, j) =
%Hj — k(p)||i2(l/x(p)) for some mobility x(p) and expected flow k(p). By contrast, we
consider a finite graph (X, E) that is not rescaled but remains discrete in the limit; in that
case the cost function is typically entropic,i.e. L(p, q) = Z(x’y)eE s (qx,y | kx,y(,o)), where
s is a relative entropy like functional of g, , with respect to ky y(o). The precise model,
assumptions, and large-deviations statements are introduced in Sect. 2.

Entropic cost functions are in many aspects more challenging than quadratic ones. For
example, they can only induce generalised gradient flows [26], they can only be decomposed
using a generalised notion of orthogonality [18,31], and it is not clear whether they relate to
some manifold or more general geometry.

In this work we focus on jump processes on finite graphs with corresponding entropic
cost functions, and study whether and when dynamical phase transitions occur.

The paper is organised as follows. In Sect. 2 we introduce the general setting that we work
in; in Sect. 3 we present general properties of dynamical phase transitions, and in particular
sufficient assumptions to rule them out. In Sect. 4 we restrict to zero-range processes on a
discrete ring and give sufficient conditions under which a dynamical phase transition does
occur.

2 Particle Systems, Limits and Large Deviations
In Sect. 2.1 we introduce the general particle systems that we work with; the limiting behavior

and large deviations as N — oo are discussed in Sect. 2.2, and the limit and large deviations
of average flows as N — 0o, T — oo are discussed in Sect. 2.3.
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2.1 Particle Systems

Let (X, E) be a finite directed graph, where the directed edges are £ C X x X, excluding
the diagonal. The particle system consists of N identical particles X (¢), ..., Xy (¢) on X.

The initial states (x,) L, of the particles are chosen deterministically so that the empirical
measure converges, as N — +00, to some fixed measure:

pfcv 0) := — Z 1y, (x)= —#{partlcles at site x at time 0} — p}.

Each single particle carries a mass of m /N, so that the total mass in the system can be tuned
by the parameter m > 0, and oM (0), p* € M,y (X), the set of non-negative measures on X’
of total mass m. The precise choice of the initial condition does not play a key role in this
paper, since from the next section on we are only interested in the long-time behaviour.

For the dynamics of the system, one particle randomly hops from site x to y with model-
specific rate Nky (p™ (1)) where the empirical measure is:

N
,O)ICV () := % Xl: Ix;(x) = %#{particles at site x and time ¢}. 2.1
1=

The empirical measure o™ (1) is a Markov process in M, (X') with generator
—~ m
foy= 3 Nkey@[fo+ 51y =10 = f(0)] 22)
(x,y)eE

For this model, we introduce the integrated flow on an edge (x, y) € E as

(t) —#{partlcles jumped from x to y in time interval (0, t]} 2.3)

This definition also fixes the initial condition WV (0) = 0. The integrated flow wWN@) e
M(E) is a non-negative measure on edges, related to the empirical measure through the
discrete continuity equation:

oN () = pV () — div WV () where divWes= > Wey— Y Wy,
yi(x,y)eE yi(y,x)eE
(2.4)

The pair (PN (1), WN(@)) is again a Markov process, now in M, (X) x M(E), with
generator

LY fpowy = Y Ny [£(o+ % (1= 1) w+ Tiay) = f(oow)].

(x,y)eE

The initial condition will be always of the form WV (0) = 0 and pﬁv 0) = "jvm for some
integers ny such that ) _, n, = N. Since the intensities depend on the density p only,
ignoring the integrated flows reduces this process to the process with generator (2.2).

Note that the rates k() may depend on all coordinates (o) ex, allowing for example
for attraction or catalysis. Here we recall the technical assumptions on k used in [29] to prove
a large deviations principle. The exact assumptions on k do not play a key role in the current
paper, but we briefly mention them here for completeness:

(1) each k, y(p) — O sufficiently fast when p, — 0;
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(2) each ky y(p) is Lipschitz continuous and non-decreasing in p with respect to the natural
partial ordering on M, (X);

(3) there exists anon-decreasing bijection ¢ : [0, 1] — [0, 1]sothatk, ,(5p) > ¢ (8)ky,y(p)
forall p € M;,(X),8 €[0,1]and (x, y) € E.

The first condition is needed to prevent negative densities. The continuity implies in particular
that the process does not blow up and that the random paths are almost surely of bounded
variation, so that the time derivatives (o™ (dr), wh (dt)) always exist as measures in time.
We call QN (dt) := whN (dt). The monotonicity and the lower bound are rather technical
assumptions needed in the proof of the large-deviation principle Theorem 2.4 that we discuss
in the next section.

Remark 2.1 In the limit N — oo and the corresponding large-deviation regime, the paths
become more regular and their derivatives exists as L'-densities (p(t), w(r)). The precise
topology on the path space and rigorous proofs of scaling limits and large-deviations princi-
ples will not be discussed here. We will use the notation ¢ (¢) := w(?).

Remark 2.2 'We believe that our results can be extended to more general models. For exam-
ple, the microscopic jump rates can be Nk, y(p) in approximation only, and the continuity
equation (2.4) could include more general linear operators than the discrete divergence. This
would include the classical Kurtz model for chemical reactions [22], allowing also for anni-
hilation and creation of mass. We could consider even models with mass randomly flowing
across each edge and not necessarily transported by particles, like for example in the KMP
model [20]. The monotonicity of the rates k,,, should also be generalisable as to include
repulsion effects, but the best of our knowledge this has not yet been carried out in the
literature.

2.2 Limit and Large Deviationsas N — oo

The many-particle limit follows by a similar argument as the classic results by Kurtz:

Theorem 2.3 ([22,23,29]) The random paths (p", W) € BV(0, T'; M, (X) x M(E) con-
verge narrowly as N — oo to the solution (p, w) € WH1(0, T; M,,(X) x M(E)) of the
problem

w(r) = k(p (1)), p@) +divu () =0,
w(0) =0, p(0) = p*.

Fluctuations around this limit are quantified by the following large-deviation principle.
Recall that we use the notation w(t) =: fotq (s)ds.

2.5)

Theorem 2.4 ([29]) The random paths (o™, WV) € BV(0, T; M, (X) x M(E)) satisfy a
large-deviation principle as N — oo with speed N :

Pmb((pN’ W) & (p, w)) ~ e~ NTw.r)(p.01p")

with rate functional

Tio.11(0.q | P)
Y emer Jo 5 (@@ L key(p@)) dt, if p € WH0, T My (X)), g € L0, T M(E)),
= p+divg =0and p(0) = p*, (2.6)
+00, otherwise ,
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where

alog%—a—{—b, a,b>0,
s(a|b):=1b, a=0,

+o00, otherwise.

The reader is referred to [29,30] for a proof of the above Theorem. Note that the inte-
grand in (2.6) can be interpreted as a kind of Lagrangian with corresponding Hamiltonian
H(p, P) = (e kxy(P) (eP=y — 1), where p are the variables dual to the variables
q [27]. See also [7] for a similar rate functional obtained in the framework of time peri-
odic Markov chains and Appendix A for the outline of a simple derivation in the case of
independent particles using a Sanov Theorem for paths.

Remark 2.5 Clearly, the limit densities (2.5) satisfy the closed equation:
o) +divk(p(t)) =0. 2.7

In general it is possible to construct models for which the equations (2.7) have several stable
and unstable equilibrium points or even limit cycles (see for example [24]). We are however
mostly interested in dynamical phase transitions for models for which (2.7) has a unique and
globally attractive equilibrium. This corresponds to the behavior of a thermodynamic system
relaxing to equilibrium.

2.3 Limit and Large Deviationsas N — coand T — oo

We now study the time-averaged flow (recall the notation introduced just before Remark 2.1),

N _ 1 r N N
Qo (T):= ?/0 Q" (dr) == ?W (T),

in the limit where N — oo while T = Ty for some function of N such that Ty — oo
sufficiently slow. To simplify the arguments we always take N — oo first and subsequently
T — oo. Under sufficient conditions, the average flow @N (T) converges to k(p) where p
is the unique attractive steady state of (2.7).

In order to state the corresponding large-deviation principle we first need to introduce
some notation and facts. Let

Zio,r1(p, 9) == Zjo,11(p> q | p(0))
be the functional that coincides with (2.6) but without the constraint on the initial condition.
We then define

1
= inf Tio.r1(psq | p¥),
T (p,q)G-AT,m(t?) : ! pratp

1
v 7) = — inf
T,m(q) T (p.9) AT ()

Uy (G | p*) =

Zio,m1(p, q) , (2.8)
where the infima are taken over the set,

Arn@ = {(0.9) € W10, T1: My () x L'(10, T M(E))

1 T
p+divg =0, f/ q(t)dzzq}. (2.9)
T Jo
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Note there is a slight ambiguity in the notation (2.8) since p* fixes the total mass m, but
we include the index m for consistency with the other function. The following auxiliary
proposition allows to show that the functions

\Ijm(é | ,0*) = lim \I"T,m(q | ,0*) and \Ijm(é) = lim \IIT,m(g)
T—+o00 T—+o00

are well defined and have certain properties. In particular, in this limit for large times, the
dependence on the initial condition vanishes.

Proposition 2.6 (Well-posedness of ¥) For any ¢ € M(E) and p* € M, (X);

(i) V(g | p*) = infrsoVr m(q | p*) and W, (q) = infr-0 VY7 1 (q) and hence the
limits are well-defined;
(ii) ¥V, (qlp*) and V,,(q) are convex in q;
(iii) V,,(q) = oo ifdivg # 0;
(iv) W (q | p*) = VY, (q) (i.e. Wy, does not depend on p*);
(v) the convergence in item (i) is a pointwise and a Gamma-convergence.

Sketch of proof The proof follows the same arguments of [1-3], and we do not discuss the
full details. The subadditivity that implies existence and item (i) is obtained by glueing
paths together one after the other. Convexity follows by a similar construction. If divg # 0
we obtain after a long enough time a negative mass somewhere that is impossible. The
independence of the initial condition follows by the fact that one can construct a finite-time
finite-cost path between any two initial conditions. The fact that the convergence is also a
Gamma-convergence is obtained by combining item (i) and (ii) along the lines of [3, Sec. 4].

O

‘We can now state the main statement of this section.

Theorem 2.7

(i) The average flow @N(T) satisfies a large-deviation principle with speed N and rate
functional

qg—> TYrm(q|p".
(ii) The average flow QN (T) satisfies a large-deviation principle (where first N — oo and

then T — oo) with speed NT and rate functional V,,(q).

Sketch of proof The first statement follows from a straight-forward contraction principle [12,
Th. 4.2.1]. The second item can be written formally as

~ Lo PV (@ (1) ~ @) —— S W@ 0" —— U@
NT & q Nooo T T.mq T—00 m{q)-

In order for the statement to be interpretable as a large-deviation principle, the second con-
vergence must be a Gamma limit, which holds by Proposition 2.6(v). O

3 Dynamical Phase Transitions I: Absence and Occurrence

We now consider a system that consists of the graph (X, E), jump rates k and total mass m
as explained in the previous section. In this section we study dynamical phase transitions for
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Dynamical Phase Transitions on Finite Graphs 2359

the general function W,,, and study when phase transitions can not occur, and when they do
occur. We then illustrate the conditions for a simple two-state example.

Let us first provide a more precise definition of dynamical phase transitions, following
the general framework of [1-4]:

Definition 3.1 We say that the system undergoes a dynamical phase transition in the average
flow g € M(E) if

v, @ <V @),

where

\Ijr-r’z_ @) = inf pe M, () Z(x,y)EE s (ﬁx,y | kx,y(,o)) , divg = 0, 3.1)
00, otherwise.

Recall that W,,(q) is the large-deviation cost to observe an atypical average flow g. If the
system does not undergo a dynamical phase transition for this ¢, then the infimum over
At m can be taken over paths that are constant in time, which corresponds to an (atypical)
stationary steady state. On the other hand, if a dynamical phase transition occurs at g, then
the system will have time-dependent behaviour when constrained to have an atypical flow g.
Furthermore, recall from Proposition 2.6 that when divg # 0 then ¥,,(g) = oo and hence
there can not be a dynamical phase transition.

3.1 Dynamical Phase Transitions and Lower and Upper Bounds

We now study upper and lower bounds for W,,,, from which we deduce a sufficient condition
under which dynamical phase transition can not occur, and a sufficient condition under which
it does. The upper bound W, is already introduced in (3.1). A lower bound is constructed as
follows. Considering the rate k as an operator M,, (X) — ]Rf with range

Ran, (k) := {(kx,y (0))v.yyeE € RE 2 p € My (X)), (3.2)
one can rewrite the upper bound as
Vi (@) = inf Toy | Kiy).
A@D = ) L Sy 1K)
(x,y)eE
For the lower bound we introduce, denoting by co the convex hull,
v o(q) = inf q Ky y).
W@ = it > 5@y | Key)
(x.y)eE

Proposition 3.2 For any divergence-free q,

V(@) < V(@) <9, @)

Proof Take an arbitrary p € M,, (X). Since g is divergence-free, the constant path (p, q) is
an element of Ar ,, (). Therefore

| r_ _
W, (g) < Thﬁmoo? Z /0 s(qx,y |kx,y(p)) dt = Z s(qx,y | kx,y(p))~

(x,y)€E (x,y)eE
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2360 D. Gabrielli, D.R. M. Renger

Optimising over all possible p € M,, (X) yields the upper bound.
Now take an arbitrary path (p, ¢) € Ar n(q). Applying Jensen’s inequality to the jointly
convex function s(- | -) yields

> / (@xy @ | key(p@®))dr = > s(ax,y|%foTkx,y(p(mdr)znv,;@,

(x,y)€E (x,y)EE

because 7! fOTk(p (t))dt € co(Rany, (k)). The claimed lower bound is obtained by taking
the infimum over all paths (o (#), ¢()):ef0.7] € Ar.m(q) and then letting T — oo. o

As a direct consequence we obtain the first condition to rule out phase transitions.

Corollary 3.3 Ifthe set Ran,, (k) is convex then there are no dynamical phase transitions for
any value of q.

Proof 1If Ran,, (k) is convex then ¥, (¢) = ¥, (q) = \IJ,',*; @). O

Remark 3.4 1n this paper we are restricting to conservative models for which the total mass is
preserved. The arguments are however easily extendible to non conservative models. In this
case Ran(k) may be unbounded and the validity for example of condition of Corollary 3.3
are more likely to be verified. This seems to confirm the phenomenon observed in [16] for
which the addition of boundary conditions non preserving mass may inhibit dynamic phase
transitions.

The upper bound in Proposition 3.2 can be improved, and the lower bound can be replaced
by another one. To describe the lower bound, recall from (3.1) that W} () = +ooifdivg # 0.
By contrast, we define another function

#— . ; 7
Vi@ = _inf D 5 (@ey They().
(x,y)€E

defined even in the case divg # 0, so that that \I/# (@) = ¥,/ (g) when divg = 0. In the
following lower and upper bounds “co” now denotes the convex envelope.

Proposition 3.5 For any q,
(cowh) @ < ¥n(@ < (co¥)}) @)

Proof The upper bound follows by the upper bound in 3.2 and the convexity of W,, (property
(ii) of Proposition 2.6).

The lower bound is obtained by the following argument. For any 77 > 0 and any pair
(p.q) € Ar.m(q),

1
—Tori(e, ) = f D 5(qey () [ hey (o) dt

(x,y)€E

=2 w#(q(t)>dz>— f (cou?) () di "= (cow!) @)

The result follows by minimising over (o, g¢) € A7 ,(¢) and taking T — oo. O

Together with the theory from Sect. 2.3 we obtain a condition under which a phase tran-
sition occurs.
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Corollary 3.6 If W;© is not convex, then the system undergoes a dynamical phase transition.

Proof In this case there exists a ¢ € M(E) such that we have for the convex envelope
(co¥;") (@) < W, (g). By the upper bound in Proposition 3.5 we deduce that W, (g) <
W (q) so that we have a dynamic phase transition at g. O

When ¥,/ is not convex and W,, = coW,} the typical behaviour of the system is to spend
fractions of times with different typical densities and flows (see [1,2] for an extended discus-
sion).

3.2 Dynamical Phase Transitions and Joint Convexity

In this section we derive an alternative condition to rule out dynamical phase transitions,
again by a convexity argument, but now by joint convexity of the function,

Mu(X) x M(E) 3 (p,q) = Y $(quy | ke y(p) € Ry (3.3)
(x,y)eE

Proposition 3.7 If the jump rates ky y are such that the function (3.3) is jointly convex in
(p,q) € Mp(X) x M(E), then there are no dynamical phase transitions.

Proof Consider a pair (p, ¢) € Ar,»(¢). By Jensen’s inequality:

1 17
?I[O,T](qu) = ?/0 Z 5(qx,y (1) | ke y(p(1))) dt

(x,y)€EE
> Y (e O de ks (3T dr)
(x,y)eE
= > (e | key(Br) = U@,
(x,y)€EE

where we used the definition of A7 ,, (¢) and we called pr := % fOT psds € M, (X). Taking
the infimum over all (p, ¢) € Ar ,(g) and then letting T — oo yields W,,,(§) > W} (q),
which shows that there are no dynamical phase transitions. O

As we will illustrate in Sect. 3.3 the above proposition is not very powerful, but can be
strengthened by requiring joint convexity in a small neighbourhood only.

Remark 3.8 In [9], the authors construct a dynamical phase transition by considering small
perturbations around time independent trials (g, ¢). We consider (o, (r), g¢ (¢)) where g¢ () =
q +¢ev(t), for some periodic perturbation v such that fOT v(s)ds = 0 and p, is determined by
the continuity equation. The first variation %I(O,T) (e qe)|e=0 = O since (0, ¢) is a critical
point for the time independent trials. If one can find a v(#) for which the second variation
becomes negative, this shows that a small periodic perturbation can decrease the cost of a
constant state, which corresponds to a dynamical phase transition. For a general local cost
function £ (as in the introduction), the second variation is

22 T m(r) T 2 e — | m(F)
EZ(O,T)([’& ge)le=0 :[) I:v(t)i| VL. [U(l‘)] ar.

where at first order in & we have p. () = p + em(t). Therefore, the second variation cannot
become negative if L is jointly convex, which is related to our Proposition 3.7.
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2362 D. Gabrielli, D.R. M. Renger

3.3 A Simple Two-State Example

We give a geometric illustration of the conditions from the previous section in the simplest
network with |X| = 2, 1i.e. X = {1, 2}. In this case M,,(X) = {(p1,m — p1) : p1 € [0, m]}
is one dimensional, and any choice of the jump rates can be rewritten as a zero-range process;
this means that the rate at which the mass flows exiting from a given site only depends on the
amount of mass present at that site. By Proposition 2.6 we only need to consider divergence-
free flows div g = 0; this corresponds to g1 2 = g2,1 both of which we shall denote as g. For
simplicity (and with a slight abuse of notation) we consider an homogeneous model, i.e. we
assume that k1 2(p) = k(p1) and k21 (p) = k(m — p;) for some function k : R; — R.

We first study the implication of the range condition from Corollary 3.3 for the two-state
example. The range (3.2) can now be parametrised by

Rany, (k) := {(a k(m — k’l(a))) “a €0, k(m)]} :

Clearly for alinear & the function o — k(m— k~(«)) is linear and hence its graph is a convex
set, see Fig. 1(A), which rules out dynamical phase transitions by Corollary 3.3. This special
case corresponds to independent particles jumping on the network. If k is a convex function,
theno — k(m—k—1()) is a convex function, in which case its graph Ran,, (k) is not a convex
set, see Fig. 1(B). However, for a small g the gradientof K +— Z(x,y)eE 5@y | Kx,y) points
left/downwards, and so the minimiser K € co(Ran,, (k)) in W~ (g) will still lie on Ran(k),
implying that W~ (g) = W (g). So for a convex function k dynamical phase transitions can
only occur for flows ¢ that lie above the set Ran,, (k), see Fig. 1(B). Similarly, for a concave
function k, dynamical phase transitions are only possible for flows that lie below the set
Ran,, (k), see Fig. 1(C).

Remark 3.9 From Fig. 1 one sees that by changing the total mass m in the system the set
Ran,, (k) can be moved upward or downward, which influences the region of possible dynam-
ical phase transitions. The flexibility to play with m will become more apparent and crucial
in the next section where we construct an example of a dynamical phase transition.

We now study what the joint convexity condition of Proposition 3.7 implies for the two-
state homogeneous example. In that case joint convexity of the sum (3.3) is implied by the
joint convexity of the function R? 5 (p, q) — s(q | k(p)), which corresponds to positive

ka1 ka1 ka1
q q q

k(m) 6120 k(m) | k(m) = %

))?@ : ".

) Yge
©
k(m) kiz2 k(m) k12 k(m) ki
(A) k linear (B) k convex (C) k concave

Fig.1 Three possible phase space plots. The grey areas depict the convex hull co(Ran,; (k)), and double stroked
lines depict divergence-free flows g for which dynamical phase transition are not ruled out by Corollary 3.3
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semidefiniteness of its Hessian matrix:

[—q(IOg k) (p) + k" (p) —(log k)’(p)]
—(logk) (p) 1/q '

By Sylvester’s criterion, this matrix is positive semidefinite if and only if all its principal
minors are non-negative, i.e.:

—g(logk)"(p) + k" (p) = 0,
1/q =0,

—(logk)"(p) + k" (p)/q — ((ogk)'(0))” = 0.

The second inequality is trivial since ¢ > 0, and the first inequality is contained in the third.
Proposition 3.7 thus means that dynamical phase transitions do not occur when the third

inequality holds, that is:
k" (p) <1 : > >0 (3.4
q kp)) = '

Actually this inequality holds for all p, g if and only if k" (p) > 0 and —k"(p)/k(p) > O,
which can only be true for linear functions k. In this sense Proposition 3.7 is just ruling out
the independent particles case. However, the same argument can be used to rule out phase
transitions obtained by small oscillatory perturbations within a small neighbourhood of a
critical time-independent (p, g) (see Remark 3.8). With this interpretation, we can deduce
from (3.4) that for a convex k dynamical phase transitions (with small oscillations) can only
occur for large flows ¢, and the other way around for concave k. Indeed, this statement is
consistent with the phase space diagrams from Fig. 1.

An exact characterisation of when a dynamical phase transition indeed occurs is compu-
tationally not easy, even in the simple two-state case. Instead of using a direct computational
approach we will show the existence of a dynamical phase transition using a limiting proce-
dure and a comparison with a continuous framework where the computations are easier.

4 Dynamical Phase Transition ll: An Example

In the previous section we mostly focussed on sufficient conditions under which a dynamical
phase transition can not occur; in this section we present an example where it does. The
dynamics corresponds to a totally asymmetric zero range dynamics on a discrete ring with
L sites. The dynamics is spatially homogeneous and with strictly increasing jump rates

kx,y(/)) = Lk (px) Lxy1(y), 4.1

that we discuss in more detail in Sect.. 4.1, see also Fig. 2. Note that the rates k on the
left hand side of (4.1) depend on the size L even if we are not writing explicitely such a
dependence. We will fix the function « on the right hand side of (4.1) in such a way that
(3.3) is strictly concave on a region and such that there is just one single globally attractive
stationary solution to equation (2.7), which is natural in light of Remark 2.5. We refer to
[10,11] for discussions of dynamical phase transitions for asymmetric dynamics of particle
systems in the hydrodynamic rescaling. We stress again that the limit considered here is very
different from the hydrodynamic one.

More precisely we have the following result that allows to deduce the existence of a
dynamical phase transition.
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Theorem 4.1 Consider a family of models on rings with L sites and defined by the rates (4.1).
Assume that there exist ©, t,8 > 0 and pu > 0 such that the function

¢ s(¢ | c(n+ 1)) 4.2)

is strictly concave on [® — 8, ® + 8]. If for average flow Gxxt1 = ® and any large L > 0,
the minimisation problem in the definition (3.1) of WV (q) has a unique minimiser, then for
L sufficiently large and m := L( 4+ t®) the system with rates Lk undergoes a dynamical
phase transition in q.

The dynamical phase transition will be constructed in two stages. In Sect. 4.2 we perform
an auxiliary computation on a continuous ring. We introduce a cost functional that is a
continuous version of the discrete one and show that for this functional a travelling wave is
less costly than a constant flow. In Sect. 4.3 we discretize the continuous travelling wave to
show that the same result holds on the discrete ring, for L sufficiently large but finite. This
will conclude the proof of the result. In Sect. 4.4 we present an example of a rate k and flow
¢ that satisfy the conditions in Theorem 4.1 so that a dynamical phase transition takes place.

4.1 Totally Asymmetric Spatially Homogeneous Zero-Range Processes on a Discrete
Ring

The graph now consists of adiscrete ring X := {1, 2, ..., L} with directed nearest-neighbour
edges E = {(x,x +1),x =1, ..., L} where the sum is modulo L, see Fig. 2. This means
that mass can flow through the directed ring in one direction only, and that the divergence-free
condition from Proposition 2.6 imposes that g is a constant.

We assume that the jump rates are zero-range and spatially homogeneous, i.e. (4.1) for
some smooth strictly increasing function « : Ry — Ry satisfying the assumptions men-
tioned in Sect. 2.1. Indeed, this setting is similar to the two-state model from Sect. 3.3, where
the rates are now rescaled with a factor L.

The limiting system of equations (2.7) associated to this class is given by

px(t) = Li(px—1(1)) — Lk (px(1)),  x € X. 4.3)

with corresponding large-deviation rate functional for the paths,

L .1
Tio.r1(p, q) = Z/o §(qxxt1(0) | Lic(px (1)) dt.
x=1

Since « is strictly increasing, for any fixed m there exists a unique stationary solution p €
My (X) of (4.3), given by p, = . Similarly, if the minimiser in the Definition (3.1) of

Fig.2 A directed discrete ring
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Wt(g) is unique, then by symmetry,
Ut (q) = Ls(q | Lk(m/L)). 4.4)

As mentioned in Remark 2.5, for systems with multiple equilibria and unstable behaviours
one can easily imagine the occurrence of dynamical phase transitions, especially if the limit
equation (4.3) itself already has a time-dependent solution. Therefore it is important that the
equilibrium p is unique and globally attractive, so that the typical behaviour of the system
is to relax to this equilibrium. This follows automatically from the fact that the equation is
dissipative, which we will now derive from the monotonicity of «.

The invariant measure of the zero range model is known to be:

N N = 1
e )=Hzﬁ<p%>’

x=1

when p" € M, (X) N (BN)L. Here Li (%) = [T} L (%) fori > 1and Lk (0) := 1,
and Z is a normalisation factor, see [19, Sec. 2.3]. A direct computation shows that when
distributed according to vy and conditioned on the total mass ) _ . oV . = m,then p" satisfies
a large-deviation principle with speed N in M, (X)) with rate functional:

1 L Px
Vin(p) = — > ﬁ log k() da (4.5)
x=1YP

where the equilibrium p now serves as a normalisation constant such that V,,,(p) = 0. Note
that due to monotonicity of «, the function V), is convex and has unique minimiser p. By
macroscopic fluctuation techniques [31, Prop. 5.3] it can be proved that the functional V,
decreases along solutions p(¢) of (4.3), which can also be seen from the direct computation:

dVn(p(1) _

L
o > et ) = k(i (o) | log o (1)

xel

_ —zés(x(px(z»\x(pm(r)) <0.

This shows that V,,, is indeed a Lyapunov functional, from which we deduce the asymptotic
stability, that is, the limit equation (4.3) is dissipative and so p is globally attractive.

Remark 4.2 For models for which the invariant measure cannot be computed explicitly, (4.5)
and similar expressions can often still be derived from a Hamilton-Jacobi equation along the
lines of a discrete version of Macroscopic Fluctuation Theory.

4.2 An Inequality on the Continuous Torus

Here we introduce an auxiliary functional on smooth density and flows that is related to the
rate functional for a large ring under suitable conditions. It may correspond heuristically to
a model on a continuous ring where mass can flow anticlockwise only. Although it is not
obvious whether this framework actually corresponds to a large-deviation principle (flows
may develop shocks), the computation will be useful to prove and to understand the origin
of the dynamical phase transition. Indeed the scaling limit of the discrete functionals is an
interesting problem. Quantities on the continuous ring will be denoted by a hat (7).
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On the continuous torus, [0, 1] with periodic boundary conditions, we consider smooth
non-negative flows and densities g (x, 1), p(x, ) > 0 such that the continuous version of the
continuity equation is satisfied:

¥P(x,1) +0xq(x,0) =0, xe[0,1]. (4.6)

For any such pair the corresponding continuous version of the rate functional is given by

T rl
Zi0.11(q, P) ::/0 /Os(a(x,t)w(ﬁ(x,t))dxdt. 4.7

Note that in this expression appears « and this functional will be approximated by discrete
models with a large number L of sites and having rates Lk.

We first construct a specific travelling wave solution of equation (4.6), under the assump-
tion of Theorem 4.1 with given &, 7,8 >0and > 0.Letd:[0,1] - [® — 5, D+ 5] be
a smooth and periodic non-constant function with average fo 'p (x) dx = @, and define the
travelling wave (TW) as:

PV, D) = p4 TP —1/7) and TV, 1) = d(x —1/1).  (4.8)

Then clearly, this pair (7T, 5T") solves (4.6), it is t-periodic in ¢ and 1-periodic in x.
Without loss of generality we may assume that 7" is a multiple of 7, so that the average flow
is

17 I B
f/ qTW(x,;)dt=f ®(x)dx = P,
7/ A

and the corresponding total mass is given by
1
m = / W, Hdx =u+19.
0

We may therefore write (57,3 V) € M, ([0, 1]) x M([0, 1]). The functional (4.7) for
this special pair is

T pl
f[O,T](ﬁTW,z,‘TW):/O /Os(d>(x—t/t) | k(4 T®(x — /7)) dx dt.

Since the function ® is periodic of period one, exchanging the order of integrations, the
integrand of the integral on dx does not depend on x and the integral can be removed
computing the integrand on 0. With the change of variable # = —¢/t and again assuming
that 7' is a multiple of 7,

1~ - . 1

?I[O,T](PTW, V) = /(; s(P) | k(4 TP u))du.

Next, let us compare the travelling wave to its corresponding constant profile

P (x ) =4+ TD and 7 (x, 1) = ©. 4.9)

Then clearly f; I5eonst(x $ydx = m = I 15TW (x, 1) dx and %fOT?]\C"nS‘ (x,0)dt = & =
% fo lZiTW (x, t) dt. By the strict concavity of (4.2) and the fact that ® is not constant, Jensen’s
inequality yields that
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| S

1
~TonG™.a™) = fo (@) | k(1 + TOW))) du

— — 14 .
<s(® [ c(u+79) = ZT0.n @G, @.10)

which can be heuristically interpreted as a dynamical phase transition on the continuous
torus. We will use this strict inequality to prove the existence of a dynamical phase transition
for a finite ring.

4.3 Discretisation of Density-Flow Pairs

The construction of the dynamical phase transition on the finite ring is obtained by discretising
any smooth density and flow pair (p, ) € M,, ([0, 1]) x M([0, 1]) as follows. We embed the
ring on the continuous torus associating the vertex x € {1, ..., L} to the point x /L € [0.1].
We consider discretized masses and flows

x+1/2
N _x+1/2
pxt (1) = L/H/2 p(y.0)dy and Ay c1 (1) = LG 7 1)
L

It is easy to see that if (7, ) satisfies the continuous continuity equation (4.6) then (o, ¢ XL)
satisfies the discrete continuity equation (2.4).

We apply this discretisation to the two different profiles from the previous section. For the
travelling wave »™, ™) from (4.8) with discretisation (p&TW, g TW), Recalling that
the rates are Lk, we compute,

1 +12

L T
L ~ 1/2
ZTon ™, gm ) = /0 s(qTW(“L/ )|« (fo i pTW(y,t)dy)>
x=1

1
_ szo s<d>(u)‘lc(,u+rL J 0@ dz)) du. @.11)
For the constant profile (p°°™t, 7™ from (4.9) with discretisation (pL-const, gL-consty

%z[o 1 (pheomst, gBeonsty = 125(® | ke (p + r<1>)) D g+ Loirrdy(LP).  (4.12)
Observe that both discretised paths (pZ-TWV, g©TW), (pL-const g L.consty are feasible in the
sense that they lie in the set AT, L(u+7®) (L®) from (2.9).

Without loss of generality we may assume that § is sufficiently small so that ® > ®—§ > 0
and so under the assumptions on «, the function k (. + 7L [ | 1L P@) dz) is bounded from
above and from below away from zero. Therefore from formulas (4.11) and (4.12)

1 1
Jim T (et L*Tw)zfos(w)|x<u+rcb(u)>)du, and

1 _ —
li L,const  L,const — (P D)) .
Jlm o Tio.1(p .q ) =5(® [ k(n+1P))

From the strict inequality (4.10) we thus find that for sufficiently large but finite L, (4.11)
is strictl}!ess than (4.12). This proves the claim of Theorem 4.1 that for this L ancL m =
L(u + 7®) the system undergoes a dynamical phase transition for the average flow ®.
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K(p) !
¢
Dynamical
phase
/ transition
p
(A) The Young function B) H(e)

Fig.3 On the left, the Young function « (p), and on the right the second derivative of s(¢ | K (¢))

4.4 An Example

For this example we take the classical Young function, see Fig. 3(A),

k(p) :=(p+ Dlog(p + 1) — p,

andu =0and 7 = 1.
Given ¢, the second condition in Theorem 4.1 is easily checked by rewriting,

Ls(7 | Lx(p)) = L log% — Lg — Lglogk(p) + L*(p). (4.13)

Since « is strictly convex and strictly log-concave, this function is clearly strictly convex,
which shows the uniqueness of the minimiser in the Definition of W+ (7). Note that this strict
convexity is related but a bit different from the global attractiveness of the limit equation
that we derived in Sect. 4.1, since in this case we force a possible non-typical flow g on the
system.

To show the strict concavity of (4.2) we calculate the second derivative:

2

d
H(¢) = dTﬂs(d) | k(9))

_ l+ 1 ) log(¢p + 1)
¢ p+1 @+ Dlogl¢+1)—¢
- ¢ L #log(@+ 1)’
@+ D(@+Dlog@+1)—9)  (¢+ Dlogp+ 1) —¢)’

(4.14)

It is easily computed that H(1) < 0, and in fact limy o H(¢) = —00, so we may choose
any ® < 1and § > 0 sufficiently small, see Fig. 3. It follows from Theorem 4.1 that for any
g = ® < 1, there exists a sufficiently large L so that a dynamical phase transition occurs
with mass m = L® and rates Lk.

We mention that the choice of « for which a dynamical phase transition can occur is
subtle. For example, a similar calculation as (4.14) can be done for the concave function
k(p) = 2log(p + 1), showing that limy o H(¢) = —1. However, this function «(p) is
strictly log-concave but not convex, and so (4.13) ceases to be strictly convex for large L.
Therefore, the minimiser in the definition of W,/ (g) may no longer be unique, so possibly
W (q) < Ls(q | Lk(m/l)), which breaks down the argument.
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5 Discussion

We studied dynamical phase transitions on a finite graph, where the graph is fixed, and the
number of particles and the time interval are simultaneously sent to infinity. For these models
the action functional (2.6) is entropic rather than quadratic. Therefore the dynamical phase
transitions behave differently than previously studied models in the literature. We derived
two different convexity conditions to rule out dynamical phase transitions: Corollary 3.3 and
Proposition 3.7. In particular the arguments that are worked out for the two-state example
in Fig. 1 can be used to narrow down the search for possible dynamical phase transitions.
As a byproduct of the bounds of Proposition 3.5 we also obtain a sufficient condition for a
dynamical phase transition to occur, see Corollary 3.6. Finally, we constructed an example
of a dynamical phase transition for a specific zero-range process on a sufficiently large ring.
It remains an open question whether dynamical phase transitions can occur on a graph with
only two or three states. For smaller graphs, even in the case of two or three nodes, the exact
structure of the rate function for the long-time averaged flow is more difficult to understand.
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Appendix A: A Sanov Theorem for Paths

In this section we schetch a simple argument for Theorem 2.4 for the case of independent
particles. A similar Sanov argument with interacting particles but without flows can be found
in [14,25]. The motivation of this Appendix is to give just the intuition on the specail form
of the rate functional. An even more general proof can be found in [29] and [21].

Proof Let X;(¢), i =1, ..., N beindependent copies of a Markov chain on the graph (X, E)
with initial distribution 72~ p* and transition rates k. y. We consider the empirical measure
of the random trajectories X; (-) := (X;(t))s¢fo, 7 in D([0, T]; X),

N
- 1
PN .= NZSXI.(.). (A.1)

i=1

By Sanov’s Theorem, PV satisfies a large-deviation principle in M (D([0, T]; X)) withrate
functional

To.r1(P) = H (P Py) , (A2)

where P« is the law on D([0, T']; X) of the Markov chain X (-) with transition rates ky y
and initial distribution m~' p*, and H(-|-) is the relative entropy.
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Let m/[x(-)] := x(t) and A;[x(-)] := (x(t7), x(¢)) be the evaluation maps (assuming
gédlz\ig paths). We can then write the pair (pN, WN), defined in (2.1),(2.3), as a function of
PN

N DN -1
oY (@) =mPY om; ",
~ A3
{QN(t):m]PNoA,—l (A3)

Hence by the contraction principle,

T, q) = _ inf o, 71(P),
PeM (D(0.T1: X)):
p(-)=mPo7‘[()l s q(-):m]P’oA(’.)

It can be checked that the minimiser is a Markovian measure P**-9) with time-dependent
transition rates (assuming p, > 0),

(A4)

and initial condition m ! p*.
The relative entropy between two Markovian processes can be explicitly computed, and
)

Tio.11(p. ) = o, 1y (PP7) = H(f@(ﬂ"f) ’Pp*)

T
= > /O 5(qey () | px (ke y)dt

(x,y)€E
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