Weierstraf3-Institut
fiir Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Preprint ISSN 0946 — 8633

The von Mises model for one-dimensional
elastoplastic beams and Prandtl-Ishlinskii

hysteresis operators

Pavel Krejéi ! and Jiirgen Sprekels 2

submitted: 7 Jun 2006

L Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, D-10117 Berlin,
Germany, and Mathematical Institute, Academy of Sciences of the Czech Republic, Zitna 25,
CZ-11567 Praha 1, Czech Republic, E-mail krejci@wias-berlin.de, krejci®math.cas.cz

2 Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, D-10117 Berlin,
Germany, E-mail sprekels@wias-berlin.de

No. 1143
Berlin 2006

Wl 11Als

2000 Mathematics Subject Classification. 74C05, 74N30, 35Q72, 34C55, 47J40.

Key words and phrases. Elastoplasticity, beam equation, hysteresis operators, Prandtl-Ishlinskii
model, von Mises model.

Acknowledgements. Supported by the DFG Research Center MATHEON Mathematics for key
technologiesin Berlin.



Edited by

WeierstraB-Institut fiir Angewandte Analysis und Stochastik (WIAS)
Mohrenstrafle 39

10117 Berlin

Germany
Fax: + 49 30 2044975
E-Mail: preprint@wias-berlin.de

World Wide Web:  http://www.wias-berlin.de/



Abstract

In this paper, the one-dimensional equation for the transversal vibrations of an
elastoplastic beam is derived from a general three-dimensional system. The plas-
tic behavior is modeled using the classical three-dimensional von Mises plasticity
model. It turns out that this single-yield model without hardening leads after
a dimensional reduction to a multi-yield one-dimensional hysteresis model with
kinematic hardening, given by a hysteresis operator of Prandtl-Ishlinskii type
whose density function can be determined explicitly. This result indicates that
the use of Prandtl-Ishlinskii hysteresis operators in the modeling of elastoplas-
ticity is not just a questionable phenomenological approach, but in fact quite
natural. In addition to the derivation of the model, it is shown that the re-
sulting partial differential equation with hysteresis can be transformed into an
equivalent system for which the existence and uniqueness of a strong solution
is proved. The proof employs techniques from the mathematical theory of hys-
teresis operators.

1 Introduction

The use of hysteresis operators in the modeling of the hysteretic stress-strain relations
that are commonplace in nonlinear elastoplasticity, dates back to at least the early 20th
century. Back in 1928, Prandtl in his pioneering work [8] introduced the input-output
relation that was independently studied by Ishlinskii in [2] in the 1940’s and nowadays
is called the Prandtl-Ishlinskii operator. It describes the time-evolution of the relation
between strain e (input) and stress o (output) in one-dimensional elastoplasticity in
the form

o(t) = / " o(q) sqle](t) da. (L1)

Here, ¢ denotes the time variable, ¢ is some nonnegative weight function that satisfies
the growth condition

/()oo(1+q)90(q)dq< +o00, (1.2)

and s, denotes the one-dimensional stop operator or Prandtl’s elastic-perfectly plastic
element with thresholds +¢q, which is a basic hysteresis operator whose dynamic input-
output behavior is described in Fig. 1.

Between the thresholds +gq, the behavior is linear elastic (with elasticity modulus 1),
while along the upper (lower) threshold +q ( —g) we have irreversible plastic yielding
and can only move to the right (left). The operator s, is a special one-dimensional
case of the abstract stop operator &z in a separable Hilbert space X associated with
a closed and convex set Z C X containing 0. This operator is defined in the following
way: for a given input function v € W'(0,T; X), consider the variational inequality

x(tye Z Vte|0,T], x(0)=xo,
(x(t)—v(t),z—x(t)) >0 VzeZ, forae te€(0,T). (1.3)
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Figure 1: Hysteretic input-output behavior of s,.

Here, and throughout the paper, the superimposed dot stands for differentiation with
respect to time, and (-,-) is a scalar product in X . The investigation of such problems
goes back to [7], and the existence and uniqueness of a solution x € W*!(0,T; X) for
any given initial value xo € Z is obtained as a special case of the general theory. This
allows us to define the corresponding solution operator &z as

Sz: Z x Wh(0,T; X) — WHH0,T; X), [xo,v]— X- (1.4)

It is proved in [4, Section 1.3] that this operator is continuous and, if Z has non-empty
interior, admits a continuous extension to

Sz:ZxC(0,T;X)— C(]0,T]; X).

In the case X = R*', we set 5, = S[_y4. Notice that since z = 0 € Z, we obtain
from (1.3) the fundamental energy dissipation inequality

%% [z[x0,v)()* < (Szlx0,v)(t), (1)), a.e in (0,T). (1.5)

In this paper, we restrict ourselves to the canonical choice of initial conditions

Xo = Projz(v(0)), (1.6)

where Proj, : X — Z 1s the orthogonal projection onto Z. We then simply write
x = &z[v| instead of x = &z[xo,v]|. The operator

Pzr=1-63, (1.7)

where I denotes the identity mapping, is called the vector play operator associated
with Z. We similarly denote p, = B_, ;1. The stop and play operators form the corner
stones of the mathematical theory of hysteresis operators. In the 1D case in particular,
every hysteresis relation with the so-called “return point memory” (which is a common
property of hysteresis relations in plasticity, ferromagnetism, piezoelectricity, etc.) can
be represented by some functional on the one-parametric play system {p_; ¢ > 0}, see
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[1, Theorem 2.7.7]. The Prandtl-Ishlinskii operators (1.1) correspond in this respect
to linear functionals. For a thorough treatment of their analytical and geometrical
properties, we refer the reader to the monographs [1, 3, 4, 9]. Some important facts
concerning s, , which will be needed in the analysis below, are collected in Propositions

3.4, 3.5 in Section 3.

Although the Prandtl-Ishlinskii operator is easily understood and rather intuitive,
its use in the physical and engineering literature is still nonstandard. The main reasons
are the following: on the one hand, the operator appears to be entirely phenomeno-
logical, and its weight function ¢ is a priori unknown and must be identified; on the
other hand, other well-established three-dimensional plasticity models like those by
von Mises or Tresca are available.

The aim of this paper is twofold: first, we demonstrate that in the modeling of
the (one-dimensional) transversal vibrations of an elastoplastic beam the use of the
three-dimensional von Mises model leads (after normalizing all physical constants to
unity) to the following beam equation for the transversal displacement:

Wi — Wagtt + P [wzz]wz + Weeze = g. (18)

Here, P is a Prandtl-Ishlinskii operator whose weight function ¢ can be determined
ezplicitly, and g is given. Observe that the Prandtl-Ishlinski operator P is (as most
nontrivial hysteresis operators) non-differentiable, so that (1.8) has to be given a proper
meaning.

The existence and uniqueness analysis of the problem is carried out by transforming
(1.8) into a system, in which no differentiation of the hysteresis operator occurs. The
strong solution of this system is then interpreted as a weak solution to (1.8). The proof
employs techniques from the mathematical theory of hysteresis operators; in particular,
the properties of the stop operators s, will play a crucial role in the analysis.

The paper is organized as follows: in Section 2, will derive our model equation from
a three-dimensional model using dimensional reduction. In Section 3, we will state the
main existence and uniqueness result, which will be proved in the last two sections.

2 Derivation of the model

In this section, we derive our model from a general three-dimensional system. We
restrict ourselves to rectangular beams, that is, to sets Q C R?® of the form Q =
(0,L) X w, where L > 0 is the length of the beam, and where, with some A > 0
and b > 0, the set w = (—b,b) X (—h,h) represents its (rectangular) cross section.
We denote by z € (0, L) the longitudinal coordinate, by (y,z) € w the transversal
coordinates, and by ¢ € [0,T] the time, where T' > 0 is given.

Having in mind applications to plasticity, we use an approach to dimensional reduc-
tion that slightly differs from the classical one in [6]. In order to compare the resulting
equations, we start with the linear elastic isotropic case (Subsection 2.1), and then pass
to the elastoplastic model under further simplifying assumptions (Subsection 2.2). We
proceed first as in [6] and consider smooth deformations F: Q x (0,7) — R® under
the following hypotheses (the precise assumptions on the data will be specified later).
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(A1) The deformation of the central surface C = {(z,y) € R? (z,y,0) € Q} is
independent of y, that is,

z +v(z,t)
F(z,y,0,t) = Yy V(z,y)eC, Vte(0,T), (2.1)
w(z,t)

with given functions v,w: (0,L) x (0,7) — R.

(A2) The thickness 2h and the derivatives v, Wy, Wy, of v,w with respect to z are
“sufficiently small”.

(A3) The cross sections {z} X w remain perpendicular to the central surface, and
their deformation is proportional to their distance to it; that is,

F(z,y,2,t) = F(z,y,0,t) + zn(z,y,t) V(z,y,2,t)€ Q x(0,T), (2.2)

where n(z,y,t) is the unit “upward” normal to the deformed central surface

C(t) = F(C,0,t) at time ¢.

Under the hypothesis (A2), we can linearize the problem by replacing

1 _wz(m,t)
nz,y,t)= 0
(z,y,1) VI + va(z, )% + w(z, 1) 1+ vy(z, t)
with
—wg(z,t)
n(z,y,t) = 0 ' .
1

This is justified, since an elementary computation yields that
[(z,y,t) — n(z,y,8)| < (jva(z,1)| + [wa(z, 1)|)’

whenever |vz(z,%)] <1, |wy(z,t)| < 1. This enables us to define for every (z,y, z,t) €
2 x (0,T) the linearized deformation F(z,y,z2,t) by

z+v(z,t) — zw,(z,t)
F(mayazat) = Y ’ (24)
z 4+ w(z,t)

and the displacement vector u(z,y, z,t) by

v(z,t) — zwz(z,t)
u(z,y,z,t) = 0 . (2.5)
w(z,t)



The meaning of Hypothesis (A2) is to ensure that the Jacobian DF(m,y, z,t) satisfy,
with some ¢ > 0,

det DF(2,y,2,1) = 1 + va(2, 1) — 2wes(z, t) + w(z,1) > €.
Thus, F defines a local isomorphism. Moreover,

Ve(Z,t) — 2Wee(z,t) 0 —wy(z,t)
Vu(z,y,2,t) = 0 0 0 ) (2.6)
wy(z, 1) 0 0

and the linearized strain tensor € = (Vu + VuT)/Z becomes

Vp(Z,t) — 2 Wee(z,t) 0 O
e(z,y,2,t) = 0 00 |. (2.7)
0 00
2.1 Small elastic deformations
We denote by “: ” the canonical scalar product in the space of (3 x 3)-tensors, i.e.,

Eim=> &img, VE=(&), n=(n5), ,7=123. (2.8)

1,3=1

Moreover, we define for any given (3 X 3)-tensor £ its (trace-free) deviator d(§) by

a(e) =€ — 5 (£:6)3, (29

where § = (¢;;) denotes the Kronecker tensor.

To motivate the elastoplastic case treated below, we first study the case of linear
isotropic elasticity, in which the strain tensor € and the stress tensor o are related to
each other through the formula

o = 2ue+X(e:d)d, (2.10)

where u, A are the Lamé constants. Then, with €17 = v, — 2 Wy, , we infer from (2.7)
that
2p+A)enn 0 0
o = 0 Aeyp 0 ) (2.11)
0 0 Jdens

Owing to the choice (2.1) of F, we cannot prescribe boundary conditions on the lateral
surface (0,L) X w. On the left surface, where z = 0, (y, 2) € w, we restrict ourselves
to the case of vanishing normal stress o(0,y,2,t) - vy = 0, where v, = (—1,0,0)7;
that is, we have

Was(0,1) = v5(0,8) = 0, w(0,¢) =0, (2.12)
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where the latter boundary condition is added in order to eliminate possible rigid body
displacements. An analogous choice of the boundary conditions is made at the right
surface {L} x w. In accordance with these boundary conditions, we consider the
Sobolev space

V ={(v,w) € H'(0,L) x H*(0,L); w(0) = w(L) =0} . (2.13)

Now suppose that a constant mass density p > 0, an external force density of the
form f(z,y,2,t) = (fl(m,z,t),O,fg(a:,z,t))T, and the initial conditions

v(z,0) = v°(z), v(z,0) =v'(z), w(z,0)=w(z), wz,0)=w'(z), (2.14)

are given. We then want to solve the momentum balance equation

/putt-ﬁdazdydz—I—/a':éda:dydz:/f-ﬁdazdydz, (2.15)
Q Q Q

for the unknown vector function u given as in (2.5), where the admissible displace-
ments @ and strains & are also of the form (2.5) and (2.7), respectively; i.e., we

have
0(z) — z W (z) Up(2) — 2Wge 0 O
u(z,y,z) = 0 , €(z,y,2) = 0 00|, (2.16)
B() 0 0 0

where (v, W) varies over the space V. The test functions v, w are independent of each
other, and a straightforward calculation shows that (2.15) decouples into the system

p/OLvtt(a:,t)ﬁ(a:)daz +(2u+ )\)/()Lvm(m,t)ﬁz(m)dm - /OLgl(a:,t)f)(a:)daz, (2.17)
p/OL(wtt(a:,t)ﬁ)(m) + ngtt(m,tmz(m))dm + M/ﬁum(m,ﬂwm(m)dm

:/0 92(z,t)w(z) dz, (2.18)

where we have set

I 1 [h
gl(:IJ,t) = ﬁ/—h fl(mazat) dz; 92(m7t) = ﬁ/—h (fS(mazat) + z(fl)w(mazat)) dz .

(2.19)
The variational system (2.17), (2.18) leads formally to the partial differential equations
P — 2+ A) Ve = g1, (2.20)
h? 24+ A) h?
P W — pTwzztt —I' %wzzzz 92, (221)

which describe the longitudinal (Eq. (2.20)) and transversal (Eq. (2.21)) vibrations
of a straight elastic beam. Note that the coefficient multiplying wyps, differs from the
one in [6, p. 13]. This is due to the fact that we do not assume o33 =0 as in [6, p. 8].
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2.2 Transversal elastoplastic oscillations

We now turn our interest to elastoplasticity. As further simplifications, we assume:

(A4) The motion is only transversal, that is, the admissible displacements and strains
have the form

—zwg(z,t) —ZWg(z,t) 0 0
u(z,y,z,t) = 0 , €(z,y,2,t) = 0 00 |. (222
w(z,t) 0 00

(A5) The strain tensor is decomposed in elastic and plastic components € = &° + €?,
and it holds
o=2ue® + A(e®:0)4. (2.23)

(A6) The plastic deformations are volume preserving in the sense that
ef:d = 0. (2.24)
(A7) The stress deviators are bounded in norm by a yield limit R > 0, that is,
d(o(z,y,2,t)):d(o(z,y,2,t)) < R* V(z,9,2,1), (2.25)
and the plastic strain rate obeys the normality flow rule.
e:(c—6) >0 YeeRF . d(&):d(6) < R?. (2.26)
The choice (2.25) of the domain
Z:={& cR®); d(¢):d(6) < R?}

of admissible stresses corresponds to the von Mises model of elastoplasticity. In this
connection, int(Z) is called the elasticity domain, while 0Z is the yield surface. Ob-

serve that
d(o) =2ud(e), (2.27)
which automatically imposes a restriction on e°(z,y, 2,t), namely (omitting the ar-
guments)
R2
d(e®):d(e®) < —. (2.28)
4u?
In view of (2.24) and (2.27), the normality flow rule (2.26) can be rewritten as
se:s—speiZ ej:(e—e?P—€) > 0 VEELZ. (2.29)
2u - 2u

At this point, the notion of hysteresis operators comes into play: for every initial
condition €?(0) and every fixed (z,y, z) € {, we may rewrite (2.29) as

e® = &z/(2u[e(0) — €7(0),e], € = Py oule(0) —”(0), €]



in agreement with (1.4), (1.7) for X = R®*3). We fix a tensor

200
n= 0 0 (2.30)
0 0 3
Then it is easily seen that
d(e(2,y,2,8)) = 2waa(t,8) . (2.31)

Now suppose that the initial condition e§(z,y, z) for €? points in the direction of 7,
i.e., that there exists a scalar-valued function pg such that

2,9, 2) = po(e,4, 2) . (2.3
We claim that the solution €? of Eq. (2.29) has the form
ef(z,y,2,t) = p(z,y,2,t)n (2.33)

with some scalar-valued function p, more precisely,

p = ef:m. (2.34)

Indeed, putting eP* = eP — pn, we have
e =0, e:0 =0, €P(0) = 0. (2.35)
Moreover,
d(e —eP):d(e —e?) = d(e —pn):d(e —pn) + e :eP*.
In particular, we may choose € = € — pm in (2.29) and obtain
el g™ < 0,

hence e” =0, and (2.33)—(2.34) hold. It thus follows from (2.29) that p(z,y,z,-) is

the (unique) solution to the scalar variational inequality
< R _ V3R
< =:r,
2uy/min 8u

(2,9, 2,t) (2wWes(z, 1) —p(m,y,z,t) —q) >0 Vg <r, te(0,T), (2.36)

|2 Wee(z,t) — p(2, Y, 2,1)

with the initial condition po(z,y, 2). Restricting ourselves to the canonical choice of
the initial condition,

po(z,y,2) = Pr(z2wg(z,0)), where P.(s) =min{s+r,max{0,s —r}} VseR,
(2.37)



we then arrive at the conclusion that

p(2,y,2,t) = p, [2waa(2, )] (1), (2.38)

where p, = I — s, is the scalar play operator with threshold r. In the following, we
will abbreviate this identity by simply writing

P =P, [2Wes] (2.39)

with obvious meaning. Identities involving the one-dimensional stop operator s, will
be abbreviated accordingly. In particular, we have

d(e®) = d(e) — ef = 5, [z2wz] M. (2.40)

By virtue of (2.23)-(2.24), it follows that

o = 2u 5, (2w N+ (2—'UJ—|—)\> (e:d)d

3
— Op s [we) - ;r 3 aad. (2.41)
Here, we have used the simple identity
selou] = o 5jq)[u],
which, with the convention s [u] := u, holds for all & € R and every input function

U.

We now aim to derive the momentum balance in the same way as in (2.15) to (2.19).
To this end, we again make the test functions independent of 0, so that
Ay . 2u+3x , .

A 2
O:€ = — 2°5, 5| [Weo| Wea + 3 2% Wag Wy -

3

We then obtain for the hysteresis term

h
/22 Sr /)2 [wm] dydz = Zb/ 22 Sr /)2 [wm] dz
w —h

h oo
= 4b/ 226,, [Wee) dz = 4b7’3/ q ¥ 54 [wes) dg,
0 T

/h
where -
Plu] := / g * s54u] dg (2.42)
r/h
is a Prandtl-Ishlinskii operator with the weight function
0, if 0<gq<c,
p(q) = { . o (2.43)
g, if g>7



The counterpart of (2.21) then reads formally

h? 4prd 24 + 3X) h?
Here, we have used the abbreviation
52
P [waal,, (2,1) = 55 P [weal(z, )] (1) (2.45)

Remark 2.1. The term ((2u + 3A)h?/9) Wezee in (2.44) plays the role of kinematic
hardening in the Prandtl-Ishlinskii theory. It ensures that the elliptic part of the
momentum balance equation is coercive, so that the problem will turn out to be well
posed despite the fact that the Prandtl-Ishlinskii initial loading curve is bounded and
saturation occurs. Indeed, the initial loading curve o = ®(¢) is given by the formula

(see [1], [4])

4/1’7,3 e} . )
d(e) = q " min{q,e}dq, for e >0, (2.46)
3h Jom
so that ,
He-e, if e<i,
B(e) = § o (1 1 _ ) (2.47)
3h (r—z— 3—2) if e>4.

Remark 2.2. Note that (2.44) reduces to (2.21) if we replace s,[u] by u in the
expression (2.42) for Plu] (no plasticity). Also, if we pass to the elastic limit as
r — oo in (2.44), we recover (2.21) in agreement with natural expectations.

3 Statement of the mathematical results

In what follows, we use the usual notations for the spaces of continuous functions
and for the standard Lebesgue and Sobolev spaces. The L2-norm is always denoted

by [ ].
We now formulate the main mathematical results of this paper. To this end, we

normalize all physical constants in (2.44) to unity, which has no bearing on the math-
ematical analysis. We thus study the following initial-boundary value problem in Qr,

where @ := (0,1) x (0,t) for any t > 0:

Wit — Wertt ‘I’ P [wzz]zz —I_ Wezze — g iIl QTa (31)
w(0,t) = wee(0,¢) = w(l,t) = wee(1,t) = 0, 0<¢t<T, (3.2)
w(z,0) = zo(z), we(z,0)=2(z), 0<z<1. (3.3)

We make the following general assumptions on the data of the system:
(H1) g€ L*(Qr).
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(H2) 2z, € H*(0,1), 2, € H?*(0,1), and the following compatibility conditions are
satisfied:

20(0) = 20,22(0) = 20(1) = 20,22(1) =0, 21(0) = 2:,(1) = 0. (3.4)

(H3) The weight function ¢ : (0,00) — [0, 00) of the Prandtl-Ishlinskii operator

Plu) = / " o(q) salu] dg

is measurable and satisfies the growth condition

/0°° (1 + q2) w(q)dg < +. (3.5)

Remark 3.1. Under condition (3.5) the so-called clockwise admissible potential of P,
given by the hysteresis operator

ol =5 [ la)situlda, (3.6)

is well defined. It then follows from the dissipation inequality (1.5) for the stop oper-
ator that for any input function w € W'*(0,T) it holds

(Qlul), (t) = /0°° ©(q) 5q[ul(t) (sqlu]), (t) dg < Plul(t) ue(t), fora.e. te(0,T).
(3.7)

We now associate with problem (3.1)—(3.3) the following system of initial-boundary
value problems

U = Plweg] + Wee in Qr, (3.8)

Wy — Wegt = —Uge + f(2,1) in Qr, (3.9)
u(0,8) = u(1,8) = 0, 0<t<T, (3.10)
w(0,8) = w(l,t) = 0, 0<t<T, (3.11)
u(z,0) = 2z(z), 0<z<1, (3.12)

w(z,0) = 2zo(z), 0<z<1, (3.13)

which arises from (3.1)—(3.3) if we put

¢ ¢
u(z,t) = z(z) —I—/ (P [Wee) + waz) (z,8)ds, f(z,t) = zl(m)—l—/ g(z,s)ds.

’ ’ (3.14)
Conversely, one should expect that a sufficiently smooth solution (u,w) to the system
(3.8)—(3.13) induces a solution to (3.1)—(3.3). We will therefore in the following exam-
ine the solvability of (3.8)—(3.13). It will turn out, however, that we will not be able
to extract enough regularity from the system (3.8)—(3.13) so that the existence of a
strong solution to (3.1)-(3.3) can be guaranteed. Instead, we will show the following
weaker result.
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Theorem 3.2. Suppose that the conditions (H1)-(H3) are satisfied. Then the system
(8.8)-(8.13) has a unique solution pair (u,w) having the following properties:
(1) w e W*(0,T; L*(0,1)) N L*=(0,T; H*(0,1)) N H*(0,T; H'(0,1)).
(i) w e Wte(0,T; H*(0,1)) N L*(0,T; H*(0,1)) N H*(0,T; H*(0,1)).
(iii) Eq. (3.8) is fulfilled pointwise in Qr, and Eq. (3.9) holds almost everywhere in
Q.

(iv) The wnitial and boundary conditions (8.10)-(8.13) are satisfied pointwise, and it
holds
Wer(0,1) = wee(1,8) =0 Ve €[0,T].

Remark 3.3. We call (u,w) a strong solution to (3.8)—(3.13), and w a weak solution
to (3.1)—(3.3). The meaning of conditions (i), (ii) in Theorem 3.2 is that

Uty Ugzy) Werty Wrzx € Loo 0,T,L2 0,1 R
U Wt ~(0.T5(0,1) s
Ugt, Worr € L*(Qr).
By virtue of the boundary conditions and embedding theorems, we then have
Uy Ug, Uty W, Wy, Wi, Wae, Wer € C(@) (316)

Before proving Theorem 3.2 in the next sections, we now collect some well-known
properties of the one-dimensional stop operator that can be found in a more general
form in the monographs [1] or [4], and in the paper [5]. For the reader’s convenience,
we give a brief outline of the proofs.

Proposition 3.4. Let vy,v; € WH'(0,T) be given, x; = sqvi], pi = vi — Xs = b, [vi],
1=1,2. Then

(x1(t) — x2(8))*  a.e.;

(1) (alt) = x2(8))(01(2) —va(2)) >

N | —
& =

(i) I5a(t) — (0] + 2 halt) — xalt)] < [in(t) ~a(t)] e

(i) |xa(t) = x2(2)] < 2 max v1(7) —va(r)|  VE€[0,T];

(1v) |x:(2)| < |u(t)] ae.

Sketch of the proof. We have by (1.3) that pi1(x1 — x2) >0, pa(x2—x1) > 0 a.e.,
hence

(P1(t) — p2(1))(xa(2) — x2(2)) = 0 a.e, (3.17)

which is nothing but (i). We obtain (ii) from (3.17) whenever xi(t) # x2(t). If
x1(t) = x2(t) € (—q,q), then p1(¢) = pa(¢t) = 0, while on the set of all ¢ such that
a#) = xal8) = +q, we have

02t = al0) = Sha(t) — ()] =0 e,

12



and (ii) follows. To prove (iii), we fix any ¢ € (0,7, assume for instance that x;(¢) >
x2(t), and find a smallest ¢o < ¢ such that xi(7) > x2(7) for all 7 € (to,¢]. Then, by
(3.17), p1(7) > pa(7) for a.e. 7 € (to,t), hence

pi1(to) — pa(to) < pi(t) — pa(t) < wilt) — val(?)

(note that p; + x; = v;). Then either ¢to > 0 with x1(t0) = x2(to), or to = 0 with
|p1(t0) — p2(to)| < |vi(to) — va(to)|. In both cases we have

p1(t) — p2(t)] < max{fvi(to) — valto)l, [va(t) — va(?)]},
hence (iii). Part (iv) follows from the obvious identity p;(¢) x:(t) = 0 a.e. 0

Proposition 3.5. Let v € C(Qr) be such that vy € LY(Q1). For (z,t) € Q7 set
x(z,t) = s[v(z,")|(t). Then xu € Ll(QT); and

|Xz($7t)| < Zma‘XOSTSt |vz($77-)|
fora.e. z€(0,1) andall t€]0,T], (3.18)
el t)| 4 Bt < 2o t)] ae. in Qr.

If moreover vy € L*(Qr), then for all t € [0,T] we have

/Ot/olxz(a:,T)vzt(m,T)dde > %Al(xi(m,t)—xi(m,O))dm. (3.19)

Sketch of the proof. By Proposition 3.4 (ii), (iii), we have for all 0 < z; < 25 < 1
and ¢ > 0 that

T2

X(o18) = xle )] < 2 max fo(es, ) —vles, )| < 2 [ max e, )l de,

0
|Xt($1;t) - Xt(m27t)| + E|X($1;t) - X(mz;t” < 2 |Ut($1,t) - 'Ut(m27t)| )

hence (3.18) holds. To prove (3.19), we first notice that by Proposition 3.4 (i), we have
for each h € (0,1) and ¢ € (0,7] that

/t /1 X(fE,T) — X(:I; — h,T) ‘ ’Ut(:E,T) — 'Ut(m — h,T) da dr
o Jn h h

. %/hl((Maz,t)—;g(az—h,t))z_(X(m,O)—z(m—h,O))z) .

Using e. g. the Mean Continuity Theorem, we pass to the limit as A \, 0+ and obtain
the assertion. 0
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4 Proof of existence

In this section, we will prove the existence result of Theorem 3.2. To this end, we use
Faedo-Galerkin approximations. Let {¢}ren denote the system of eigenfunctions to
the eigenvalue problem

_¢IIcI:>‘k¢k7 in [071]7 ¢k(0):¢k(1):07 kENa

normalized with respect to the standard scalar product (-,-) in L?(0,1). Clearly,
M = k272 and yp(z) = V2 sin(knz), for k € N. We set Vj, = span{t1,...,¥m}.
Then Vim C Vg1, m € N, and {J,,cn Vim is dense in any of the spaces L*(0,1),
H}(0,1), and H2(0,1) := {v € H*0,1); v(0) = v"(0) = v(1) = v"(1) = 0}.

For given m € N, we consider approximations for u,w of the form
u™(z,t) = Y pi(t)vi(e), w(z,t) =) mi(t)vs(e). (4.1)
7=1 7=1

Denoting by @, the L?*(0,1)-orthogonal projection onto V;,, and using the standard
notation u(t)(z) = u(z,t) for functions of space and time, we consider the system of
Faedo-Galerkin equations

(ui*(),¥) = (Plog](t) +wi(t),d) VoeVn, 0<i<T, (42)

(wi*(8) —wige(t), ) = (—uge(t) + f(2),4) V€V, 0<t<T, (4.3)
u™(0) = Qm(z), w™(0) = Qm(20), (4.4)
which is equivalent to the system
() = (PRI (O),%) — Frim(t), 0<t<T, (45)
k2?2

(l) = Trmmm®) + T (fO W), 0SE<T, (46)
,U'k(o) = <zla¢k>7 77k(0) = <207¢k>7 (47)

for k =1,...,m. Here, we have used the abbreviation
Pil(e,t) = Plul(e, )|() = P|=- Y Krnye)|@).  (48)

Obviously, (4.5)-(4.7) is an initial value problem for a system of 2m ordinary differen-
tial equations whose right-hand side is globally Lipschitz continuous on C ([0, T']; R*™).
Indeed, owing to Proposition 3.4 (iii) and Eq. (3.5), we have for any u;,us € C[0,T]
the estimate

P [ua] () — P [ual ()] < / " o(a) [ [ua] (£) — 54 [ua] (8)] dg

< 2 max |ui(s) — ua(s)| /Ooocp(q)dq, Vtelo,T],

0<s<t
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from which the claim follows. Consequently, the system (4.5)-(4.7) has a unique
(global) solution (w1, .., tm,M1,---,7m) € C1([0,T]; R®™) that defines the solution
(u™, w™) of (4.2)—(4.4) through Eq. (4.1). We have in fact (g1,...,lm,M1,---,7m) €
H?(0,T; R*™) as a consequence of Proposition 3.4 (iv). In the following, we derive a
series of a priori estimates to pave the way for the passage to the limit as m — oo.
To this end, we differentiate Eq. (4.3) with respect to ¢ to obtain

(wig (1) — wige(1),¥) = — (ugen,¥) + (9(8),9) Vo € Vo forace t€(0,T). (4.9)

Inserting ¢ = wi*(¢t) € Vin in (4.9), integrating by parts, and employing Young’s
inequality, we find for a.e. ¢ € (0,7T) that

1d 1 1
5 77 (O + [z )1°) + (@0, wi () < S la@l” + 5 lw@)I*. (4.10)
Now observe that w?,(t) € V.., so that it follows from (4.2) that
m m m m 1d m 2
Recalling (3.6) and (3.7), we can infer that
d 1
(Pl (0,0l > 4 [ Quiltde e, (4.2
0

where Q[w™](t) > 0. Hence, integrating (4.10) over [0,¢] for any ¢ > 0, we arrive
at the estimate

[ @IF + (@I + @ < [P0 + [wi©)]® + [ o))
1o / Q™ (0)de + / lo(s) |2 ds + / e (5)]? ds. (4.13)

In the following, we denote by C,, £ € N, positive constants that may depend on the
data of the system, but not on m € N. First notice that

[z (O] = (@m(20))zell = 1@m (2022)l] < llz00all < Ci (4.14)

Also, by (3.5), and since |54 [w™]| < g, ¢ >0,

[ oumioi < [ [ otwatdade < cn (4.15)

Next, observe that _
PO = 3 (0). (4.16)

Now, in view of (3.14), (4.6), and (4.7), -
me(0) = (21, %%) , (4.17)



and it follows from Bessel’s inequality and (H2) that

lw ()] <> (e, 9)? < Jlal® < Cs. (4.18)
k=1
Likewise,
||wzzt Zk47r 77k — Zk4ﬂ'4 <zl7¢k>2 S ||21,$$||2 S 04‘ (419)
k=1

Combining the above estimates with (4.13), and invoking Gronwall’s lemma, we have
proved the a priori estimate

max (Jw )] + [wZOI + W@l < Cs. (4.20)

0<t<T

As second step in the proof, we insert ¢ = —wl, € V,, in (4.9). Integrating by
parts, and invoking (4.2) and Young’s inequality, we find that

]‘ d m 2 m 2 m 2 m m

o 2 (B + T + eI + (PRDe(e), wlhn(t)
g0l + 2 [z (o), (4.21)

(PRw™))alt), W / / W™ (2, )]), who(t) dgdo.  (4.22)

Recalling Proposition 3.5, and integrating (4.21) over [0,¢] for any ¢ € [0, T], we arrive
at the estimate

lwz 1 + w1 + [wha @l + /Ooo o(a) [|(salw)). (1)]|" dg
< (O + (w0 + [wha(0)I* + /Ooo o(a) || (salwz]), (0)]|" da

b5 [ U + o) ds. (4.23)

Now recall (4.19). Likewise,
|w™(0)||? = an 0)k*r? < Cs. (4.24)

Moreover, since zo satisfies the compatibility conditions (3.4), we have

1

<ZO7¢k> kg 3

<ZO,zzz7¢k> Vk € N;
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and thus

lwhaa ()P = D [(z0, 9w Ko7® < | 20,00l - (4.25)
Finally, we employ the property (3k_1;3) of the stop operator s, to deduce that
|(5q[wgz]), (0)] < 2w, (0)], (4.26)
whence it follows that
| e (afoz), O da < G- (4.27)
In conclusion, we have shown the estimate
max ([wh())* + (w0 + [lwg.()?) < Cr. (4.28)

0<t<T

Now observe that Proposition 3.4 (iv) shows that

Pz (e8] < [ pl) [sfuRl) (2,0)] do < Calulty(o 0] a.e.in Q.

Hence, differentiating (4.2) with respect to ¢, inserting ¢ = uf}(t) € V., and invoking
(4.28), we can infer that

max fuill < Co. (4.29)
Moreover, by inserting ¢ = u™ (t) € V,, in (4.3), we directly find that
m <
max [luge(t) < Co- (4.30)

We now use the elementary formula

[ 6+ ) ()t = () () — in(0) s 0)

to estimate u]; as follows.

T m T
[ lzera = w2y [ R
0 k=1 VO

m T m
2 2 2 2 -
<7 I; /0 K jie(t) pe(8)] d + 27° rmase k§_1:k i (t) pn(2)]

T/ m 12 ;o 1/2
[ (Smar) (Srtmor) a

<
m /2 ;o 1/2
2 . 2 4 2
+ 2n% max (Z e (2)] ) (Zk | (1) )
- k=1 k=1
T
= [ @Izl d 2 g Ol
< COu, (4.31)
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by virtue of (4.29)—(4.30). To estimate wT,, we refer to (4.6), which yields for almost
every t € (0,7) and every k=1,...,m that

K33 km
[kmiie(t)] < T ke |k ()] + 1T kon? [{g(t),n)]
< lia(®)] + 5 Ho(e), )] (4.32)

hence

T m T
/ lwm (@)% = 23 / K1) di
0 k=1 0

IN

m T m T
2#;/0 ki3 (t) dt + %;/0 (g(t), ¥x)2dt

T 1 T
< 2 [ JuniPd g [ la)ra
0 2 0
< Ch. (4.33)

Combining the above estimates, and possibly selecting a suitable subsequence again
indexed by m, we find that there exist functions u,w in the appropriate Sobolev
spaces such that the following convergences take place:

m m
u’tt — Utt, u’zz — Ugx,

m
zxt

m

Wy — Wazt, Wapy — Wezs,

} weakly-* in L*(0,T; L*(0,1)), (4.34)

U = Ugg, W — Wey, weakly in L*(Q7).
Then, by compact embedding,

u™ = U, Uy > Ug, Uy — U,
m m m m m
w™ = w, Wi — Wy, WP — Wi, Wy, — Wag, Woy — Wa,

} strongly in C(Q7),
(4.35)

and it follows from the Lipschitz continuity in Proposition 3.4 (iii) of the operators
sq(z,-) on CJ0,T] that, for every (z,t) € Qr,

Plwzz(2,t) — Plwss](z,1)] < /Ooo ¢(a) | sqlwiz(z,)](2) — Sqlwaz(z,)](8)] dg

< 2/ ©(q) dgq max lwire(z,8) — Wee(z,8)|, (4.36)
0

0<s<t
that is, L
Plwl] = Plwzs| , strongly in C(Qr). (4.37)
Combining the convergences (4.31) to (4.37), it is now a standard argument (which

can be omitted here) that the pair (u,w) is in fact a solution to the system (4.8)-(4.13)

that enjoys the properties requested in Theorem 3.1. The existence part of Theorem
3.1 is thus proved. 0
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5 Proof of uniqueness and concluding remarks

Let us consider two solutions w1, w;, uz, ws to (3.8)—(3.13), with the regularity stated
in Theorem 3.2, and set u = u; — us, w = w; — wy. We then have

U = Plwige] — P wage] + Waz in Qr, (5.1)

Wy — Wegt = —Upy in Qr, (5.2)
u(0,t) = u(l,¢) = 0, 0<t<T, (53)
w(0,t) =w(l,t) = 0, 0<t<T, (54)
u(z,0) = 0, 0<z<1, (5.5)

w(z,0) = 0, 0<z<1. (5.6)

By Proposition 3.4 (i), we have a.e. in Q7 that
(P [wl,zz] - 7) [w2,zz]) Wzt Z Rt )

where

Riat) = 5 [ 0l0) slwnanl(@,1) = silwael(e,6)dg > 0.

We now test Eq. (5.1) by wgt, Eq. (5.2) by —wy, and sum them up. The regularity
(3.15)—(3.16) enables us to obtain for almost all ¢ € (0,7") that

d [* 1 1 1
7 (R + —w? — §wt2 — §wit> (z,t)dzx
0

1
S / (ut Wert —I' Uz wtt) (:E7 t) dIE
0

1
- / (Ut Wt + Ug Wore) (2, 1) di
0

d 1
= Ug (T, 1) Wiz, t) da

&)
d I
= o i Uge(Z,t) we(z, t) dz
d [t , 2
= = i (wt + wzt) (z,t)dz, (5.7)
hence
i 1(R—I-lw2 —|—lw2—|-1w2>(azt)daz<0 a.e (5.8)
dt Jo 2 % 2t e - o '
The initial conditions for w; and wy coincide, hence w; = w, in @1, and consequently
also u; = uy. This completes the proof of Theorem 3.2. 0
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Remark 5.1. The uniqueness of the limit pair (u,w) entails that the convergences
(4.34)—(4.35) hold for the entire sequence {(u™,w™)} and not only for a subsequence.
Hence the Faedo-Galerkin scheme (4.2)—(4.7) constitutes a convergent method to ap-
proximate the solution numerically.

Remark 5.2. The fact that the norms of w™ (and, eventually, of w,;) in C(Qr)
are uniformly bounded above by a constant Co > 0 implies that s,[wi] = w? for
all ¢ > Cy. By a suitable cut-off argument, it is thus possible to obtain the result of
Theorem 3.2 even if the growth condition (3.5) is relaxed to

/Oooso(q)dq < 0.
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