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Abstract

We derive and study a dynamical model for suspensions of negatively buoyant parti-

cles on an incline. Our theoretical model includes the settling/sedimentation due to gravity

as well as the resuspension of particles induced by shear-induced migration, leading to

disaggregation of the dense sediment layer. Out of the three different regimes observed

in the experiments, we focus on the so-called settled case, where the particles settle out

of the flow, and two distinct fronts, liquid and particle, form. Using an approach relying on

asymptotics, we systematically connect our dynamic model with the previously developed

equilibrium theory for particle-laden flows. We show that the resulting transport equations

for the liquid and the particles are of hyperbolic type, and study the dilute limit, for which

we derive the analytic solution. We also carry out a systematic experimental study of the

settled regime, focusing on the motion of the liquid and the particle fronts. Finally, we carry

out numerical simulations of our transport equations. We show that the model predictions

for small to moderate values of the particle volume fraction and the inclination angle of the

solid substrate agree well with the experimental data.

1 Introduction and Background

Despite their relevance to various industrial and environmental applications, the systems in-
volving sedimentation, settling, and resuspension of particles in viscous liquids are still not fully
understood. The seminal works on this subject, e.g. Kynch (1952); Richardson & Zaki (1954);
Davis & Acrivos (1985); Schaflinger et al. (1990); Acrivos et al. (1992), have primarily focused on
settling and sedimentation in quiescent liquid medium or in Couette flows. Our focus in this paper
is on the particle-laden thin-film flows on an incline, involving a free surface and contact lines.
Due to complexities resulting from a perplexing interplay of various relevant mechanisms, in-
cluding settling/resuspension and viscous fingering at the contact line, only recent studies have
began to address this class of problems, e.g. Zhou et al. (2005); Cook (2008). While particle-
laden thin-film flows represent a formidable problem from the theoretical standpoint, these flows
are captured through relatively simple experiments, see e.g. Ward et al. (2009); Murisic et al.
(2011).

When a rigid spherically-shaped particle settles under the influence of gravity in a quiescent
liquid, the well-known Stokes’ Law applies. When a large number of such rigid spheres settles,
the Stokes’ Law is modified to include a hinderance term, accounting for particle-particle inter-
action. This effect was first studied in Richardson & Zaki (1954), where a simple hinderance
term (1− φ)m, with φ being the particle volume fraction and m ≈ 5.1, was constructed empir-
ically and included into expression for Stokes velocity as a multiplicative factor. Alternate forms
of the hinderance function were proposed more recently, e.g. for dilute dispersions in Batchelor
(1972), or (1− φ) in the presence of shear, see Schaflinger et al. (1990).
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Experiments with concentrated suspensions in Couette flows showed that heavy particles need
not settle when shear is present. This curious behavior was studied in detail in Leighton &
Acrivos (1987a), and it was attributed to the so-called shear-induced migration mechanism,
which was first formulated in Leighton & Acrivos (1987b) and then refined in Phillips et al.
(1992). Shear-induced migration was derived based on irreversible interactions between pairs
of particles. The particles migrate via a diffusive flux, induced by gradients in both the particle
volume fraction, φ, and the suspension viscosity, µ(φ). Subsequent works focused on particle-
laden channel flows, and included shear-induced migration effect in the Stokesian Dynamics
framework, see e.g. Nott & Brady (1994); Brady & Morris (1997); Timberlake & Morris (2005).

Only more recent works have focused on the problem of particle-laden thin-film flows on an
incline. In Zhou et al. (2005), experiments were carried out using suspensions of glass beads
with diameter ∼ O(100µm). The bulk particle volume fraction, φ0, and the inclination angle,
α, were varied over a wide range, and it was found that, depending on the values of these
two parameters, three different regimes occur. When φ0 and α were small, the settled regime
resulted, where the particles would settle out of the flow and the clear liquid would flow over the
particulate bed. The two distinct fronts would form in this regime, a particle front and a clear
liquid front. The former was found to be slower, and the latter was susceptible to the well-known
fingering instability, typical for clear liquid films. For large values of φ0 and α, the ridged regime
occurred, where particles would flow faster than the liquid phase, and they would accumulate
at the front of the flow, forming a ridge at the contact line. Finally, for intermediate values of
φ0 and α, the suspension would remain well-mixed throughout the experiment. The theoretical
model developed in Zhou et al. (2005) was based on the Navier-Stokes equations for the liquid
and a continuum diffusive model for the particles, including hindered settling. It was simplified
by neglecting the capillary terms, and studied using a shock-dynamics approach, the direction
further pursued in Cook et al. (2007). The model was successful at describing the details of
the ridged regime. In order to better understand the three different regimes, the shear-induced
migration was included for the first time in modeling of particle-laden thin-film flows in Cook
(2008). In this work, an equilibrium model for particle settling was derived, based on the balance
of hindered settling and shear-induced migration fluxes. The ODE-based model agreed well with
the experimental data from Zhou et al. (2005). It captured the transitions from the well-mixed
state and hinted at the transient nature of this regime. The work in Ward et al. (2009) was an
experimental study of particle-laden thin-film flows on an incline, where the focus was on the
front propagation in the well-mixed and ridged regimes, using both heavy and light particles. It
was found that the front speed obeys a power law with an exponent close to the famous 1/3
from Huppert (1982). In Grunewald et al. (2010), the self-similarity in a lubrication-based model
for the case of constant volume flows was explored. The main focus was on the ridged regime,
and the influence of the precursor thickness on the model prediction was also studied. In Murisic
et al. (2011), extensive experiments were carried out, where the influence of the particle size
and the viscosity of the suspending liquid were examined. These experiments confirmed the
transient nature of the well-mixed regime. An extension of the equilibrium model from Cook
(2008) was employed, and a time-scales argument was introduced, explaining the dynamics of
the transition between the well-mixed and settled regimes. Finally, a dynamic model for particle-
laden thin film flows was introduced, based on a coupled set of hyperbolic conservation laws,
and a connection between this model and the equilibrium one was indicated.
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While, direct numerical simulations of the suspension flows coupled to many-particle-dynamics
are possible nowadays, e.g. see Glowinski et al. (2001), these computations are usually limited
a few thousand particles. Simulation of physically realistic situations are still far too computa-
tionally expensive when individual particles are considered. Therefore, the merit of using a con-
tinuum approach, in which one describes the evolution of statistical quantities such as particle
volume fraction φ, volume averaged velocity u, and pressure p is still quite apparent.

In this paper, our goal is to derive systematically a dynamic model for particle and liquid trans-
port in order to better understand the less-studied settled regime. In order to achieve this aim,
we carry out both theoretical and experimental work. We study a dense suspension flow on
an incline, consisting of negatively buoyant particles with uniform size in a viscous suspending
liquid. We concentrate on the settled regime, where gravity drives the flow down an incline, and
leads to stratification of the suspension. We consider a continuum model, including the effects
of hindered settling and shear-induced migration. The model is based on the Stokes’ equations
for an incompressible variable-viscosity suspension, and the conservation of total mass of parti-
cles. A dynamic model for transport of liquid and particles is developed in a systematic manner
using an asymptotic approach. Due to the disparity in the relevant time-scales, a fast one for
the settling and a slow one for the suspension flow, we are able to assume that the particle
distribution is in equilibrium along the direction normal to the solid substrate (the settling direc-
tion) while the particles are transported along the solid substrate (the flow direction). Hence, we
formally connect the equilibrium model with the dynamic one in a single framework. We study
the derived dynamic model, explicitly confirm its hyperbolicity, and consider the dilute limit for
which we derive the analytic solution. We also study the settled regime experimentally by carry-
ing out extensive experiments where the bulk particle volume fraction and the inclination angle
are varied over a wide range of values. In these experiments, we focus on the evolution of the
two fronts, the particle and the liquid one. Finally, we solve the hyperbolic conservation laws
numerically, and compare the model predictions with the experimental data.

This paper is organized as follows. In §2 we introduce the model and show how the lubrication
approximation may be employed to find an advection equation for both the suspension volume
and the particle volume fraction. Furthermore we explain how details of this model depend on
the bulk particle volume fraction and the inclination angle. This is followed by §3, where we
introduce the experimental techniques and describe the experimental observations. Next, in §4,
we solve the dynamic model numerically and compare the results with the experimental data.
We conclude with a brief discussion.

2 Theory

We consider an inclined flow of a suspension consisting of a viscous liquid and spherical
monodisperse non-colloidal negatively buoyant particles. The particles are assumed to be rigid
and the liquid is incompressible. The modeling is carried out within the continuum limit. The
flows are assumed to obey the transverse symmetry; therefore, the cross-section of the flow
is considered throughout the paper. Henceforth, we use the subscripts p and ℓ to differentiate
between quantities corresponding to the particles and the liquid respectively.
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Figure 1: Sketch of a suspension flow with sediment layer.

Figure 1 shows the set-up (for clarity, the figure omits the contact line region). The x- and z-
coordinates are in the directions along and normal to the solid substrate respectively. The solid
substrate is located at z = 0 and the inclination angle of the solid is α. The total suspension
thickness is denoted by h(x, t). Our focus is on the settled regime for which a dense sedi-
mentation layer of particles forms close to the solid substrate, the region 0 ≤ z ≤ T where
T < h, with a clear liquid layer (φ = 0) on top of it, T < z ≤ h. At each time t and
point (x, z) the particle volume fraction 0 ≤ φ(t, x, z) < 1 and the volume-averaged velocity
u(t, x, z) = (u(t, x, z), w(t, x, z))⊤ are defined. For monodisperse spheres, the upper bound
for φ is in fact less than unity: the maximum packing volume fraction φm = 0.61 was estimated
experimentally in Murisic et al. (2011). Since the particles are heavy, the mass densities satisfy
ρp > ρℓ. The suspension viscosity is assumed to depend on the particle volume fraction, i.e.
µ = µ(φ). Finally, the incompressibility assumption translates to ∇ · u = 0.

In what follows, we derive a reduced model in which the local state can be uniquely charac-
terized by average quantities. We also assume that the fastest dynamics is the instantaneous
averaging of φ in the z-direction. As a result, the overall dynamics of the system are determined
by a combination of two processes with very different time-scales: the fast process of φ averag-
ing, resulting in stationarity of the particle fluxes in the z-direction and allowing us to reconstruct
the φ and u dependence on z; and, the slow flow down the incline, where h and u vary slowly
in x, and the dynamics is driven by the conservation laws for the average quantities, e.g. the
suspension volume and the number of particles.

2.1 Two-phase model and lubrication equations

For Ωt = {(x, z) : 0 < z < h(t, x)}, consider the following system of PDEs for the particle
volume fraction φ : Ωt → [0, 1] and the suspension velocity u : Ωt → R

2

−∇ · (−pI + µ(φ)(∇u+∇u⊤)) = f (1a)

∂tφ+ u · ∇φ+∇ · J = 0, (1b)

where the buoyancy is taken into account via f = (ρpφ + ρℓ(1 − φ))g and the acceleration
of gravity is given by g = g(sinα,− cosα)⊤. Henceforth, we utilize the notation for partial
differentiation: ∂t[·] = ∂

∂t
[·] etc. The dependence of the suspension viscosity on φ is included
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through the so-called Krieger-Dougherty relation, µ(φ) = µℓ(1−φ/φm)
−2, see Van Der Werff

& De Kruif (1989) and Brady (1993). As written, Eqs. 1a) and b) are simply statements of the
balance of linear momentum for the suspension (Stokes’ equations) and the conservation of
particle mass respectively. The particle fluxes are defined as in Murisic et al. (2011)

J =
d2

4
∇ ·
[
Kc

(
∂x(γ̇φ)
∂z(γ̇φ)

)
+

2Kvφ
2γ̇

φm − φ

(
∂xφ
∂zφ

)]
− d2(ρp − ρℓ)

18µℓφ2
m

∇ ·
[
φ(1− φ)(φm − φ)2g

]
,

taking into account the shear-induced migration via the terms in the first brackets, see Phillips
et al. (1992), and the hindered settling of particles due to gravity via the remaining term, as in
Schaflinger et al. (1990). Here, Kc and Kv are empirical constants multiplying the contributions
to the shear-induced particle flux due to gradients in the particle volume fraction and the effective
suspension viscosity respectively; we follow Phillips et al. (1992) and use Kc = 0.41 and
Kv = 0.62. The importance of including the shear-induced migration for successful description
of the key feature of the suspension flow was shown previously in Cook (2008) and Murisic
et al. (2011). We note that here, the hindrance to settling due to the wall-effect, used in Murisic
et al. (2011), is neglected. The particle diameter is d, and the shear rate is given as usual,
γ̇ = 1

4
‖∇u + ∇u⊤‖. Here, we neglect the contribution to the particle flux due to Brownian

motion, a reasonable assumption since the relevant Péclet number is large, see Murisic et al.
(2011).

Equations 1 are accompanied by the incompressibility condition, ∂xu + ∂zw = 0, and the
following boundary conditions: no-slip and impermeability at the solid substrate, u = w = 0 at
z = 0; the zero-shear-stress condition at the free surface, µ(φ)∂zu = 0 at z = h; and the
zero-particle-flux condition at both interfaces, J = 0 at z = 0 and z = h. The free surface
evolves according to the kinematic condition, ∂th = w − u∂xh at z = h.

Next, we scale Eqs. 1 in the spirit of the lubrication approximation, see e.g. Kondic & Bertozzi
(1999), using the following scales

[x] = ε−1H, [z] = H, [φ] = 1,

[u] =
H2ρℓg sinα

µℓ
= U, [w] = ε[u], [t] = [x]/[u],

where H is the typical thickness of the suspension film, while ε is the small lubrication-style
parameter, to be defined shortly. Assuming that the settling and the suspension velocities are
not modified by the hinderance, the typical distance a particle travels in the x-direction as it
settles down to the solid substrate is given as a product of the relevant time- and velocity-scales

H/ cosα

USt

U = Hη−2
18

ρs
tanα, (2)

where ρs = (ρp − ρℓ)/ρℓ, η = d/H , and the Stokes settling velocity of a single particle is
given as USt = gd2(ρp − ρℓ)/(18µℓ). Clearly, when η → 1, the continuum hypothesis breaks
down. On the other hand, for η → 0, the transport of the particles is purely convective, the
settling time-scale goes to infinity, and the suspension behaves like a colloid. Here, we want to
derive a continuum model where the z-dependence of the particle volume fraction is preserved.
Therefore, we require that η2 ≪ 1, where the manner in which η approaches zero is of crucial
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importance. This may be controlled by requiring that the typical travel distance defined by Eq. 2
is asymptotically smaller than the lubrication length scale [x] = H/ε, so that the particle fluxes
in the z-direction are in an equilibrium. Hence, we study the following limit

ε ≪ η2 ≪ 1. (3)

One way to achieve this is to set η2 = εβ where 0 < β < 1. Applying the scales to Eq. 1b),
while keeping in mind the definition of η, gives

∂tφ+ u∂xφ+ w∂zφ = εβ
Kc

4

[
ε∂x (φ∂x(γ̇φ)) + ε−1∂z (φ∂z(γ̇φ))

]

+εβ
Kv

2

[
ε∂x

(
φ2γ̇

φm − φ
∂xφ

)
+ ε−1∂z

(
φ2γ̇

φm − φ
∂zφ

)]

−εβ
ρs

18φ2
m

[
∂x
(
φ(1− φ)(φm − φ)2

)]

+εβ
ρs cotα

18φ2
m

[
ε−1∂z

(
φ(1− φ)(φm − φ)2

)]
. (4)

We proceed by defining the asymptotic expansions of the solution

φ(t, x, z) = φ0(t, x, z) + o(1)

u(t, x, z) = u0(t, x, z) + o(1)

w(t, x, z) = εw0(t, x, z) + o(ε)

h(t, x) = h0(t, x) + o(1).

This also sets the expansions for the particle flux, J = εβ−1
(
J∗

x , J
0
z + J∗

z

)⊤
, and for the shear

rate, γ̇ = ∂zu
0 + o(1). The higher order flux corrections are J∗

x = o(ε) and J∗

z = o(1), the
subscripts denoting the directions in which they act. Using these expansions in Eq. 4 leads to

∂tφ
0 + u0∂xφ

0 + w0∂zφ
0 = εβ−1∂zJ

0

z + εβ−1∂zJ
∗

z + o(εβ) =

εβ−1∂z

[
Kc

4
φ0∂z(φ

0∂zu
0) +

Kv

2

(φ0)2∂zu
0

φm − φ0
∂zφ

0

+
ρs cotα

18
φ0(1− φ0)

(
φm − φ0

φm

)2
]
+ εβ−1∂zJ

∗

z + o(εβ). (5)

The leading order terms are O(εβ−1), describing the effect of the most dominant particle flux,
J0

z . We drop the “0” superscript for simplicity, and integrate the leading order terms in Eq. 5 with
respect to z, while using either of the zero-flux boundary conditions. This results in

0 =
Kc

4
φ(u′φ)′ +

Kv

2

φ2u′φ′

φm − φ
+

ρs cotα

18
φ(1− φ)

(
φm − φ

φm

)2

, (6)

where primes indicate differentiation with respect to z. This equation is complemented by the
zero-flux boundary conditions, Jz(0) = Jz(h) = 0, one of which has already been used in the
previous integration. Using a similar approach on Eq. 1a) leads to

(
µ(φ)u′

)′
= −(1 + ρsφ), (7)
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where µ(φ) = (1− φ/φm)
−2, accompanied by the boundary conditions u = 0 at z = 0, and

µ(φ)u′ = 0 at z = h.

The system of ODEs given by Eqs. 6 and 7 is very similar to the ones previously derived in Cook
(2008) and Murisic et al. (2011): it constitutes the equilibrium model for the particle settling. This
model has a one-parameter family of solutions, which may be parameterized by the integrated
volume fraction of particles, defined as

n(t, x) =

∫ h

0

φ(t, x, z) dz. (8)

In other words, once n is fixed, the z-dependence of φ and u may be determined uniquely
from Eqs. 6 and 7 and the accompanying boundary conditions. In order to indicate that the
dependence on z at the leading order solution is only parametrical through n, we write φ =
φ(t, x; z) and u = u(t, x; z). We note that the initial values n(0, x) may be obtained using
the initial data, but the time-dependence of n is still unknown at this point. In order to determine
this time-dependence, we are required to proceed to the next-order correction in Eq. 5, i.e. the
O(1) terms; we also maintain the correction term to the particle flux, J∗

z , just to be safe, and
obtain

∂tφ+ u∂xφ+ w∂zφ = εβ−1∂zJ
∗

z . (9)

To close the system and cast the dynamic model into a concrete framework together with the
equilibrium model from Eqs. 6 and 7, we integrate Eq. 9 in the z-direction, from z = 0 to
z = h. The flux correction term drops out via the use of the zero-flux boundary conditions.
Using ∂t

∫ h

0
φdz = φ∂th|z=h +

∫ h

0
∂tφdz, and the kinematic condition, ∂th = w − u∂xh at

z = h, gives

∂t

∫ h

0

φdz = φ(w − u∂xh)|z=h −
∫ h

0

u∂xφdz −
∫ h

0

w∂zφdz.

Here, the first integral on the right-hand side is evaluated using the chain rule and the fact
that ∂x

∫ h

0
φudz = φu∂xh|z=h +

∫ h

0
∂x (φu)dz; the second integral on the right-hand side is

integrated by parts. We then employ the impermeability condition, w|z=0 = 0, and the incom-
pressibility condition, ∂xu+ ∂zw = 0, to obtain

∂t

∫ h

0

φdz + ∂x

∫ h

0

φudz = 0.

Finally, recalling the definition of n gives

∂tn+ ∂x

∫ h

0

φ(t, x; z)u(t, x; z) dz = 0, (10a)

an advection equation for the particle number n. This is a conservation law for the particles.

The corresponding advection equation for the suspension volume is obtained by first substituting
∂x
∫ h

0
udz = u∂xh|z=h +

∫ h

0
∂xudz into the kinematic condition to get

∂th+ ∂x

∫ h

0

udz = w|z=h +

∫ h

0

∂xudz.
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Here, the terms on the right-hand side add to zero: this can be seen by evaluating the integral on
the right-hand side, and using incompressibility, ∂xu = −∂zw, and impermeability, w|z=0 = 0.
Hence, we obtain

∂th+ ∂x

∫ h

0

u(t, x; z) dz = 0, (10b)

a conservation law for the suspension volume. Finally, it is convenient to rewrite the equilibrium
equations in terms of the stress σ = µ(φ)u′

Kc

4
φ

(
φσ

µ(φ)

)′

+
Kv

2

σφ′

µ(φ)

φ

φm − φ
+

ρs cotα

18

φ(1− φ)

µ(φ)
= 0 (10c)

σ′ = −(1 + ρsφ), (10d)

with the boundary conditions u(0) = 0, Jz(0) = Jz(h) = 0, and σ(h) = 0. Equations 10 give
the full theoretical framework. We note that conservation laws similar to Eqs. 10a) and b) were
introduced in Murisic et al. (2011), but without any formal derivation. While they were expected to
be hyperbolic, it was found that the loss of hyperbolicity seemed to occur for certain parameter
values, well within the physically meaningful range. We will address the topic of hyperbolicity
below.

2.2 Particle transport model and fluxes

Equations 10 may be simplified by eliminating the explicit h dependence from the equilibrium
model. We carry this out by scaling z with h: s = z/h. Equations 10 are then rewritten us-
ing φ(t, x; z) = φ(t, x; h(t, x)s) = φ̃(t, x; s), u(t, x; z) = u(t, x; h(t, x)s) = ũ(t, x; s),
and σ̃(t, x; s) = σ(t, x; h(t, x)s)/h(t, x)2 = µ(φ̃(t, x; s))ũ′(t, x; s); henceforth, the prime
denotes the differentiation with respect to s. The result is

∂th + ∂xF (h, n) = 0 (11a)

∂tn+ ∂xG(h, n) = 0, (11b)

where the suspension and particle fluxes, F and G respectively, are written in terms of φ̃ and ũ

F (h, n) =

∫ h

0

u(t, x; z)dz = h3

∫
1

0

ũ(t, x; s) ds = h3f(φ0) (11c)

G(h, n) =

∫ h

0

φ(t, x; z)u(t, x; z)dz = h3

∫
1

0

φ̃(t, x; s)ũ(t, x; s) ds = h3g(φ0). (11d)

It is also convenient to introduce the z-averaged particle volume fraction

φ0(t, x) =

∫
1

0

φ̃(t, x; s) ds =
n(t, x)

h(t, x)
∈ [0, φm]. (11e)

Next, the equilibrium equations are rewritten as
(
1 + C1

φ̃

φm − φ̃

)
σ̃φ̃′ + C2 − (C2 + 1)φ̃− ρsφ̃

2 = 0, (11f)

σ̃′ = −(1 + ρsφ̃), (11g)
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for 0 ≤ s ≤ 1, with the boundary condition σ̃(1) = 0; here,

C1 =
2(Kv −Kc)

Kc
, C2 =

2ρs cotα

9Kc
.

The equilibrium model, Eqs. 11f) and g), is solved for the intermediate variables σ̃ and φ̃; ũ is
recovered from σ̃ = µ(φ̃)ũ′ using the no-slip boundary condition at s = 0. These profiles are
then supplied to the transport equations, Eqs. 11a-e), to close the system: the suspension and
the particle fluxes are determined by the functions f and g of a single real argument, which
is found by solving Eqs. 11f) and g) for s ∈ [0, 1] and a given value of φ0. We note that the
cubic dependence of the fluxes F and G on h, reminiscent of factors appearing in the thin film
equation, e.g. see Kondic (2003), result from the exact scaling invariance of the leading order
ODEs, Eqs. 10c) and d).

For a given value of φ0, the solution to the system 11 is unique. Furthermore, there exist two
distinct families of non-negative solutions, depending on the value of the input parameter φ0.
The first consists of strictly decreasing solutions for φ̃, with φ̃(T̃ ) = 0, where T̃ = T/h and
0 < T̃ < 1. For T̃ < s < 1, these solutions are continued with φ̃(s) = 0. The second family
consists of strictly increasing solutions for φ̃, with φ̃(s) → φm as s → 1. Both types of solutions
can be uniquely characterized by their corresponding φ0 values. Here, the focus is solely on the
first family of solutions, as it corresponds to the settled regime (the second corresponds to the
ridged regime). This regime is expected for small values of α and φ0. The critical concentration,
φ̃crit, separating the two extreme regimes, is determined by the constant-concentration solution,
i.e. setting φ̃′ = 0 in 11f), and solving for the average particle volume fraction

φ̃crit = min




φm,
−(C2 + 1)

2ρs
+

√(
C2 + 1

2ρs

)2

+
C2

ρs




 . (12)

This defines the unstable well-mixed state. Figure 2 shows the two families of solutions for φ̃,
including the well-mixed state occurring for φ̃crit. The solutions are obtained numerically, using
a shooting method, see Murisic et al. (2011).

2.3 Dilute approximation

For small particle concentrations, i.e. φ, φ̃ ≪ 1, we are able to compute the fluxes analytically.
In this limit, the hyperbolicity of the conservation laws may also be confirmed explicitly. Assuming
φ0, φ̃(s) ≪ φm, we linearize Eqs. 11f) and g) with respect to φ̃, and, to the leading order, obtain

σ̃φ̃′ = −C2 0 ≤ s ≤ T̃ (13)

σ̃′ = −1 0 ≤ s ≤ 1, (14)

with σ̃(1) = 0. To the leading order in φ̃, the solution to this system of ODEs is

σ̃(s) = 1− s (15)

φ̃(s) =

{
C2(T̃ − s) 0 < s ≤ T̃

0 T̃ < s ≤ 1,
(16)
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Figure 2: Particle volume fraction profiles φ̃(s) for different values of α and φ0, resulting in
settled (solid lines) and ridged regimes (dashed lines): a) fixed α = 25◦ and various average
concentrations φ0, increasing in steps of 0.028 from 0 to φm (heavy dashed line) via φ̃crit =
0.476 (heavy solid line); b) fixed φ0 = 0.3 and different inclination angles α = (1, 30, 60, 90)◦.

resulting in the average concentration

φ0 =

∫
1

0

φ̃(s) ds =
C2T̃

2

2
. (17)

By using σ̃ = µ(φ̃)ũ′ ≈ µ(0)ũ′, we are also able to find the velocity ũ(s) to the leading order

ũ(s) =

∫ s

0

σ̃(r)

µ(φ̃(r))
dr =

∫ s

0

(1− r)

µ(0)

(
1 +O(φ̃)

)
dr =

(
s− s2

2

)
+O(φ̃).

Therefore, using (17), the leading order for the particle flux is

g(φ0) =

∫
1

0

φ̃(s)ũ(s) ds =

∫ T̃

0

C2(T̃ − s)

(
s− s2

2

)
ds

= C2

(
T̃ 3

6
− T̃ 4

24

)
=

√
2

9C2

φ
3/2
0

+O(φ2

0
).

Also, the leading order for the suspension volume flux is

f(φ0) =

∫
1

0

ũ(s) ds =
1

3
.

Finally, to the leading order, the hyperbolic transport laws in the dilute limit are given by

∂th+ ∂x

(
h3

3

)
= 0, (18a)

∂tn+ ∂x

(√
2

9C2

(nh)3/2
)

= 0. (18b)

We note that this clarifies the apparent loss of hyperbolicity for the conservation laws discussed
in Murisic et al. (2011). In particular, in Murisic et al. (2011), the suspension and particle fluxes

10



were fitted from the solutions of the equilibrium problem via the least-squares polynomials in h
and φ0, i.e. using only integer powers of h and φ0. Our results, in-particular Eqs. 18 show that
such an approach is rather problematic, as, at least in the dilute limit, fractional powers in h and
φ0 are required in order to accurately capture the behavior of the fluxes. Hence, we conclude
that the loss of hyperbolicity in Murisic et al. (2011) is caused solely by the ill-suited approach in
constructing the fluxes, rather than the structure of the conservation laws themselves; this point
is confirmed below.

One may compute the solutions of Eqs. 18 with the initial data h(0, x) = χ{0 ≤ x ≤ 1},
n(0, x) = f0h(0, x), and some given value of f0, using the finite-volume method. But, since
φ0 is small for the dilute approximation to be valid, we abbreviate ξ = 1/

√
2C2 and solve

Eq. 18a) for h independently to get, for t ≥ 0

h(t, x) =






1 t ≤ x ≤ xℓ(t)√
x/t 0 < x < min

(
t, xℓ(t)

)

0 else,

(19)

where the liquid front position is

xℓ(t) =

{
1 + t/3 0 ≤ t ≤ 2/3(
9t
4

)1/3
2/3 < t.

This is the well-known solution computed by Huppert (1982). Next, we may use this solution to
find the solution for n as follows. First note that for early times, the solution for n also consists of
a rarefaction fan for 0 < x < t, connected to a constant with value f0 in t ≤ x ≤ 1 + ξf

1/2
0 t.

For larger values of x, the integrated particle volume fraction n vanishes. The evolution equation
for n may be written as

∂tn +
2ξ

3
∂x
(
h(t, x)n(t, x)

)3/2
= 0. (20)

Note that by the assumption of dilute regime, we always have xp < xℓ. Clearly, the problem
amounts to determining the shape of the rarefaction fan for n. To resolve it, we assume thet
n(t, x) = N(ω), where ω = x/t is a rarefaction fan starting at zero, i.e. ω > 0. Substituting
this ansatz into Eq. 20 gives the following ODE for N

−2ω5/4N ′(ω) + ξ
√
N(ω)

[
N(ω) + 2ωN ′(ω)

]
= 0. (21)

The solution is

N(ω) = ξ−1

(
c− 2

√
c4ξ2 + c3ξ

√
ω

ω

)
+

2c2√
ω
, (22)

where c is an undetermined constant of integration. We note that this solution satisfies N(ω) →
0 as ω → 0. For our purposes, we may fix c by requiring that the continuity is obeyed, i.e. that
n(t, t) = N(1) = f0, which results in c = f0ξ/(1−2ξ

√
f0). Finally, this gives us our solution

n(t, x) =





f0 t ≤ x ≤ xp(t)

N(x/t) 0 < x < min
(
t, xp(t)

)

0 else,

(23)
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Figure 3: Exact vs. numerical solution at t = 1 for ξ = 1 and f0 = 0.1

and the particle front position is xp(t) = min(1 + 2ξ
3
f
1/2
0

t, x̄p(t)), where x̄p satisfies

∫ x̄p/t

0

N(x/t) dx = f0. (24)

Using x̄p/t → 0 as t → ∞, and N(ω) =
√
ω/(4ξ2)+O(ω) we get x̄p(t) = 61/3(ξ4f 2

0
t)1/3.

Hence,

lim
t→∞

xp(t)

xℓ(t)
=

(
24ξ4f 2

0

9

)1/3

.

We note that the value of this limit is independent of the choice of the integration constant c
appearing in the solution of the rarefaction-fan. Figure 3 shows typical close agreement between
the exact and the numerical solutions of Eqs. 18.

Next, we study the hyperbolicity of Eqs. 11a) and b), and the parameter dependence of the sus-
pension and particle volume fluxes, f and g respectively, by solving Eqs. 11f) and g) numerically
for φ̃(s) and σ̃(s).

2.4 Hyperbolicity

The transport problem reads

∂th+ ∂x
(
h3f(n

h
)
)
= 0 (25)

∂tn+ ∂x
(
h3g(n

h
)
)
= 0, (26)

after opting for f and g rather than F and G, and using the definitions in Eqs. 11c) and d). The
Jacobian associated with the above system of conservations laws is

J = h2

(
3f − φ0f

′ f ′

3g − φ0g
′ g′

)
,

and the discriminant of the corresponding characteristic polynomial is

D = h4[(g′ + φ0f
′ − 3f)2 + 4f ′(3g − φ0g

′)].
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Figure 4: Discriminant D vs. φ0/φm for inclination angles α = (5, 30, 60, 89)◦.

The hyperbolicity of the transport problem is ensured when D ≥ 0. We note that the Jacobian
and the discriminant are obtained using the intermediate variable n = φ0h, where the Jacobian
is derived in terms of the (h, n) problem, and then rewritten again in terms of h and φ0. This
is rather convenient because h may be scaled out of the discriminant, and what remains is
a condition for hyperbolicity on f(φ0), g(φ0), and their derivatives. Figure 4 shows that the
discriminant remains strictly positive for all φ0 values within physically meaningful range, φ0 ∈
[0, φm], and all tested values of the inclination angle. Therefore, we conclude that our system of
conservation laws, Eqs. 11a) and b), is a well-posed hyperbolic problem for the variables h and
n.

We proceed by studying the suspension and particle volume fluxes, f and g respectively, for
various parameter values, by solving Eqs. 11f) and g) numerically for φ̃(s) and σ̃(s). Fluxes
f and g for various values of the inclination angle α are shown in Fig. 5. For small values of
α, the suspension volume flux f decreases as φ0 increases due to a corresponding increase
in the effective suspension viscosity. Only for large values of α, the flux f increases with φ0,
due to to the increase in the corresponding suspension mass and gravitational shear force. For
φ0 → 0, one recovers the standard lubrication flux, F = h3/(3µl), while for φ0 → φm, the
suspension flux tends to zero, F → 0, due to the fact that µ → ∞. The particle volume flux g
increases with φ0, due to the increase in the particle content. However, the increase is sublinear
since increasing φ0 causes a decrease in the flow velocity, u, as already observed for flux f .
Therefore, g must be zero at both φ0 = 0 and φ0 = φm, as evidenced by Fig. 5.

The transition from the settled regime to the ridged regime occurs when the average particle
velocity exceeds the average suspension velocity, i.e. when g/φ0 ≥ f or equivalently, when

∫
1

0
φ̃ũ ds

∫
1

0
φ̃ ds

≥
∫

1

0

ũ ds.

With ũ being an increasing positive function and φ̃ > 0, this transition occurs when φ̃ changes
monotonicity, which happens at the value φ̃crit given by Eq. 12.
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Figure 5: Fluxes f in a), and g in b) for inclination angles α = (5, 30, 60, 89)◦.

3 Experiments

We carry out experiments with gravity driven particle-laden thin films using an inclined solid
setup. A thorough description of this apparatus was included in Murisic et al. (2011); therefore,
we only list the main specifications here.

The apparatus consists of an acrylic track, 90cm long, 14cm wide, with 1.5cm-tall side walls.
A gated reservoir with acrylic walls is situated at one end of the track (the top); its interior is
14cm wide and 10cm long; the release gate is manually operated. The collecting tank is at
the other end of the track (the bottom). The typical thickness of the particle-laden thin film in our
experiments is H ∼ 1cm. The inclination angle of the track, α, may be manually adjusted within
the range 5−80◦ (with precision within a few percent) . The suspending liquid we use is PDMS
(AlfaAesar) with the kinematic viscosity νℓ = 1000 cSt and density ρℓ = 971 kgm−3. The
particles are smooth spherical glass beads (Ceroglass) with diameter d = 337µm (standard
deviation ≈ 26%) and density ρp = 2475 kgm−3. The decision to use this particular particle
size is influenced by the need to fulfill the requirement ε ≪ η2 ≪ 1, derived in §2; the other
available sizes either fail in this task (smaller particles), or make the continuum assumption
questionable (large ones).

We focus on the constant suspension volume experiments: each experimental run is carried
out using 110ml of suspension, measured initially. The particles are dyed using water-based
food coloring in order to enhance their visibility, and are then allowed to dry overnight. The
suspensions are prepared by first weighing the two phases separately (φ0 fraction of particles
and 1 − φ0 fraction of liquid), and then mixing them manually using a stirring rod; the mixing
procedure is carried out slowly in order to prevent entrapment of air bubbles. A uniformly mixed
suspension is then poured into the reservoir, the gate is raised, and the suspension in allowed
to flow down the incline. The total suspension volume is an important parameter, especially in
our model. We note that some losses do occur: ≈ 25% of the initial volume is inevitably lost,
of which ≈ 20% accounts for the suspension remaining in the mixing container after pouring,
and further 5% remain on the reservoir walls after gate release. The volume loss is the largest
source of systematic error in the experiments; we take this into account in the next section when
we carry out numerical simulations of our model. The suspension remains well-mixed during the
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short time-interval between pouring into the reservoir and raising the gate. In fact, in all of our
experiments, the separation of phases, i.e. settling, would occur only some distance down the
incline, depending on the configuration.

A large number (>60) of experimental runs have been carried out over a long period of time.
With the environment in the lab (air temperature and relative humidity) maintained at a con-
stant level via an air-conditioning unit, we have developed a simple procedure for preparing the
solid substrate before each day of experiments, to ensure identical wetting properties and re-
producibility of results for all the runs. In addition, we want to minimize the occurrence of the
fingering instability, which complicates front tracking and subsequent analysis. The procedure
is as follows. The track surface is first cleaned using a dish-washing liquid. This is followed by
allowing 110ml of clear 1000 cSt PDMS to flow down the incline at α = 45◦ for 1 hour, leav-
ing behind a thin precursor layer. Without recording any data yet, 110ml of dilute suspension
(φ0 = 0.2) is then allowed to flow down the incline until it drains into the tank. The left-over
particles and liquid are carefully cleaned using a rubber squeegee. The track is now ready for
recorded experimental runs. The squeegee is used after every subsequent run. Each run is
repeated to confirm the reproducibility of the results. We note that, while this protocol leads
to a good reproducibility for the settled regime, this may not be the case when much denser
suspensions are used (i.e. the ridged regime).

In this study we are interested in the details of the settled regime. We record the separation of
the particle and liquid phases and monitor the motion of the two distinct fronts down the incline,
with the clear liquid front moving ahead of the particle one. In order to capture the settled regime
experimentally, we choose the parameter values based on the extensive experiments carried
out in Murisic et al. (2011). In particular, we concentrate on small to moderate values of the
bulk particle volume fraction and inclination angle: φ0 = 0.2, 0.3, 0.4 and α = 5◦ . . . 40◦ in 5◦-
increments. The experimental data consists of high-definition videos, captured in a 1920×1080-
pixel resolution at 25 fps . The videos are recorded using a Canon EOS Rebel T2i digital SLR
camera utilizing a Canon EF-S 18-55mm f/3.5-5.6 wide-angle lens. The device is mounted on
a tall tripod, so that the camera is ≈ 1m above the flow and ≈ 50cm below the release gate,
while the lens surface is roughly parallel to the track surface. This allows us to capture the
whole length of the track with minimal distortion. Each flow is recorded from the time-instant it is
released from the reservoir, until the clear liquid front reaches the lower end of the track. In our
analysis, we only consider the time-interval starting with the first occurrence of the two distinct
fronts. Typically, this amounts to 12− 25min of evolution, depending on φ0 and α values. The
videos are then dissected, extracting individual images at a rate of 0.2 fps . The image post-
processing is carried out using a specialized code in MATLAB (MathWorks). Due to particle
coloring, the two fronts are easy to distinguish. Also, the preparation of the solid substrate leads
to fairly straight fronts with minimal fingering of the clear liquid front. The code identifies the two
fronts in each image, picks a reference point on each front, away from the side-walls, and tracks
its motion in subsequent images. The post-processing output consists of the data on the time-
evolution of the clear liquid and particle fronts. We estimate that the total error in this procedure
is ±5%.

A typical evolution is shown in Fig. 6. The qualitative experimental observations are as follows.
Initially, a uniform (well-mixed) suspension moves down the incline. Toward the end of this initial
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Figure 6: The suspension flow with φ0 = 0.3 and α = 25◦ at different stages; time increases
left to right; the black and white dashed lines show the clear liquid and particle front positions;
the black tick-marks on the side of the track are 5cm apart; darker regions in the particulate bed
indicate higher particle numbers.
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Figure 7: Time dependence of the liquid front position, xℓ, and the particle front position,
xp, in the experiments with: a) φ0 = (0.2, 0.3) and α = 25◦; and b) φ0 = 0.2 and
α = (10, 20, 30, 40)◦, where the full lines denote xp and the dashed ones xℓ; larger α val-
ues result in steeper curves.
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transient, denoted by t ∈ [0, ttrans], a transition occurs, where two distinct fronts form, and the
clear liquid front moves ahead of the particle front. We find that the duration of the transient
regime increases with α; it also increases with φ0. The separation of phases is detectible once
the suspension front has moved 15−40cm down the incline, depending on the values of α and
φ0. Furthermore, for small angles, α < 10◦, the motion of the particle front practically comes
to a halt, at least on the timescale of our experiments. The increase in the value of α leads to
an increase in the ratio of the front positions toward unity: xp(t)/xℓ(t) → 1. Naturally, above
a critical value of α, defined by 12, the flow undergoes a transition toward the ridged regime,
where the particles move to the contact line of the flow; in our experiments, we stay well away
from this transition. Figure 7 shows in some detail the dependence of the evolution of xℓ and xp

on the values of α and φ0.

We note that ttrans turns out be an important parameter in our model, as it effectively determines
the time-interval of validity of our equilibrium assumption in the z-direction, see §4 below. In our
experiments, the unsteadiness of the flow may in fact persist beyond the time-instant when the
two distinct fronts are first detected by our apparatus. Hence, we are only able to accurately
measure a lower bound for ttrans.

We proceed by carrying out the numerical simulations of our model equations, Eqs. 11, and
comparing the model predictions with the experimental data for different α and φ0 values.

4 Comparison: model predictions vs. experimental data

The governing system in 11 is solved numerically next, in order to carry out a quantitative
comparison with the experiments. The equilibrium portion, namely the boundary value problem
in 11f) and g), is solved for intermediate quantities φ̃ and ũ using a shooting method with Runge-
Kutta; the dynamic transport equations, i.e. 11a-d), are solved for the main variables h and n
using the finite-volume method. The initial data we use for this purpose is

h(0, x) =

{
h0 −dx < x < 0

0 else
, n(0, x) = φ0h(0, x),

representing the well-mixed suspension at t = 0, like in the experiments. The average con-
centration, 0 < φ0 < φm, in the simulations is adjusted to correspond to each particular
experiment, and the quantity h0 is such that the total volume is V = 0.75 · 110ml = h0 dx dy.
As noted earlier, the factor 0.75 accounts for the loss of suspension volume during the prepa-
ration of each experiment. Here, the width of the track is dy = 14 cm, and dx = 10 cm, the
length of the reservoir, is a parameter in the initial data. We also quantify the transient stage:
the suspension travels up to ≈ 30 cm during the time-interval we denote [0, ttrans] before the
clear liquid front becomes visible. For 0 ≤ t ≤ ttrans, the assumption of equilibrium for the
suspension in the z-direction is unlikely to hold. To overcome this issue, we use the colloidal
limit, η → 0, to derive the advection equation for h and n

∂th+ ∂xF̃ = 0, ∂tn+ ∂x
(
φ0F̃

)
= 0, (27)
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Figure 8: Experiment vs Simulation for φ0 = 0.2 and: a) α = 10◦; b) α = 15◦; c) α = 20◦; and
d) α = 25◦. The dashed line is the liquid front xℓ(t), whereas the full line shows the particle
front xp(t).
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Figure 9: Experiment vs Simulation for φ0 = 0.3 and: a) α = 10◦; b) α = 20◦; c) α = 25◦; and
d) α = 30◦. The dashed line is the liquid front xℓ(t), whereas the full line shows the particle
front xp(t).
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Figure 10: Experiment vs Simulation for φ0 = 0.4 and: a) α = 15◦; and b) α = 20◦. The
dashed line is the liquid front xℓ(t), whereas the full line shows the particle front xp(t).

with F̃ = (1 + φ0ρs)h
3/
(
3ν̄
)

and ν̄ = (1 − φ/φm)
−2. We note that n is advected trivially,

and is given by n(t, x) = φ0h(t, x). Hence, in order to account for the transient stage, we
solve Eqs. 27 for 0 < t ≤ ttrans, while the system 11 is solved for later times, t > ttrans. The
exact value of ttrans is difficult to measure experimentally; instead we use a lower bound (i.e.
time-instant of the first detection of distinct fronts) provided by our experimental data.

Figure 8 shows comparison between the model predictions and the experimental data for fixed
average concentration φ0 = 0.2, and a few different values of the inclination angle, α =
(10, 15, 20, 25)◦. The agreement is good, both in the transient stage and for later times, when
the equilibrium assumption is valid. We notice, that during the transient stage, the colloid ap-
proximation leads to a slight overestimation of the mobility of the fronts, particularly the particle
one. The comparison is carried out for t < 20min only, due to the influence of the transient
in the simulations: the overestimation of xℓ(t) and xp(t) for 0 < t ≤ ttrans hinders the model
prediction for long-time behavior of the two fronts. Hence, further analysis of the transient stage
and more precise measurements of ttrans are required in order to accurately predict the motion
of the fronts for longer time-intervals. Figures 9 and 10 show equivalent results for φ0 = 0.3 and
φ0 = 0.4, and various values of α; they both indicate similar degree of agreement between the-
ory and experiments as in the case of φ0 = 0.2. We note that only small values of α are used
with φ0 = 0.4, as larger values result in ridged regime. Figure 10 indicates that the model’s
overestimation of the mobility of the fronts during the transient phase is particularly pronounced
for φ0 = 0.4. Other factors may also affect the model prediction for denser suspensions, see
discussion below.

5 Conclusion

In this paper, we focus on the settled regime observed in particle-laden thin-film flows on an
incline. In this regime, particles settle to the solid substrate and the clear liquid film flows over
the sediment. Two distinct fronts form: the slower particle and the faster clear liquid one.

We first derive a continuum model, starting from the Stokes’ equations for the suspension and
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a transport equation for the particles. The particle model is a diffusive one, including the effects
of shear-induced migration and hindered settling due to gravity. We apply the lubrication-style
scales and carry out an asymptotic analysis of the resulting equations. Our main assumption
is that the particle distribution in the z-direction is in equilibrium, i.e. that the corresponding
dynamics occurs on a rapid time-scale so that the steady-state is quickly established and the
total particle flux in the z-direction is zero. Hence, we are able to reconstruct the z-profiles
for the particle volume fraction and the suspension velocity. Our asymptotics approach then
allows us to connect the leading order equilibrium model to the slow dynamics of particle and
suspension transport down the incline, in the x-direction. We switch to the averaged quantities,
the film thickness and the particle number, which obey a coupled system of advection equations
(a pair of hyperbolic conservation laws), thereby closing the approximation and completing the
theoretical framework. We proceed by confirming the hyperbolicity of the transport equations,
and analyzing the dilute limit for which we derive an analytic solution, and study the behavior of
the particle and the clear liquid fronts in the finite volume case as t → ∞.

Next, we carry out experiments using finite fixed volume suspensions, consisting of glass beads
and PDMS. In the experiments, we vary the bulk particle volume fraction and the inclination
angle of the solid substrate within the permitted range for the settled regime. Our experimental
setup allows us to detect the particle and the clear liquid fronts, and precisely monitor their
motion down the incline. We also detect a short initial transient phase, in which the mixture
remains well-mixed, and identify the loss of volume in the experiment preparation as the single
largest source of systematic error.

Finally, we compute the numerical solutions of our governing system of equations, and compare
the model predictions for the case of finite suspension volume with the experimental data. To
take into account the transient phase observed in the experiments, the colloidal limit for our
model is also considered: we use the colloidal model to capture the transient stage, and then
switch to the full model for later times. The result is a good agreement between the theory and
the experiments, especially for lower values of average particle volume fraction, φ0. For larger
values of this parameter, the influence of the transient regime becomes more significant.

In order to improve our model, a detailed investigation of the transient phase is required, includ-
ing both careful experiments and a theoretical approach. In particular, an important question is
how early the equilibrium in the z-direction may be assumed. This involves more precise experi-
mental measurements of the transient time ttrans. Another interesting questions is the validity of
the hinderance model and the Krieger-Dougherty µ(φ) relation for denser suspensions. Future
work should also include higher order terms in the dynamic equations, e.g. the terms corre-
sponding to the capillary and normal gravitational forces. This would allow for a comprehensive
study of the different settling regimes, the evolution of the contact line region, and the details of
the fingering instability occurring in these flows.
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