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Abstract. The local projection stabilization (LPS) method in space is consid-
ered to approximate the evolutionary Oseen equations. Optimal error bounds

independent of the viscosity parameter are obtained in the continuous-in-time
case for the approximations of both velocity and pressure. In addition, the fully

discrete case in combination with higher order continuous Galerkin–Petrov

(cGP) methods is studied. Error estimates of order k + 1 are proved, where
k denotes the polynomial degree in time, assuming that the convective term

is time-independent. Numerical results show that the predicted order is also

achieved in the general case of time-dependent convective terms.

1. Introduction

The behavior of incompressible flows is modeled by the incompressible Navier–
Stokes equations. Analyzing numerical schemes for these equations faces several
difficulties. First, the unresolved problem of the uniqueness of the weak solution
of the Navier–Stokes equations in three dimensions requires to assume uniqueness,
which is usually done by assuming sufficient regularity of the weak solution. More-
over, the estimate of the nonlinear term often uses the Gronwall lemma, such that
an exponential factor occurs in the error bounds, depending on some norm of the
velocity, e.g., on ‖∇u‖∞ as in [20]. As result, the obtained estimates are by far too
pessimistic in practice. For these reasons, this paper will deal, with respect to the
numerical analysis, with a related but simpler problem, namely the evolutionary or
transient Oseen equations. They read in dimensionless form as follows:

Find u(t,x) : (0, T ]×Ω→ Rd, d ∈ {2, 3}, and p(t,x) : (0, T ]×Ω→ R such that

(1)

∂tu− ν∆u+ (b · ∇)u+ σu+∇p = f in (0, T ]× Ω,

divu = 0 in (0, T ]× Ω,

u = 0 on (0, T ]× ∂Ω,

u(0, ·) = u0 in Ω,

1
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where Ω ⊂ Rd is a bounded domain with Lipschitz boundary ∂Ω, ν = Re−1 > 0
(viscosity) and σ > 0 are positive constants, b(t,x) is a given velocity field with
div b = 0, u0 is the initial velocity field, and T is a given final time. Without loss
of generality, one can assume σ > 0, since if it is not the case then a simple change
of variable transforms the problem into (1) with σ > 0, see [21, Sect. 1].

The numerical solution of (1) requires discretizations in time and space. Con-
cerning the temporal discretization, continuous Galerkin–Petrov methods of order
k ≥ 1, cGP(k), will be considered. With respect to space, finite element meth-
ods will be studied. Since the paper will study the convection-dominated regime,
where ν is smaller than an appropriate norm of b by several orders of magnitude,
a stabilization of the standard finite element discretization becomes necessary.

Considering the situation that the viscosity is much smaller than the convection
in the practical relevant case of the Navier–Stokes equations, the flow becomes tur-
bulent. The simulation of turbulent flows requires the use of a turbulence model.
There are many models proposed in the literature, like, e.g., the Smagorinsky model,
variational multiscale (VMS) methods, or deconvolution models. In particular, the
residual-based VMS method from [12] is an extension of the well known streamline
upwind Petrov–Galerkin (SUPG) method from [17,23] by higher order (with respect
to the residual) terms. Often, the SUPG stabilization is used in combination with
the pressure-stabilization Petrov–Galerkin (PSPG) method, which stabilizes the vi-
olation of the discrete inf-sup condition [30]. However, the SUPG/PSPG method
possesses some drawbacks. As explained in [16], the SUPG/PSPG approach in-
troduces a velocity-pressure coupling for which no physical explanation is known
and also the non-symmetry of the stabilization might be of disadvantage. In the
time-dependent case, the consistent application of the method leads to a number
of additional terms which have to be assembled, including an approximation of the
temporal derivative, see [29, 32]. Because of the drawbacks of the SUPG/PSPG
method, we think that it is worth to study different approaches in detail, in partic-
ular such approaches that are symmetric and that do not introduce an additional
velocity-pressure coupling. Local projection stabilization (LPS) methods belong to
this class of methods and will be the topic of this paper.

A different approach was studied recently in [21], where a grad-div stabilized
method is used to discretize the evolutionary Oseen equations. Optimal bounds for
the divergence of the velocity and the L2(Ω) norm of the pressure are proved for
this method.

The LPS method was originally proposed for the Stokes problem in [13] and it
was successfully extended to transport problems in [14]. Numerical analysis for the
LPS method applied to the stationary Oseen equations can be found in [15,35] and
to convection-diffusion-reaction problems in [5, 7, 11, 36]. The stabilization term of
the LPS method is based on a projection defined on the finite element space that
approximates the solution into a discontinuous space. Compared with the standard
Galerkin approach, the LPS method gives additional control over (parts of) the
fluctuation of the gradient. The method is weakly consistent but the consistency
error can be bounded to achieve an optimal rate of convergence. Originally, the
LPS method was proposed as a two-level approach, where the projection spaces are
defined on coarser grids. This approach introduces additional couplings between
neighboring mesh cell and hence, the sparsity of the matrix decreases. This draw-
back does not appear in the one-level approach, where both spaces are defined on
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the same grid. In this approach, the approximation spaces have to be enriched
compared with the standard finite element spaces. The additional degrees of free-
doms which are introduced due to the enrichment can be eliminated using static
condensation. Altogether, the one-level approach is, in our opinion, more appealing
from the point of view of implementation and this variant of the LPS method will
be considered in this paper.

Recently, in [19] the time-dependent Oseen problem was considered using LPS
methods with stabilization of the streamline derivative together with grad-div sta-
bilization. In the case of using methods of order k without compatibility condition,
error bounds are obtained under a restriction on the mesh size: a certain measure
for the mesh size should be of order of the square root of the viscosity. In order
to avoid the restriction on the mesh size for small viscosity, the authors of [19]
considered pairs satisfying a certain element-wise compatibility condition between
the discrete velocities on the fine mesh and in the projection space. Even in that
case, optimal error bounds for the pressure were not obtained in [19]. In [8], a
LPS method for the time-dependent Navier–Stokes equations was analyzed. As
in [19], the LPS approach is applied to the streamline derivative and to a grad-div
stabilization term, which is a different LPS method than considered here. Error
estimates for the velocity in the continuous-in-time situation were derived in [8].
An analysis of the fully discretized so-called high-order term-by-term LPS method
can be found in [2].

As mentioned above, cGP(k) methods will be considered as temporal discretiza-
tion. For incompressible flow problems, usually θ-schemes are used. These schemes
are simple to implement, however, they are at most of second order, like the Crank–
Nicolson scheme or the fractional-step θ-scheme. In addition, they do not allow an
efficient adaptive time step control. There are only few studies, like [25, 28, 31]
which consider higher order schemes, like diagonally implicit Runge–Kutta (DIRK)
methods, Rosenbrock–Wanner (ROW) methods, or just cGP(2). To the best of
our knowledge, there is no numerical analysis available for the first two classes of
schemes applied to incompressible flow problems or even to convection-diffusion
equations. The situation is different for cGP(k) that treats the temporal deriv-
ative in a finite element way. The cGP(k) methods are a class of finite element
methods using discrete solution spaces in time that consist of continuous piecewise
polynomials of degree less than or equal to k and test spaces which are built by
discontinuous polynomials of degree up to order k − 1. This choice enables the
performance of a standard time marching algorithm and it avoids the solution of a
global system in space and time as in space-time finite element methods.

The cGP method in time for the heat equation has been investigated in [10].
Optimal error estimates and super-convergence results are derived at the end point
of the discrete time intervals. The methods cGP(k) have been studied in [38] even in
an abstract Hilbert space setting and for nonlinear systems of ordinary differential
equations in d space dimensions. A-stability and optimal error estimates were
proved. Moreover, it was shown that cGP(k) methods have an energy decreasing
property for the gradient flow equation of an energy functional. Recently, in [5],
transient convection-diffusion-reaction equations were considered using cGP(k) in
time combined with LPS in space. Optimal a-priori error estimates were derived
for the fully discrete scheme. It has been shown numerically that cGP(k) is super-
convergent of order (k+ 2) in the integrated norm and of order 2k at discrete time
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points. Moreover, the obtained results were compared with discontinuous Galerkin
(dG) time stepping schemes. Numerical studies for the time-dependent Stokes
equations in [24], the transient Oseen equations in [4], and transient convection-
diffusion-reaction equations in [5] showed the expected orders of convergence for
cGP(k), k ∈ {1, 2}. The dG(k) method was analyzed for the transient Stokes
equations in [1]. In addition, the higher order convergence of cGP(2) compared
with the discontinuous Galerkin discretization dG(1), both methods possessing the
same complexity, was demonstrated. An efficient adaptive time step control is
also possible with cGP(k) methods, e.g., as applied in [3] to transient convection-
diffusion-reaction equations. The adaptive time step control is based on a post-
processed discrete solution. It has been shown that the adaptive time step control
leads to lengths of the time steps that properly reflect the dynamics of the solution.

However, there is also a certain drawback of cGP(k) methods for k ≥ 2: a
coupled system of k equations has to be solved at each discrete time. By a clever
construction proposed in [38], the coupling is not strong, but it cannot be removed
completely. Efficient solvers for this coupled problem in case of the Navier–Stokes
equations have been studied in [25], where a coupled multigrid method with Vanka-
type smoothers was utilized.

Altogether, cGP(k) is in our opinion an attractive alternative to θ-schemes since
a higher order in time can be achieved and an efficient time step control is possible
at affordable computational costs.

The goal of this paper consists in studying the combination of the LPS method
in space with the cGP(k) method in time. The numerical analysis will be performed
for the transient Oseen equations (1). Thus, this paper presents the first numerical
analysis of a higher order time stepping scheme for an incompressible flow problem
with convection. In the continuous-in-time case, optimal error bounds for velocity
and pressure with constants that do not depend on the viscosity parameter ν are
obtained with the assumption that the solution is sufficiently smooth. In addition,
error estimates for the fully discrete problem of order k+1 are proved, assuming, as
in other recently published papers, that the convective term is time-independent.
Numerical results show that the predicted order can be also observed in the case of
time-dependent convective terms.

The remainder of the paper is organized as follows: Section 2 introduces the basic
notation, it presents some preliminaries, and the semi-discretization (continuous-
in-time) of the LPS method will be described. In Section 3, the error bounds for the
semi-discrete problem are derived. Section 4 presents the error analysis of the fully
discrete problem using a temporal discretization with a cGP(k) method. Numerical
studies can be found in Section 5.

2. Preliminaries

Throughout this paper, standard notation and conventions will be used. For a
measurable set G ⊂ Rd, the inner product in L2(G), L2(G)d, and L2(G)d×d will be
denoted by (·, ·)G. The norm and the semi-norm in Wm,p(G) are given by ‖ ·‖m,p,G
and | · |m,p,G, respectively. In the case p = 2, Hm(G), ‖ · ‖m,G, and | · |m,G are
written instead of Wm,2(G), ‖ ·‖m,2,G, and | · |m,2,G. If G = Ω, the index G in inner
products, norms, and semi-norms will be omitted. The dual pairing between a space
Z and its dual Z ′ will be denoted by 〈·, ·〉. The temporal derivative of a function f is
denoted by ∂tf and the i-th temporal derivative by ∂itf . The subspace of functions
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from H1(Ω) having zero boundary trace is denoted by H1
0 (Ω). Its dual space is

denote by H−1(Ω) with the associated norm ‖v‖−1 = supϕ∈H1
0 (Ω)\{0}

〈v,ϕ〉
‖∇ϕ‖0 . Let

Z be a Banach space with norm ‖ · ‖Z , then the following spaces are defined

L2(0, t;Z) :=

{
v : (0, t)→ Z :

∫ t

0

‖v(s)‖2Z ds <∞
}
,

H1(0, t;Z) :=
{
v ∈ L2(0, t;Z) : ∂tv ∈ L2(0, t;Z)

}
,

C(0, t;Z) := {v : (0, t)→ Z : v is continuous with respect to time} ,

where ∂tv is the time derivative of v in the sense of distributions. If t = T , then
the abbreviations L2(Z), H1(Z), and C(Z) are used and it will not be indicated
whether it is a scalar-valued or vector-valued space.

In order to derive a variational form of (1), the spaces

V := H1
0 (Ω)d, Q := L2

0(Ω), X :=
{
v ∈ L2(V ), ∂tv ∈ L2(V ′)

}
and the bilinear form

a
(
(u, p); (v, q)

)
:= ν(∇u,∇v) + ((b · ∇)u,v) + (σu,v)− (div v, p) + (divu, q)

are introduced. Then, a variational form of (1) reads as follows:
Find u ∈ X and p ∈ L2(Q) such that

〈∂tu(t),v(t)〉+ a
(
(u(t), p(t)); (v(t), q(t))

)
= (f(t),v(t)) ∀ v ∈ L2(V ), q ∈ L2(Q)

(2)

for almost all t ∈ (0, T ] and u(0, ·) = u0. Note that this initial condition is well
defined since functions belonging to X are continuous in time.

If the initial condition u0 is different from 0, the velocity u can be decomposed
in the form

u(t) = u0 +ψ(t), ψ ∈ X0 := {v ∈ X : v(0, ·) = 0} .

Then for the given initial velocity field u0, one has to find u = u0 + ψ(t), with
ψ(t) ∈ X0, and p ∈ L2(Q), where (ψ, p) is the solution of the problem

(∂tψ(t),v(t)) + a
(
(ψ(t), p(t)); (v(t), q(t))

)
= (g(t),v(t))

with

(g,v) = (f ,v)− ν(∇u0,∇v)− ((b · ∇)u0,v)− (σu0,v).

For this reason, one can assume u0 = 0, which will be done in the sequel. Note that
this choice of the initial condition will result in errors bounds that do not contain
contributions depending on u0.

Let Π : L2(Ω)d → Hdiv be the Leray projector that maps each function in
L2(Ω)d onto its divergence-free part, where the Hilbert space Hdiv is defined by
Hdiv = {v ∈ L2(Ω)d : ∇ · v = 0, v ·n|∂Ω = 0}. The Stokes operator in Ω is given
by

A : D(A) ⊂ Hdiv → Hdiv, A = −Π∆, D(A) = H2(Ω)d ∩ V div,

where the space V div =
{
v ∈ H1

0 (Ω)d : ∇ · v = 0
}

is equipped with the inner prod-

uct of H1
0 (Ω)d.

Let {Th} be a family of shape-regular triangulations of Ω into compact d-simplices,
quadrilaterals, or hexahedra such that Ω = ∪K∈ThK. The diameter of K ∈ Th will
be denoted by hK and the mesh size h is defined by h := max

K∈Th
hK . Let Yh ⊂ H1

0 (Ω)
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be a finite element space of scalar, continuous, piecewise mapped polynomial func-
tions over Th. The finite element space Vh for approximating the velocity field is
given by Vh := Y dh ∩ V . The pressure is discretized using a finite element space
Qh ⊂ Q of continuous or discontinuous functions with respect to Th. In this paper,
inf-sup stable pairs (Vh, Qh) will be considered, i.e., there is a positive constant β0,
independent of the triangulation, such that

(3) inf
qh∈Qh\{0}

sup
vh∈Vh\{0}

(div vh, qh)

|vh|1‖qh‖0
≥ β0 > 0.

Since it will be assumed that the family of meshes is regular, the following inverse
inequality holds

(4) ‖vh‖m,K ≤ Cinvh
l−m
K ‖vh‖l,K

for each vh ∈ Vh and 0 ≤ l ≤ m ≤ 1, see, e.g., [18, Thm. 3.2.6].
The space of discretely divergence-free functions is denoted by

V div
h = {vh ∈ Vh : (∇ · vh, qh) = 0 ∀ qh ∈ Qh} .

The linear operator Ah : V div
h → V div

h is defined by

(5) (Ahvh,wh) = (∇vh,∇wh) ∀ wh ∈ V div
h .

Note that from this definition, it follows that

(6) ‖A1/2
h vh‖0 = ‖∇vh‖0, ‖∇A−1/2

h vh‖0 = ‖vh‖0 ∀ vh ∈ V div
h .

The so-called discrete Leray projection Πdiv
h : L2(Ω)d → V div

h is introduced, being
the L2-orthogonal projection of L2(Ω)d onto V div

h

(7) (Πdiv
h v,wh) = (v,wh) ∀ wh ∈ V div

h .

By definition, it follows that the projection is stable in the L2 norm: ‖Πdiv
h v‖0 ≤

‖v‖0 for all v ∈ L2(Ω)d.
The continuous-in-time standard Galerkin finite element method applied to (2)

consists in finding uh ∈ H1(Vh) with uh(0) = 0 and ph ∈ L2(Qh) such that

(∂tuh(t),vh) + a
(
(uh(t), ph(t)); (vh, qh)

)
= (f(t),vh) ∀ vh ∈ Vh, qh ∈ Qh.

In the convection-dominated case, it is well-known that this method is unstable,
unless h is sufficiently small. The use of a stabilized discretization becomes neces-
sary.

This paper concentrates on the one-level variant of the LPS method in which
approximation and projection spaces are defined on the same mesh. Let D(K), K ∈
Th, be local finite-dimensional spaces and πK : L2(K) → D(K) the local L2

projection into D(K). The local fluctuation operator κK : L2(K) → L2(K)
is given by κKv := v − πKv. It is applied component-wise to vector-valued and
tensor-valued arguments. The stabilization term Sh is defined by

Sh(uh,vh) :=
∑
K∈Th

µK
(
κK∇uh, κK∇vh

)
K
,

where µK , K ∈ Th, are non-negative constants. This kind of LPS method gives
additional control on the fluctuation of the gradient. Also other variants of this
method are possible, e.g., by replacing in both arguments of Sh(·, ·) the gradient
∇wh by the derivative in the streamline direction (b ·∇)wh or, even better [33,34],
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by (bK · ∇)wh, where bK is a piecewise constant approximation of b. But in this
method, one has to add the so-called grad-div term (divuh,div vh) to Sh, see [37].

For the numerical analysis, the linear operator Ch : V div
h → V div

h with

(8) (Chvh,wh) =
∑
K∈Th

µK(κK∇vh, κK∇wh)K ∀ vh,wh ∈ V div
h ,

the linear operator Dh : L2(Ω)→ V div
h with

(9) (Dhq,wh) = (divwh, q) ∀ wh ∈ V div
h ,

the stabilized bilinear form

ah
(
(u, p), (v, q)

)
= a

(
(u, p); (v, q)

)
+ Sh(u,v)

on the product space (Vh, Qh), and the mesh-dependent norm

∣∣∣∣∣∣v∣∣∣∣∣∣ :=

{
ν
∣∣v∣∣2

1
+ σ

∥∥v∥∥2

0
+
∑
K∈Th

µK‖κK∇v‖20,K

}1/2

are defined.
It will be assumed that b ∈ L∞(L∞(Ω) ∩Hdiv(Ω)) and ∇ · b(t) = 0 for almost

all t ∈ [0, T ]. Then, a straightforward calculation shows that

(10) ah ((vh, qh), (vh, qh)) =
∣∣∣∣∣∣vh∣∣∣∣∣∣2 ∀ vh ∈ Vh, qh ∈ Qh.

The stabilized semi-discrete problem reads:
Find uh ∈ H1(Vh) with uh(0) = 0 and ph ∈ L2(Qh) such that(

∂tuh,vh
)

+ ah
((
uh, ph

)
; (vh, qh)

)
=
(
f ,vh

)
∀ vh ∈ Vh, qh ∈ Qh(11)

for almost every t ∈ (0, T ].
For performing the analysis of LPS schemes, certain compatibility conditions

between the approximation space and local projection space have to be satisfied,
see [35].
Assumption A1. There are interpolation operators jh : H2(Ω)d → Vh and
ih : H2(Ω)→ Qh with the approximation properties

∥∥w − jhw∥∥0,K
+ hK

∣∣w − jhw∣∣1,K ≤ ChlK∥∥w∥∥l,K ∀ w ∈ H l
(
K
)d
, 2 ≤ l ≤ r + 1,

(12)

∥∥q − ihq∥∥0,K
+ hK

∣∣q − ihq∣∣1,K ≤ ChlK∥∥q∥∥l,K ∀ q ∈ H l
(
K
)
, 2 ≤ l ≤ r,

(13)

for all K ∈ Th. The pressure interpolation operator ih satisfies the orthogonality
condition

(q − ihq, rh)K = 0 ∀ q ∈ Q ∩H2(Ω), rh ∈ D(K).(14)

The pairs Vh/Qh = Qr/Pdisc
r−1 together with D(K) = Pr−1(K) fulfill for r ≥ 2

assumption A1 if jh is the usual Lagrangian interpolation operator and ih the L2

projection. Further examples of inf-sup stable pairs Vh/Qh, associated interpolation
operators jh and ih, and projection spaces fulfilling assumption A1 can be found
in [37].
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Assumption A2. The fluctuation operator satisfies the following approximation
property

(15)
∥∥κKq∥∥0,K

≤ ChlK
∣∣q∣∣

l,K
∀ K ∈ Th, ∀ q ∈ H l(K), 0 ≤ l ≤ r.

For performing the numerical analysis, the steady-state Stokes problem

−ν∆u+∇p = g in Ω,

u = 0 on ∂Ω,(16)

∇ · u = 0 in Ω,

will be considered. The standard Galerkin approximation (uh, ph) ∈ Vh×Qh is the
solution of the mixed finite element approximation to (16), given by

ν(∇uh,∇vh)− (div vh, ph) = (g,vh) ∀ vh ∈ Vh,(17)

(∇ · uh, qh) = 0 ∀ qh ∈ Qh.

Following [22,26] one gets the estimates

‖u− uh‖1 ≤ C
(

inf
vh∈Vh

‖u− vh‖1 + ν−1 inf
qh∈Qh

‖p− qh‖0
)
,(18)

‖p− ph‖0 ≤ C
(
ν inf

vh∈Vh

‖u− vh‖1 + inf
qh∈Qh

‖p− qh‖0
)
,(19)

‖u− uh‖0 ≤ Ch
(

inf
vh∈Vh

‖u− vh‖1 + ν−1 inf
qh∈Qh

‖p− qh‖0
)
.(20)

It can be observed that the error bounds for the velocity depend on negative powers
of ν.

As suggested in [21], a projection of (u, p) into Vh×Qh is used, where the bounds
for the velocity are uniform in ν. For the Oseen problem, let (u, p) be the solution
of (1) with u ∈ H1

(
V ∩H l+1(Ω)d

)
, p ∈ L2

(
Q ∩H l(Ω)

)
, l ≥ 1, and define the

right-hand side of the Stokes problem (16) by

(21) g = f − ∂tu− (b · ∇)u− σu−∇p.

Then (u, 0) is the solution of (16). Denoting the corresponding Galerkin approxi-
mation in Vh ×Qh by (sh, lh), one obtains from (18)–(20)

‖u− sh‖0 + h‖u− sh‖1 ≤ Chl+1‖u‖l+1,(22)

‖lh‖0 ≤ Cνhl‖u‖l+1,(23)

where the constant C does not depend on ν.

Remark 1. Assuming the necessary smoothness in time and considering (16) with

g = gi = ∂it (f − ∂tu− (b · ∇)u− σu−∇p) , i ≥ 1,

one can derive error bounds of form (22) and (23) also for ∂itu−sh(gi) and lh(gi),
where

(
sh(gi), lh(gi)

)
denotes the solution of (17) with right-hand side g = gi.

Hence, the estimates

‖∂itu− sh(gi)‖0 + h‖∂itu− sh(gi)‖1 ≤ Chl+1‖∂itu‖l+1,

‖lh(gi)‖0 ≤ Cνhl‖∂itu‖l+1,

can be obtained.
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3. Error analysis for the continuous-in-time case

In this section, error bounds for velocity and pressure will be derived with con-
stants independent of ν for a sufficiently smooth solution. The analysis follows the
lines of [21].

Theorem 2. Let (u, p) be the solution of (2) and let (uh, ph) be the solution of
(11). Assume b ∈ L∞(L∞) and the regularities

(24) (u, p) ∈ L2(Hr+1)× L2(Hr), ∂tu ∈ L2(Hr).

Choosing the stabilization parameters of the LPS method such that µK ∼ 1 with
respect to the mesh width, then the following error estimate holds for all t ∈ (0, T ]

(25) ‖(u− uh)(t)‖20 + ν‖∇(u− uh)‖2L2(0,t;L2) + σ‖u− uh‖2L2(0,t;L2)

+
∑
K∈Th

‖κK∇(u− uh)‖2L2(0,t;L2(K))

≤ Ch2r
(
‖u‖2L2(0,t;Hr+1) + ‖∂tu‖2L2(0,t;Hr) + ‖p‖2L2(0,t;Hr)

)
,

where C = C
(
σ, ‖b‖L∞(0,t;L∞)

)
is independent of ν and h.

Proof. The proof of the error estimate is based on the comparison of the Galerkin
approximation (uh, ph) in (11) with the approximation (sh, lh) of the Stokes equa-
tions with right-hand side (21). Let eh = uh−sh, then a straightforward calculation
yields

(26) (∂teh,vh) + ah((eh, ph − lh), (vh, qh))

= (∂t(u− sh),vh) + ((b · ∇)(u− sh) + σ(u− sh),vh)

+ (∇p,vh)− Sh(sh,vh) ∀ vh ∈ Vh, qh ∈ Qh.

Taking (vh, qh) = (eh, ph − lh) in (26), one gets with integrating by parts, using
that eh has discrete divergence equal to zero, and (14)

(∇p, eh) = −(p,∇ · eh) = −(p− ihp,∇ · eh) = (ihp− p, κK∇ · eh).

With the Cauchy–Schwarz inequality and Hölder’s inequality, it follows that

1

2

d

dt
‖eh‖20 + ν‖∇eh‖20 + σ‖eh‖20 +

∑
K∈Th

µK‖κK∇eh‖20,K

≤ ‖∂t(u− sh)‖0‖eh‖0 + ‖b‖∞‖∇(u− sh)‖0‖eh‖0 + σ‖u− sh‖0‖eh‖0

+

( ∑
K∈Th

µ−1
K ‖p− ihp‖

2
0,K

)1/2( ∑
K∈Th

µK‖κK∇eh‖20,K

)1/2

+ |Sh(sh, eh)| .

Now, the term with the stabilization has to be bounded. The Cauchy–Schwarz
inequality gives

Sh(sh, eh) = Sh(sh − u, eh) + Sh(u, eh)

≤ S1/2
h (sh − u, sh − u)S

1/2
h (eh, eh) + S

1/2
h (u,u)S

1/2
h (eh, eh).(27)
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Applying the stability of the fluctuation operator κK and the choice µK ∼ 1 of the
stabilization parameters yields

(28) Sh(sh, eh) ≤ C (‖sh − u‖1 + ‖κK∇u‖0)

( ∑
K∈Th

‖κK∇eh‖20,K

)1/2

,

such that

1

2

d

dt
‖eh‖20 + ν‖∇eh‖20 + σ‖eh‖20 +

∑
K∈Th

µK‖κK∇eh‖20,K

≤ ‖∂t(u− sh)‖0‖eh‖0 + ‖b‖∞‖∇(u− sh)‖0‖eh‖0 + σ‖u− sh‖0‖eh‖0

+ C
(
‖p− ihp‖0 + ‖sh − u‖1 + ‖κK∇u‖0

)( ∑
K∈Th

‖κK∇eh‖20,K

)1/2

.

With Young’s inequality and hiding terms on the left-hand side, one obtains

d

dt
‖eh‖20 + 2ν‖∇eh‖20 + σ‖eh‖20 +

∑
K∈Th

µK‖κK∇eh‖20,K

≤ C
(
‖∂t(u− sh)‖20 + ‖b‖2∞‖∇(u− sh)‖20 + σ2‖u− sh‖20

)
+ C

(
‖p− ihp‖20 + ‖sh − u‖21 + ‖κK∇u‖20

)
.(29)

Assuming now for t ≤ T the regularities (24), integrating (29) on (0, t), taking into
account that eh(0) = 0, since u0 = 0, and applying estimates (22), (13), and (15),
one gets

(30) ‖eh(t)‖20 + 2ν‖∇eh‖2L2(0,t;L2) + σ‖eh‖2L2(0,t;L2) +
∑
K∈Th

‖κK∇eh‖2L2(0,t;L2(K))

≤ Ch2r
(
‖u‖2L2(0,t;Hr+1) + ‖∂tu‖2L2(0,t;Hr) + ‖p‖2L2(0,t;Hr)

)
,

where C = C
(
σ, ‖b‖L∞(0,t;L∞)

)
is independent of ν and h.

The final result is obtained by applying the triangle inequality to the left-hand
side of (25) and using (30) and (22). �

The next step in the error analysis consists in obtaining a bound for the pressure
error.

Theorem 3. Let the assumptions of Theorem 2 hold and let ν ≤ 1 then

(31) ‖p− ph‖L2(0,t;L2) ≤ Chr ∀ t ∈ (0, T ],

where C = C
(
β−1

0 , ‖u‖L2(0,t;Hr+1), ‖∂tu‖L2(0,t;Hr), ‖p‖L2(0,t;Hr), σ, ‖b‖L∞(0,t;L∞)

)
is independent of ν and h.

Proof. This bound is derived as usual on the basis of the discrete inf-sup condition
(3). In particular, a bound for ‖∂teh‖−1 is needed. By definition, it is

‖∂teh‖−1 = sup
ϕ∈H1

0 (Ω)d\{0}

|〈∂teh,ϕ〉|
‖∇ϕ‖0

.

The first step consists in reducing the bound of ‖∂teh‖−1 to a bound of ‖A−1/2
h ∂teh‖0.

From [9, Lemma 3.11], it is known that

(32) ‖∂teh‖−1 ≤ Ch‖∂teh‖0 + C‖A−1/2Π∂teh‖0,
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where Π is the Leray projector introduced in Section 2. Applying [9, (2.15)], one
obtains

(33) ‖A−1/2Π∂teh‖0 ≤ Ch‖∂teh‖0 + ‖A−1/2
h ∂teh‖0,

with Ah defined in (5). From (32), (33), the symmetry of Ah, (6), and the inverse
inequality (4), it follows that

‖∂teh‖−1 ≤ Ch‖∂teh‖0 + C‖A−1/2
h ∂teh‖0

= Ch‖A1/2
h A

−1/2
h ∂teh‖0 + C‖A−1/2

h ∂teh‖0
= Ch‖∇(A

−1/2
h ∂teh)‖0 + C‖A−1/2

h ∂teh‖0
≤ C‖A−1/2

h ∂teh‖0.(34)

Next, a bound for ‖A−1/2
h ∂teh‖0 will be derived. Projecting the error equation (26)

onto the discretely divergence-free space V div
h and using integration by parts, one

gets

(∂teh,vh) + ν(∇eh,∇vh) + ((b · ∇)eh + σeh,vh) + Sh(eh,vh)

= (∂t(u− sh),vh) + ((b · ∇)(u− sh) + σ(u− sh),vh)

− Sh(sh,vh)− (p− ihp,∇ · vh).

Recalling definition (9), one has (p− ihp,∇ · vh) = (Dh(p− ihp),vh), such that

∂teh = −νAheh −Πdiv
h

(
(b · ∇)eh + σeh

)
− Cheh + Πdiv

h

(
∂t(u− sh)

)
+ Πdiv

h

(
(b · ∇)(u− sh) + σ(u− sh)

)
− Ch(sh)(35)

−Dh(p− ihp).

With (8), the Cauchy–Schwarz inequality, (6), the L2 stability of the fluctuation
operator κK , and µK ∼ 1, one obtains for all vh ∈ V div

h

‖A−1/2
h Chvh‖0 = sup

wh∈V div
h \{0}

∣∣〈Chvh, A−1/2
h wh〉

∣∣
‖wh‖0

= sup
wh∈V div

h \{0}

∣∣∑
K∈Th(κK∇vh, κK∇(A

−1/2
h wh))0,K

∣∣
‖wh‖0

≤ sup
wh∈V div

h \{0}

(∑
K∈Th ‖κK∇vh‖

2
0,K

)1/2
C‖∇(A

−1/2
h wh)‖0

‖wh‖0

≤ C sup
wh∈V div

h \{0}

(∑
K∈Th ‖κK∇vh‖

2
0,K

)1/2‖wh‖0
‖wh‖0

= C

( ∑
K∈Th

‖κK∇vh‖20,K

)1/2

.(36)

The above argument applied to ‖A−1/2
h Dh(p− ihp)‖0 yields

(37) ‖A−1/2
h Dh(p− ihp)‖0 ≤ C‖p− ihp‖0.
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Definition (7) and the symmetry of Ah gives for any g ∈ L2(Ω)d the equal-

ity (A
−1/2
h Πdiv

h g,vh) = (g, A
−1/2
h vh) for all vh ∈ V div

h . It follows with vh =

A
−1/2
h Πdiv

h g ∈ V div
h and (6) that

‖A−1/2
h Πdiv

h g‖20 ≤ ‖g‖−1‖∇(A
−1/2
h A

−1/2
h Πdiv

h g)‖0 = ‖g‖−1‖A−1/2
h Πdiv

h g‖0
and hence

(38) ‖A−1/2
h Πdiv

h g‖0 ≤ ‖g‖−1 ∀ g ∈ L2(Ω)d.

Next, A
−1/2
h is applied to (35). Using (36), (37), and (38), one gets

(39) ‖A−1/2
h ∂teh‖0

≤ ν‖A1/2
h eh‖0 + ‖(b · ∇)eh + σeh‖−1 +

( ∑
K∈Th

µK‖κK∇eh‖20,K

)1/2

+ ‖∂t(u− sh)‖−1 + ‖(b · ∇)(u− sh) + σ(u− sh)‖−1

+

( ∑
K∈Th

µK‖κK∇sh‖20,K

)1/2

+ ‖p− ihp‖0.

Taking the square of (39) and integrating on (0, t) yields

(40)

∫ t

0

‖A−1/2
h ∂teh(s)‖20 ds

≤ C
(∫ t

0

ν2‖A1/2
h eh(s)‖20 ds+

∫ t

0

‖((b · ∇)eh + σeh)(s)‖2−1 ds

+

∫ t

0

∑
K∈Th

µK‖κK∇eh(s)‖20,K ds+

∫ t

0

‖∂t(u− sh)(s)‖2−1 ds

+

∫ t

0

‖(p− ihp)(s)‖20 ds+

∫ t

0

‖((b · ∇)(u− sh) + σ(u− sh))(s)‖2−1 ds

+

∫ t

0

∑
K∈Th

µK‖κK∇sh(s)‖20,K ds

)
.

It will be proved that all the terms on the right-hand-side of (40) areO(h2r). The
desired asymptotic behavior is obtained for the first and third term directly from
(30). For the second term in (40), the definition of the H−1(Ω)d norm, integrating
by parts, and Poincaré’s inequality lead to

‖(b · ∇)eh + σeh‖−1 ≤ C (‖b‖∞ + σ) ‖eh‖0.

Hence, one obtains∫ t

0

‖((b · ∇)eh + σeh)(s)‖2−1 ds ≤ C
∫ t

0

‖eh(s)‖20 ds,

such that the desired order of convergence can be again deduced from (30). Con-
cerning ‖∂t(u−sh)‖−1, the definition of the H−1(Ω)d norm and Poincaré’s inequal-
ity are applied to bound this term by C‖∂t(u − sh)‖0. Now, (22) is applied (see
Remark 1) and with the regularity assumptions (24), the estimate for ‖∂t(u−sh)‖−1
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is O(hr). Once this term is bounded, it is clear that the integral of its square is
also bounded ∫ t

0

‖∂t(u− sh)(s)‖2−1 ds ≤ Ch2r‖∂tu‖2L2(0,t;Hr).

The term involving the pressure is estimated with (13). One can argue as in (27)–
(28) to obtain the bound∫ t

0

∑
K∈Th

µK‖κK∇sh(s)‖20,K ds ≤ C
∫ t

0

(
‖(sh − u)(s)‖21 + ‖κK∇u(s)‖20

)
ds

≤ Ch2r‖u‖2L2(0,t;Hr+1),

where (22) and (15) were applied in the last inequality. Finally, arguing as for the
second term, one obtains

‖(b · ∇)(u− sh) + σ(u− sh)‖−1 ≤ C (‖b‖∞ + σ) ‖u− sh‖0,

from what follows that∫ t

0

‖((b · ∇)(u− sh) + σ(u− sh))(s)‖2−1 ds ≤ C
∫ t

0

‖(u− sh)(s)‖20 ds.

The bound for this term is concluded by applying (22). Combining the estimates
for (40) with (34), it is shown that

(41)

∫ t

0

‖∂t(eh)(s)‖2−1 ds = O(h2r).

Using now the discrete inf-sup condition (3) and (26), one obtains

β0‖ph − ihp‖0

≤ ν‖∇eh‖0 + ‖(b · ∇)eh + σeh‖−1 + ‖∂teh‖−1 + C

( ∑
K∈Th

µK‖κK∇eh‖20,K

)1/2

+ ‖∂t(u− sh)‖−1 + ‖(b · ∇)(u− sh) + σ(u− sh)‖−1

+ C

( ∑
K∈Th

µK‖κK∇sh‖20,K

)1/2

+ ‖p− ihp‖0 + ‖lh‖0.

Taking the square and integrating on (0, t) leads to

β2
0

∫ t

0

‖(ph − ihp)(s)‖20 ds

≤ C
(∫ t

0

ν2‖∇eh(s)‖20 ds+

∫ t

0

‖((b · ∇)eh + σeh)(s)‖2−1 ds

+

∫ t

0

‖∂t(eh)(s)‖2−1 ds+

∫ t

0

∑
K∈Th

µK‖κK∇eh(s)‖20,K ds

+

∫ t

0

‖∂t(u− sh)(s)‖2−1 ds+

∫ t

0

‖((b · ∇)(u− sh)(s) + σ(u− sh))(s)‖2−1 ds

+

∫ t

0

∑
K∈Th

µK‖κK∇sh(s)‖20,K ds+

∫ t

0

‖(p− ihp)(s)‖20 ds+

∫ t

0

‖lh(s)‖20 ds

)
.
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Arguing exactly as for the estimates on the right-hand side of (40), using (41) for∫ t
0
‖∂t(eh)(s)‖2−1 ds, (23) to bound the last term, and finally the triangle inequality,

proves (31). �

4. Error analysis for the fully discrete method with cGP(k)

The continuous Galerkin–Petrov method is applied as temporal discretization.
To this end, consider a partition 0 = t0 < t1 < . . . < tN = T of the time in-
terval I := [0, T ] and set In = (tn−1, tn], τn = tn − tn−1, n = 1, . . . N , and
τ := max1≤n≤N τn. For a given non-negative integer k, define the time-continuous
and time-discontinuous velocity spaces as follows

Xc
k := {u ∈ C(Vh) : u|In ∈ Pk(In, Vh)} , Xdc

k :=
{
u ∈ L2(Vh) : u|In ∈ Pk(In, Vh)

}
,

and time-continuous and time-discontinuous pressure spaces by

Y c
k := {q ∈ C(Qh) : q|In ∈ Pk(In, Qh)} , Y dc

k :=
{
q ∈ L2(Qh) : q|In ∈ Pk(In, Qh)

}
,

for n = 1, . . . , N . Here

(42) Pk(In,Wh) :=

{
u : In →Wh : u(t) =

k∑
i=0

Uit
i, ∀ t ∈ In, Ui ∈Wh,∀ i

}
denotes the space of Wh-valued polynomials of order k in time. The functions in
the spaces Xdc

k and Y dc
k are allowed to be discontinuous at the nodes tn. In the

following, the combination of the LPS method as spatial discretization and the
cGP(k) time stepping scheme is denoted by LPS/cGP.

Denote by Xc
k,0 := Xc

k ∩X0 the subspace of Xc
k with zero initial condition and

introduce a bilinear form bh given by

bh ((u, p); (v, q)) :=

∫ T

0

[(
∂tu,v

)
+ ah

(
(u, p); (v, q)

)]
dt.

The LPS/cGP method reads as follows:
Find uh,τ ∈ Xc

k,0 and ph,τ ∈ Y c
k such that

bh
((
uh,τ , ph,τ

)
;
(
vh,τ , qh,τ )

)
=

∫ T

0

(
f ,vh,τ

)
dt ∀ vh,τ ∈ Xdc

k−1, qh,τ ∈ Y dc
k−1,

(43)

where the index h, τ refers to the discretization in space and time. The associated
continuous problem is defined as follows:

Find u ∈ X0 and p ∈ L2(Q) such that∫ T

0

[(
∂tu(t),v(t)

)
+ a
(
(u(t), p(t)); (v(t), q(t))

)]
dt =

∫ T

0

(
f(t),v(t)

)
dt(44)

for all v ∈ L2(V ), q ∈ L2(Q).
For a function w which is smooth on each time interval In, the operator πk−1 is

defined by

(45) (πk−1w)|In(t) =
k∑
k=1

w(t̃n,i)L̃n,i(t),

where t̃n,i denote the Gauss quadrature points on In and L̃n,i ∈ Pk−1(In) are the
associated Lagrange basis functions. Definition (45) gives πk−1wh,τ ∈ Xdc

k−1 for all
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wh,τ ∈ Xc
k and πk−1qh,τ ∈ Y dc

k−1 for all qh,τ ∈ Y c
k . Furthermore, one has for all

wh,τ ∈ Xc
k that

(46)

∫
In

(wh,τ (t)− πk−1wh,τ (t))tj dt = 0, j = 0, . . . , k − 1, n = 1, . . . , N,

where 0 denotes the zero element in Vh.
The analysis considers the mesh-dependent norm

∥∥v∥∥
cGP

:=

(∫ T

0

∣∣∣∣∣∣πk−1v
∣∣∣∣∣∣2dt+

1

2

∥∥v(T )
∥∥2

0

)1/2

.

Note that, as observed in [5], || · ||cGP is on Xc
k ⊂ Xdc

k not only a semi-norm but
a norm. Indeed, the first term inside the definition of ||v||cGP guarantees that
||v||cGP = 0 results in a function v which is on each time interval In given by

L
(n)
k (t)ϕh(x), where L

(n)
k is the transformed k-th Legendre polynomial on In and

ϕh ∈ Vh. Due to v(T ) = 0 and L
(N)
k (T ) = 1 the function v vanishes on the last

time interval IN . The continuity of v on I gives then v(tN−1) = 0. By recursion,
one obtains v = 0 on I and hence || · ||cGP is a norm.

The following lemma will show a property of the bilinear form bh that will be
used to get the error bounds for the approximation to the velocity.

Lemma 4. Assume that b and σ are constant with respect to time. Then, there
exists a constant C > 0 independent of ν, h, and τ such that

bh
((
vh,τ , qh,τ

)
;
(
πk−1vh,τ , πk−1qh,τ

))
= ‖vh,τ‖2cGP ∀ (vh,τ , qh,τ ) ∈ Xdc

k × Y dc
k

holds true.

Proof. It is

bh
((
vh,τ , qh,τ

)
; (πk−1vh,τ , πk−1qh,τ )

)
=

∫ T

0

[(
∂tvh,τ , πk−1vh,τ

)
+ ah

((
vh,τ , qh,τ

)
;
(
πk−1vh,τ , πk−1qh,τ

))]
dt.

Using the fact that the convection and reaction are time-independent functions and
taking into account that∫ T

0

[− (qh,τ ,div πk−1vh,τ ) + (πk−1qh,τ ,div vh,τ )] dt

=

∫ T

0

[− (πk−1qh,τ ,div πk−1vh,τ ) + (πk−1qh,τ ,div πk−1vh,τ )] dt = 0

and (10), one obtains∫ T

0

ah
((
vh,τ , qh,τ

)
;
(
πk−1vh,τ , πk−1qh,τ

))
dt

=

∫ T

0

ah
((
πk−1vh,τ , πk−1qh,τ

)
;
(
πk−1vh,τ , πk−1qh,τ

))
dt =

∫ T

0

|||πk−1vh,τ |||2 dt.
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Concerning the first term, it is noted that ∂tvh,τ is a discontinuous function in time
of degree k − 1. Using vh,τ (0) = 0 yields∫ T

0

(
∂tvh,τ , πk−1vh,τ

)
dt =

∫ T

0

(
∂tvh,τ ,vh,τ

)
dt =

1

2

∫ T

0

d

dt

∥∥vh,τ∥∥2

0
dt

=
1

2

∥∥vh,τ (T )
∥∥2

0
.

�

The derivation of error bounds makes use of a time interpolation of a sufficiently
smooth function w: w̃ ∈ C(H), where H can be either a velocity space V or a
pressure space Q, and w̃|In ∈ Pk(In, H), defined by

(47) w̃(tn−1) = w(tn−1), w̃(tn) = w(tn),

∫
In

(w(t)− w̃(t), z(t)) dt = 0,

for all z ∈ Pk−2(In, H). The standard interpolation error estimate(∫
In

‖w − w̃‖2m dt

)1/2

≤ Cτk+1
n

(∫
In

‖w(k+1)‖2m dt

)1/2

(48)

holds true for m ∈ {0, 1} and all time intervals In, n = 1, . . . , N.

Theorem 5. Assume that the spaces Vh, Qh satisfy Assumptions A1 and A2,
µK ∼ 1 for all K ∈ Th, and ν ≤ 1. Let (u, p) be the solution of (44) and (uh,τ , ph,τ )
the solution of (43). Further, assume that the solution (u, p) is smooth enough such
that all the norms on the right-hand side of (49) are bounded. Then, there exists a
positive constant C independent of ν, h, and τ such that the error estimate∥∥u− uh,τ∥∥cGP

≤ Chr
(
‖u‖L2(Hr+1) + ‖u‖H1(Hr) + ‖p‖L2(Hr) + h‖u(T )‖r+1

)
+ Cτk+1‖u‖Hk+1(H1)(49)

holds true.

Proof. The error analysis starts by decomposing the errors eh,τ = uh,τ − u into
θh := s̃h −u and ξh,τ := uh,τ − s̃h with the velocity solution s̃h of (17) where the
right-hand side g in (21) is defined using ũ instead of u. Then

uh,τ − u = eh,τ = θh + ξh,τ .

For the discrete error ξh,τ Lemma 4 provides

(50) ‖ξh,τ‖2cGP = bh
(
(ξh,τ , ph,τ ); (πk−1ξh,τ , πk−1ph,τ )

)
.

A straightforward calculation gives

bh
(
(ξh,τ ,ph,τ ); (πk−1ξh,τ , πk−1ph,τ )

)
=

∫ T

0

(
∂tu− ∂ts̃h, πk−1ξh,τ

)
dt+

∫ T

0

ν
(
∇(u− s̃h),∇(πk−1ξh,τ )

)
dt

+

∫ T

0

(
(b · ∇)(u− s̃h), πk−1ξh,τ

)
dt+

∫ T

0

(
σ(u− s̃h), πk−1ξh,τ

)
dt

+

∫ T

0

(∇p, πk−1ξh,τ ) dt−
∫ T

0

Sh(s̃h, πk−1ξh,τ ) dt.(51)

The six terms on the right-hand side will be bounded.
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For the first one, the error is split in two terms

∫ T

0

(
∂tu− ∂ts̃h, πk−1ξh,τ

)
dt =

∫ T

0

(
∂t(u− ũ), πk−1ξh,τ

)
dt

+

∫ T

0

(
∂t(ũ− s̃h), πk−1ξh,τ

)
dt.(52)

Integration by parts and using (47) yield for the first term on the right-hand side
of (52)

(53)

∫ T

0

(
∂t(u− ũ), πk−1ξh,τ

)
dt

=
N∑
n=1

(
−
∫
In

(u− ũ, ∂t(πk−1ξ)) dt+ (u− ũ, πk−1ξhτ )
∣∣∣tn
tn−1

)
= 0.

For the second term on the right-hand side of (52), the application of the Cauchy–
Schwarz inequality and (22) gives

(54)

∫ T

0

(
∂t(ũ− s̃h), πk−1ξh,τ

)
dt

≤
N∑
n=1

∫
In

‖∂tũ− ∂ts̃h‖0‖πk−1ξh,τ‖0 dt

≤

(
N∑
n=1

∫
In

‖∂tũ− ∂ts̃h‖20 dt

)1/2( N∑
n=1

‖πk−1ξh,τ‖20 dt

)1/2

≤ Chr
(

N∑
n=1

∫
In

‖∂tũ‖2r dt

)1/2( N∑
n=1

∫
In

σ‖πk−1ξh,τ‖20 dt

)1/2

≤ Chr‖u‖H1(Hr)‖ξh,τ‖cGP,

where in the last estimate the inequality ‖ũ‖H1(Hr) ≤ C‖u‖H1(Hr) was applied.
Thus, from (52), (53), and (54) one derives the bound for the first term on the
right-hand side of (51)

(55)

∫ T

0

(
∂tu− ∂ts̃h, πk−1ξh,τ

)
dt ≤ Chr‖u‖H1(Hr)‖ξ‖cGP.

To bound the third term on the right-hand side of (51), the error splitting

∫ T

0

(
(b · ∇)(u− s̃h), πk−1ξh,τ

)
dt =

∫ T

0

(
(b · ∇)(u− ũ), πk−1ξh,τ

)
dt

+

∫ T

0

(
(b · ∇)(ũ− s̃h), πk−1ξh,τ

)
dt
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is used. Then, applying (48) and (22) yields∫ T

0

(
(b · ∇)(u− s̃h), πk−1ξh,τ

)
dt

≤
∫ T

0

‖b‖∞
(
‖u− ũ‖1 + ‖ũ− s̃h‖1

)
‖πk−1ξh,τ‖0 dt

≤ C

( N∑
n=1

τ2k+2
n

∫
In

‖u(k+1)‖21 dt

)1/2

+

(
h2r

N∑
n=1

∫
In

‖ũ‖2r+1 dt

)1/2


×

(
N∑
n=1

∫
In

|||πk−1ξ|||20 dt

)1/2

≤
(
Cτk+1‖u‖Hk+1(H1) + Chr‖u‖L2(Hr+1)

)
‖ξh,τ‖cGP.(56)

Arguing exactly as before gives for the second and the fourth term on the right-
hand side of (51)∫ T

0

ν
(
∇(u− s̃h),∇(πk−1ξh,τ )

)
dt+

∫ T

0

(
σ(u− s̃h), πk−1ξh,τ

)
dt

≤
(
C(ν1/2 + σ1/2h)hr‖u‖L2(Hr+1) + C(ν1/2 + σ1/2)τk+1‖u‖Hk+1(H1)

)
‖ξh,τ‖cGP.

(57)

To bound the fifth term on the right-hand side of (51) observe that∫ T

0

(∇p, πk−1ξh,τ ) dt =

∫ T

0

−(p,∇ · πk−1ξh,τ ) dt =

∫ T

0

−(p, πk−1∇ · ξh,τ ) dt,

since the time projection πk−1 and the divergence commute. In addition, it is∫
In

(ihp, πk−1∇ · ξh,τ ) dt =

∫
In

(πk−1(ihp), πk−1∇ · ξh,τ ) dt

=

∫
In

(πk−1(ihp),∇ · ξh,τ ) dt = 0,(58)

since s̃h has discrete divergence equal to zero and the relation
∫
In

(∇·uh,τ , qh,τ ) dt =

0 holds by definition for all qh,τ ∈ Y dc
k−1. Thus, for the fifth term on the right-hand

side of (51), integration by parts with respect to space, applying the orthogonality
condition (14), using (58), µK ∼ 1, and (13) lead to∫ T

0

(∇p, πk−1ξh,τ ) dt

=

∫ T

0

(ihp− p, πk−1∇ · ξh,τ ) dt =

∫ T

0

∑
k∈Th

(ihp− p, κKπk−1∇ · ξh,τ )K dt

≤
∫ T

0

( ∑
K∈Th

µ−1
K ‖ihp− p‖

2
0,K

)1/2( ∑
K∈Th

µK‖κK∇πk−1ξh,τ‖20,K

)1/2

dt

≤ C

(∫ T

0

‖ihp− p‖20 dt

)1/2

‖ξh,τ‖cGP ≤ Chr‖p‖L2(Hr)‖ξh,τ‖cGP.(59)
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Finally, to bound the last term on the right-hand side of (51), the following
decomposition is considered∫ T

0

Sh(s̃h, πk−1ξh,τ ) dt =

∫ T

0

Sh(s̃h − ũ, πk−1ξh,τ ) dt

+

∫ T

0

Sh(ũ− u, πk−1ξh,τ ) dt+

∫ T

0

Sh(u, πk−1ξh,τ ) dt.(60)

For the first term on the right-hand side of (60), the L2 stability of the fluctuation
operator κK , µK ∼ 1, and (22) are applied to obtain∫ T

0

Sh(s̃h − ũ, πk−1ξh,τ ) dt

≤
∫ T

0

( ∑
K∈Th

µK‖κK∇(s̃h − ũ)‖20,K

)1/2( ∑
K∈Th

µK‖κKπk−1∇ξh,τ‖20,K

)1/2

dt

≤

(∫ T

0

∑
K∈Th

µK‖κK∇(s̃h − ũ)‖20,K dt

)1/2(∫ T

0

|||πk−1ξh,τ |||2 dt

)1/2

≤ Chr‖u‖L2(Hr+1)‖ξh,τ‖cGP.

(61)

Applying the stability of the fluctuation operator κK , µK ∼ 1, and (48) gives for
the second term on the right-hand side of (60)∫ T

0

Sh(ũ− u, πk−1ξh,τ ) dt

≤
∫ T

0

( ∑
K∈Th

µK‖κK∇(ũ− u)‖20,K

)1/2( ∑
K∈Th

µK‖κKπk−1∇ξh,τ‖20,K

)1/2

dt

≤

(∫ T

0

∑
K∈Th

µK‖κK∇(ũ− u)‖20,K dt

)1/2(∫ T

0

|||πk−1ξh,τ |||2 dt

)1/2

≤ Cτk+1‖u‖Hk+1(H1)‖ξh,τ‖cGP.

(62)

To finish the estimate of the last term on the right-hand side of (51), the Cauchy–
Schwarz inequality, the approximation properties (15) of the fluctuation operator
κK , and µK ∼ 1 are used to get∫ T

0

Sh(u, πk−1ξh,τ ) dt

≤
∫ T

0

( ∑
K∈Th

µK‖κK∇u‖20,K

)1/2( ∑
K∈Th

µK‖κKπk−1∇ξh,τ‖20,K

)1/2

dt

≤

(∫ T

0

∑
K∈Th

µK‖κK(∇u)‖20,K dt

)1/2(∫ T

0

|||πk−1ξh,τ |||2 dt

)1/2

≤ Chr‖u‖L2(Hr+1)|||ξ|||cGP.(63)
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Inserting (61), (62), and (63) in (60) gives
(64)∫ T

0

Sh(s̃h, πk−1ξh,τ ) dt ≤
(
Chr‖u‖L2(Hr+1) + Cτk+1‖u‖Hk+1(H1)

)
|||ξ|||cGP.

Inserting (51) in (50) and utilizing (55), (56), (57), (59), and (64) lead to
(65)

|||ξh,τ |||cGP ≤ Chr
[
‖u‖L2(Hr+1) + ‖u‖H1(Hr) + ‖p‖L2(Hr)

]
+ Cτk+1‖u‖Hk+1(H1).

Applying the triangle inequality, the bound (22), and the interpolation error esti-
mates in time gives the statement of the theorem. �

Arguing similarly as in [5, Thm. 3.4], one can prove the following theorem.

Theorem 6. Under the assumptions of Theorem 5, the following error estimate is
valid (∫ T

0

‖u(t)− uh,τ (t)‖20 dt
)1/2

≤ C(1 + T 1/2)hr
[
‖u‖L2(Hr+1) + ‖u‖H1(Hr) + ‖p‖L2(Hr)

]
+ C(1 + T 1/2)τk+1‖u‖Hk+1(H1),(66)

with C independent of ν, h, and τ .

Proof. Denoting as before ξh,τ = uh,τ − s̃h and applying the ideas leading to (65)
not only on [0, T ] but also on [0, tn], n = 1, . . . , N , result in the estimate

∫ tn

0

|||πk−1ξh,τ (t)|||2 dt+
1

2
‖ξh,τ (tn)‖20

≤ Ch2r
[
‖u‖2L2(Hr+1) + ‖u‖2H1(Hr) + ‖p‖2L2(Hr)

]
+ Cτ2k+2‖u‖2Hk+1(H1),

where the integrals on the right-hand side were extended from [0, tn] to [0, T ] by
monotonicity. After neglecting the non-negative integral on the left-hand side and
multiplying by τn, a summation over n = 1, . . . , N provides

N∑
n=1

τn‖ξh,τ (tn)‖20 ≤

(
N∑
n=1

τn

)
Ch2r

[
‖u‖2L2(Hr+1) + ‖u‖2H1(Hr) + ‖p‖2L2(Hr)

]
+

(
N∑
n=1

τn

)
Cτ2k+2‖u‖2Hk+1(H1).(67)

Since ξh,τ is a piecewise polynomial of degree less than or equal to k in time, a
norm equivalence on finite-dimensional spaces gives∫ tn

tn−1

‖ξh,τ‖20 dt ≤ Ck

(∫ tn

tn−1

‖πk−1ξh,τ (t)‖20 dt+ τn‖ξh,τ (tn)‖20

)
,
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where Ck depends on the polynomial degree k but it is independent of τn and h.
Hence, applying (67) and (65) yields

∫ T

0

‖uh,τ (t)− s̃h(t)‖20 dt ≤ Ck
N∑
n=1

(∫ tn

tn−1

‖πk−1ξh,τ (t)‖20 dt+ τn‖ξh,τ (tn)‖20

)

≤ Ck

(∫ T

0

|||πk−1ξh,τ (t)|||20 dt+
N∑
n=1

τn‖ξh,τ (tn)‖20

)
≤ C(1 + T )h2r

[
‖u‖2L2(Hr+1) + ‖u‖2H1(Hr) + ‖p‖2L2(Hr)

]
+ C(1 + T )τ2k+2‖u‖2Hk+1(H1).(68)

Now, the statement of the theorem follows by applying the triangle inequality and
the time interpolation error estimates (48) together with (22). �

Theorem 7. Let the assumptions of Theorem 5 hold and let in addition (u, p) be
smooth enough such that the norms on the right-hand side of (69) are bounded.
Then, there exists a positive constant C independent of ν, h, and τ such that the
error estimate

(∫ T

0

‖πk−1 (ph,τ (t)− p(t)) ‖20 dt
)1/2

≤ C(1 + T )hr
[
‖u‖H1(Hr+1) + ‖u‖H2(Hr) + ‖p‖H1(Hr)

]
+ C(1 + T )τk(1 + τ)‖u‖Hk+2(H1) + Cτk+1‖p‖Hk+1(L2)

+ Chr
[
‖u‖L2(Hr+1) + ‖u‖H1(Hr) + ‖p‖H1(Hr)

]
(69)

holds.

Proof. A straightforward calculation shows that for all vh,τ ∈ Xdc
k−1 and qh,τ ∈ Y dc

k−1

it holds

bh((uh,τ − s̃h, ph,τ ); (vh,τ , qh,τ ))

=

∫ T

0

(∂tξh,τ ,vh,τ ) dt+

∫ T

0

ν(∇ξh,τ ,∇vh,τ ) dt+

∫ T

0

(
(b · ∇)ξh,τ ,vh,τ

)
dt

+

∫ T

0

σ(ξh,τ ,vh,τ ) dt−
∫ T

0

(∇ · vh,τ , ph,τ ) dt+

∫ T

0

Sh(ξh,τ ,vh,τ ) dt

=

∫ T

0

(∂t(u− s̃h),vh,τ ) dt+

∫ T

0

ν(∇(u− s̃h),∇vh,τ ) dt

+

∫ T

0

((b · ∇)(u− s̃h),vh,τ ) dt+

∫ T

0

σ(u− s̃h,vh,τ ) dt

−
∫ T

0

Sh(s̃h,vh,τ ) dt+

∫ T

0

(∇p,vh,τ ) dt.
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From this equation, one obtains

∫ T

0

(ph,τ − ihp̃,∇ · vh,τ ) dt

=

∫ T

0

(p− ihp̃,∇ · vh,τ ) dt+

∫ T

0

(∂tξh,τ ,vh,τ ) dt+

∫ T

0

ν(∇ξh,τ ,∇vh,τ ) dt

+

∫ T

0

((b · ∇)ξh,τ ,vh,τ ) dt+

∫ T

0

σ(ξh,τ ,vh,τ ) dt+

∫ T

0

Sh(ξh,τ ,vh,τ ) dt

+

∫ T

0

(∂t(s̃h − u),vh,τ ) dt+

∫ T

0

ν(∇(s̃h − u),∇vh,τ ) dt

+

∫ T

0

((b · ∇)(s̃h − u),vh,τ ) dt+

∫ T

0

σ(s̃h − u,vh,τ ) dt+

∫ T

0

Sh(s̃h,vh,τ ) dt.

(70)

To derive the error estimates, the Gauss quadrature rule with k points will be used
for the numerical integration of the time integral. Hence, one has

∫ T

0

q2k−1(t) dt =
N∑
n=1

τn
2

k∑
i=1

ω̂iq2k−1(t̃n,i)(71)

for all q2k−1 ∈ P2k−1(In) where t̃n,i denote the corresponding quadrature points on
In and ω̂i are the weights of the Gauss formula on (−1, 1) which fulfill ω̂i > 0. Let
t̃n,0 = tn−1 be an additional point.

Using the discrete inf-sup condition (3), one can construct wh,τ ∈ Pk(In, Vh)
such that

β0‖πk−1

(
ph,τ (t̃n,i)− ihp̃(t̃n,i)

)
‖20 ≤

(
πk−1

(
ph,τ (t̃n,i)− ihp̃(t̃n,i)

)
,∇ ·wh,τ (t̃n,i)

)
,

(72)

‖wh,τ (t̃n,i)‖1 = ‖πk−1

(
ph,τ (t̃n,i)− ihp̃(t̃n,i)

)
‖0.(73)

Since wh,τ ∈ Pk(In, Vh), it follows that πk−1wh,τ ∈ Pk−1(In, Vh). Setting vh,τ =
πk−1wh,τ and using (45), (46), one obtains

∫ T

0

(ph,τ − ihp̃,∇ · vh,τ ) dt =
N∑
n=1

∫
In

((ph,τ − ihp̃), πk−1(∇ ·wh,τ )) dt

=
N∑
n=1

∫
In

(πk−1(ph,τ − ihp̃),∇ ·wh,τ ) dt

≥ β0

∫ T

0

‖πk−1(ph,τ − ihp̃)‖20 dt,(74)

where the exactness of the quadrature rule for polynomials of degree (2k − 1), the
positivity of the quadrature weights, (71), and (72) were used.
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Setting vh,τ = πk−1wh,τ in (70), using (74), the assumption that b and σ are
constants with respect to time, and (45), it follows that

β0

∫ T

0

‖πk−1(ph,τ − ihp̃)‖20 dt

≤
∫ T

0

(ph,τ − ihp̃, πk−1(∇ ·wh,τ )) dt

=

∫ T

0

(πk−1(p− ihp̃), πk−1(∇ ·wh,τ )) dt+

∫ T

0

(∂tξh,τ , πk−1wh,τ ) dt

+

∫ T

0

ν(πk−1(∇ξh,τ ), πk−1(∇wh,τ )) dt+

∫ T

0

((b · ∇)πk−1ξh,τ , πk−1wh,τ ) dt

+

∫ T

0

σ(πk−1ξh,τ , πk−1wh,τ ) dt+

∫ T

0

Sh(πk−1ξh,τ , πk−1wh,τ ) dt

+

∫ T

0

(∂t(s̃h − u), πk−1wh,τ ) dt+

∫ T

0

ν(πk−1∇(s̃h − u), πk−1(∇wh,τ )) dt

+

∫ T

0

(πk−1(b · ∇)(s̃h − u)h,τ , πk−1wh,τ ) dt

+

∫ T

0

σ(πk−1(s̃h − u), πk−1wh,τ ) dt+

∫ T

0

Sh(πk−1s̃h, πk−1wh,τ ) dt.

(75)

The seventh term on the right-hand side of (75) is decomposed in the form∫ T

0

(∂t(s̃h − u), πk−1wh,τ ) dt =

∫ T

0

(∂t(s̃h − ũ), πk−1wh,τ ) dt

+

∫ T

0

(∂t(ũ− u), πk−1wh,τ ) dt.

For the second term on the right-hand side, integrating by parts with respect to
time and using (47) yield

∫ T

0

(∂t(ũ− u), πk−1wh,τ ) dt

= −
N∑
n=1

(∫
In

(ũ− u, ∂t(πk−1wh,τ )) dt+ (u− ũ, πk−1wh,τ )
∣∣∣tn
tn−1

)
= 0.

It follows that∫ T

0

(∂t(s̃h − u), πk−1wh,τ ) dt ≤
∫ T

0

‖∂t(s̃h − ũ)‖0‖πk−1wh,τ‖0 dt

≤ C
∫ T

0

‖∂t(s̃h − ũ)‖0‖∇πk−1wh,τ‖0 dt,

where Poincaré’s inequality was applied in the last line.



24

Using (71), (45), and (73) gives

∫ T

0

‖∇πk−1wh,τ‖20 dt =
N∑
n=1

τn
2

k∑
i=1

ω̂i‖πk−1∇wh(t̃n,i)‖20

=
N∑
n=1

τn
2

k∑
i=1

ω̂i‖∇wh(t̃n,i)‖20

=
N∑
n=1

τn
2

k∑
i=1

ω̂i‖πk−1

(
ph,τ (t̃n,i)− ihp̃(t̃n,i)

)
‖20

=

∫ T

0

‖πk−1 (ph,τ − ihp̃) ‖20 dt(76)

where t̃n,i, i = 1, . . . , k, denote the node of Gaussian quadrature on In and ω̂i,
i = 1, . . . , k, are the corresponding weight on [−1, 1].

Applying (76) yields

∫ T

0

(∂t(s̃h − u), πk−1wh,τ ) dt

≤ C
∫ T

0

‖∂t(s̃h − ũ)‖20 dt+
β0

12

∫ T

0

‖πk−1 (ph,τ − ihp̃) ‖20 dt.

Arguing in the same way for the rest of the terms on the right-hand side of (75)
leads to

∫ T

0

‖πk−1(ph,τ − ihp̃)‖20 dt

≤ C
[ ∫ T

0

‖πk−1(p− ihp̃)‖20 dt+

∫ T

0

‖∂tξh,τ‖2−1 dt+

∫ T

0

|||πk−1ξh,τ |||2 dt

+

∫ T

0

‖∂t(s̃h − ũ)‖20 dt+

∫ T

0

ν‖πk−1∇(s̃h − u)‖20 dt

+

∫ T

0

(‖b‖∞ + σ)‖πk−1(s̃h − u)‖20 dt+

∫ T

0

∑
K∈Th

µK‖κKπk−1∇s̃h‖20,K dt

]
.

(77)

Now, the terms on the right-hand side of (77) need to be bounded. The estimates
for the third term follows from Theorem 5. In the following, the L2 stability of the
projection πk−1 and the interpolation operator with respect to time, i.e.,

∫
In

‖πk−1v‖0 dt ≤ C
∫
In

‖v‖0 dt and

∫
In

‖ṽ‖0 dt ≤ C
∫
In

‖v‖0 dt
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will be often used. For the first term on the right-hand side of (77), applying (48)
and (14) gives∫ T

0

‖πk−1(p− ihp̃)‖20 dt ≤ C

(∫ T

0

‖p− p̃‖20 dt+

∫ T

0

‖p̃− ihp̃‖20 dt

)

≤ Cτ2k+2

∫ T

0

‖p(k+1)‖20 dt+ Ch2r

∫ T

0

‖p̃‖22r dt

≤ C
(
τ2k+2‖p‖2Hk+1(L2) + h2r‖p‖2L2(Hr)

)
.

For bounding the second term on the right-hand side of (77), one first observes

that
∫ T

0
‖∂tξh,τ‖−1 dt ≤

∫ T
0
‖∂tξh,τ‖0 dt. Now, since it is assumed that b and σ

are independent of t, the error bounds for ‖ξh,τ‖0 can also be applied to its time
derivative so that applying (68) to ∂tξh,τ leads to∫ T

0

‖∂tξh,τ‖20 dt ≤ C(1 + T )h2r
[
‖∂tu‖2L2(Hr+1) + ‖∂tu‖2H1(Hr) + ‖∂tp‖2L2(Hr)

]
+ C(1 + T )τ2k‖∂tu‖2Hk+1(H1).

For the truncation errors involving s̃h − u (the last four terms), one argues as in
Theorem 5 to get∫ T

0

‖∂t(s̃h − ũ)‖20 dt ≤ Ch2r‖u‖2H1(Hr),∫ T

0

ν‖πk−1∇(s̃h − u)‖20 dt ≤ Cν
(
h2r‖u‖2L2(Hr+1) + τ2k+2‖u‖2Hk+1(H1)

)
,∫ T

0

(‖b‖∞ + σ)‖s̃h − u‖20 dt ≤ C
(
h2r‖u‖2L2(Hr) + τ2k+2‖u‖2Hk+1(H1)

)
.

The bound for the last term (similarly as in the estimates (60)–(63)) uses the error
splitting with respect to space and time, the L2 stability of the fluctuation operator
κK , µK ∼ 1, and the approximation properties of κK . One obtains∫ T

0

∑
K∈Th

µK‖κKπk−1∇s̃h‖20,K dt

≤ 3

∫ T

0

∑
K∈Th

‖κK∇(s̃h − ũ)‖20,K dt+ 3

∫ T

0

∑
K∈Th

‖κK∇(ũ− u)‖20,K dt

+ 3

∫ T

0

∑
K∈Th

‖κK∇u‖20,K dt

≤ C
(
h2r‖u‖2L2(Hr+1) + τ2k+2‖u‖2Hk+1(Hr+1)

)
.

The statement of the theorem follows by collecting the bounds for all terms on
the right-hand side of (77), and by applying the triangle inequality and the bounds
(14) and (48) for the interpolation errors in space and time. �

Remark 8. Instead of using
∫ T

0
‖∂tξh,τ‖2−1 dt ≤

∫ T
0
‖∂tξh,τ‖20 dt one could use∫ T

0

‖∂tξh,τ‖2−1 dt ≤ C
∫ T

0

‖A−1/2
h ∂tξh,τ‖20 dt



26

and then argue as in the proof of Theorem 3. However, since it is assumed that b is
time-independent, the proof presented above is shorter although it requires a higher
regularity of the solution.

5. Numerical studies

This section presents numerical simulations that support the theoretical results
obtained in the previous sections. Two examples will be presented. In the first
example, an analytical solution is considered and very small time steps are applied
to support the error analysis of Section 3. In the second example the solution is
polynomial in the space such that the approximation will be exact in the spatial
part and the discretization error in time dominates. This example will support the
analytical results from Section 4.

All simulations were performed on uniform quadrilateral grids where the coarsest
grid (level 1) is obtained by dividing the unit square into four squares. Mapped
finite element spaces [18] were used, where the enriched spaces on the reference cell

K̂ = [−1, 1]2 are given by

Qbubble
r (K̂) := Qr(K̂) + span

{
b̂�x̂

r−1
i , i = 1, 2

}
with the biquadratic bubble function b̂� = (1 − x̂2

1)(1 − x̂2
2). The combination

Qbubble
r (K̂) with D(K) = Pr−1(K) provides for r ≥ 2 suitable spaces for LPS

methods, see [37]. The simulations were performed with the code MooNMD [27].

Example 9. An example with negligible temporal error. Consider the Oseen prob-
lem (1) with Ω = (0, 1)2, ν = 10−10, b = u, σ = 1, and T = 1. The right-hand side
f and the initial condition u0 were chosen such that

u(t, x, y) = sin(t)

(
sin(πx) sin(πy)
cos(πx) cos(πy)

)
,

p(t, x, y) = sin(t)

(
sin(πx) + cos(πy)− 2

π

)
is the solution of (1) equipped with non-homogeneous Dirichlet boundary condi-
tions.

This example studies the convergence order with respect to space. To this end,
the time discretization scheme cGP(2) with the small time step length τ = 1/1280
was used. Numerical studies concerning the choice of stabilization parameters for
convection-dominated problems suggest that a good choice is µK ∈ (0, 1), e.g.,
see [6]. Based on these studies and our own experience, the stabilization parameters
were set to be µK = 0.1. The convergence plots for simulations with the finite
element spaces Vh/Qh = Qbubble

3 /Pdisc
2 and the projection space D(K) = P2(K) are

presented in Figure 1. One can see fourth order convergence for the L2(L2) norm
and the L2 norm at the final time. For all other norms on the left-hand side of (25)
and the L2(L2) norm of pressure, third order of convergence can be observed. It
can be seen in Figure 1 that ‖κK∇(u−uh)‖L2(L2) is the dominant term among the
velocity errors on the left-hand side of (25). Altogether, the order of convergence
is exactly as predicted in (25) and (31).

Example 10. An example with dominant temporal error. Let Ω = (0, 1)2, ν =
10−10, b = u, σ = 1, T = 1 and consider the Oseen equations (1) with the
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Figure 1. Example 9: Convergence of various errors with respect
to the spatial mesh width.
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10-7
10-6
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100

e
rr
o
r

τ3

τ4

τ5

cGP(2): ||u−uh ||L2(L2)

cGP(2): ||u−uh ||cGP

cGP(2): ||p−ph ||L2(L2)

cGP(3): ||u−uh ||L2(L2)

cGP(3): ||u−uh ||cGP

cGP(3): ||p−ph ||L2(L2)

cGP(4): ||u−uh ||L2(L2)

cGP(4): ||u−uh ||cGP

cGP(4): ||p−ph ||L2(L2)

Figure 2. Example 10: Convergence of various errors with re-
spect to the time step, where the time step is given by τ =
0.1 · 2−m+1.

prescribed solution

u =

(
sin(40t)y
cos(t)x

)
, p(t, x, y) = cos(40t)(x− 0.5) + sin(40t)(2y − 1).

In this example, the spaces Vh/Qh = Qbubble
2 /Pdisc

1 and the projection spaceD(K) =
P1(K) were considered. The mesh consisted of 16× 16 squares. Note that for any
time t the solution can be represented exactly by functions from the finite ele-
ment spaces Vh and Qh. Hence, all occurring errors will result from the temporal
discretization.

Figure 2 reports the order of convergence for the methods cGP(k), k ∈ {2, 3, 4},
in combination with the LPS method. One can observe the predicted convergence
order k + 1 for the errors estimated in (49) and (66). Also for the pressure, order
k + 1 can be seen although estimate (69) predicts only order k.

6. Summary

This paper analyzed a combination of higher order continuous Galerkin–Petrov
schemes in time with the one-level variant of the LPS method in space applied to
the transient Oseen equations. The continuous-in-time case and the fully discrete
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situation were considered. Optimal error bounds for velocity and pressure were
obtained with constants that do not depend on the viscosity parameter ν. The
theoretical results were confirmed by numerical simulations.

References

[1] N. Ahmed, S. Becher, and G. Matthies, Higher-order discontinuous Galerkin time stepping

and local projection stabilization techniques for the transient Stokes problem, Comput. Meth-
ods Appl. Mech. Engrg. 313 (2017), 28–52.

[2] N. Ahmed, T Chacón Rebollo, V. John, and S. Rubino, Analysis of a full space-time dis-

cretization of the Navier–Stokes equations by a Local Projection Stabilization method, IMA
J. Numer. Anal. (2016), in press.

[3] N. Ahmed and V. John, Adaptive time step control for higher order variational time

discretizations applied to convection-diffusion-reaction equations, Comput. Methods Appl.
Mech. Engrg. 285 (2015), 83–101. MR 3312657

[4] N. Ahmed and G. Matthies, Numerical studies of variational-type time-discretization tech-
niques for transient Oseen problem., Algoritmy 2012. 19th conference on scientific computing,
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[9] B. Ayuso, B. Garćıa-Archilla, and J. Novo, The postprocessed mixed finite-element method for
the Navier-Stokes equations, SIAM J. Numer. Anal. 43 (2005), no. 3, 1091–1111. MR 2177797

(2006i:65146)

[10] A. K. Aziz and P. Monk, Continuous finite elements in space and time for the heat equation,
Math. Comp. 52 (1989), no. 186, 255–274. MR 983310

[11] G. R. Barrenechea, V. John, and P. Knobloch, A local projection stabilization finite ele-
ment method with nonlinear crosswind diffusion for convection-diffusion-reaction equations,
ESAIM Math. Model. Numer. Anal. 47 (2013), no. 5, 1335–1366. MR 3100766

[12] Y. Bazilevs, V. M. Calo, J. A. Cottrell, T. J. R. Hughes, A. Reali, and G. Scovazzi, Variational
multiscale residual-based turbulence modeling for large eddy simulation of incompressible

flows, Comput. Methods Appl. Mech. Engrg. 197 (2007), no. 1-4, 173–201. MR 2361475

(2008i:76097)
[13] R. Becker and M. Braack, A finite element pressure gradient stabilization for the Stokes

equations based on local projections, Calcolo 38 (2001), no. 4, 173–199. MR 1890352

(2002m:65112)
[14] , A two-level stabilization scheme for the Navier-Stokes equations, Numerical mathe-

matics and advanced applications, Springer, Berlin, 2004, pp. 123–130. MR 2121360

[15] M. Braack and E. Burman, Local projection stabilization for the Oseen problem and its
interpretation as a variational multiscale method, SIAM J. Numer. Anal. 43 (2006), no. 6,

2544–2566 (electronic). MR 2206447 (2007a:65139)
[16] M. Braack, E. Burman, V. John, and G. Lube, Stabilized finite element methods for the

generalized Oseen problem, Comput. Methods Appl. Mech. Engrg. 196 (2007), no. 4-6, 853–

866. MR 2278180 (2007i:76065)
[17] A. N. Brooks and T. J. R. Hughes, Streamline upwind/Petrov-Galerkin formulations for

convection dominated flows with particular emphasis on the incompressible Navier-Stokes



29

equations, Comput. Methods Appl. Mech. Engrg. 32 (1982), no. 1-3, 199–259, FENOMECH

’81, Part I (Stuttgart, 1981). MR 679322 (83k:76005)

[18] P. G. Ciarlet, The finite element method for elliptic problems, North-Holland Publishing Co.,
Amsterdam, 1978, Studies in Mathematics and its Applications, Vol. 4. MR 0520174 (58

#25001)

[19] H. Dallmann, D. Arndt, and G. Lube, Local projection stabilization for the Oseen problem,
IMA J. Numer. Anal. 36 (2016), no. 2, 796–823. MR 3483106
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