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ABSTRACT. The local projection stabilization (LPS) method in space is consid-
ered to approximate the evolutionary Oseen equations. Optimal error bounds
independent of the viscosity parameter are obtained in the continuous-in-time
case for the approximations of both velocity and pressure. In addition, the fully
discrete case in combination with higher order continuous Galerkin—Petrov
(cGP) methods is studied. Error estimates of order k + 1 are proved, where
k denotes the polynomial degree in time, assuming that the convective term
is time-independent. Numerical results show that the predicted order is also
achieved in the general case of time-dependent convective terms.

1. INTRODUCTION

The behavior of incompressible flows is modeled by the incompressible Navier—
Stokes equations. Analyzing numerical schemes for these equations faces several
difficulties. First, the unresolved problem of the uniqueness of the weak solution
of the Navier—Stokes equations in three dimensions requires to assume uniqueness,
which is usually done by assuming sufficient regularity of the weak solution. More-
over, the estimate of the nonlinear term often uses the Gronwall lemma, such that
an exponential factor occurs in the error bounds, depending on some norm of the
velocity, e.g., on ||Vu|« as in [20]. As result, the obtained estimates are by far too
pessimistic in practice. For these reasons, this paper will deal, with respect to the
numerical analysis, with a related but simpler problem, namely the evolutionary or
transient Oseen equations. They read in dimensionless form as follows:

Find u(t,z) : (0,T] x Q — R%, d € {2,3}, and p(t, ) : (0,7] x © — R such that

ou—vAu+ (b-V)u+ou+Vp=f in (0,7] x Q,
) divu =0 in (0,7] x Q,
L u=0 on (0,7 x 09,

u(0,) = ug in £,
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where Q € R is a bounded domain with Lipschitz boundary 09, v = Re™! > 0
(viscosity) and o > 0 are positive constants, b(t, ) is a given velocity field with
divb = 0, ug is the initial velocity field, and T is a given final time. Without loss
of generality, one can assume o > 0, since if it is not the case then a simple change
of variable transforms the problem into with o > 0, see |21}, Sect. 1].

The numerical solution of requires discretizations in time and space. Con-
cerning the temporal discretization, continuous Galerkin—-Petrov methods of order
k > 1, cGP(k), will be considered. With respect to space, finite element meth-
ods will be studied. Since the paper will study the convection-dominated regime,
where v is smaller than an appropriate norm of b by several orders of magnitude,
a stabilization of the standard finite element discretization becomes necessary.

Considering the situation that the viscosity is much smaller than the convection
in the practical relevant case of the Navier—Stokes equations, the flow becomes tur-
bulent. The simulation of turbulent flows requires the use of a turbulence model.
There are many models proposed in the literature, like, e.g., the Smagorinsky model,
variational multiscale (VMS) methods, or deconvolution models. In particular, the
residual-based VMS method from [12] is an extension of the well known streamline
upwind Petrov—Galerkin (SUPG) method from [17}23] by higher order (with respect
to the residual) terms. Often, the SUPG stabilization is used in combination with
the pressure-stabilization Petrov—Galerkin (PSPG) method, which stabilizes the vi-
olation of the discrete inf-sup condition [30]. However, the SUPG/PSPG method
possesses some drawbacks. As explained in [16], the SUPG/PSPG approach in-
troduces a velocity-pressure coupling for which no physical explanation is known
and also the non-symmetry of the stabilization might be of disadvantage. In the
time-dependent case, the consistent application of the method leads to a number
of additional terms which have to be assembled, including an approximation of the
temporal derivative, see [29,32]. Because of the drawbacks of the SUPG/PSPG
method, we think that it is worth to study different approaches in detail, in partic-
ular such approaches that are symmetric and that do not introduce an additional
velocity-pressure coupling. Local projection stabilization (LPS) methods belong to
this class of methods and will be the topic of this paper.

A different approach was studied recently in [21], where a grad-div stabilized
method is used to discretize the evolutionary Oseen equations. Optimal bounds for
the divergence of the velocity and the L?(£2) norm of the pressure are proved for
this method.

The LPS method was originally proposed for the Stokes problem in [13] and it
was successfully extended to transport problems in [14]. Numerical analysis for the
LPS method applied to the stationary Oseen equations can be found in |15/35] and
to convection-diffusion-reaction problems in [51(7},/11,36]. The stabilization term of
the LPS method is based on a projection defined on the finite element space that
approximates the solution into a discontinuous space. Compared with the standard
Galerkin approach, the LPS method gives additional control over (parts of) the
fluctuation of the gradient. The method is weakly consistent but the consistency
error can be bounded to achieve an optimal rate of convergence. Originally, the
LPS method was proposed as a two-level approach, where the projection spaces are
defined on coarser grids. This approach introduces additional couplings between
neighboring mesh cell and hence, the sparsity of the matrix decreases. This draw-
back does not appear in the one-level approach, where both spaces are defined on



the same grid. In this approach, the approximation spaces have to be enriched
compared with the standard finite element spaces. The additional degrees of free-
doms which are introduced due to the enrichment can be eliminated using static
condensation. Altogether, the one-level approach is, in our opinion, more appealing
from the point of view of implementation and this variant of the LPS method will
be considered in this paper.

Recently, in [19] the time-dependent Oseen problem was considered using LPS
methods with stabilization of the streamline derivative together with grad-div sta-
bilization. In the case of using methods of order k£ without compatibility condition,
error bounds are obtained under a restriction on the mesh size: a certain measure
for the mesh size should be of order of the square root of the viscosity. In order
to avoid the restriction on the mesh size for small viscosity, the authors of [19]
considered pairs satisfying a certain element-wise compatibility condition between
the discrete velocities on the fine mesh and in the projection space. Even in that
case, optimal error bounds for the pressure were not obtained in [19]. In [§], a
LPS method for the time-dependent Navier—Stokes equations was analyzed. As
in [19], the LPS approach is applied to the streamline derivative and to a grad-div
stabilization term, which is a different LPS method than considered here. Error
estimates for the velocity in the continuous-in-time situation were derived in [8].
An analysis of the fully discretized so-called high-order term-by-term LPS method
can be found in [2].

As mentioned above, cGP (k) methods will be considered as temporal discretiza-
tion. For incompressible flow problems, usually #-schemes are used. These schemes
are simple to implement, however, they are at most of second order, like the Crank—
Nicolson scheme or the fractional-step #-scheme. In addition, they do not allow an
efficient adaptive time step control. There are only few studies, like [25][28]31]
which consider higher order schemes, like diagonally implicit Runge-Kutta (DIRK)
methods, Rosenbrock—Wanner (ROW) methods, or just ¢cGP(2). To the best of
our knowledge, there is no numerical analysis available for the first two classes of
schemes applied to incompressible flow problems or even to convection-diffusion
equations. The situation is different for ¢cGP(k) that treats the temporal deriv-
ative in a finite element way. The ¢cGP(k) methods are a class of finite element
methods using discrete solution spaces in time that consist of continuous piecewise
polynomials of degree less than or equal to k and test spaces which are built by
discontinuous polynomials of degree up to order £ — 1. This choice enables the
performance of a standard time marching algorithm and it avoids the solution of a
global system in space and time as in space-time finite element methods.

The ¢GP method in time for the heat equation has been investigated in [10].
Optimal error estimates and super-convergence results are derived at the end point
of the discrete time intervals. The methods cGP (k) have been studied in [38] even in
an abstract Hilbert space setting and for nonlinear systems of ordinary differential
equations in d space dimensions. A-stability and optimal error estimates were
proved. Moreover, it was shown that ¢cGP(k) methods have an energy decreasing
property for the gradient flow equation of an energy functional. Recently, in [5],
transient convection-diffusion-reaction equations were considered using cGP(k) in
time combined with LPS in space. Optimal a-priori error estimates were derived
for the fully discrete scheme. It has been shown numerically that ¢cGP(k) is super-
convergent of order (k + 2) in the integrated norm and of order 2k at discrete time



points. Moreover, the obtained results were compared with discontinuous Galerkin
(dG) time stepping schemes. Numerical studies for the time-dependent Stokes
equations in [24], the transient Oseen equations in [4], and transient convection-
diffusion-reaction equations in [5] showed the expected orders of convergence for
cGP(k), k € {1,2}. The dG(k) method was analyzed for the transient Stokes
equations in [1]. In addition, the higher order convergence of ¢cGP(2) compared
with the discontinuous Galerkin discretization dG(1), both methods possessing the
same complexity, was demonstrated. An efficient adaptive time step control is
also possible with ¢cGP(k) methods, e.g., as applied in [3] to transient convection-
diffusion-reaction equations. The adaptive time step control is based on a post-
processed discrete solution. It has been shown that the adaptive time step control
leads to lengths of the time steps that properly reflect the dynamics of the solution.

However, there is also a certain drawback of ¢cGP(k) methods for £ > 2: a
coupled system of k equations has to be solved at each discrete time. By a clever
construction proposed in |38], the coupling is not strong, but it cannot be removed
completely. Efficient solvers for this coupled problem in case of the Navier—Stokes
equations have been studied in [25], where a coupled multigrid method with Vanka-
type smoothers was utilized.

Altogether, cGP(k) is in our opinion an attractive alternative to §-schemes since
a higher order in time can be achieved and an efficient time step control is possible
at affordable computational costs.

The goal of this paper consists in studying the combination of the LPS method
in space with the cGP (k) method in time. The numerical analysis will be performed
for the transient Oseen equations . Thus, this paper presents the first numerical
analysis of a higher order time stepping scheme for an incompressible flow problem
with convection. In the continuous-in-time case, optimal error bounds for velocity
and pressure with constants that do not depend on the viscosity parameter v are
obtained with the assumption that the solution is sufficiently smooth. In addition,
error estimates for the fully discrete problem of order k+ 1 are proved, assuming, as
in other recently published papers, that the convective term is time-independent.
Numerical results show that the predicted order can be also observed in the case of
time-dependent convective terms.

The remainder of the paper is organized as follows: Section [2]introduces the basic
notation, it presents some preliminaries, and the semi-discretization (continuous-
in-time) of the LPS method will be described. In Section[3] the error bounds for the
semi-discrete problem are derived. Section [d] presents the error analysis of the fully
discrete problem using a temporal discretization with a ¢cGP(k) method. Numerical
studies can be found in Section Bl

2. PRELIMINARIES

Throughout this paper, standard notation and conventions will be used. For a
measurable set G C RY, the inner product in L?(G), L?(G)¢, and L?(G)?*¢ will be
denoted by (-, -)¢. The norm and the semi-norm in W™?(G) are given by || - |[|m.p.c
and | - |m,p.q, respectively. In the case p = 2, H™(G), || - [|m.q, and | - |m.¢ are
written instead of W™2(Q), || |m.2.c, and |- |m2.¢. If G = Q, the index G in inner
products, norms, and semi-norms will be omitted. The dual pairing between a space
Z and its dual Z’ will be denoted by (-, -). The temporal derivative of a function f is
denoted by d; f and the i-th temporal derivative by 9; f. The subspace of functions
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from H'(Q) having zero boundary trace is denoted by H{(Q2). Its dual space is
denote by H~1() with the associated norm ||v||_; = SUPye H1 (2)\ {0} %. Let
Z be a Banach space with norm || - ||z, then the following spaces are defined

2o.42={v: 002 [ el s <oob.

H'(0,t;Z) == {v e L*(0,t;Z) : O € L*(0,t;2)},
C(0,t;Z) :={v : (0,t) = Z : v is continuous with respect to time},

where Jyv is the time derivative of v in the sense of distributions. If ¢ = T, then
the abbreviations L?(Z), H'(Z), and C(Z) are used and it will not be indicated
whether it is a scalar-valued or vector-valued space.

In order to derive a variational form of , the spaces

Vi=Hi(Q)? Q:=L§Q), X:={velLl*V), dwell*V')}
and the bilinear form
a((u,p); (v,q)) == v(Vu,Vv) + ((b- V)u,v) + (cu,v) — (dive,p) + (divu, q)

are introduced. Then, a variational form of reads as follows:
Find u € X and p € L?*(Q) such that

(2)
(Drut), v(t)) + a((u(t), p(t)); (v(),q(1))) = (F(1),v(t) Vv e LA(V), g€ L2(Q)

for almost all ¢ € (0,7 and u(0,-) = ug. Note that this initial condition is well
defined since functions belonging to X are continuous in time.

If the initial condition ug is different from 0, the velocity w can be decomposed
in the form

u(t) =ug+¢(t), YeXy={veX: v0,)=0}.

Then for the given initial velocity field ug, one has to find u = ug + ¥ (t), with
P(t) € Xo, and p € L*(Q), where (1), p) is the solution of the problem

(Qep(t),v(t)) + a(($(t), p(t)): (v(t), (1)) = (g(t), v(t))
with

(g,v) = (f,v) —v(Vug, Vv) — ((b- V)ug,v) — (cug, v).
For this reason, one can assume ug = 0, which will be done in the sequel. Note that
this choice of the initial condition will result in errors bounds that do not contain
contributions depending on wug.

Let IT : L*(Q)% — HYY be the Leray projector that maps each function in
L?(Q)? onto its divergence-free part, where the Hilbert space HY is defined by
HY ={p e L2(Q)? : V-v =0, v n|sgqg =0}. The Stokes operator in (2 is given
by

A DA) C HY - HY,  A=-TIA, D(A) = H* Q) NV,
where the space V4V = {v EHYM):V . v= O} is equipped with the inner prod-
uct of H}(Q)<.

Let {75} be a family of shape-regular triangulations of 2 into compact d-simplices,
quadrilaterals, or hexahedra such that Q = U7, K. The diameter of K € T, will
be denoted by hx and the mesh size h is defined by h := max hi. Let Y, C H(Q)

h



be a finite element space of scalar, continuous, piecewise mapped polynomial func-
tions over 7. The finite element space V), for approximating the velocity field is
given by V;, = Y}:i N V. The pressure is discretized using a finite element space
Qn C Q of continuous or discontinuous functions with respect to 7. In this paper,
inf-sup stable pairs (V},, Qp) will be considered, i.e., there is a positive constant Sy,
independent of the triangulation, such that

(3) inf (le Vh, qh)

sup > By > 0.
0. €Qu\{0} v, evi\fo} |Vnl1llgnllo

Since it will be assumed that the family of meshes is regular, the following inverse
inequality holds

(4) [0nllm, & < Cinehlic ™ |0n ]l

for each vy € V; and 0 <1 <m < 1, see, e.g., |18, Thm. 3.2.6].
The space of discretely divergence-free functions is denoted by

VI =fv, € Vi 0 (V-vp,qn) =0 Yqn€Qnt.
The linear operator Ay, : V3V — V4V ig defined by
(5) (Apvp, wy) = (Yo, Vwy,) YV wy, € VY,
Note that from this definition, it follows that
©) 14 olo = Vol 1IVA;*onllo = loallo ¥ o € V™.

The so-called discrete Leray projection H?Li" : L2(Q)4 — V}:ﬁv is introduced, being
the L%-orthogonal projection of L?(2)¢ onto V31

(7) (H%ivv,wh) = (v,wp) Y wy€ V,;hv.

By definition, it follows that the projection is stable in the L? norm: [|II{Vol|lo <
lv]lo for all v € L(Q)4.

The continuous-in-time standard Galerkin finite element method applied to
consists in finding uj, € H'(V},) with w,(0) = 0 and p;, € L?(Qp) such that

(Dyun(t), vp) + a((un(t), pr(); (Vn, qn)) = (F(),vn) Y vi € Vi, qn € Q.

In the convection-dominated case, it is well-known that this method is unstable,
unless & is sufficiently small. The use of a stabilized discretization becomes neces-
sary.

This paper concentrates on the one-level variant of the LPS method in which
approximation and projection spaces are defined on the same mesh. Let D(K), K €
Th, be local finite-dimensional spaces and 7x : L2?*(K) — D(K) the local L?
projection into D(K). The local fluctuation operator kx : L*(K) — L?*(K)
is given by kgv := v — mgv. It is applied component-wise to vector-valued and
tensor-valued arguments. The stabilization term S}, is defined by

Sp(un,vp) = Z px (R Vun, kg Vo) o
KeT

where pg, K € 7Ty, are non-negative constants. This kind of LPS method gives
additional control on the fluctuation of the gradient. Also other variants of this
method are possible, e.g., by replacing in both arguments of Sy (-,-) the gradient
Vawy, by the derivative in the streamline direction (b- V)wy, or, even better [33}/34],
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by (bx - V)wy,, where by is a piecewise constant approximation of b. But in this
method, one has to add the so-called grad-div term (div up, div vy) to Sy, see [37].
For the numerical analysis, the linear operator C}, : Vhd“’ — V}?‘V with

(8) (Chon,wn) = > px(kVon, kgkVwn)k Y vn,wy € Vi,
KeTh

the linear operator Dy, : L2(Q) — V3V with
(9) (Drg,wn) = (divewy, q) ¥ wp, € Vi,
the stabilized bilinear form

an((w,p), (v,q)) = a((w,p); (v,q)) + Sh(u,v)

on the product space (V},, @), and the mesh-dependent norm

1/2
liolll = {u|v|f+auvu§+ 5 uKuannaK}

KeThn

are defined.
It will be assumed that b € L>(L>(Q) N HYY(Q)) and V - b(t) = 0 for almost
all t € [0,T]. Then, a straightforward calculation shows that

(10) an ((Vns qn); (Vh, qn)) = H‘Uhmz Vvn € Vi, qn € Qp-

The stabilized semi-discrete problem reads:
Find uy, € HY(V}) with u;,(0) = 0 and p;, € L?(Qp,) such that

(11) (Ovun,vn) + an ((wn,pn); (vn,qn)) = (f,vn) Y on € Vi, g € Qn

for almost every ¢ € (0,7].

For performing the analysis of LPS schemes, certain compatibility conditions
between the approximation space and local projection space have to be satisfied,
see [35).

Assumption A1. There are interpolation operators j;, : H?(Q)? — Vj and
in + H%*(Q) — Qj with the approximation properties

(12)
[|[w *jtho,K + hi|w 7jhw|1,K < CthHle,K Vwe Hl(K)dv 2<l<r+1,
(13)

Hq - ithO,K + hK‘q - ihq’l,K < CthHqHz,K Vage HI(K)v 2<l<m,

for all K € T;,. The pressure interpolation operator i, satisfies the orthogonality
condition

(14) (¢—ing,mn)k =0 YqeQnNH*Q), r, € D(K).

The pairs Vi,/Qn = Q,/Pd$$ together with D(K) = P,._(K) fulfill for r > 2
assumption Al if j, is the usual Lagrangian interpolation operator and i the L?
projection. Further examples of inf-sup stable pairs V},/Q}, associated interpolation
operators j, and 4y, and projection spaces fulfilling assumption Al can be found
in 37].
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Assumption A2. The fluctuation operator satisfies the following approximation
property
(15) lokallg < Chliclal, ;. YK €T Vae H(K), 0<I<T.
For performing the numerical analysis, the steady-state Stokes problem
—vAu+Vp=g inQ,
(16) u=0 on 0%,
V-u=0 in Q,

will be considered. The standard Galerkin approximation (up,pr) € Vi X @, is the
solution of the mixed finite element approximation to , given by

(17) V(VUh,V’Uh) - (le vhaph) = (gavh) v vy € Vh7

(V- up,qn) =0 V qn € Qn.
Following [22,/26] one gets the estimates
18 u—u <C|( inf |[u—wv +v7! inf — ,
1) -l <0 (it fu ol +o it - anlo)
19 — <C(v inf ||lu—wv + inf — ,
19 Ip-mlo<0 (v il fu=vili+ ot Ip-anlo)
20 - <Ch( inf |ju— 1 inf ||p— .
@) u o< inf u oo ot - anlo)

It can be observed that the error bounds for the velocity depend on negative powers
of v.

As suggested in |21], a projection of (u, p) into V}, x Qy, is used, where the bounds
for the velocity are uniform in v. For the Oseen problem, let (u,p) be the solution
of with w € H* (VN HTH(Q)?), p € L? (QN H'(Q)), | > 1, and define the
right-hand side of the Stokes problem by

(21) g=f—-0u—(b-V)u—ou— Vp.

Then (u,0) is the solution of . Denoting the corresponding Galerkin approxi-
mation in Vj, X Qp by (8, 1), one obtains from f

(22) lw—snllo+ hllw—suli < ChF a4,

(23) Tnllo < Cvh!f|w]lita,

where the constant C' does not depend on v.

Remark 1. Assuming the necessary smoothness in time and considering with
g=9'=0(f-0u—(b-Viu—ou—Vp), i>1,

one can derive error bounds of form and (23)) also for Oiu—sp(g') and 1,(g?),
where (sh(gi)Jh(gi)) denotes the solution of (17)) with right-hand side g = g°.
Hence, the estimates

10f — s1,(g")llo + Rl 0w — sn(g') 1 < CR™ | Opulli4a,
I1n(g")llo < Cvh' (|41,

can be obtained.



3. ERROR ANALYSIS FOR THE CONTINUOUS-IN-TIME CASE

In this section, error bounds for velocity and pressure will be derived with con-
stants independent of v for a sufficiently smooth solution. The analysis follows the
lines of [21].

Theorem 2. Let (u,p) be the solution of and let (up,pp) be the solution of
({1). Assume b e L>*(L>) and the regularities

(24) (u,p) € LA(H™™) x L*(H"), 0O,u c L*(H").

Choosing the stabilization parameters of the LPS method such that px ~ 1 with
respect to the mesh width, then the following error estimate holds for all t € (0,T]
(25)  [I(w = wn)(O)I5 + VIV (u = un)lf20422) + ollt = unll7z(o b2

+ > e V(= wn)l 720002 x))
KeT,

< OB (I[wla(0 sime1) + 103 ctamy + P30, ) -
where C'=C (cr, ||b||Loo(07t;Loo)) is independent of v and h.

Proof. The proof of the error estimate is based on the comparison of the Galerkin
approximation (up,pp) in (11]) with the approximation (sp,[;) of the Stokes equa-
tions with right-hand side (21)). Let e;, = wj, —sp, then a straightforward calculation
yields

(26)  (Oren,vn) +an((€n,pr — n), (Vn, qn))
= (O(u —sp),vp) + ((b-V)(u—sp) +o(u—s,),vn)
+ (Vp,vpn) — Su(sn,vn) VY vn € Vi, qn € Qp.
Taking (vn,qn) = (en,pn — Ip) in , one gets with integrating by parts, using
that ey has discrete divergence equal to zero, and
(Vp,en) = —(p,V-en) = —(p—inp,V-en) = (inp — p, iV - €y).
With the Cauchy—Schwarz inequality and Holder’s inequality, it follows that

1d

s glenlls +vIVenls +ollexlls + > uxlrxVenld x

KeTy
< [10e(w = sn)llollenllo + [[blloc [V (w = sn)lollerllo + ollu — sallollerllo

1/2 1/2
+ ( > NK1||p_ihp||g,K> (Z MK||/fKV€h||g,K> + |Sh(sn,en)] .

KeTy, KeTy,

Now, the term with the stabilization has to be bounded. The Cauchy—Schwarz
inequality gives

Sh(sh, eh) = Sh(sh —u, eh) -+ Sh(u, eh)

(27) < S}/Q(sh —u, Sy — u)Si/Q(eh, en) + S;L/z(u, u)S}L/Z(eh, en).
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Applying the stability of the fluctuation operator kg and the choice px ~ 1 of the
stabilization parameters yields

1/2
(28) Sh(sn,en) < C(|lsh —ully + lsx Vullo) ( > IIHKVehllﬁ,K> ;

KeTh
such that
1d 2 2 2 2
§&Heh”0‘*‘VHveh”o"'UHehHo'f‘ Z MK”’iKvehHo,K
KE%L

< |0 (uw — sn)llollenllo + bl |V (w — si)lollenllo + olw — snllollerlo

1/2
+C(llp — inpllo + [Isn — ull + llrx Vaullo) ( > IKKVehI?J,K> :
KeTh

With Young’s inequality and hiding terms on the left-hand side, one obtains

d
Jlenlls +2vI1Venlls + ollenls + Y uxlrxVen| x

KE7-}L
< C (110w = s[5 + IBIZ NV (w — sp)[1§ + o[l — s1]5)
(29) +C (Ilp — inpllg + lsn — wllf + 5 Vul3) -

Assuming now for ¢t < T the regularities , integrating on (0,t), taking into

account that ep(0) = 0, since ug = 0, and applying estimates , , and ,
one gets

(30) [len(®)IIs + 2vIVenll7z(0rn2) + ollenllZaonrzy + D 5k VenlTaomr2cx)
KeTy

< Chr* <||u||%2(0,t;HT+1) + ||atu||i2(o,t;m) + ||P\|%2(o,t;m)) )

where C = C (0, ||b]| o< (0,+;1)) is independent of v and h.
The final result is obtained by applying the triangle inequality to the left-hand

side of and using and . |

The next step in the error analysis consists in obtaining a bound for the pressure
erTor.

Theorem 3. Let the assumptions of Theorem[3 hold and let v < 1 then
(31) lp = pullz2(0,6:02) < Ch" ¥V t € (0,77,

where C = C (50_1, HUHLZ(O,t;Hr{»l), ||3tuHL2(O,t;HT)7 ||p||L2(0’t;Hr), a, ||b||Loo(0’t;Loc))
is independent of v and h.

Proof. This bound is derived as usual on the basis of the discrete inf-sup condition
(3). In particular, a bound for ||9;ep,||—1 is needed. By definition, it is

oen,
|8renll—1 = sup M
pemi@angoy Vel
The first step consists in reducing the bound of ||d;e} || _1 to a bound of ||A,:1/23teh llo-

From [9, Lemma 3.11], it is known that

(32) 10cenll—1 < Chldvenllo + CllA™*Idren o,
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where II is the Leray projector introduced in Section [2] Applying [9, (2.15)], one
obtains

(33) | A7 Trenllo < Chlldrenllo + 45 *Drenllo.

with Ay defined in . From , , the symmetry of Ay, @, and the inverse
inequality , it follows that

|2renll-1 < Chldven]lo + C1l A, *dreno
= ChllA* A4, P ien]o + A, Drenllo
= Chl[V (A, P oren)lo + Cll A drenll
(34) < C||A; P dvenllo.
Next, a bound for ||A;1/26teh||0 will be derived. Projecting the error equation

onto the discretely divergence-free space V3V and using integration by parts, one
gets

(Oren,vp) +v(Ven, Vop) + ((b-V)ep, + oep,vr) + Sk(en, vp)
= (0¢(u —sp),v) + ((b- V)(u — sp) + o(u — sp),vn)
— Sn(8h,vn) = (p —inp, V - vp).
Recalling definition @[), one has (p — ipp, V - vy) = (Drp(p — inp), vp), such that
dven = —vAnen, — 1157 ((b- V)en + oen) — Cren + 1Y (9 (w — 1))
(35) + IV ((b- V) (u — s1) + o(u — sp,)) — Cr(sy)
— Du(p —inp).

With , the Cauchy—Schwarz inequality, @, the L? stability of the fluctuation
operator kg, and pug ~ 1, one obtains for all vy, € V,;h"

[(Cron, A, Pws)|

14, 2 Chonllo = sup
wpEV,AV\{0} [whllo
Ly e (i Von n V(A )]
wy,eVA\ {0} lwnlo
1/2 —1/2
e (Zwen IrxToall) COIVA w0l
T whevaiv\{o} [whlo
1/2
<C  sw (Xre I5xVoulle i) " llwnlo
B wp,eVAv\{0} llwnllo
1/2
(36) =O<Z||mwvh||%,f<> .
KeT,

The above argument applied to ||A;1/2Dh(p —ipp)|lo yields

(37) 14,2 D3 (p — inp)lo < Cllp — inpllo-
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Definition and the symmetry of A; gives for any g € L?(Q)? the equal-
ity (A4, 1/2Hd“’g vy) = (9,4, 1/2 vy,) for all v, € VAV, Tt follows with v, =
Ahl/QHd“’ Vdi" and @ that
—1/21div A-V/2 41/ pdiv —1/21div
14, P13 < llgll-allIV (A, 2 A, 2T g) o = gl -1l 2T gllo
and hence

(38) ||A_1/2Hdwg||o <lgl-1 vgeL@™
Next, A, 12 i applied to . Using (36] , , and ., one gets

(39) |4, *dcenllo

1/2
<v| A} enllo +|I(b- V)en + oen] -1 + ( > uKanVeu%,K)
KeTs

F110e(w = sp)l[ -1 + [|(b- V)(u = sn) + o(u = sp)[| 1

1/2
+ < > /~LK||/<6KVSh||3,K> + llp = inplfo-

KeTn

Taking the square of and integrating on (0,t) yields
@y [ AT 2 0jen ()3 ds
<o ([ Aaaias+ [ 10 Vet e, ds
/ S cllsxVen(s)3 x ds +/ 01 (= s1)(s)]2, ds

KeT,

[ =18 s+ [ 109 = s+ 0w~ s) )2 ds
/ > nxllrkVsa(s)llp x d8>~

KeTy,

It will be proved that all the terms on the right-hand-side of are O(h?"). The
desired asymptotic behavior is obtained for the first and third term directly from
(30). For the second term in ([40), the definition of the H~*(2) norm, integrating
by parts, and Poincaré’s inequality lead to

I(b-V)en +oen||-1 < C(|[blloc +0) [len]lo-

Hence, one obtains

[ 1@ Vien+oen6)2, as < € [ et as

such that the desired order of convergence can be again deduced from . Con-
cerning ||0;(u— sp)||1, the definition of the H~1(£2)? norm and Poincaré’s inequal-
ity are applied to bound this term by C||0:(u — sp)|lo. Now, is applied (see
Remark(l]) and with the regularity assumptions (24)), the estimate for ||9;(u—sp)||-1
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is O(h™). Once this term is bounded, it is clear that the integral of its square is
also bounded

t
/0 100 — 1) (5)]12 ds < CH [ Bul|2 0 v

The term involving the pressure is estimated with . One can argue as in (27))—
to obtain the bound

|3 il Vane) B ds <€ [ (s = w)(s)1} + Iw Tulo)]F) ds

0 ke
< Ch2T||U||2L2(0,t;HT+1)v

where and were applied in the last inequality. Finally, arguing as for the
second term, one obtains

16 V) — 1) + o — 1)1 < C ([Blloc + 0) [l — sl
from what follows that
/ 1((b- V) (u — s0) + 0w — 1)) (8)]% ds < C / I — 1)(5)]2 ds.
0 0

The bound for this term is concluded by applying . Combining the estimates
for with , it is shown that

t
(41) | loens?s s = 0@
Using now the discrete inf-sup condition and , one obtains
Bollpn — inpllo

1/2
<v|Venllo +[I(b-V)en +aenl|-1 + [|0ren| -1 + C ( > MK||/<«'KV€h||3,K>
KeTh

F110:(w = sp)l[ -1 + [[(b- V)(u = 8n) + o (u = sp)[| 1

+C ( Z /LK”HKVS;L

KeTy

1/2
3,K> +[Ip = inpllo + [[alfo-
Taking the square and integrating on (0, t) leads to

82 / 1(n — inp)(s)]2 ds
SC(/O V2| Ven(s)|? ds—f—/o 1((b- V)en + cen)(s)|%, ds

t t
+ / 10n(en) ()21 ds + / S pcllsxVen(s)|3 x ds
0 0

KE7-}L

+ / o = s) ()2, ds + / 1(B- V) — 5)(s) + o — 51))(s)[2 ds

t t t
T / S il Vsn(s)|2 i ds + / I — inp)(s)]2 ds + / n(s)2 ds>.

KeTy,
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Arguing exactly as for the estimates on the right-hand side of ([40), using for
fot 10:(er)(s)||*; ds, to bound the last term, and finally the triangle inequality,
proves . O

4. ERROR ANALYSIS FOR THE FULLY DISCRETE METHOD WITH CGP (k)

The continuous Galerkin—Petrov method is applied as temporal discretization.
To this end, consider a partition 0 = tg < t; < ... < ty = T of the time in-
terval I := [0,7] and set I, = (tp—1,tn], T = tn — th—1, n = 1,... N, and
T := maXij<p<N Tn. FOr a given non-negative integer k, define the time-continuous
and time-discontinuous velocity spaces as follows
Xp={ueC(Vi):ul, €Pu(ln,Vi)}, Xi¢:={ueLl?V,):u
and time-continuous and time-discontinuous pressure spaces by

Ve ={q€C@Qn):qlr, € Pe(I,,Qn)}, Y :={qe L*(Qn): ¢
forn=1,...,N. Here

I, S ]Pk:<lna Vh)} 5

I, S Pk(Ianh)} P

k
(42) Pk(In, Wh) = {u I, = Wy u(t) = Z Uiti, Vtel,, U €W,V Z}
i=0

denotes the space of Wp-valued polynomials of order k in time. The functions in
the spaces XJ¢ and Y3 are allowed to be discontinuous at the nodes t,. In the
following, the combination of the LPS method as spatial discretization and the
c¢GP(k) time stepping scheme is denoted by LPS/cGP.

Denote by X} ; := X N Xy the subspace of X with zero initial condition and
introduce a bilinear form by, given by

T
b (2, 0); (0,0)) = / [(0vas, ) + an (1 p); (v,9))] dt.

The LPS/cGP method reads as follows:
Find wy r € X and pp » € Yy such that

(43)
T
br, ((wh,rsPhr); (Vhrs Gnir)) 2/ (fovns) dt Yo € X[, qnr € V5,
0

where the index h, 7 refers to the discretization in space and time. The associated
continuous problem is defined as follows:
Find u € Xy and p € L?(Q) such that

T

@) [ (@l o) + ol ) w0.a0)] @t = [ (F0).0(0) i

0

for all v € L3(V), g € L*(Q).
For a function w which is smooth on each time interval I,, the operator m_1 is
defined by

(45) (1)1, (6) = Y w(tn i) Ln (1),

k=1

where L:n’i denote the Gauss quadrature points on I,, and Enz € Pr_1(I,) are the
associated Lagrange basis functions. Definition gives Tp_1Wp » € X,fil for all
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wpr € X and T_1qn,r € kafl for all gy, € Y. Furthermore, one has for all
wp,r € X that

(46) /(w;L,T(t)—ﬂk_lth(t))tj Q=0 j=0,.. k-1 n=1,. N,
In

where 0 denotes the zero element in V},.
The analysis considers the mesh-dependent norm

. 1/2
Illr = ( ] NimcrvllFa s o)

Note that, as observed in [5], || - ||cap is on XF C X not only a semi-norm but
a norm. Indeed, the first term inside the definition of ||v||.gp guarantees that
[lv|lcgp = 0 results in a function v which is on each time interval I,, given by

Lfcn) (t)pp(x), where L,(Cn) is the transformed k-th Legendre polynomial on I,, and

@), € V. Due to v(T) = 0 and L](CN) (T') = 1 the function v vanishes on the last
time interval Iy. The continuity of v on I gives then v(ty_1) = 0. By recursion,
one obtains v = 0 on [ and hence || - ||cgp is a norm.

The following lemma will show a property of the bilinear form b, that will be
used to get the error bounds for the approximation to the velocity.

Lemma 4. Assume that b and o are constant with respect to time. Then, there
exists a constant C > 0 independent of v, h, and T such that

b (Ve @hr )i (Tem1Vnr Tem1Gnr)) = s l2ap ¥V (Vnro@hr) € X5€ x Y
holds true.

Proof. Tt is
b ((nrsanor); (Te—1Vh,r, Th—1Gn,7))
T
= / [(at'vh,ﬂﬂk—lvh;r) + ap ((Uh,T,Qh,T); (ﬂ—k—lvh,nﬂ—k—lqu)” dt.
0

Using the fact that the convection and reaction are time-independent functions and
taking into account that

T
/ [— (qn,r, div Te—1Vp,7) + (Th—1qn,7, divoy.)] dt
0
T
= / (= (Tk—1qn,7, div T _1vp 7)) + (Te—1Gn, 7, div T _1vp )] dt =0
0
and (10, one obtains

T
/ an ((Vhr, Ghyr )i (Te—1Vhr, Tho1Gn,r)) dt
0

T T
:/ an ((Tk—1Vh,r Th—1Gn,7); (Te—1Vh,7, Th—1Gn,r)) dt :/ || 7k—1vn,-]|* dt.
0 0
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Concerning the first term, it is noted that 0yvy, - is a discontinuous function in time
of degree k — 1. Using vy, ,(0) = 0 yields

1

T T T 4 ,
/0 (Ovon, 7y Th—10p,7) di :/0 (w7, vh,r) dt = 5/0 %th,THO dt

1 2
= iuvth(T)HO'
O
The derivation of error bounds makes use of a time interpolation of a sufficiently

smooth function w: w € C(H), where H can be either a velocity space V or a
pressure space @, and w|; € Py (I, H), defined by

(47) W(tp—1) = w(tn_1), W(tn) =w(ty), /1 (w(t) —w(t), 2(t)) dt =0,

for all z € Py_o(I,, H). The standard interpolation error estimate

1/2 1/2
) (-l a) < ontt ([ e a)
I'Vl

holds true for m € {0,1} and all time intervals I,,, n =1,..., N.

Theorem 5. Assume that the spaces Vi, Qp satisfy Assumptions Al and A2,
pwr ~ 1 forall K € Tp, andv < 1. Let (u,p) be the solution of and (Up, -, Ph.r)
the solution of . Further, assume that the solution (u,p) is smooth enough such
that all the norms on the right-hand side of are bounded. Then, there exists a
positive constant C' independent of v, h, and T such that the error estimate

Ju —unrl.gp < OO (lull 2y + lulla ey + ol 2y + hllw(T)]]r41)
(49) + O |l grer )
holds true.
Proof. The error analysis starts by decomposing the errors e, = upr — u into
0n =8 —u and §;, , == up,  — 8, with the velocity solution s, of where the
right-hand side g in is defined using @ instead of w. Then

Upr —u=ep; =0,+§, .

For the discrete error §;, . Lemma E| provides

(50) ||€h,‘r||3GP = bh((gh,‘l'?phﬂ'); (ﬂk—lgh,raﬂ—k—lphﬂ'))'

A straightforward calculation gives

b ((&h7Pn.r); (k1€ vy Th—1Ph 7))
T

T
:/ (8tu — 8t.§h,7rk_1£h77) dt + / I/(V(’U, — gh), v(ﬂ'k—lghﬂ—)) dt
0 0
T

+/0 ((b'V)(u—gh)ﬂTk,lﬁhﬂ_) dt+/0 (U(u—éh),wk,léhﬁ) dt

T T
(51) + / (Vp, o) dt — / Sn(En.mp1E) dt
0 0

The six terms on the right-hand side will be bounded.
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For the first one, the error is split in two terms

T

T
/ (Ot — 0,51, 18y ) dE = / (0w — @), mes€y ) dt
0 0
T
(52) +/ (8t(’fl,—§h),ﬂ'k,1§h)7) dt.
0

Integration by parts and using yield for the first term on the right-hand side
o

(53) /0 (Oh(u— @), 1€y, ) dt

tn
) 0.
th—1

For the second term on the right-hand side of , the application of the Cauchy—
Schwarz inequality and gives

N
= Z (/I (u — 1w, 0y (mp—18)) dt + (u — w, mk—1&),)
n=1 "

T
(54) /0 (O (@ — 31), mh—1€y,) dt

N
<Y [ o~ o5l lo e
n=1 In
N /2 , N
< (Z/ 10vt — 8315 dt) (Z Imk—1&n.- 115 dt)
n=1 In n=1
N 12, N 1/2
<Ch" (Z/ [|Opur]|? dt) <Z/ ollmi—1& 113 dt)
n=1"1n n=1"1n

< Ch ||l granyll€n - lleaps

1/2

where in the last estimate the inequality ||| g1 (gr) < Cllwl|gi(gr) was applied.
Thus, from , (b3), and one derives the bound for the first term on the
right-hand side of (51))

T
(55) / (8tu — 8t'§h77rk‘71£h’7—) dt < ChT”u”Hl(Hr) £HCGP'
0

To bound the third term on the right-hand side of , the error splitting

T

/O (b V)(u— 51), mp16p.) dt:/o (b V)(u— @), mp_1£y,) dt

T
+/O ((b-V)(w—3p), m-1€), ) di
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is used. Then, applying and yields
T
/ (b V)(u— 51).mpr€p) dt
0

T
< /0 1Bl (Il = @lly + 1% = Bnll1) [ 7r—1&5 - llo dt

N 1/2 N !
<C (ZTfLHQ/ w112 dt) + (hQTZ/ alf? dt)
n=1 In n=1{n
N 1/2
Y (Z /il dt)
n=1""n

(56) < (CTFwllgesrany + OB |ullp2crrin)) 1€h 2 llecp-

Arguing exactly as before gives for the second and the fourth term on the right-

hand side of

/2

T T
/ v (V(u— 31), V(mpr€y,) dt +/ (ot — 3n), me_1Ep,) dt
0 0
(57)
< (CWM2 + 20N ooy + CO2 4+ V2P s ) B e

To bound the fifth term on the right-hand side of observe that

T T T
/ (Vp, mk—1&y, ) dt = / —(p, V- 1€y ) dt = / —(p, 1V - &, ) dt,
0 0 0

since the time projection m;_; and the divergence commute. In addition, it is

/ (inp. TV - Ep) di = / (1 (inD), 751V - &) d
I

n n

(58) - / (4 (in). V - Ep.) di =0,

In

since 8y, has discrete divergence equal to zero and the relation fI (V-up,r,qpr) dt =
0 holds by definition for all g » € kafl. Thus, for the fifth term on the right-hand
side of (1)), integration by parts with respect to space, applying the orthogonality

condition , using , pwr ~ 1, and lead to
T
/ (Vp7 7T/f—lgh,‘r) dt
0

T T
= / (ihp = P, k-1 V - &), ;) dt = / > (inp = p, ixme-1V - €, L) dt
0 0

kETh
. 1/2 1/2
< [ (X mttarsin) (X lenomoseilin)
0 KETh KeTy,

- 1/2
(59) <C </ llinp — plI dt) 1€+ lccp < Ch"||pl| L2 [1€h - llcap-
0
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Finally, to bound the last term on the right-hand side of (51]), the following
decomposition is considered

T T
/ Sh(éh, kalgh’r) dt = / Sh(8n — ﬁ,wk,lgh)T) dt
0 0

T T
(60) +/ Sh(’& - uvﬂ-k—lgh,r) dt +/ Sh(u,ﬁk_lﬁhﬁ) dt.
0 0

For the first term on the right-hand side of , the L? stability of the fluctuation
operator ki, g ~ 1, and are applied to obtain

T
/ Sh(éh - ’ll,’]'rk,lfhﬂ_) dt
0

T 1/2 1/2
S/ ( > nkllEr V(3 — &)”(2)7[() ( > pxllrkm1VE, (2JK> dt
0 \keT KET,
T 1/2 T 1/2
S (/ > ullrkV(En — @) dt) (/ [mr—1&5 -1 dt)
0 KeTs 0
(61)

< Ch |lull L2y 1€,

‘CGP'

Applying the stability of the fluctuation operator kg, g ~ 1, and gives for
the second term on the right-hand side of

T
/ Sh(ﬁ - u, 7Tk71€h,7') dt
0

- 1/2 1/2
< / < > pxllrk V(@ - U)||(2>,K> < > MklﬁKﬂk—lvﬁh,THaK) di
0

KeTn KeTh
- 1/2 T 1/2
<[ S nxlsxvi@— w2 d / 1€ 1112 dt
0 KeTs, 0

(62)
< O M|l s (1 1€ 1 llep-

To finish the estimate of the last term on the right-hand side of (51), the Cauchy—
Schwarz inequality, the approximation properties of the fluctuation operator
KK, and pug ~ 1 are used to get

T
/ Sh(uaﬂk—lghﬂ—) dt
0

T 1/2 1/2
S/O <Z HK||HKVU3,K> (Z uK||HKWk—1V€h,T||(2>,K> dt

KeTy, KeTy,

T 1/2 T
S(/ > el (V) dt) (/ a1 dt)

KeTn
(63) < Ch[lullzzcmr+nlI€]lcap-

1/2
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Inserting , , and in gives
(64)

T
/ Sn(3n:mh-1€p,7) dt < (ChT||wll g2y + OT |l s ) [1[€]ecp-
0

Inserting in and utilizing (55), (56), (57), (59), and lead to
(65)

€n.lecap < CH [||u||L2(Hr+1) + [l g (g + ||p||L2(Hr)} + CT || s .-

Applying the triangle inequality, the bound , and the interpolation error esti-
mates in time gives the statement of the theorem. O

Arguing similarly as in [5, Thm. 3.4], one can prove the following theorem.

Theorem 6. Under the assumptions of Theorem[5, the following error estimate is

valid
T 1/2
( [t = w01 dt)
< C(+T2)h" el 2y + el arary + P02 )
(66) O+ T ] s,

with C' independent of v, h, and 7.
Proof. Denoting as before §;, . = up » — 8, and applying the ideas leading to
not only on [0,7] but also on [0,t,], n =1,..., N, result in the estimate

o 2 1 2

| st OIF dt+ Sl eI
0
< Ch* ||UH%2(H7~+1) + HuH%ﬂ(HT) + ||p|\%2(m) + CT2k+2Hu”%I’<+1(H1)’

where the integrals on the right-hand side were extended from [0,¢,] to [0,T] by

monotonicity. After neglecting the non-negative integral on the left-hand side and
multiplying by 7,,, a summation over n = 1,..., N provides

N N
Sl ()3 < (Z) R [l ey + el iy + P03 o |

n=1
N

(67) + (Z Tn> CT%+2”“H§I’“+1(H1)'
n=1

Since &, ; is a piecewise polynomial of degree less than or equal to k in time, a
norm equivalence on finite-dimensional spaces gives

n=1

tn tn
[ e pasa (/ ||m1sh,r<t>||%dt+Tn||sh,T<tn>||%>,

tn—1 tn—1
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where C}, depends on the polynomial degree k but it is independent of 7,, and h.
Hence, applying and yields

n=1 tn—1

T N
< Ck (/0 llmk-1&p,- )IIIE dt + Z%Iﬁm(tn)I%)
n=1

< COUA+ DI lulaqrsny + Il oy + Pl rn) |
(68) +C(1+ T)72k+2||“||§{k+1(1{1)~

T N tn
JRCROEAC dt<ck2< [ I 0 dt+m||sh,7<tn>||%>

Now, the statement of the theorem follows by applying the triangle inequality and
the time interpolation error estimates together with (22). O

Theorem 7. Let the assumptions of Theorem@ hold and let in addition (u,p) be
smooth enough such that the norms on the right-hand side of are bounded.
Then, there exists a positive constant C independent of v, h, and T such that the
error estimate

(/OT |mr—1 (pn.(t) — p(2)) |12 dt>

< CA+ DA [[lwll gy + Nl g2y + 1ol ]
+ C(A+T)7* (1 + 7)l|wl grrzcrry + CTHIpll s 2
(69) + Ch” [wll L2(gr+y + lwll g ey + 19 a0 ()]

1/2

holds.

Proof. A straightforward calculation shows that for all v, € Xg“_‘l and qp, , € ka_cl
it holds

br((wn,r — 8, Pn,7); (Vhyr, Q7))

T T T
:/ (0e&p v n,r) dt+/ v(VE&, - Von 7) dt+/ ((b- V)€, vn,r) dt
0 0 0
T T T
‘*’/ U(Ehmvh,r) dt —/ (V-vpr,pnr) dt —|—/ Sh(ﬁhmvh,r) dt
0 0 0
T T
:/ (0¢(w — 8p),v,r) dt+/ v(V(uw—3p), Vou,) dt
0 0
T T
[ (@m0 [ ot s d
0 0

T T
7/ Sh(éh,’vh,.,-) dtJr/ (Vp, vh,T) dt.
0 0
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From this equation, one obtains

T
/ (ph,r - ihﬁa V- 'Uh,T) dt
0
T T T
:/ (p—inp,V -vpr) dt+/ (Oeh.rsVn,r) dt+/ v(VE, ., Vop o) dt
0 0 0

T

T T
4 / ((b- D)y, vnr) di + / o (Enrronr) di+ / Sh(Epravnr) dt
0 0 0

T T
+/0 (O1(3r, —u),vp,,) dt —1—/0 v(V (8, —u), Vo, ) dt
(70)

T T T
+ / ((b . V)(gh - U),’Uh;,—) dt + / U(éh — ’U,,Uhﬂ—) dt + / Sh(éh,vhﬁ) dt.
0 0 0

To derive the error estimates, the Gauss quadrature rule with k& points will be used
for the numerical integration of the time integral. Hence, one has

T N k
T . -
(71) /o Gor—1(t) dt = nz::l > ;wiQQk—1(tn,i)

for all gog—1 € Pog_1(1,,) where fn,i denote the corresponding quadrature points on
I, and @; are the weights of the Gauss formula on (—1,1) which fulfill &; > 0. Let
fn,o =t,_1 be an additional point.

Using the discrete inf-sup condition , one can construct wy, » € Py(I,, V)

such that

(72)
Bollmr—1 (phr (i) = inb(tni)) 15 < (o1 (Pryr (Enyi) — inP(Eni)) , V- wp e (Enyi))
(73) ”wh,T({n,i)”l = ”Trk—l (phﬂ'(in,i) - ihﬁ(in,i)) ||0

Since wy, » € Py (I, V), it follows that mp_1wy » € Pr_1(Iy, Vy). Setting vy, , =
Tr—1Wh,» and using , , one obtains

T N
/ (phr — inp, V- vp 1) dt = Z/ ((Phr —inp), Th1(V -wp, ) dt
0 n=1 n
N
- Z/ (Tk—1(ph,r — nD), V - wp,7) dt
n=1 I,
T

(74) > 5 / ks (pnr — )2 dt,
0

where the exactness of the quadrature rule for polynomials of degree (2k — 1), the
positivity of the quadrature weights, , and were used.
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Setting vy, ; = mp_1wp - in (70), using (74), the assumption that b and o are
constants with respect to time, and , it follows that

T
o / s (pnr — P dt
0
T
S/ (Ph,r — P, Th—1(V - wp - )) dt
0
T T
=/ (Th—1(p = inD), Th—1(V - wp 7)) dt-l-/ (01&p r» Th—1Wh 7) dt
0 0
T T
b [ vmea (Ve ) moa (Von) det [ (6 V)mesgy e mrwn) di
0 0
T T
+/ o (k1€ 7+ Th—1Wh,7) dt-i-/ Sn(Tk—1&p 7> Th—1Wh,7) dt
0 0

T T
+/ (3t(.§h — u),wk_l'whﬁ) dt +/ l/(7Tk_1V(.§h — u),mc_l(th,T)) dt
0 0

"F/O (ﬂ'k,l(b . V)(gh - u)h’ﬁmc,lwhﬁ) dt
(75)

T T
+/ o(mr—1(8n —u), Tp_1wh ) dt+/ Sh(Tk—18p, Te—1wp ) dt.
0 0
The seventh term on the right-hand side of is decomposed in the form
T T
/ (8t(§h —u),ﬂk,lwh,f) dt = / (8t(§h —'&),ﬂk,lwh,f) dt
0 0

T
+/ (8t(’l~l, — u),wk_l'whﬁ) dt.
0

For the second term on the right-hand side, integrating by parts with respect to
time and using yield

T
/ (8t(’l~l, - u),ﬂk,lwh,.r) dt
0

N
== Z (/ (@ —w, 0y (Tp—1wp,r)) dt + (w — @, 7)1 Wh 1)
n=1 I

t”L
=0.
tn—1

It follows that

T

T
/ (0431 — ), mprwiy) dt < / 104 3 — @)llollms—1wnrllo dt
0 0
T
<c / 10u(3n — @) o | Vre_1wnr o dt.
0

where Poincaré’s inequality was applied in the last line.
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Using (71)), (45)), and gives

T N k
T . .
IV rwn I dt = 2> @illme—1 Vs (En)[13
/0 n=1 2 i=1
Nk
= TS V()
n=1 i=1
Nk
=y 3” > @illmi1 (phr (En) — inb(Eni) I3
n=1 i=1
T
(76) — [ s (on = i) |
0
where fm, i = 1,...,k, denote the node of Gaussian quadrature on I,, and @,
i=1,...,k, are the corresponding weight on [—1,1].
Applying yields
T
/ (Bt(éh — U)aﬂ'kfl'wh,r) dt
0
T By [T
< [ oren -l e+ 5 [ i tn = inp) [}
0 0

Arguing in the same way for the rest of the terms on the right-hand side of
leads to

T
/ Ikt (prr — inB) 2 dt
0

T

T T
<o| [Imato-inp)l ae+ [ 10€n 20 dr [t I d
0 0 0
T T
+ [ oG- @) e+ [ vimoa Ve - wl d
0 0
(1)
T T
b [ Ul 4 s = wl e+ [ S uclaemia Vg .
0

KeT

Now, the terms on the right-hand side of need to be bounded. The estimates
for the third term follows from Theorem [5| In the following, the L? stability of the
projection 7;_1 and the interpolation operator with respect to time, i.e.,

/||7rk_1v\|0dt§6’/ |vllodt and /||f;||odt§0/ o]l dt
I, I, I I,
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will be often used. For the first term on the right-hand side of (77), applying (48)
and gives

T T T
/ s (p — inf) |2 dt < C / lp— 12 dt + / 15— inpl? dt
0 0 0

T T
< 072’“*2/0 Ip*D2 dt+0h2r/0 1113, dt

< C (72 pl s 12y + 2 Pl R ) ) -

For bounding the second term on the right-hand side of , one first observes
that fOT 0, -1l -1 dt < fOT 10:&, +llo dt. Now, since it is assumed that b and o
are independent of ¢, the error bounds for ||, -[lo can also be applied to its time
derivative so that applying to 0:§), , leads to

T
| 10160l dt < OO+ T 100l + 01l ey + 10

+ O+ T)7*| 03 g1y -

For the truncation errors involving §; — u (the last four terms), one argues as in
Theorem [5] to get

T
/ 1003 — @2 dt < Ch2" w2 ey,
0
T
/ v||Tr-1V(8n — U)H% dt < Cv (hQTHUH%Z(HrH) + TQHQH“H%{I@H(HI)) )
0

T
Ul + l5n — e < € (Wl agary + 7 ulrnes o)
0

The bound for the last term (similarly as in the estimates (60)—(63)) uses the error
splitting with respect to space and time, the L? stability of the fluctuation operator
KK, px ~ 1, and the approximation properties of kx. One obtains

T

> wllrrmiaVan|g i dt
0 KeTy,
T T
<3 [ IV -l de+3 [ 3 @ wl g
0 kers 0 kers
T
+3/ S naVul? i dt
0 keTs

<C (h2r||u||2LQ(Hr+1) + 72’“+2llullik+1<m+1>) :

The statement of the theorem follows by collecting the bounds for all terms on
the right-hand side of , and by applying the triangle inequality and the bounds
and for the interpolation errors in space and time. O

Remark 8. Instead of using fOT 10:&5, 112, dt < fOT 10:£, , 11 dt one could use

T T
/0 108,117 dt < C / 1A 20,¢, |2 di
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and then argue as in the proof of Theorem[3 However, since it is assumed that b is
time-independent, the proof presented above is shorter although it requires a higher
reqularity of the solution.

5. NUMERICAL STUDIES

This section presents numerical simulations that support the theoretical results
obtained in the previous sections. Two examples will be presented. In the first
example, an analytical solution is considered and very small time steps are applied
to support the error analysis of Section In the second example the solution is
polynomial in the space such that the approximation will be exact in the spatial
part and the discretization error in time dominates. This example will support the
analytical results from Section [4]

All simulations were performed on uniform quadrilateral grids where the coarsest
grid (level 1) is obtained by dividing the unit square into four squares. Mapped
finite element spaces [18] were used, where the enriched spaces on the reference cell
K =[~1,1]? are given by

Qkubble(]i—) — Qr(—f() + span {[;Dj;*17 7= 1,2}

with the biquadratic bubble function by = (1 — #2)(1 — #3). The combination
Qbubble(K) with D(K) = P,_;(K) provides for r > 2 suitable spaces for LPS
methods, see [37]. The simulations were performed with the code MOONMD |[27].

Example 9. An example with negligible temporal error. Consider the Oseen prob-
lem with @ = (0,1)2, v =101, b=, 0 = 1, and T = 1. The right-hand side
f and the initial condition ug were chosen such that

alt, 2, y) = it (Sin(ﬂm)sin(wy)> |

cos(mx) cos(my)
p(t,x,y) = sin(t) (sin(m:) + cos(my) — i)

is the solution of equipped with non-homogeneous Dirichlet boundary condi-
tions.

This example studies the convergence order with respect to space. To this end,
the time discretization scheme ¢GP(2) with the small time step length 7 = 1/1280
was used. Numerical studies concerning the choice of stabilization parameters for
convection-dominated problems suggest that a good choice is ux € (0,1), e.g.,
see [6]. Based on these studies and our own experience, the stabilization parameters
were set to be ux = 0.1. The convergence plots for simulations with the finite
element spaces V3,/Q, = Q5uPPe /Pdisc and the projection space D(K) = Py(K) are
presented in Figure [l One can see fourth order convergence for the L?(L?) norm
and the L? norm at the final time. For all other norms on the left-hand side of
and the L?(L?) norm of pressure, third order of convergence can be observed. It
can be seen in Figurethat |V (w—up)| L2(r2) is the dominant term among the
velocity errors on the left-hand side of . Altogether, the order of convergence

is exactly as predicted in and .

Example 10. An ezample with dominant temporal error. Let Q = (0,1)%, v =
10719 b = u, 0 = 1, T = 1 and consider the Oseen equations with the
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-- !

- B
6= [Ju(1)—w, (D]l
*—r '?||V(u-n, Mz
»=x

error

[fu—w, [[ g2z
o] H*"'I\’V(“*“n)HL%L")

= Alp=pa ey

FIGURE 1. Example @ Convergence of various errors with respect
to the spatial mesh width.

CGP(2): [[u—w ||z
cGP(2): ||lu—u, ||.cp
CGP(2): [lp—py Il 2z
CGP(3): [[lu—w, || 273
CGP(3): [lu—w, ||.cp
cGP(3): |lp—py Il 2z
CGP(4): |[u—, ||z
CGP(4): [[u—w, [|.cp
CGP(4): |lp—pp Il s

error

[1T117118

time level m

FiGure 2. Example Convergence of various errors with re-
spect to the time step, where the time step is given by 7 =
0.1-2-m+L

prescribed solution

w— (iﬁi‘t%ﬁ% . plt,2,y) = cos(408)(x — 0.5) + sin(40t) (2y — 1).
In this example, the spaces V},/Qj, = Q5uPPle /Pdisc and the projection space D(K) =
P, (K') were considered. The mesh consisted of 16 x 16 squares. Note that for any
time t the solution can be represented exactly by functions from the finite ele-
ment spaces V;, and Qp. Hence, all occurring errors will result from the temporal
discretization.

Figure [2 reports the order of convergence for the methods cGP(k), k € {2, 3,4},
in combination with the LPS method. One can observe the predicted convergence
order k + 1 for the errors estimated in (49)) and . Also for the pressure, order
k + 1 can be seen although estimate redicts only order k.

6. SUMMARY

This paper analyzed a combination of higher order continuous Galerkin—Petrov
schemes in time with the one-level variant of the LPS method in space applied to
the transient Oseen equations. The continuous-in-time case and the fully discrete
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situation were considered. Optimal error bounds for velocity and pressure were
obtained with constants that do not depend on the viscosity parameter v. The
theoretical results were confirmed by numerical simulations.
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