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Patterned microstructures represent a potential approach for improving current wound

closure strategies. Microstructures can be fabricated by multiple techniques including

replica molding of soft polymer-based materials. However, polymeric microstructures

often lack the required shear resistance with tissue needed for wound closure. In this work,

scalable microstructures made from composites based on polydimethylsiloxane (PDMS)

were explored to enhance the shear resistance with wet tissue. To achieve suitable

mechanical properties, PDMS was reinforced by incorporation of polyethylene (PE) particles

into the pre-polymer and by coating PE particle reinforced substrates with parylene. The

reinforced microstructures showed a 6-fold enhancement, the coated structures even a 13-

fold enhancement in Young's modulus over pure PDMS. Shear tests of mushroom-shaped

microstructures (diameter 450 mm, length 1 mm) against chicken muscle tissue demon-

strate first correlations that will be useful for future design of wound closure or

stabilization implants.

& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
nd/4.0/).

Division of Health Science and Technology, Massachusetts Institute of Technology,

Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany.
m (J.M. Karp), eduard.arzt@leibniz-inm.de (E. Arzt).
1. Introduction

Since the development of versatile, customizable, and biode-

gradable biomaterials, the concepts of wound closure, essen-

tial for most tissue injuries ranging from small lacerations to
major surgeries, have undergone a significant evolution (Chu

et al., 1996; Menaker, 2001; Ratner and Bryant, 2004). Each

wound exhibits different characteristics and, thus, the clo-

sure procedure is usually subject to the surgeon's expertise

(Bennett, 1988; Scheidel and Hohl, 1987). As an example,
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Fig. 1 – Models for prediction of the elastic modulus of
composites. The (a) Voigt and (b) Reuss model are used for
modeling biphasic composites.
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hernia surgery provides an interesting and sophisticated
wound closure concept. The disease consists in a protrusion
of inner organs through a weak part of muscular layer
towards the abdominal wall. Nowadays, polymer meshes,
which cover the whole affected area, are utilized to reinforce
the weak tissue and to keep the organs in place (Brown and
Finch, 2010; Cobb et al., 2006). However, this treatment is not
sufficient to enable a contraction of the weak tissue and
requires additional fixtures such as stitches to prevent
reoccurrence. Novel hernia meshes may be equipped with
mechanically interlocking structures to enable self-fixation
and contraction of the wound cover in contact with the weak
tissue such as the ProGrip (Covidien, Dublin, Ireland) (Birk
and Pardo, 2012; Pedano et al., 2012). Mostly in-vivo studies
were performed with this type of mesh (Birk and Pardo, 2012;
Chastan, 2009; Hollinsky et al., 2009; Jorgensen et al., 2013;
Kolbe et al., 2010; Pedano et al., 2012; Sanders et al., 2013;
Zhang et al., 2013) but no in-depth systematic investigation of
the mechanical behavior exists.

Multiple examples for interlocking and adhesive micro-
structures can be found in nature, e.g. on plants (Koch et al.,
2009) or on animals (Arzt et al., 2003; Gorb et al., 2001; Gorb,
1998). In contrast to penetrating systems (Cho et al., 2012;
Yang et al., 2013), these structures allow the build-up of high
shear forces solely with structure-based fixation (Bin Khaled
and Sameoto, 2014; Glass et al., 2010). Additionally, many
fixation mechanisms in nature are switchable, allowing
multiple attachment and detachment cycles without large
damage of the structures or substrate (Chary et al., 2013;
Paretkar et al., 2013). These examples highlight the potential
of translating nature-inspired microstructures into technical
and medical applications (Gorb et al., 2007; Lee et al., 2015;
Pang et al., 2012), but exact replication of biological structures
is challenging.

Polydimethylsiloxane (PDMS) is a suitable material for the
fabrication of microstructures and use in biomedical systems
(Pang et al., 2015, 2013). Due to its elastic behavior the
material is used to mimic animal adhesive systems such as
the gecko's fibrillar structures (Del Campo et al., 2007; Zhou
et al., 2013). The influence of the geometry and hierarchy of
microstructures were explored experimentally and theoreti-
cally (Aksak et al., 2014; Carbone and Pierro, 2012;
Spuskanyuk et al., 2008). Advances have also been made on
understanding the adhesion of fibrillar structures on soft
(Cheung and Sitti, 2009) or rough (Cañas et al., 2012;
Vajpayee et al., 2010; Wang et al., 2009; Yu et al., 2012)
substrates. However, the adhesion of these microstructures
to compliant and rough substrates such as tissue or skin is
not yet sufficiently understood (Kwak et al., 2011). Further-
more, the shear resistance of fibrillar PDMSmicrostructures is
usually very low due to the relatively low elastic modulus and
the high aspect ratio of the fibrils. A promising strategy to
enhance the shear resistance is to tailor the materials proper-
ties by reinforcing them to create stiffer, but still elastic
composite materials. Nature also uses composite materials
to tune material properties (Dunlop and Fratzl, 2010; Gorb and
Filippov, 2014; Peisker et al., 2013). Recently, studies on
composite materials based on PDMS mixtures with different
cross-linking densities were performed, with a particular
focus on normal adhesion to rigid substrates (Bae et al.,
2013b) and to skin (Bae et al., 2013a). Additionally, micro-
structures with embedded particles have recently been used
to tune frictional properties of PDMS at the microscale (Tian
et al., 2015) or the normal adhesion forces (Shaikh et al.,
2007).

To design and optimize adhesive microstructures for
medical applications, systematic knowledge of contact
mechanics and the related mechanical properties are
urgently needed. Many studies on normal adhesion to differ-
ent substrates including tissue exist. However, there are
applications like hernia meshes where shear adhesion and
friction dominate over capabilities of normal adhesion.
Despite considerable progress, many aspects of creating
shear resistance between surface structures and wet tissue
are at present insufficiently understood.

The present work explores, for the first time, the para-
meter space with regard to elastic modulus for tuning the
shear resistance against wet tissue. Pure PDMS was modified
by incorporation of submicron polyethylene (PE) particles and
by coating with parylene. PE and parylene were chosen
because of their higher elastic modulus compared to PDMS
and their biocompatibility. The elastic moduli were deter-
mined by tensile tests and compared to theoretical models.
Pillar structures topped with mushroom-like tip geometries
were fabricated by a two-step molding process and sheared
against chicken tissue to provide a proof-of-principle for self-
fixating medical devices.
2. Analytical models

Composites are combinations of at least two materials with
the goal to blend their physical or mechanical properties and
thereby create a tailored material with superior characteris-
tics for a certain application. In this section, we describe three
concepts for calculating the elastic modulus of biphasic
composites consisting of a matrix phase and a reinforcing
phase such as fibers, layers, whiskers, particulates, or fabrics.
The prediction of the elastic modulus is important to predict
the mechanical properties of a composite, especially the
stiffness and resulting shear resistance.

To a first approximation, a biphasic material can be
mechanically modeled as a two-layer composite structure
(Fig. 1). The resulting effective elastic modulus is a function of
the volume fractions and the elastic moduli of the compo-
nents involved (Hill, 1963). The Voigt model (Fig. 1a) deter-
mines the maximum elastic modulus, EVOIGT, by assuming
layers under parallel loading with equal strain:

EVOIGT ¼ vm UEm þ vr UEr; ð1Þ



Fig. 2 – SEM micrographs of the fracture surface after tensile testing and schematic illustrations of the corresponding dogbone
samples: (a) pure PDMS material, reinforced with (b) 25 wt% PE particles, (c) 40 wt% PE particles, (d) a one-side parylene
coating, (e) a combination of 25 wt% PE particles and one-side parylene coating or (f) 40 wt% PE particles and all outer surfaces
parylene coating.
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with vm and vr the volume fractions and Em and Er the elastic
moduli of the matrix and the reinforcing material,
respectively.

By contrast, the Reuss model (Fig. 1b) determines the
minimum elastic modulus, EREUSS, by assuming layers under
serial loading and equal stress:

E�1
REUSS ¼ vm UE�1

m þ vr UE�1
r : ð2Þ

Numerous models exist to describe the elastic properties
for non-laminar composites (Tucker and Liang, 1999). One of
them is the Halpin-Tsai model, which accounts for the
morphology of the reinforcing phase such as aspect ratio,
regularity and shape, as well as the loading direction by an
empirical reinforcement factor ξ. The model predicts the
elastic modulus, EHALPIN�TSAI, as follows (Affdl and Kardos,
1976):

EHALPIN�TSAI ¼
Em U Er þ ξU vm UEm þ vr UErð Þ½ �

vm UEr þ vr UEm þ ξUEm
: ð3Þ

The reinforcement factor ξ is defined as:

ξ¼ kU
l
d
; ð4Þ

where l
d designates the ratio of the dimension of the reinfor-

cing phase in direction of the loading (l) to the dimension
perpendicular to the loading (d). The proportionality factor, k,
reflects the geometry and the distribution of the reinforcing
phase. Hence, the model can, for example, distinguish
between long, unidirectional fibers parallel l

d-1� �
or per-

pendicular l
d-0
� �

to the loading direction. For spherical
particles the ratio l

d is 1. The reinforcement factor ξ can only
be determined empirically by fitting experimental data. This
was achieved with the materials created for this study as
described below.
3. Materials and methods

3.1. Composite preparation

Polydimethylsiloxane (PDMS, Sylgard 184, Dow Corning, Mid-
land, MI, USA) with a mixing ratio of 10 weight parts of the
basement to 1 weight part of the curing agent was used as an
elastomeric matrix material for all composites.

Polyethylene powder (PE, with particle size from 50 to
70 mm, Sigma-Aldrich, St. Louis, MO, USA) was incorporated
into PDMS to manufacture particulate-based composites.
After mixing basement and curing agent of PDMS, PE particles
of 25 or 40 wt% were immediately added and the mixture was
stirred for several minutes. The material was then degassed
in an Eppendorf centrifuge 5430 for 2 min at 5000 rpm
(Eppendorf, Hauppauge, NY, USA), poured into plastic petri
dishes and cured overnight at 70 1C to obtain thin
composite films.

Parylene coatings were chosen to fabricate lamellar-based
composites. Parylene is a FDA approved, inert, transparent,
and hydrophobic thermoplastic biopolymer which forms
linear, highly crystalline structures (Shin et al., 2003). Par-
ylene was synthesized by vapor deposition in an SCS Labcoter
2 Parylene Deposition System (SCS, Indianapolis, IN, USA).
The final thickness of the parylene coating for all structures
was about 5 mm. Parylene fractions from 0.4% to 2% were
realized by varying the thickness of the underlying PDMS



Fig. 3 – Elastic modulus values determined by tensile tests.
Data points (black squares) for (a) PE particulate reinforced
PDMS and (b) one-side parylene reinforced PDMS were
modeled using the Halpin-Tsai relation (dashed line,
cf. Eq. (3)). For comparison the upper and lower limit for the
material combinations were calculated, i.e. the Voigt
(cf. Eq. (1)) and Reuss (cf. Eq. (2)) model, respectively.
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films. For tensile tests, two types of dogbone shaped samples
were manufactured, with either a one-side coating or a all
outer surfaces coating (cf. Fig. 2d–f). The final composites
were imaged in a scanning electron microscope; see for
example Fig. 2 (Quanta 400, FEI, Hillsboro, OR, USA).

3.2. Microstructure fabrication and characterization

Pillar structures with mushroom-shaped tips were fabricated
in a two-step replication process (cf. Fig. 6). Two templates
were machined from aluminum. Both patterns consisted of
cylindrical holes with different diameters and depths, but
arranged in hexagonal lattices with a center-to-center spa-
cing of 1.5 mm. The template for the pillar structures had
holes with a depth of 1 mm and a diameter of 450 mm. The
template for the tip structure consisted of holes with a depth
of 200 mm and a diameter of 650 mm. Both templates were
coated in a gas phase silanization process using Trichloro
(octadecyl)silane (Sigma Aldrich, St. Louis, MO, USA) to obtain
a hydrophobic, non-reactive surface. A daughter mold was
cast using PDMS. For this, the templates were filled with
polymer, degassed for about 20 min under vacuum and cured
overnight at 70 1C. For tone inversion, the daughter mold was
cast with PDMS again to obtain the final mold used for
microstructure fabrication. PDMS molds are much more
flexible than the initial aluminum templates and can be
reproduced at will. Thus, they are better suited for molding
stiffer materials.

To assemble the pillar and tip of the structure, the mold
for the pillar structure was first filled with the respective
PDMS based composite, degassed and cured overnight at
70 1C. The tip mold was then covered with the respective
composite, degassed and the overflow material taken off the
surface with a razor blade so that only the cavities remained
filled. After that, the fabricated pillar array was manually
pushed into the tip mold and cured overnight at 70 1C.

3.3. Tensile tests

The elastic properties of the samples were measured by
tensile tests using dogbone-shaped samples punched from
flat films of the respective materials. The gage length varied
for each sample and the gage width was 2.79 mm for all
samples. The thickness of each sample was measured with a
Nikon Eclipse TE2000-U optical microscope (Nikon, Tokyo,
Japan) at four different points along the gage length to obtain
an average thickness for the stress calculations. All tests were
performed, using the table top tester system eXpert 7600
(10 N load cell, ADMET, Norwood, MA, USA), at a constant
velocity of 5 mm/min. Force–displacement curves were con-
verted to engineering stress–strain data for analysis using the
initial cross-section. The slope of the linear region of the
stress–strain curves was used to determine the Young's
modulus. Due to viscoelastic contributions, these values will
represent lower bounds on the true Young's modulus.

In addition to tensile tests to sample fracture, cyclic tests
in the linear elastic region were performed for selected
parylene-coated dogbone samples to simulate repetitive
loading in a medical application. About 500 cycles were
performed with a tensile strain amplitude of 5% at a constant
velocity of 5 mm/min. These tests were performed on dry and
on moistened samples. For moistening, the samples were

wetted with a water droplet which was renewed as soon as

the fluid evaporated.
3.4. Shear tests

Shear experiments were performed using the biaxial axial-

torsion tester eXpert 8600 (10 N load cell, ADMET, Norwood,
MA, USA). Chicken thigh was chosen as counter-surface for

the experiments since it is a muscular tissue with a relatively

homogeneous texture. Fresh chicken thigh was purchased in

the supermarket and used for experiments on the same day.
The thigh was sliced into about 1 mm thick slices. A tissue

slice and a patterned sample were each attached to a glass

slide with Loctite superglue (Westlake, OH, USA) in parallel
alignment. Three shear cycles with a displacement of 10 mm

were performed for each sample. To adjust similar preloads,

the samples were placed with the same distance to the tissue

before each measurement.
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4. Results and discussion

SEM micrographs of the fracture surfaces after tensile testing
are displayed in Fig. 2. Pure PDMS exhibited a featureless
fracture surface (Fig. 2a), whereas PDMS-based composites
resulted in dimpled fracture areas attributed to the dispersed
PE particles (Figs. 2b and c). The fracture surface of the coated
PDMS was again mostly featureless (Fig. 2d), in contrast to the
coated PE-PDMS composite samples (Figs. 2e and f). These
findings suggest that the PE composites were successfully
manufactured. The thickness of the parylene film was deter-
mined to be about 5 mm.

The tensile tests revealed an increase of the elastic
modulus by a factor of more than 3 for 25 wt% PE-
reinforced PDMS and by more than a factor of 6 for 40 wt%
PE in comparison to pure PDMS (Fig. 3a). For parylene-coated
PDMS, the elastic modulus also increased with increasing
parylene content (Fig. 3b). A tenfold increase to 20 MPa
compared to the pure base material was measured for
1.6 vol% parylene reinforcement.

These experimental data are in excellent agreement with
the Halpin-Tsai equation (Eq. 3) as displayed in Fig. 3. This
agreement was obtained with a small geometry factor, ξ¼ 6:7.
The particles used for these experiments have a size dis-
tribution between 50 and 70 mm, as determined by mesh
screening by the manufacturer. Therefore, an aspect ratio
Fig. 4 – Tensile tests of parylene coated samples. (a) The stress–s
occurring at strains depending on the parylene content. (b) The
parylene reinforced composites depend on the parylene fraction.
materials is in good agreement with uncoated specimens for st
figure are intended to guide the eye.
close to 1 and a small geometry factor ξ are considered

appropriate. The figures also include the wide bounds given

by the Voigt and Reuss limits (Eqs. (1) and (2)). The model for

parylene-coated PDMS appears linear in this figure, but this is

only true for small volume fractions.
For parylene coated PDMS (Fig. 3b), a Halpin-Tsai fit with

geometry factor of about ξ¼ 489 was determined to match

the experimental data best. Even though parylene was

applied as a coating, the Voigt model alone is not sufficient

to describe the composite. The factor ξ for the Halpin-Tsai fit

of parylene coated PDMS is much higher than the factor for

the PE reinforced composite. Higher values of ξ indicate that

the aspect ratio of the reinforcing phase increases in loading

direction. This is in good agreement with the geometry of the

parylene reinforcement, for which a higher ξ value would be

expected.
The results of the tensile tests for PDMS and PE reinforced

PDMS composites with parylene coatings are summarized in

Fig. 4. Due to gripping effects or initial slack in the specimen,

the very first portion of the curve will not be considered; the

zero point of strain was chosen as indicated in the figure. The

curves in Fig. 4a indicate a change in slope between 2.5% and

7% strain at the transition of “Zone 1” to “Zone 2”. The stress

at the threshold between both zones correlates roughly with

the parylene content. The parylene fraction is determined by

the thickness of the base polymer film which was coated, as
train curves of parylene coated PDMS show a change in slope
measured elastic moduli in the first linear region of all
(c) The slope of the stress–strain curve of the parylene coated
rains between 10% and 20% strain. The dashed lines in this
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the coating thickness, 5 mm, is constant for all samples. In the
first zone, the slope of the curves changes depending on the
parylene fraction while the slope is similar regardless of the
parylene fraction in Zone 2. This behavior was observed for
all parylene coated samples, notably also for 25 and 40 wt%
PE reinforced PDMS.

The elastic moduli of pure and 40 wt% PE reinforced PDMS
in zone 1 are plotted in Fig. 4b as a function of the volume
fraction of parylene. The measured values for all outer
surfaces coated dogbones are lower compared to the films
with the same matrix, but the elastic modulus increases with
increasing parylene content in both cases. This can be
attributed overestimation of the parylene content in the all
outer surfaces coated samples due to the dogbone shape.
From these results we can conclude that the elastic modulus
of the materials increased with higher content of parylene for
both one-side and all outer surfaces coating.

To investigate whether the transition from Zone 1 to
Zone 2 is associated with failure of the parylene layer and
Zone 1 represents the elastic deformation of the coating, the
slope of the stress–strain curves between 10% and 20% strain
was evaluated for all parylene coated materials and uncoated
samples as a reference (Fig. 4c). In Zone 2 the elastic modulus
of every parylene coated composite corresponds to the one of
base material and the reinforcing property of the parylene
layer disappears.

The data in Fig. 4a can be explained as follows: during
initial load application, the slope of the curves corresponds at
first to the elastic modulus of the composite. At the transition
stress between Zone 1 and Zone 2, the parylene coating
cracks, as can be seen in Fig. 2d. From then on, the slope
corresponds to the elastic modulus of the uncoated base
material.

The stress strain-behavior in 500 cycles of loading and
unloading within Zone 1 only slightly changes between dry
and wet conditions (Fig. 5). The composites were not cracked
as the maximum strain was chosen below the critical strain
for cracking and, thus, can withstand repetitive loading below
the critical limit.

To test if the promising properties of the composites can
be used for microstructures, pillar structures with
Fig. 5 – Cyclic tensile tests under dry and wet conditions. 500
cycles were performed on one-side coated PDMS samples
with a maximum of 0.5% tensile strain aiming to stay within
zone 1 (cf. Fig. 4a). The graph shows the first cycle and every
100th cycle thereafter.
mushroom-shaped tips were fabricated in a two-step replica-
tion process (Fig. 6) as previously described in Section 3. Fig. 6
also shows exemplary pictures of the manufactured struc-
tures from pure PDMS. All other composites were also
successfully used to make microstructures. Five composites
were selected to be compared regarding their shear resistance
against chicken tissue in shear experiments.

Fig. 7a illustrates the characteristic shape of a measured
shear hysteresis. The sample (shown in blue), was brought in
contact with the tissue (pink) (1) and a lateral shear move-
ment was applied. The pillars were bent against the direction
of motion (2) until a constant force plateau was reached
representing interlocking with the tissue and sliding friction.
Thereafter, the direction of displacement was reversed. In the
first part of the reverse half-cycle, the pillars were bent in
motion direction (3) until this configuration became unstable
and an inversion of pillar orientation took place (4). A
constant force plateau was again recorded due to interlocking
with the tissue (5). The shape of the two following cycles was
found to be similar. The first half-cycle differed from the
following ones because of a different initial orientation of the
pillars. The shear resistance was defined as the maximum
shear force corresponding to the average of the absolute
values of both plateaus indicated in Fig. 7a due to the
symmetry of the characteristic shear hysteresis. The obtained
force–displacement curve as well as the shear resistance may
vary with the preload and the experimental setup, which
were both kept constant in our experiments.

Fig. 7b displays the shear resistance against chicken tissue
of the four composite microstructures in comparison to the
pure PDMS. All composite microstructures showed increased
shear resistance compared to pure PDMS. Overall, the shear
resistance increases nearly linearly with increasing elastic
modulus (Fig. 7c). Beam theory predicts the bending stiffness
of a beam to be proportional to the elastic modulus, E. This is
in good agreement with the experimental data described
herein. Additionally, the forces measured over the three
shear cycles do not show large deviations. This was observed
for all samples, especially also for the parylene-coated ones.
Fig. 6 – Microstructure fabrication process. Schematic for
simple pillar structures (a) and for pillar structures with
mushroom tips (b). Exemplary optical pictures are shown on
the right.



Fig. 7 – Shear experiments of micropatterned composite
surfaces against tissue. (a) Characteristic shear hysteresis,
(b) maximum shear force of microstructures manufactured
from pure PDMS and PDMS composites and (c) correlation of
those shear force values with the elastic modulus of the
composites. The values in brackets are estimates and were
calculated using Eq. (3) with the elastic modulus of the PE
composite as Em, Er¼4000 MPa and the reinforcement factor
ξ¼ 488:9. The volume fraction parylene in the pillar region of
the microstructure was estimated to be vr ¼ 0:02 and used
for the calculations. The grey region shows the
approximately linear relationship between shear force and
elastic modulus.
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This indicated that the patterned surfaces stayed intact,
which could also be observed upon testing.

Overall, our experiments underline the feasibility of incor-
porating PDMS based composites in a molding process to
fabricate robust interlocking microstructures. The results

suggest that the shear resistance, which will control the

interlocking action in closing a wound or in fixating an

implant or mesh, is correlated with the modulus of the

material used for the microstructures. Our results suggest

that the composite approach can enable tunable microstruc-

tures for medical applications covering a wide range of

wound and tissue characteristics.
5. Conclusions

In this study, the potential of PDMS based composites for

interlocking microstructures in medical applications was

investigated. PDMS based composites were manufactured

with PE particulate, a parylene coating reinforcement and a

combination of both. Different PDMS composites were inte-

grated in a multiple-molding process and mushroom-like

interlocking structures were successfully manufactured. The

shear resistance was then measured cyclically against

chicken thigh muscle. The following conclusions can be

drawn:

1. The composite approach allowed the modulus of PDMS to
be increased by over an order of magnitude (from 2 to

27 MPa), in good agreement with the Halpin-Tsai equation.
2. At the same time, the high fidelity molding properties of

PDMS were preserved. Patterned microstructures could be

fabricated from multiple composite materials.
3. Shear testing against chicken muscle resulted in charac-

teristic force–displacement hysteresis curves. We demon-

strated the long-term stability of the response under dry

and wet conditions in cyclic experiments of more than 500

cycles. The hysteresis was affected by incorporation of PE

particles or coating with parylene. The shear resistance

was found to correlate with the modulus of the material, in

good agreement with beam theory. Additionally the point

of pillar orientation inversion can be tuned.
4. The proposed approach is a proof-of-principle for custo-

mizing the shear characteristics of microstructures by

tuning their elastic modulus. Before such structures can

become useful for medical applications such as wound

closure, further in vivo and long-term experiments are

warranted.
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Influence of a new self-gripping hernia mesh on male fertility
in a rat model. Surg. Endosc. 24, 455–461.

Kwak, M.K., Jeong, H.-E., Suh, K.Y., 2011. Rational design and
enhanced biocompatibility of a dry adhesive medical skin
patch. Adv. Mater. 23, 3949–3953, http://dx.doi.org/10.1002/
adma.201101694.

Lee, C., Kim, S.M., Kim, Y.J., Choi, Y.W., Suh, K., Pang, C., Choi, M.,
2015. Robust microzip fastener: repeatable interlocking using
polymeric rectangular parallelepiped arrays. ACS Appl. Mater.
Interfaceshttp://dxdoi.org/10.1021/am507559d.

Menaker, G.M., 2001. Wound closure materials in the new
millennium. Curr. Probl. Dermatol. 13, 90–94, http://dx.doi.org/
10.1016/S1040-0486(01)70039-7.

Pang, C., Kim, T.il, Bae, W.G., Kang, D., Kim, S.M., Suh, K.Y., 2012.
Bioinspired reversible interlocker using regularly arrayed high
aspect-ratio polymer fibers. Adv. Mater. 24, 475–479, http://dx.
doi.org/10.1002/adma.201103022.

Pang, C., Koo, J.H., Nguyen, A., Caves, J.M., Kim, M.-G., Chortos, A.,
Kim, K., Wang, P.J., Tok, J.B.-H., Bao, Z., 2015. Highly skin-
conformal microhairy sensor for pulse signal amplification.
Adv. Mater. 27, 634–640, http://dx.doi.org/10.1002/
adma.201403807.

Pang, C., Lee, C., Suh, K.-Y., 2013. Recent advances in flexible
sensors for wearable and implantable devices. J. Appl. Polym.
Sci. 130, 1429–1441, http://dx.doi.org/10.1002/app.39461.

Paretkar, D., Kamperman, M., Martina, D., Zhao, J., Creton, C.,
Lindner, A., Jagota, A., McMeeking, R., Arzt, E., 2013. Preload-
responsive adhesion: effects of aspect ratio, tip shape and
alignment. J. R. Soc. Interface 10, 20130171, http://dx.doi.org/
10.1098/rsif.2013.0171.

http://refhub.elsevier.com/S1751-6161(16)00017-5/sbref1
http://refhub.elsevier.com/S1751-6161(16)00017-5/sbref1
http://dx.doi.org/10.3762/bjnano.5.74
http://dx.doi.org/10.3762/bjnano.5.74
http://dx.doi.org/10.3762/bjnano.5.74
http://dx.doi.org/10.3762/bjnano.5.74
http://dx.doi.org/10.1073/pnas.1534701100
http://dx.doi.org/10.1073/pnas.1534701100
http://dx.doi.org/10.1073/pnas.1534701100
http://dx.doi.org/10.1002/adhm.201200098
http://dx.doi.org/10.1002/adhm.201200098
http://dx.doi.org/10.1002/adhm.201200098
http://dx.doi.org/10.1002/adhm.201200098
http://dx.doi.org/10.1039/c2sm27323c
http://dx.doi.org/10.1039/c2sm27323c
http://dx.doi.org/10.1039/c2sm27323c
http://dx.doi.org/10.1039/c2sm27323c
http://dx.doi.org/10.1016/S0190-9622(88)70083-3
http://dx.doi.org/10.1016/S0190-9622(88)70083-3
http://dx.doi.org/10.1016/S0190-9622(88)70083-3
http://dx.doi.org/10.1016/S0190-9622(88)70083-3
http://dx.doi.org/10.1021/am500616a
http://dx.doi.org/10.1021/am500616a
http://dx.doi.org/10.1021/am500616a
http://refhub.elsevier.com/S1751-6161(16)00017-5/sbref8
http://refhub.elsevier.com/S1751-6161(16)00017-5/sbref8
http://refhub.elsevier.com/S1751-6161(16)00017-5/sbref8
http://refhub.elsevier.com/S1751-6161(16)00017-5/sbref9
http://refhub.elsevier.com/S1751-6161(16)00017-5/sbref9
http://dx.doi.org/10.1016/j.actbio.2011.08.028
http://dx.doi.org/10.1016/j.actbio.2011.08.028
http://dx.doi.org/10.1016/j.actbio.2011.08.028
http://dx.doi.org/10.1016/j.actbio.2011.08.028
http://dx.doi.org/10.1002/smll.201102021
http://dx.doi.org/10.1002/smll.201102021
http://dx.doi.org/10.1002/smll.201102021
http://dx.doi.org/10.1002/smll.201102021
http://dx.doi.org/10.1088/0964-1726/22/2/025013
http://dx.doi.org/10.1088/0964-1726/22/2/025013
http://dx.doi.org/10.1088/0964-1726/22/2/025013
http://dx.doi.org/10.1088/0964-1726/22/2/025013
http://dx.doi.org/10.1007/s10029-008-0451-4
http://dx.doi.org/10.1007/s10029-008-0451-4
http://dx.doi.org/10.1007/s10029-008-0451-4
http://dx.doi.org/10.1021/la900997p
http://dx.doi.org/10.1021/la900997p
http://dx.doi.org/10.1021/la900997p
http://dx.doi.org/10.1073/pnas.1216441109
http://dx.doi.org/10.1073/pnas.1216441109
http://dx.doi.org/10.1073/pnas.1216441109
http://refhub.elsevier.com/S1751-6161(16)00017-5/sbref16
http://refhub.elsevier.com/S1751-6161(16)00017-5/sbref16
http://refhub.elsevier.com/S1751-6161(16)00017-5/sbref17
http://refhub.elsevier.com/S1751-6161(16)00017-5/sbref17
http://refhub.elsevier.com/S1751-6161(16)00017-5/sbref17
http://refhub.elsevier.com/S1751-6161(16)00017-5/sbref17
http://dx.doi.org/10.1021/la7010502
http://dx.doi.org/10.1021/la7010502
http://dx.doi.org/10.1021/la7010502
http://dx.doi.org/10.1146/annurev-matsci-070909-104421
http://dx.doi.org/10.1146/annurev-matsci-070909-104421
http://dx.doi.org/10.1146/annurev-matsci-070909-104421
http://dx.doi.org/10.1146/annurev-matsci-070909-104421
http://dx.doi.org/10.1021/la1029245
http://dx.doi.org/10.1021/la1029245
http://dx.doi.org/10.1021/la1029245
http://dx.doi.org/10.1021/la1029245
http://refhub.elsevier.com/S1751-6161(16)00017-5/sbref21
http://refhub.elsevier.com/S1751-6161(16)00017-5/sbref21
http://refhub.elsevier.com/S1751-6161(16)00017-5/sbref21
http://dx.doi.org/10.1016/S0020-7322(98)00013-0
http://dx.doi.org/10.1016/S0020-7322(98)00013-0
http://dx.doi.org/10.1016/S0020-7322(98)00013-0
http://dx.doi.org/10.3762/bjnano.5.95
http://dx.doi.org/10.3762/bjnano.5.95
http://dx.doi.org/10.3762/bjnano.5.95
http://dx.doi.org/10.1088/1748-3182/2/4/S01
http://dx.doi.org/10.1088/1748-3182/2/4/S01
http://dx.doi.org/10.1088/1748-3182/2/4/S01
http://dx.doi.org/10.1088/1748-3182/2/4/S01
http://dx.doi.org/10.1016/0022-5096(63)90036-X
http://dx.doi.org/10.1016/0022-5096(63)90036-X
http://dx.doi.org/10.1016/0022-5096(63)90036-X
http://dx.doi.org/10.1016/0022-5096(63)90036-X
http://dx.doi.org/10.1016/j.jamcollsurg.2009.01.046
http://dx.doi.org/10.1016/j.jamcollsurg.2009.01.046
http://dx.doi.org/10.1016/j.jamcollsurg.2009.01.046
http://dx.doi.org/10.1016/j.jamcollsurg.2009.01.046
http://dx.doi.org/10.1002/bjs.9006
http://dx.doi.org/10.1002/bjs.9006
http://dx.doi.org/10.1002/bjs.9006
http://dx.doi.org/10.1016/j.pmatsci.2008.07.003
http://dx.doi.org/10.1016/j.pmatsci.2008.07.003
http://dx.doi.org/10.1016/j.pmatsci.2008.07.003
http://refhub.elsevier.com/S1751-6161(16)00017-5/sbref29
http://refhub.elsevier.com/S1751-6161(16)00017-5/sbref29
http://refhub.elsevier.com/S1751-6161(16)00017-5/sbref29
http://dx.doi.org/10.1002/adma.201101694
http://dx.doi.org/10.1002/adma.201101694
http://dx.doi.org/10.1002/adma.201101694
http://dx.doi.org/10.1002/adma.201101694
http://dx.doi.org/10.1021/am507559d
http://dx.doi.org/10.1021/am507559d
http://dx.doi.org/10.1021/am507559d
http://dx.doi.org/10.1016/S1040-0486(01)70039-7
http://dx.doi.org/10.1016/S1040-0486(01)70039-7
http://dx.doi.org/10.1016/S1040-0486(01)70039-7
http://dx.doi.org/10.1016/S1040-0486(01)70039-7
http://dx.doi.org/10.1002/adma.201103022
http://dx.doi.org/10.1002/adma.201103022
http://dx.doi.org/10.1002/adma.201103022
http://dx.doi.org/10.1002/adma.201103022
http://dx.doi.org/10.1002/adma.201403807
http://dx.doi.org/10.1002/adma.201403807
http://dx.doi.org/10.1002/adma.201403807
http://dx.doi.org/10.1002/adma.201403807
http://dx.doi.org/10.1002/app.39461
http://dx.doi.org/10.1002/app.39461
http://dx.doi.org/10.1002/app.39461
http://dx.doi.org/10.1098/rsif.2013.0171
http://dx.doi.org/10.1098/rsif.2013.0171
http://dx.doi.org/10.1098/rsif.2013.0171
http://dx.doi.org/10.1098/rsif.2013.0171


j o u r n a l o f t h e m e c h a n i c a l b e h a v i o r o f b i o m e d i c a l m a t e r i a l s 6 1 ( 2 0 1 6 ) 8 7 – 9 5 95
Pedano, N., Pastor, C., Arredondo, J., Poveda, I., Ruiz, J., Montón, S.,
Molina, M., Hernández-Lizoain, J.L., 2012. Open tension-free
hernioplasty using a novel lightweight self-gripping mesh:
medium-term experience from two institutions. Langenbeck’s
Arch. Surg. 397, 291–295.

Peisker, H., Michels, J., Gorb, S.N., 2013. Evidence for a material
gradient in the adhesive tarsal setae of the ladybird beetle
Coccinella septempunctata. Nat. Commun. 4, 1661, http://dx.
doi.org/10.1038/ncomms2576.

Ratner, B.D., Bryant, S.J., 2004. BIOMATERIALS: where we have
been and where we are going. Annu. Rev. Biomed. Eng. 6,
41–75, http://dx.doi.org/10.1146/annurev.
bioeng.6.040803.140027.

Sanders, D., Lambie, J., Bond, P., Moate, R., Steer, J.A., 2013. An
in vitro study assessing the effect of mesh morphology and
suture fixation on bacterial adherence. Hernia 17, 779–789,
http://dx.doi.org/10.1007/s10029-013-1124-5.

Scheidel, P., Hohl, M.K., 1987. 1 Modern synthetic suture materials
and abdominal wound closure techniques in gynaecological
surgery. Bailliere’s Clin. Obstet. Gynaecol. 1, 223–246, http://dx.
doi.org/10.1016/S0950-3552(87)80052-4.

Shaikh, S., Birdi, A., Qutubuddin, S., Lakatosh, E., Baskaran, H.,
2007. Controlled release in transdermal pressure sensitive
adhesives using organosilicate nanocomposites. Ann. Biomed.
Eng. 35, 2130–2137, http://dx.doi.org/10.1007/
s10439-007-9369-8.

Shin, Y.S., Cho, K., Lim, S.H., Chung, S., Park, S.-J., Chung, C., Han,
D.-C., Chang, J.K., 2003. PDMS-based micro PCR chip with
Parylene coating. J. Micromech. Microeng. 13, 768–774, http:
//dx.doi.org/10.1088/0960-1317/13/5/332.

Spuskanyuk, A.V., McMeeking, R.M., Deshpande, V.S., Arzt, E.,
2008. The effect of shape on the adhesion of fibrillar surfaces.
Acta Biomater. 4, 1669–1676, http://dx.doi.org/10.1016/j.
actbio.2008.05.026.
Tian, Y., Zhao, Z., Zaghi, G., Kim, Y., Zhang, D., Maboudian, R.,
2015. Tuning the friction characteristics of gecko-inspired
polydimethylsiloxane micropillar arrays by embedding Fe3O4

and SiO2 particles. ACS Appl. Mater. Interfaces 7, 13232–13237,
http://dx.doi.org/10.1021/acsami.5b03301.

Tucker, C.L., Liang, E., 1999. Stiffness predictions for unidirec-
tional short-fiber composites: review and evaluation. Compos.
Sci. Technol. 59, 655–671.

Vajpayee, S., Jagota, A., Hui, C.-Y., 2010. Adhesion of a fibrillar
interface on wet and rough surfaces. J. Adhes.http://dxdoi.org/
10.1080/00218460903417834.

Wang, J., Qian, J., Gao, H., 2009. Effects of capillary condensation
in adhesion between rough surfaces. Langmuir 25,
11727–11731, http://dx.doi.org/10.1021/la900455k.

Yang, S.Y., O’Cearbhaill, E.D., Sisk, G.C., Park, K.M., Cho, W.K.,
Villiger, M., Bouma, B.E., Pomahac, B., Karp, J.M., 2013. A bio-
inspired swellable microneedle adhesive for mechanical
interlocking with tissue. Nat. Commun. 4, 1702.

Yu, J., Chary, S., Das, S., Tamelier, J., Turner, K.L., Israelachvili, J.N.,
2012. Friction and adhesion of Gecko-Inspired PDMS flaps on
rough surfaces. Langmuir 28, 11527–11534, http://dx.doi.org/
10.1021/la301783q.

Zhang, C., Li, F., Zhang, H., Zhong, W., Shi, D., Zhao, Y., 2013. Self-
gripping versus sutured mesh for inguinal hernia repair: a
systematic review and meta-analysis of current literature. J.
Surg. Res. 185, 653–660, http://dx.doi.org/10.1016/j.
jss.2013.07.035.

Zhou, M., Pesika, N., Zeng, H., Tian, Y., Israelachvili, J., 2013. Recent
advances in gecko adhesion and friction mechanisms and
development of gecko-inspired dry adhesive surfaces. Friction
1, 114–129, http://dx.doi.org/10.1007/s40544-013-0011-5.

http://refhub.elsevier.com/S1751-6161(16)00017-5/sbref37
http://refhub.elsevier.com/S1751-6161(16)00017-5/sbref37
http://refhub.elsevier.com/S1751-6161(16)00017-5/sbref37
http://refhub.elsevier.com/S1751-6161(16)00017-5/sbref37
http://refhub.elsevier.com/S1751-6161(16)00017-5/sbref37
http://dx.doi.org/10.1038/ncomms2576
http://dx.doi.org/10.1038/ncomms2576
http://dx.doi.org/10.1038/ncomms2576
http://dx.doi.org/10.1038/ncomms2576
http://dx.doi.org/10.1146/annurev.bioeng.6.040803.140027
http://dx.doi.org/10.1146/annurev.bioeng.6.040803.140027
http://dx.doi.org/10.1146/annurev.bioeng.6.040803.140027
http://dx.doi.org/10.1146/annurev.bioeng.6.040803.140027
http://dx.doi.org/10.1007/s10029-013-1124-5
http://dx.doi.org/10.1007/s10029-013-1124-5
http://dx.doi.org/10.1007/s10029-013-1124-5
http://dx.doi.org/10.1016/S0950-3552(87)80052-4
http://dx.doi.org/10.1016/S0950-3552(87)80052-4
http://dx.doi.org/10.1016/S0950-3552(87)80052-4
http://dx.doi.org/10.1016/S0950-3552(87)80052-4
http://dx.doi.org/10.1007/s10439-007-9369-8
http://dx.doi.org/10.1007/s10439-007-9369-8
http://dx.doi.org/10.1007/s10439-007-9369-8
http://dx.doi.org/10.1007/s10439-007-9369-8
http://dx.doi.org/10.1088/0960-1317/13/5/332
http://dx.doi.org/10.1088/0960-1317/13/5/332
http://dx.doi.org/10.1088/0960-1317/13/5/332
http://dx.doi.org/10.1088/0960-1317/13/5/332
http://dx.doi.org/10.1016/j.actbio.2008.05.026
http://dx.doi.org/10.1016/j.actbio.2008.05.026
http://dx.doi.org/10.1016/j.actbio.2008.05.026
http://dx.doi.org/10.1016/j.actbio.2008.05.026
http://dx.doi.org/10.1021/acsami.5b03301
http://dx.doi.org/10.1021/acsami.5b03301
http://dx.doi.org/10.1021/acsami.5b03301
http://refhub.elsevier.com/S1751-6161(16)00017-5/sbref46
http://refhub.elsevier.com/S1751-6161(16)00017-5/sbref46
http://refhub.elsevier.com/S1751-6161(16)00017-5/sbref46
http://dx.doi.org/10.1080/00218460903417834
http://dx.doi.org/10.1080/00218460903417834
http://dx.doi.org/10.1080/00218460903417834
http://dx.doi.org/10.1080/00218460903417834
http://dx.doi.org/10.1021/la900455k
http://dx.doi.org/10.1021/la900455k
http://dx.doi.org/10.1021/la900455k
http://refhub.elsevier.com/S1751-6161(16)00017-5/sbref49
http://refhub.elsevier.com/S1751-6161(16)00017-5/sbref49
http://refhub.elsevier.com/S1751-6161(16)00017-5/sbref49
http://refhub.elsevier.com/S1751-6161(16)00017-5/sbref49
http://dx.doi.org/10.1021/la301783q
http://dx.doi.org/10.1021/la301783q
http://dx.doi.org/10.1021/la301783q
http://dx.doi.org/10.1021/la301783q
http://dx.doi.org/10.1016/j.jss.2013.07.035
http://dx.doi.org/10.1016/j.jss.2013.07.035
http://dx.doi.org/10.1016/j.jss.2013.07.035
http://dx.doi.org/10.1016/j.jss.2013.07.035
http://dx.doi.org/10.1007/s40544-013-0011-5
http://dx.doi.org/10.1007/s40544-013-0011-5
http://dx.doi.org/10.1007/s40544-013-0011-5

	Bioinspired polydimethylsiloxane-based composites with high shear resistance against wet tissue
	Introduction
	Analytical models
	Materials and methods
	Composite preparation
	Microstructure fabrication and characterization
	Tensile tests
	Shear tests

	Results and discussion
	Conclusions
	Acknowledgments
	References




