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A B S T R A C T

This paper gives a procedure for automatically generating finite element meshes with an adaptive mesh size from
Electron Backscatter Diffraction (EBSD) data. After describing the procedure in detail, including preliminary and
image processing steps, an example application is given. The method was used to carry out finite element (FE)
micromagnetic simulations based on real microstructures in the hard magnetic material, MnAl. A fast micro-
magnetic solver was used to compute hysteresis properties from the finite element mesh generated automatically
from EBSD data. The visualization of the magnetization evolution showed that the reversal is governed by
domain wall pinning at twin boundaries. The calculated coercive fields are very sensitive to changes of the
Gilbert damping constant, even for low field rates.

1. Introduction

The magnetic properties of MnAl-C permanent magnets are strongly
affected by the presence of defects in the microstructure which can act
as nucleation or pinning sites for magnetic domain walls [1–6]. A one-
dimensional model has been established by Zijlstra to calculate the
nucleation and pinning fields at antiphase boundaries in MnAl magnets
[1] but other types of defects, e.g. twin boundaries remain less well
understood. Electron backscatter diffraction (EBSD) has been used to
analyse the type and spatial distribution of twin boundaries in such
materials [7]. However, a full understanding of the effect of defects on
the magnetic properties can only be obtained by combining this data
with results from finite element (FE) micromagnetic simulations.

FE models are often based on artificially generated microstructures
using e.g. the random polycrystalline generator NEPER [8]. In one
study, this approach has been used to analyse the magnetic properties
and chemical composition of rare earth permanent magnets [9]. The
accuracy of FE models based on simulated microstructures is limited as
they often represent only an approximation to the real microstructure.
Recent advances in numerical methods [10], computing power, and
structural characterization have led to FE micromagnetic simulations of
permanent magnets that take into account microstructural features in
greater detail [11,12] but producing FE models which are directly

based on real microstructures remains highly desirable.
The direct production of FE models from EBSD data of real micro-

structures in MnAl-C has recently been demonstrated [2] and other
materials have also been analysed in this way e.g. [13]. Computer aided
design methods have been used to reconstruct polycrystalline metals
[14]. In biomedical research there is a great interest of converting real
patient images (e.g. from magnetic resonance imaging, ultrasound) to
computer models [15]. In order to solve homogenization problems in
imaging data the Level Set Method has been applied by Legrain and co-
workers [16]. Due to the high need in the automotive industry to
analyze the mechanical stability of metals a digital material re-
presentation technique has been used [17]. They split the conversion
problem based on imaging data of a dual phase steel into micro-
structure regeneration, application of material parameters, meshing of
the microstructure and computational modeling. Just recently the me-
chanical deformation of Duplex stainless steels have been investigated
based on a close to automatic environment for meshing complex mi-
crostructures [18].

The procedure to create the FE models contains several independent
steps and the aim of the current work is to develop an automated
meshing routine which yields high quality finite element meshes from
EBSD data. The new workflow is based on existing open-source soft-
ware packages and self-written computer code. The technique
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developed will be applied here to generate FE models for micro-
magnetic simulations of twin boundaries in MnAl-C permanent mag-
nets, but it is applicable to any material. The analyzed composition
Mn Al C53 45 2 (at.%) is an as-transformed sample without an overall
preferred orientation of the grains as described by Bittner and co-
workers [7]. Owing to the change of easy directions across twin
boundaries we expect domain wall pinning at those interfaces. Basic
micromagnetic simulations show that domain walls move towards do-
main walls of a misoriented grain, where they remain pinned due to a
reduced exchange and anisotropy energy [19].

We use the generated structures in order to demonstrate the influ-
ence of magnetization dynamics on the coercivity of MnAl-C permanent
magnets. Our computational results show that the magnetization curves
computed by following the path given by the solution of the Landau-
Lifshitz-Gilbert (LLG) equation give lower switching fields than com-
putations that do not include magnetization dynamics, such as energy
minimization. Similar results were reported by Leineweber and
Kronmüller, who showed that the nucleation field for small NdFeB
magnetic particles depends on the rate of change of the external field
[20,21]. Due to fast changes in the energy landscape the system does
not reach the nearest metastable state. Thus reversed magnetic states
may be found at external fields which are up to 20 % smaller than the
ideal nucleation field. Here we show that the pinning field of domain
walls at twin boundaries depend on magnetization dynamics also for
low field rates.

1.1. Content of the paper

The work is split into the Methods and Theory section and the
Results section. Firstly the transfer from EBSD MnAl-C data to a finite
element mesh is explained in detail. Data conversion is necessary to
obtain a pixelated bitmap image, as well as a precise and careful image
manipulation. The actual meshing procedure is a two-step process and
explained later on. The micromagnetic solver is briefly described as
well. In the Results section the needed finite element size is calibrated
with an idealized cuboidal two-grain model. A reduction of original
data complexity reduces the computational demand, therefore we are
merging similar crystallographic orientations according to the results in
Section 3.2. Lastly some selections of the EBSD data are exemplarily
meshed and computed, and discussed later on.

2. Methods and theory

In the methods section all the steps necessary to get the EBSD data
to the final micromagnetic simulation are explained. The pathway and
used software tools are the authors’ choices (Fig. 1). The steps necessary
to create a finite element mesh from the EBSD data can be done using
the graphical user interface (GUI) of the respective software tools as
indicated by the pathway labeled with G. Alternatively, the steps can be
automated by the use of the Python programming language (Python
Software Foundation, www.python.org, version 2.7, last visited on
April 10, 2018) and the command line interface of the software tools
(labeled with A). The most important commands are listed in Algo-
rithm1. For easy reproduction in other fields of research open-source

software is preferred. Several other pathways to the solution are pos-
sible. The required computation steps are called consecutively via
subprocesses, and checked afterwards for completeness. Temporary
files transfer necessary information to the next subprocess in the list.

Alogrithm1 Python master script (basic steps as pseudo code)

(a) dream3d.bluequartz.net, last visited on April 10, 2018
(b) github.com/migvel/color_trace, last visited on April 9, 2018
(c) inkscape.org, last visited on April 9, 2018
(d) Python Imaging Library (PIL), www.pythonware.com/products/pil, last visited on

June 6, 2018
(e) Iso2Mesh [22]

Require: EBSD dataset in Oxford Instruments format (data.ctf)
1: PipelineRunner -p pipeline.json
▷ (a) pipeline.json created once in DREAM.3D GUI to convert orientations (da-
ta.ctf ) to inverse pole figure (IPF) colors (data.png).

Require: Store grain orientations for the micromagnetic solver.
Ensure: Bitmap image of IPF colors (data.png) is created.
2: python color_trace.py < input folder> -colors < N> < output folder>
▷(b) Vectorization of bitmap image and smoothing boundaries

Ensure: Smoothed boundaries vector image (smoothed_data.svg) is created.
3: inkscape -z -e upscaled_smoothed_data.png -w < width> -h

< height> smoothed_data.svg
▷(c) Upscaling of smoothed boundaries

Ensure: Upscaled bitmap image (upscaled_smoothed_data.png) is created.
▷(d) Pixelwise manipulation of upscaled_smoothed_data.png (Cropping, handle
grain boundaries)
▷Create data.txt file with pixelwise replacement of color information to unique
grain id (from 0 to 255)

Ensure: Enhanced bitmap with unique grain ids (data.txt) is created.
4: meshing.m
▷(e) Matlab/octave script to convert data.txt to uint8, applying vol2mesh using
cgalmesh and exporting the mesh

Ensure: Mesh file is created and correct grain orientations are available.
▷Apply micromagnetic solver using mesh file and grain orientations.

2.1. Data conversion

The data of the microstructure of MnAl-C are acquired using a field
emission gun (FEG) scanning electron microscope (SEM) in combina-
tion with electron backscattered diffraction (EBSD). The data contains a
set of crystallographic orientation information of the scanned material.
The orientation information is stored as Euler angles, which can be
transformed to orientation matrices.

DREAM.3D is a convenient software package to reconstruct EBSD
data (dream3d.bluequartz.net, last visited on April 10, 2018), which in
our case is stored in an Oxford Instruments (.ctf) format. We read the
EBSD input file and convert the orientation information to inverse pole
figure (IPF) colors with a [001] reference direction. The resulting
image is than exported to a bitmap (.png) format (Fig. 2 on the left).

Another possibility is the readout of EBSD data using our own
Python code. The original data points are merged into regions with
similar orientations. Each region is given a unique label and the average
orientation is computed using the procedure given in [23]. From the
labels file again a bitmap image can be created using the Python Ima-
ging Library (PIL,www.pythonware.com/products/pil/, last visited on
June 6, 2018).

It is important to consider the region of interest in the orientation

Fig. 1. Software tools are shown for finite element
meshing of native EBSD data with intermediate
image manipulation for enhancing the quality of
the image. G refers to the use of the graphical user
interface (GUI, manual data handling), whereas A
denotes automated processes. Some tools have a
GUI to create an automation script (G,A). The
pseudo code for the automated toolchain is shown
in Algorithm1.
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dataset, especially with respect to the limitation of computer power. If
only certain regions are relevant, or the computer memory is limited
during meshing, the data has to be cut before running the automated
meshing procedure. This can be done either directly in DREAM.3D,
using coordinate information with the Python language or with an
image manipulation tool (e.g. GIMP, www.gimp.org, last visited on
April 10, 2018). A graphical user interface is necessary to initially in-
terpret the microscope data and to find the most important regions.

Twin boundaries were identified using the same criteria as de-
scribed in [7] i.e. if the misorientation axis of the two grains forming
the boundary is within °2 of the normal to one of the {111} planes and
the misorientation angle is ° ± ° ° ± °62 2 , 118 2 or ° ± °180 2 , the
boundary can be described as a pseudo-twin, order-twin or true-twin,
respectively. A bitmap containing the locations of the general grain
boundaries and the three types of twins can then be plotted (Fig. 2 on
the right).

Reducing the complexity of the raw EBSD data is possible by mer-
ging similar neighboring crystallographic orientations. In Section 3.2
we compute the pinning and nucleation fields of neighboring orienta-
tion areas with increasing angle between their orientation axes. The
raw data can be quantified with a step size of a few degrees without
losing important information. Here again the Python language is useful
to find similar crystallographic orientations. In Fig. 2 neighboring or-
ientation areas with an angle difference of less than 5 degrees are as-
sumed to be a single orientation area.

2.2. Image manipulation

EBSD data points are arranged on a regular grid. Features which are
small with respect to the grid size are therefore resolved coarsely and
their boundaries contain sharp angles (Fig. 3(a)), which can lead to
numerical instabilities during the further computations. Using several

image manipulation steps, the rough corners of the orientation areas
are smoothed and scaled up to create a high resolution bitmap image
(Fig. 3(a–c)). Different colors of the processed image are listed as in-
dividual orientations. Here it is not important if the image has inverse
pole figure (IPF) colors, Euler RGB coloring or any other color encoding
[24]. In the end, after finishing the image manipulation, every pixel
group with the same color should have the same orientation, which can
be traced back to the original data.

In the first step of image manipulation the bitmap image is con-
verted to a vector graphic (Fig. 3(b)). Here the corners of the multi
colored image are smoothed using the color trace algorithm found at
github.com/migvel/color_trace, last visited on April 9, 2018. It makes
use of the potrace (a polygon-based tracing) algorithm (po-
trace.sourceforge.net, last visited on April 9, 2018), which is meant for
black and white image vectorization. The algorithm basically splits the
image according to its color, converts it to black and white, performs
the potrace vectorization algorithm and merges the resulting files. The
potrace algorithm is critical close to the images boundary. Here re-
sulting shapes diverge from the original (Fig. 3(b)). Therefore it is
beneficial to cut a certain frame from the bitmap image (Fig. 3(c)). In
order not to lose important information the initial bitmap image should
be chosen large enough.

The resulting vector graphic is scaled up and converted back to a
bitmap image, which is necessary later on for meshing. Due to the color
trace algorithm (merging of individual color vectorizations), the
boundaries of the orientation areas sometimes do not precisely overlap.
We are using a self written Python code to detect and remove those
boundaries. Converting a vector graphic to a bitmap image creates
some intermediate gradient colors between 2 neighboring orientation
areas (Fig. 4(a)). The Python algorithm counts the amount of data
points per color. Under a certain threshold, the boundary colors can be
detected and removed (Fig. 4(b)). Filling up the empty holes is

Fig. 2. Inverse pole figure (IPF) map of
an as-transformed MnAl-C microscopic
EBSD slice (120 μm x 120 μm, with a
resolution of 0.3 μm per datapoint)
converted with Dream3D (dream3d.-
bluequartz.net, last visited on April 10,
2018) on the left. Crystallographic twin
boundaries on the right: true-twins
(red), order-fault-twins (green), pseudo-
twins (blue) and other boundaries
(gray) with a misorientation angle of
about ° ° °180 , 118 , 62 and various other
angles respectively. The black squares
indicate the selections for the finite
element simulations in the results sec-
tion. (For interpretation of the refer-
ences to colour in this figure legend, the
reader is referred to the web version of
this article.)

Fig. 3. Image manipulation from a highly pixelated bitmap image (a) to a vectorized image (b) and a high resolution smoothed bitmap image with a cut of a certain
inaccurate pixel frame (c).
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performed with a simple game of life algorithm. Each empty (white)
pixel gets the pixel information of the most present neighbor (Fig. 4(c)).
The boundaries of the objects in the final bitmap image necessarily
contain sharp angles; however, these are on a far smaller scale than
those in the original data and therefore have a much smaller effect on
later computations. All image processing steps within the Python fra-
mework are performed with the help of the Python Imaging Library.

2.3. Meshing

For micromagnetic simulations we require a 3-dimensional tetra-
hedral mesh of the material composition. As the experimental EBSD
data in this work are 2-dimensional, a mesh with slab geometry in 3D is
generated by stacking several copies of the 2D meshed experimental
data. In later works, it is planned to fill the stack with sequential layers
of EBSD data rather than copies of one layer. In this way true 3D mi-
crostructure data will be available for meshing. Iso2mesh, a matlab/
octave based toolbox, is highly capable of converting bitmap informa-
tion into tetrahedral meshes [22]. Using the Computational Geometry
Algorithms Library (CGAL) [25], uint8 data (unsigned 8-bit integer:
numbers from 0 to 255 according to the color/orientation) is firstly
converted to isosurfaces (islands of the same number). Using Iso2mesh
we extrude the crystallographic pattern to a thin magnetic film and
generate a volumetric finite element mesh. Such a model of the sample
may be used in the future to simulate domain wall processes observed
by Lorentz electron microscopy. Parameters for tuning the mesh are the
maximum tetrahedral element volume and radius, and the maximum
deviation from the isosurfaces. As a result, nodes, elements and faces of
the tetrahedral mesh are written into text files and can be converted to a
number of desired formats. Various file formats are supported by
Iso2mesh itself, whereas other file formats can be generated using Py-
thon. A comparison of the final mesh is shown for a pixelated input
bitmap image (Fig. 5) and an enhanced bitmap image (Fig. 5(b,c)). In
Fig. 5(a) the boundaries are somewhat rounded, but still following the
pixelated input data. Whereas in the enhanced meshes, the boundaries
are much more smoothed. In Fig. 5(c) the adaptive meshing algorithm
of CGAL is shown. We use the ParaView data visualization toolkit [26]
to view the generated meshes from Iso2mesh.

One downside of the CGAL algorithm is the poor resolution of
contact surfaces between two islands. Those surfaces are mostly uneven

and comprise hills and valleys. Using a rather small allowed deviation
from the isosurface reduces the error, but increases the number of mesh
elements tremendously (Fig. 6). The CGAL algorithm uses an adaptive
mesh size, which is more dense close to the isosurfaces (depending
again on the allowed deviation from the isosurface), which is important
to accurately compute the exchange of different orientation areas.

The computational costs are related with the number of finite ele-
ments in the simulated system. In Section 3.1 we compute the largest
possible mesh size, with no or only little difference in final results.

Computing the magneto-static interaction field using a magnetic
scalar potential is an open boundary problem. This can be most easily
solved by expanding the computational mesh outside the magnetic re-
gion [27], which we refer to as air box. We are using the pre- and post-
processing software tool Salome (salome-platform.org, last visited on
16/05/2018) to wrap an adaptive mesh around the initially created
mesh from Iso2mesh. This can be done either in the graphical user
interface of Salome or in its Python interface. The air box is about 11
times larger than the chosen material sample with a coarse mesh size 10
times the initial mesh size.

2.4. Micromagnetic simulations

Computing the magnetic state of a material in an applied external
field requires the minimization of the total energy in the system [28].
One way of solving the problem is minimizing the Gibb’s free energy,

Fig. 4. Intermediate gradient colors between orientation islands (a) are firstly removed (b) and later on filled with a simple game of life algorithm (c).

Fig. 5. Tetrahedral mesh from the original bitmap image (a), the enhanced bitmap image (b) and the triangulated surface mesh with adaptive mesh size (c).

Fig. 6. Comparison of coarse mesh problems at boundaries (a) and coarse mesh
with increased resolution of the boundaries (b). An adaptive mesh size is ap-
plied, when reducing the deviation to the isosurface parameter.
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which is the sum of exchange energy, anisotropy energy and the energy
of the demagnetization field and external field. Another possibility is
the description by the magnetic moments in the system using the
Landau-Lifshitz-Gilbert (LLG) equation. Here every quantized magnetic
moment is precessing around the effective field. Using a damping term
the magnetic moment approaches the energetically favorable equili-
brium state (parallel to the field). The LLG equation is time dependent
whereas minimizing the Gibb’s free energy computes static solutions
only. Consequently the LLG equation is much more computationally
demanding. Both methods require a finite element mesh, representing
the magnetic moments of the material, in which the differential equa-
tions are solved. The optimal mesh size is computed in Section 3.1 for
MnAl-C. In Section 3.4 we are using the time dependent LLG equation
to analyze the relationship between twin boundaries and spin waves in
the magnetization reversal [29]. In Table 1 we show the micromagnetic
simulation parameters.

3. Results

In the results section the optimal mesh size for MnAl-C compounds
is discussed. Reduction of the microscopic data complexity can be
achieved by correcting very small deviations of the angles between two
neighboring orientation areas. For this preliminary calibration steps we
use a simplified model of two cuboidal MnAl-C grains (Fig. 7) where we
compute and analyze nucleation fields Hn and pinning fields Hp. The
easy axis of the first grain is parallel to the field direction. The easy axis
of the second grain is tilted with an angle Θ with respect to the first
grain. With this simplified model a two-domain state in the energy
minimum, caused by the magnetostatic energy, would hinder domain
wall motion. Since we want to investigate pinning fields in the nu-
merical tests with the two-grain model, we do not take into account the
magnetostatic energy.

Later on, magnetic reversal curves are computed and discussed for
specific areas of the microscopic data to obtain a deeper insight into the
MnAl-C magnetic behavior.

3.1. Finite element mesh size

The mesh size is basically the value for the largest edge length of the

tetrahedral finite element. It should be related to the characteristic
length scales of the material; the Bloch parameter

=δ A/K ,0 (1)

and the exchange length

=l A2μ /Jsex 0
2

(2)

These lengths are related to the change of magnetization within a Bloch
or a Néel wall. The Bloch wall width and the Néel wall width are given
by πδ0 and πlex, respectively. In order to resolve the transition of the
magnetization between two domains, the mesh size has to be smaller
than the smallest characteristic length of the material. For MnAl we
obtain min(δ l,0 ex) = 3.6 nm.

In Fig. 8 on the left we show the nucleation fields Hn and the pin-
ning fields Hp of the simplified two-grain model (Fig. 7) as a function of
mesh size. To compute Hn, both grains are initially saturated in z-di-
rection and then reversed by an external field (μ0Hext from +2 T to− 4
T) in 40 mT/ns. For the computation of Hp we start with an initial
configuration M /z = −M 1s for the left grain and M /z =M 1s for the right
one. Here the field μ0Hext is changed by the same rate from 0 T to − 2 T.

There is only a marginal change in Hn with respect to the mesh size,
whereas the computation of Hp requires mesh sizes less than 5 nm to
show acceptable deviations. For the rest of the study we choose a mesh
size of 3 nm. The number of finite elements increase drastically below
3 nm (Fig. 8 on the left, 2nd y axis). The EBSD data analyzed in this
work is on the microscale, which requires a certain scaling for com-
putational investigation (see Section 3.3).

3.2. Reduction of EBSD data complexity

To incorporate the magnetocrystalline easy axes in the FE model,
the regions of homogeneous orientation have to be defined. When the
EBSD data is processed, very small changes in orientation will prompt a
new region which results in a very complex structure. To reduce the
number of such regions and hence also the required computing re-
sources, the tolerance for the change in orientation can be increased,
i.e. we can merge neighboring regions with small orientation differ-
ences. To do this, we first have to determine the maximum deviation
angle possible without changing the simulation results. We use the two-
grain model with 3 nm mesh size and compute the reversal again for
various angles θ. The resulting Hn and Hp are plotted against θ in Fig. 8.

The response of the nucleation field Hn with increasing angle Θ is
much higher than with the pinning field Hp. The change of nucleation
field Hn with increasing angle Θ resembles the Stoner Wohlfahrts curve
for ideal magnets [31]. In further simulations we are especially inter-
ested in pinning effects at twin boundaries. We choose a tolerance angle
of 5° to merge neighboring regions (see Fig. 2) which corresponds to a
maximal change of 68 mT of the pinning field.

3.3. Micromagnetic models of crystallographic defects

The computation of magnetization reversal curves for the models
created from the EBSD data requires a certain scaling. Using the mag-
netic properties of MnAl-C (Table 1) a mesh size of 3 nm is a good trade-
off between accuracy and demand for computing resources (see Section
3.1). The data set given in Fig. 2 has a length of 120 μm with a pixel
length of 0.3 μm. Computing the reversal of the whole slice with a
thickness of 1 μm would require more than 3 trillion finite elements,
which is currently unrealistic to compute, unless using extensive
amount of computer power with a high efficiency in parallelization [9].
Similar to Bance et al. [2] we are downscaling the native EBSD dataset
for predicting real size behavior. 1 μm of the original data corresponds
to 33 nm in our simulation model. In Fig. 9 we show intermediate states
of the automated meshing procedure for specific areas in the native
EBSD microscopic slice (see small squares in Fig. 2). The original data

Table 1
Micromagnetic simulation parameters of the analyzed MnAl-C material.
Parameters are obtained from bulk MnAl-C [30]

Parameter Value Unit

Temperature T 300 K
magnetic polarization Js 0.8 T
exchange constant A 19.9 pJ/m
uniaxial anisotropy constant K 1.5 MJ/m3

Fig. 7. Finite element model for mesh size and angular dependency calibration.
The edge length of the two MnAl-C cubes is 60 nm. The crystallographic or-
ientations (easy axes) of the two grains are parallel and tilted by an angle Θ
with respect to the z-axis, respectively.
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(Fig. 9 col. 1) is automatically improved by the image manipulation
steps described in Section 2.2 (Fig. 9 col. 2). Next to the enhanced
bitmap image the twin boundaries are visualized (Fig. 9 col. 3). The
final upscaled bitmap image is meshed using the Iso2mesh toolbox
(Fig. 9 col. 4) and further extended with an airbox for computing the
stray field using the Salome software package. (See Fig. 10).

3.4. Spin wave dynamics at twin boundaries

We are interested in the switching dynamics close to twin bound-
aries, therefore we compute a full magnetization reversal curve by
solving the LLG equation with an applied external field of 4 T to −4 T
(in-plane y direction) changed linearly in a time of 200 ns. This corre-
sponds to a dimensionless field rate = −β 10 5 as defined by Leineweber

and Kronmüller [21]. They reported differences in static and dynamic
calculations only for fastly switching fields (large field rates) and low
damping. We change the intrinsic Gilbert damping constant α to see the
influence on the switching behavior. Yilgin et al. investigated Co2MnAl
Heusler alloy films and found damping values of 0.014 to about 0.07
depending on the annealing temperature [32]. The damping is typically
measured in thin ferromagnetic films. It can be derived from the line-
width of ferromagnetic resonance (FMR) spectra [33]. In micro-
magnetic simulations many authors set the damping constant to 1 for
numerical convenience. A damping constant of 1 is expected to give the
fastest reversal time [20,34]. We compare the numerical results for
nucleation and pinning at twin boundaries for a damping constant

=α 1.0 and =α 0.02. We use an initial state uniformly magnetized in
+y direction.

Fig. 8. Calibration of the optimal mesh size using nucleation fields Hn and pinning fields Hp at an angle Θ of °15 and °45 (left). The number of finite elements with
respect to the used mesh size is shown on the second y axis on the left. The angular dependency of Hn and Hp on Θ in the range of °0 and °10 is shown on the right. For
angular dependency calculations we use an optimal mesh size of 3 nm. Results are obtained with the finite element model in Fig. 7.

Fig. 9. Selections 1 to 4 from the native EBSD data
in Fig. 2. The pixelated data (col. 1) is improved
through automated vectorization, upscaling and re-
finement (col. 2) as explained in Section 2.2 and
meshed with a downscaling factor of 100 (col. 4) to
reduce needed computational resources. Twin
boundaries are shown in col. 3: true-twins (red),
order-fault-twins (green), pseudo-twins (blue), other
boundaries (gray). Colors in the selected images are
chosen arbitrary for increased contrast necessary in
the image manipulation. (For interpretation of the
references to colour in this figure legend, the reader
is referred to the web version of this article.)
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Analyzing the demagnetization curves for the selections 1 and 2 in
Fig. 9 show no difference, whether the Gilbert damping is set realisti-
cally to =α 0.02 or artificially to =α 1.0. This is expected for low field
rates [20,21]. During the demagnetization the domain wall is pinned at
twin boundaries due to the local energy minima caused by the twinning
angle Θ (compare Fig. 7 and Fig. 8 with the simplified two grain
model). This pinning event is shown in the magnetic states a and b of
the selections. If the external field reaches a certain level, the energy
barriers can be overcome, a spin wave originates and switches the rest
of the material (c to e for selection 1 and c to g for selection 2).

3.5. Effect of Gilbert damping on the switching field

Even though it is expected that the Gilbert damping α at low field
rates has no effect on the switching field, it is not always true.
Depending on the configurations of the twin boundaries, we observe
that the smaller damping reduces the switching field. In other words an
artificial damping of 1 leads to additional pinning at certain twin
boundaries. In Fig. 11 we analyze the selections 3 and 4 of Fig. 9. We
use the same simulation parameters as in the previous section.

The first pinning event can be followed at the magnetic states a and
b for both selections and damping parameters. At c the first nucleation
is occurring. For an artificial damping =α 1.0 a second pinning event
happens (from c to d in both selections). Yet for a realistic damping of

=α 0.02 no further pinning events can be observed and the whole
sample reverses through expansion of the domain wall (c to g in se-
lection 3 and c to f in selection 4). The switching field is drastically
reduced with the low damping term. Interestingly the domain walls of
the low and high damped simulations follow a different path during the
switch. This could be related to the different paths the system follows
according to the LLG equation solved for =α 1.0 and =α 0.02. The

energy decay with time strongly depends on the Gilbert damping con-
stant. For large α the system follows a path that reduces the total energy
quickly, whereas for small α the system almost follows the contour line
of the energy landscape [35,36]. Thus the system moves into a different
region of the energy landscape while loosing only a small amount of
energy. Macroscopically this maybe seen in the different domain wall
trajectories.

4. Summary and conclusion

We have demonstrated an automated toolchain for meshing mi-
croscopy data of MnAl-C grains. The EBSD data contains the crystal-
lographic orientation. Using DREAM.3D or our own Python code, the
data is transformed to a bitmap image with a coloring according to the
crystallographic orientation. In several consecutive steps the bitmap
image is vectorized to smooth the boundaries, increased in size and
stored again as bitmap image. Some further image manipulation is
necessary to obtain single colored orientation areas with smooth
boundaries. A bottleneck in the image manipulation procedure is the
vectorization of the pixelated bitmap. In this step each single color is
vectorized and later on overlaid to a single image. Here certain pro-
blems can occur: boundaries of overlaying images do not coincide or
small orientation areas could disappear. Changing the vectorizing al-
gorithm could improve the stability of the automation process.

The enhanced bitmap image is prepared ideally for the inclusion
into Iso2mesh. Here the 2D image is meshed with the Computational
Geometry Algorithms Library (CGAL) into singular faces according to
the color. In this work the very same layers are stacked to obtain a
volumetric mesh. Alternatively several individual material slices could
be used for the mesh generation. This procedure will be useful to si-
mulate domain wall processes in thin samples observed by Lorentz

Fig. 10. Full demagnetization curves
are computed for the selections 1 and 2
in Fig. 9 solving the LLG equations. In-
itial magnetization is set to 1 T in y
direction. The hystereses are computed
from an external field of 4 T to −4 T
(shown only from 0 T to −2.5 T). Easy
axes configurations are visualized with
yellow arrows on the right. Twin
boundaries: true-twins (red), order-
fault-twins (green), pseudo-twins
(blue), other boundaries (gray). Mag-
netic states are shown at the bottom
with lower-case letters for Gilbert
damping =α 0.02 and =α 1.0. (For in-
terpretation of the references to colour
in this figure legend, the reader is re-
ferred to the web version of this ar-
ticle.)
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transmission electron microscopy. In order to generate a three-dimen-
sional model of the microstructure, that incorporates the magneto-static
interaction field, the initially created volumetric mesh is transferred to
the Salome package to add an airbox. This inclusion of the airbox, in its
current implementation, has certain problems. Adding a graded mesh
for the airbox to an existing mesh is error-prone. Dangling nodes and
badly shaped elements should be avoided. It would be more feasible, in
an advanced toolchain, to keep the meshing step within a single soft-
ware package to reduce conversion errors.

We analyzed the influence of crystallographic defects using the time
dependent Landau-Lifshitz-Gilbert equation. In this work we have
chosen four selections of the native EBSD data to get an impression on
the hystereses properties. Results showed a widespread range of coer-
civity, which clearly indicates that twin boundaries greatly influence
the hysteresis properties and thus the applicability as a permanent
magnet. In order to improve the production routines for creating high

performance permanent magnets, a deeper understanding of the crys-
tallographic defect is important. We investigated spin wave dynamics
close to twinning junctions. Gilbert damping has a significant effect on
the pinning behavior. An artificially introduced damping of 1, which is
numerically preferable, introduces a second pinning event in some of
our analyzed samples. The influence of the damping constant on the
pinning fields are not unexpected and have been reported experimen-
tally as for example in permalloy nanowires [37]. Here we could show,
that realistically low damping in the simulations is reducing the
switching field even for low field rates.

The automated meshing procedure in this work reduces time and
effort for the model creation, enabling the production of huge simula-
tion data for further analysis. The accuracy of the final mesh is certainly
influenced by the quality of the initial dataset. Improving the EBSD
measurements (increasing the information density) will have a positive
effect. Important to notice is, that the automated EBSD meshing

Fig. 11. Full demagnetization curves are computed for the selections 3 and 4 in Fig. 9 solving the LLG equations. Initial magnetization is set to 1 T in y direction. The
hystereses are computed from an external field of 4 T to −4 T (shown only from 0 T to −2.5 T). Easy axes configurations are visualized with yellow arrows on the
right. Twin boundaries: true-twins (red), order-fault-twins (green), pseudo-twins (blue), other boundaries (gray). Magnetic states are shown at the bottom with lower-
case letters for Gilbert damping =α 0.02 and =α 1.0. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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procedure is not limited to micromagnetic simulations. There are many
fields of research where finite element meshes are needed, which would
benefit from the speed up in mesh generation from real material sam-
ples.

Data availability

All data generated or analyzed during this study, including the
created finite element meshes, are available from the corresponding
author upon request.
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