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Abstract

In this contribution we will study the behaviour of the pressure across phase boundaries
in liquid–vapour flows. As mathematical model we will consider the static version of the
Navier–Stokes–Korteweg model which belongs to the class of diffuse interface models. From
this static equation a formula for the pressure jump across the phase interface can be derived.
If we perform then the sharp interface limit we see that the resulting interface condition for
the pressure seems to be inconsistent with classical results of hydrodynamics. Therefore we
will present two approaches to recover the results of hydrodynamics in the sharp interface
limit at least for special situations.

1 The Navier-Stokes-Korteweg Model

In this paper we will consider a mathematical model for liquid-vapour flows including phase
transition which was proposed by Korteweg already in 1901 [17] and which is known as the
Navier-Stokes-Korteweg model. It is an extension of the compressible Navier-Stokes equation
and given by the following system.

∂tρ + ∇ · (ρv) = 0

∂t(ρv) + ∇ · (ρvvt + p(ρ)I) = µ∆v + γε2ρ∇∆ρ. (1)

This is a one fluid model where ρ, v, p(ρ) and µ denote the density, velocity, pressure and the
viscosity of the fluid/vapour respectively. Compared to the original Navier–Stokes equation the
system (1) contains the term γε2ρ∇∆ρ which is supposed to model capillarity effects close to
phase transitions. The pressure p(ρ) as a function of the density ρ is defined as

p(ρ) = ρ2ψ′(ρ) (2)

where ψ is a smooth function of ρ such that ρψ(ρ) is the total free energy density and of the
following form:

ρψ(ρ)

ρ ρ

α1 bb

p(ρ)

β2β1 α1 α2 α2

The values α1 and α2 are defined by the extrema of p and β1 and β2 are the Maxwell points at
which the tangent line on ρψ(ρ) is equal to the difference quotient. The conservation of energy
is neglected in (1). Different phases of the fluid are defined by the size of ρ. If ρ ≤ α1 we are
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in the vapour phase and if ρ ≥ α2 we are in the liquid phase. The equation (2) is known as the
van der Waals equation of state.

For a rigorous derivation of the system (1) one has to consider the equations for conservation of
mass, momentum, energy and the entropy production equation (second law of thermodynamics).
Special conditions for the stress tensor P , which appears in the equations for conservation of
momentum and energy, ensure that the entropy production is nonnegative [7], [2]. This will lead
to the Navier-Stokes-Korteweg model. Then neglecting the equation for the energy we end up
with (1).

An alternative derivation of the static case can be described as follows. First let fix some
notations:

W̃ (ρ) : = free energy density (double well) = ρψ(ρ)

Ẽ0(ρ) : = total energy. (3)

For a moment let us consider the minimizers of

Ẽ0(ρ) =

∫

Ω
W̃ (ρ) dx (4)

under the constraint
∫

Ω
ρ dx = M (conservation of mass) (5)

as a mathematical model for a two-phase fluid at rest. Then there exists β1, β2 and a linear
function l such that l(βi) = W̃ (βi) and l′(βi) = W̃ ′(βi), i = 1, 2. Let l(ρ) =: d0ρ + d1, define
W (ρ) := ρψ(ρ) − l(ρ) and

E0(ρ) :=

∫

Ω
W (ρ(x)))dx. (6)

Then the functionals Ẽ0(ρ) and E0(ρ) differ only in a constant M̃ = d0M + d1|Ω| and have the
same minimizers:

E0(ρ) = Ẽ0(ρ) − M̃. (7)

The solution is not unique. All functions ρ with

ρ(x) = β1 for x ∈ Ω1, (8)

ρ(x) = β2 for x ∈ Ω2, (9)

such that Ω1 ∪ Ω2 = Ω, Ω1 ∩ Ω2 = ∅, |Ω1|β1 + |Ω2|β2 = M are minimizers of (6) under
the constraint (5). The minimum of E0 is equal to 0 and the minimum of Ẽ0 is given by
M̃ = d0M + d1|Ω|. The length of the interfaces is not minimized and the energy due to the
curvature and the surface tension is not included.
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It is known that already van der Waals [27] has recognized first the non-uniqueness of this
approach. There are infinitely many ways to distribute mass of densities β1 and β2 in the
domain Ω such that (4) and (5) are satisfied. He proposed to penalize the occurrence of free
boundaries between the phases by adding a term of the form

∫

Ω
γε2 |∇ρ|2

2
dx

and to consider instead of (4), (5) or (6), (5) the following problem.

Minimize

J̃ε(ρ) :=

∫

Ω

(

W̃ (ρ) + γε2 |∇ρ|2
2

)

dx (total energy)

under the constraint
∫

Ω ρ dx = M (conservation of mass).

Now it is easy to see that the Euler–Lagrange equation for this variational problem is just

W̃ ′(ρ) = γε2∆ρ + λε, (10)

where λε is the Lagrange multiplier corresponding to the mass constraint. Taking the gradient
of both sides in (10) and multiplying with ρ implies

ρW̃ ′′(ρ)∇ρ = γε2ρ∇∆ρ. (11)

The definition of W̃ and a simple calculation using (2) shows that p′(ρ) = ρW̃ ′′(ρ) and therefore
we get from (11)

∇p(ρ) = γε2ρ∇∆ρ. (12)

This is just the static form of (1).

The mathematical model for the dynamical case ∂tv 6= 0 can be obtained as follows (see [22],
[23]). The Lagrangian is given by

L(ρ, v) :=
1

2
ρ|v|2 − W̃ (ρ) − γε2

2
|∇ρ|2

and the Euler-Lagrange equations for the action functional with respect to the constraint ∂tρ +
∇ · (ρv) = 0

∫ T

0

∫

IR3

L(ρ(x, t), v(x, t)) dx dt

by

∂tv + v∇v = ∇
(

−W̃ ′(ρ) + γε2∆ρ
)

.

Using p′(ρ) = ρW̃ ′′(ρ) and conservation of mass we get

∂t(ρv) + ∇ · (ρvvt + p(ρ)I) = γε2ρ∇∆ρ.
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Add some scaled viscosity and obtain

∂tρ + ∇ · (ρv) = 0

∂t(ρv) + ∇ · (ρvvt + p(ρ)I) = µ∆v + γε2ρ∇∆ρ.

This is the Navier-Stokes-Korteweg system (1).

In [3] the authors consider the Cauchy problem for the non–dissipative isothermal case of (1)
in multiple space dimensions (Euler–Korteweg problem). They also allow that the third order
term γε2ρ∇∆ρ depends even nonlinearly on ρ. They prove the wellposedness of the Cauchy
problem. The corresponding one-dimensional isothermal, inviscid initial value problem has been
considered in [4]. Uniqueness and global existence of solutions, close to a stable equilibrium and
furthermore local in time existence for (1) has been obtained in [6]. The existence of global weak
solutions and periodic boundary conditions without any smallness assumptions on the data has
been shown in [5]. Global existence results for weak solutions of (1) in 1–D with µ = 0 and
γ = 0 are available in [1]. Kotschote considers existence of the corresponding initial boundary
value problem to (1) in [18].

Equation (1) can be also considered as a diffusive-dispersive regularization. The analytical and
numerical background for the diffusive-dispersive regularizations for scalar conservation laws
with non convex flux functions is the main subject in [13], [12]. In [26] the author studies a
system of conservation laws as a simplest model for one dimensional isothermal elastodynamics
with no body forces and constant reference density. In this system he extends the usual non
convex stress by viscous and capillary stresses and obtains a model for phase transition. Then
for traveling wave solutions the limit if the viscosity and the capillarity coefficient tend to zero
can be controlled. The system reduces to an overdetermined boundary value problem of second
order on the whole IR. Kinetic relations are then derived which gives the desired informations
for the admissible boundary values.

Usually sharp interface models are derived as the limit of a diffuse ones. In [25] they do it just in
the other way. They derive a diffuse interface model for the direct simulation of two-phase flows
with surface tension, phase change and different viscosities in the two phases. For this they use
ensemble averaging procedure on an atomic scale.

In classical hydrodynamics the zone between two phases or between two immiscible fluids is
represented as a discontinuity. Due to [20] this is a good approximation if the thickness of the
interface is small compared with other characteristic scales of the flow. This model breaks down
if the thickness of the interface is comparable to the curvature or the distance between surfaces.

Slemrod indicates in [24] that the term ρ∇∆ρ in (1) is necessary to describe phase transitions
within this context.

A different approach for the modeling of two phase flows with phase transition can be found in
[20]. In addition to the density, pressure and velocity as in (1) they use also an equation for
the mass concentration of the fluids and end up with the so called Navier-Stokes-Cahn-Hilliard
equations. In some sense this is a physically motivated regularization of the Euler equations. In
a second part of the paper they consider also quasi-incompressible versions of the Navier-Stokes-
Cahn-Hilliard equations.
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In this paper we will study the behaviour of the pressure across the interface. Since a rigorous
theory about this question is not available and difficult, we will concentrate on the static version
of (1). In particular we will study the behaviour of the pressure in the limit if ε → 0. In Section
2 we will quote some recent results which show that the difference of the pressures on both
sides of the interface is of order ε. This seems to contradict the classical result of Landau and
Lifschitz [19], which says that the differenceof the pressures on both sides of the interface is
proportional tothe mean curvature of the interface. Jamet [15] tries toovercome this problem by
defining a modified thermodynamic free energy density. The main idea consists in the definition
of the function ψ = ψ(r) in [15],(19). But from that paper it is not clear, how this function
and its derivatives behave in neighborhoods next to r = 0 and r = 1 quantitatively. In this
paper we will show that we get the expected jump relation for the differenceof the pressures on
both sides of the interface if we use either a scaled surface tension or a modified definition of
the pressure on the basis of a special scaling of the free energy density (see Section 5). In this
context we will see that the scaling/capillarity quantity γε2 can be related to the Mach number
under certain conditions. Using this dependence we achieve an asymptotic expansion of p in the
Mach number and the expected jump condition for p2, the second order coefficient in the Mach
number expansion of p, (see Section 4).
The arguments in Section 4 for the system (1) are prepared in Section 3 for the usual compressible
Navier-Stokes equations.

2 Phase transition and the sharp interface condition

Similar as before we define (assume that γ = 1)

Jε(ρ) :=

∫

Ω

(

W (ρ(x)) +
ε2

2
|∇ρ(x)|2

)

dx (13)

Then the functionals J̃ε, see (10), and Jε differ only in a constant M̃ = d0M + d1|Ω| under the
constraint

∫

Ω ρ(x)dx = M and have the same minimizers.

For ε > 0 the functional Jε, in particular the term ε2

2 |∇ρ(x)|2, penalizes the occurrence of a
large interface. In this case the minimizers are characterized by the following theorem.

Theorem 1 (see [21]) Let β1|Ω| ≤ M ≤ β2|Ω|, where β1, β2 are defined as above and let ρε be
a global minimizer of (13) with

∫

Ω ρdx = M . Then the following statements hold:

a) There exists a sequence (εk)k, εk > 0, with limk→∞εk = 0 such that the corresponding
sequence (ρεk

)k of global minimizers ρεk
converges in L1(Ω) as k → ∞.

b) If ρεj
→ ρ0 in L1(Ω) as j → ∞ then ρ0(x) = β1 or ρ0(x) = β2 for a.e. x ∈ Ω where

β1|A| + β2|Ω\A| = M and A := {x ∈ Ω|ρ0(x) = β1}.

c) The set A is a solution of the following geometric variational problem:

PΩ(A) = min

{

PΩ(F ) : F ⊂ Ω, |F | =
β2|Ω| − M

β2 − β1

}

,
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where PΩ(A) is the perimeter of A in Ω, see [11] for the definition.
(Roughly speaking this result expresses the fact that the boundary ∂A of A has minimal
area since it can be shown by the theory of minimal surfaces that the reduced boundary
∂∗A is smooth and Hn−1((∂A\∂∗A) ∩ Ω) = 0, where Hn−1 is the (n − 1)−dimensional
Hausdorff measure in IRn, (cf. [11]). Note, for sets G with Lipschitz–boundary we have
PΩ(G) = Hn−1(∂G ∩ Ω).)

d) If ρεj
→ ρ0 in L1(Ω) as j → ∞ then the energy Jεj

satisfies

Jεj
(ρεj

) =

∫

Ω

ε2
j

2
|∇ρεj

|2 + W (ρεj
)dx =

√
2c0PΩ(A)εj + o(εj),

where c0 :=
∫ β2

β1

√

W (t)dt.

Remark 2 Item b) of this theorem, in particular the properties of ρ0 and of the sets A, B,
indicate that equation (12) can be considered as a model for two phase flows with phase transition.

Remark 3 Notice that in the case of Theorem 1 the energy Jεj
in the limit εj → 0 is the same

as for E0 . This implies that in this model there is no contribution of some interfacial energy in
the sharp limit.

Furthermore we obtain that in the limit εj → 0 the pressure p(ρ) across the interphase is
continuous. More precisely we get:

Theorem 4 (see [8], Theorem 3.5) Let us assume that we are in the situation of Theorem 1,
a) and b). Let U ⊂⊂ A, V ⊂⊂ Ω\Ā be open sets and ψ be sufficiently smooth. Then we have

p+(ρεk
(x2)) − p−(ρεk

(x1)) = −
√

2c0(n − 1)kmεk + o(εk) (14)

for x1 ∈ U and x2 ∈ V as k → ∞, where the indexes − and + stand for the enclosed phase and
the surrounding phase, see Fig. 1. The symbol km denotes the constant mean curvature of the
(reduced) boundary of A which is given by the sum of the principle curvatures divided by (n−1),
i.e. km = divIν/(n− 1), where the unit normal ν of the interface points into the direction of the
matrix.

Remark 5 Equation (14) implies in particular that for a two–phase system the pressure of the
enclosed phase is always higher than the pressure of the surrounding phase.

Figure 1: Pressure condition
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At first glance the results of Theorem 4 seem not to be consistent with classical results of
hydrodynamics. Landau and Lifschitz ([19], page 301) pointed out that in reality there is a layer
of finite but small thickness between the two media which are in contact. But the layer is so
small that it can be approximated as a curvilinear surface. For curvilinear interfaces between
two media the pressure in both media is different. They derive in [19] that

p+ − p− = −const km, (15)

holds on the interface, where km is the mean curvature of the curvilinear surface and p+ − p− is
the pressure jump across the interface. This seems to contradict the result of Theorem 4 which
indicates that in the limit ε → 0 we have on the interface

p+ − p− = 0. (16)

The corresponding interface condition for the dynamical case with phase transition is

p+ − p− = σkm − [ρ(vν − vI)
2]+− +

[

µ
∂vν

∂ν

]+

−

(17)

and can be found in [9], formular (13).

In the next two sections we will look for a special scaling of (1) in order to recover (15) at least
for special situations. First we will briefly repeat the limit of the compressible Navier-Stokes
equations if the Mach number tends to zero. This will then be generalized to the Navier-Stokes-
Korteweg equations in Section 4.

3 Zero Mach number limit for the compressible Navier-Stokes

equations

In this section we will consider the zero Mach number limit for the compressible Navier-Stokes
equations. It turns out that we get the incompressible Navier-Stokes equations in the limit (for
low Mach number). Let us briefly discuss the main ideas. For the non-dimensionalization of

∂tρ + ∇ · (ρv) = 0

∂t(ρv) + ∇ · (ρvvt) + ∇p(ρ) = µ∆v

we will introduce the following characteristic quantities: xref , tref , vref , pref , ρref , cref :=
√

γpref

ρref

and the Mach number M :=
vref

cref
. After non-dimensionalization the form of the compressible

Navier-Stokes equations is given by

∂tρ + ∇ · (ρv) = 0 (18)

∂t(ρv) + ∇ · (ρvvt) +
1

M2
∇p(ρ) =

1

Re
∆v.

Now we will formally consider the limit M → 0 and assume that the following asymptotic
expansions hold.
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ρ(x, t) = ρ0(x, t) + Mρ1(x, t) + M2ρ2(x, t) + O(M3)

v(x, t) = v0(x, t) + Mv1(x, t) + M2v2(x, t) + O(M3) (19)

p(x, t) = p(ρ(x, t)) = p0(x, t) + Mp1(x, t) + M2p2(x, t) + O(M3).

In case of the corresponding inviscid systems the asymptotic expansions have been proved rigor-
ously in [16]. For the viscous system the arguments are only formal. Using the asymptotic expan-
sion (19) in (18) and comparing terms with the coefficient M−2 and M−1 we obtain: ∇p0(x, t) =
0 and ∇p1(x, t) = 0 respectively. This implies p0 = p0(t) and p1 = p0(t). Conservation of mass
in the whole set Ω implies

∫

∂Ω νv0 =
∫

Ω ∇· v0 = 0 and since
∫

Ω ∂tρ0 + ρ0(t)
∫

Ω ∇· v0 = 0 we have
∂tρ0(t) = 0 and therefore ρ0(t) = const and p0(t) = const. Again we use ∂tρ0 +ρ0(t)∇·v0 = 0
in order to obtain

∇ · v0 = 0. (20)

The momentum equation

∂t(ρv) + ∇ · (ρvvt) +
1

M2
∇p =

1

Re
∆v

implies for terms of order M0:

ρ0∂tv0 + ρ0∇ · (v0v
t
0) + ∇p2 =

1

Re
∆v0. (21)

The equations (20) and (21) are just the system of the incompressible Navier-Stokes equations.
Notice: The pressure which appears in the incompressible Navier-Stokes equations is p2 while
we have p for the compressible one. The relation between p2 and p is given by (19).

4 Zero Mach number limit for the Navier-Stokes Korteweg equa-

tions

In this section we will repeat the arguments from Section 3 for the system (1). In order to
shorten the notation we replace γε2 by λ and µ = 1. We consider

∂tρ + ∇ · (ρv) = 0

∂t(ρv) + ∇ · (ρvvt + p(ρ)I) = ∆v + λρ∇∆ρ. (22)

In this case the non-dimensionalization form of the Navier-Stokes- Korteweg system is given by

∂tρ + ∇ · (ρv) = 0

∂t(ρv) + ∇ · (ρvvt +
1

M2
p(ρ)I) =

1

Re
∆v +

λb2

M2
ρ∇∆ρ
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where b2 :=
ρ2

ref

x2

ref
pref

. The corresponding dimensionless total energy has the form

E(v, ρ) =

∫

Ω

(

M2 ρ

2
v2 + ρψ(ρ) +

λ

2
|∇ρ|2

)

.

Next we want to concentrate on solutions of (1) for v and ρ such that the scaled energy

1√
λ

(E(v, ρ) − M̃) =

∫

Ω

(M2

√
λ

ρ

2
v2 +

1√
λ

ρψ(ρ) +

√
λ

2
|∇ρ|2

)

is uniformly bounded as λ → 0. This leads to the condition M4 ≤ c1λ, c1 > 0 some constant,
and implies for λ the following ansatz:

λ = c2M
δ

with 0 < δ ≤ 4 and c2 > 0 some constant if M ≪ 1. In the following we will choose for δ the
upper bound such that

λ =
M4

b2
(23)

and obtain

∂tρ + ∇ · (ρv) = 0

∂t(ρv) + ∇ · (ρvvt +
1

M2
p(ρ)I) =

1

Re
∆v + M2ρ∇∆ρ. (24)

Using asymptotic expansions as in (19) we obtain in each phase the same equations as in (20),
(21), i.e.

∇ · v0 = 0 (25)

and

ρ0∂tv0 + ρ0∇ · (v0v
t
0) + ∇p2 =

1

Re
∆v0. (26)

In order to derive the pressure condition on the interface between the two phases we will only
consider the static case which we obtain from (24) and which is given by

∇p = M4ρ∇∆ρ.

This implies as before (see (10), (11), (12) ):

ρ∇W ′(ρ) = M4ρ∇∆ρ

∇W ′(ρ) = M4∇∆ρ

9



and in particular

W ′(ρ) = M4∆ρ + c0(M). (27)

The last equation (27) corresponds to (10) with M2 instead of ε. Therefore we can apply the
whole theory to (27) as in [8] to study the behaviour of ρ for the limit M → 0. We obtain

c0(M) = c1kmM2

and therefore the condition

p(ρ(xl)) − p(ρ(xv)) = c1kmM2 + o(M2).

Using the asymptotic expansion p(x, t) = p0(x, t) + Mp1(x, t) + M2p2(x, t) + O(M3) we derive

p(ρ(xl)) − p(ρ(xv)) = p2(ρ(xl)) − p2(ρ(xv)) + o(M2) (28)

= c1kmM2 + o(M2).

This shows that we have recovered the relation (15) for the pressure p2 at least for the special
scaling of λ as in (23). Notice that we obtain this relation for the pressure p2 (sometimes called
hydrodynamic pressure) which enters the incompressible equation

ρ0∂tv0 + ρ0∇ · (v0v
t
0) + ∇p2(ρ) =

1

Re
∆v0. (29)

The equation has been obtained from the compressible Navier-Stokes equations in the limit
M → 0.

5 Phase field like scaling

In Section 1, (4), (6) we have considered

Ẽ0(ρ) =

∫

Ω
ρψ(ρ)dx → Minimum. (30)

We have seen that (30) does not take into account the length of the interfaces. Furthermore the
surface tension of the interface is not included. The minimum of (30) is denoted by M̃.

In order to minimize the length of the interface we considered the functional (see also (10))

J̃ε(ρ) :=

∫

Ω
ρψ(ρ) +

ε2

2
|∇ρ|2dx → Minimum. (31)

This is equivalent to

10



J̃ε(ρ) :=

∫

Ω
W (ρ) +

ε2

2
|∇ρ|2dx + M̃ → Minimum. (32)

Denote the minimum by M̃ε. We have for ε → 0 :

M̃ε → M̃.

This means, in the limit ε → 0 we have for (30) the same energy as for (32), i.e. there is no
contribution which is due to surface energy. However, we obtain from Theorem 1 the minimal
area property of the interface.

In the following we introduce two different ways of scalings to get from the phase field model
(31) a corresponding sharp interface model which includes surface energy. This, in turn, leads
to a non–vanishing jump condition for the pressures at the interface.

(i) The scaled surface tension σ̂
From Theorem 1 we conclude that J̃ε(ρε) has the following asymptotic behaviour

J̃ε(ρε) =
√

2c0ε

∫

∂∗A

dHn−1 +

∫

A

β1ψ(β1) +

∫

Ω\A
β2ψ(β2) + o(ε)

as ε → 0. This means that for this model the surface tension is related to the width ε of
the interface, i.e. σ =

√
2c0ε.

In order to get more insight into equilibrium conditions of that kind of functionals, let us
study necessary conditions for minimizers of the energy functional

Ĵε(ρ) = σ̂ε

∫

∂∗A

dHn−1 +

∫

Ω
ρψ(ρ)dx

under the condition
∫

Ω ρ dx = M .

Theorem 6 Let Ω ⊂ IRN be a domain with C1–boundary and let ρ ∈ BV (Ω), where
BV (Ω) denotes the space of functions of bounded variation. Furthermore, let A ⊂ Ω be a
non–empty open set. Then any minimizer ρ̂ε of the energy functional

Ĵε(ρ) = σ̂ε

∫

∂∗A

dHn−1 +

∫

Ω
ρψ(ρ)dx,

∫

Ω
ρdx = M,

fulfills the condition

(i) p(ρ̂+
ε ) − p(ρ̂−ε ) = −2σ̂ε(n − 1)km on ∂∗A, where ρ̂+

ε and ρ̂−ε denote the traces of
ρ̂ε in Ω− and Ω+ respectively.

If, in addition, ρ̂ε is a global minimizer with ρ̂ε(x) ∈ (−∞, α1] in A and ρ̂ε(x) ∈ [α2,∞)
in Ω\A. Then

(ii) ρ̂ε(x) = β1 for a.e. x ∈ Ω and ρ̂ε(x) = β2 for a.e. x ∈ Ω\A.

11



Proof: To obtain the pressure condition we choose variations by means of a one parametric
family of diffeomorphisms of Ω given by the initial value problem

Φ(0, x) = x and Φ,τ (τ, x) = ξ(Φ(τ, x))

for x ∈ Ω, where ξ ∈ C∞
c (Ω, IRn) is arbitrary. Then Φ fulfills the following properties:

(i) Φ(τ, ·) is the inverse of Φ(−τ, ·), i. e. Φ(τ, Φ(−τ, x)) = x. In consequence,

Id = Φ,x

(

τ, Φ(−τ, x)
)

Φ,x(−τ, x).

(ii)
d

dτ

(

det Φ,x(τ, x)
)

|τ=0 =
(

∇ · ξ
)

(x).

(iii)
d

dτ

(

(

Φ,x(τ, x)
)−1

)
∣

∣

∣

τ=0
= −∇ξ(x).

We set x = Φ(−τ, y) and consider for any fixed h ∈ BV (Ω) with
∫

Ω hdx 6= 0:

j(τ, ω) :=

∫

Ω

(

ρ̂ε(Φ(−τ, y)) + ωh(Φ(−τ, y))
)

dy − M

=

∫

Ω

(

ρ̂ε(x) + ωh(x)
)

detΦ,x(τ, x)dx − M.

Clearly, j(0, 0) = 0. Moreover, j ∈ C1 and

∂j

∂τ
(τ, ω) =

∫

Ω

(

ρ̂ε(x) + ωh(x)
)

∇ · ξ dx,

∂j

∂ω
(τ, ω) =

∫

Ω
h(x)detΦ,x(τ, x)dx with

∂j

∂ω
(0, 0) 6= 0.

Due to the Implicit Function Theorem, there exists a C1–function η : IR → IR such that

η(0) = 0 and j(τ, η(τ)) = 0 (33)

for τ sufficiently small. Without loss of generality we may assume that (33) holds for
τ ∈ [−τ0, τ0]. Differentiating, we get

∂j

∂τ
(τ, η(τ)) +

∂j

∂ω
(τ, η(τ)) η′(τ) = 0

Consequently,

η′(0) = −
∂j
∂τ

(0, 0)
∂j
∂ω

(0, 0)
.

Now we set
ρ̂τ

ε(x) = ρ̂ε(Φ(−τ, x)) + η(τ)h(Φ(−τ, x)) for |τ | ≤ τ0.

According to (33) ρ̂τ
ε , τ ∈ [−τ0, τ0], are admissible comparison functions which implies

0 =
d

dτ
Ĵε(ρ̂

τ
ε)

∣

∣

τ=0
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since ρ̂ε = ρ̂0
ε.

Next we determine the above time derivative. The first variation of the area integral, i.e.
σ̂ε

∫

∂∗A
dHn−1, is computed in the setting of sets of bounded perimeter (see for instance

[11] and [10]). For completeness we sketch the arguments. In the following χ denotes the
characteristic function of A and |∇χ| the variation. As before we set x = Φ(−τ, y) and
define

χτ (x) = χ(Φ(−τ, x)). (34)

Then

σ̂ε

∫

∂∗A

dHn−1 = σ̂ε

∫

Ω
|∇χτ | = σ̂ε

∫

Ω
|∇χ(Φ(−τ, y))|dy

= σ̂ε

∫

Ω
detΦ,x(τ, x)

∣

∣

(

Φ,x(−τ, x)
)T∇χ(x)

∣

∣dx

= σ̂ε

∫

Ω
|(Φ,x(τ, x))−T ν|detΦ,x(τ, x)|∇χ|dx,

where ν = − ∇χ
|∇χ| is the generalized unit normal which is a |∇χ|–measurable function.

¿From the properties (i) – (iii) we conclude

d

dτ

(

∫

Ω
|χτ |

)
∣

∣

∣

τ=0
=

∫

Ω

(

∇ · ξ − ν · ∇ξν
)

|∇χ|.

Applying Gauß’ theorem on manifolds gives

∫

Ω

(

∇ · ξ−ν · ∇ξ ν
)

|∇χ| =

∫

∂∗A

(

∇ · ξ − ν · ∇ξ ν
)

dHn−1

=

∫

∂∗A

(

div∂∗Aξ
)

dHn−1 =

∫

∂∗A

(

div∂∗Aν
)

(ξ · ν)dHn−1,

where the symbol div∂∗A denotes the tangential divergence with respect to the interface
∂∗A and ν is the unit outer normal vector pointing into the direction of the +–phase. Now
we compute d

dτ

∫

Ω ρ̂τ
εψ(ρ̂τ

ε)dy:

d

dτ

∫

Ω
ρ̂τ

εψ(ρ̂τ
ε)dy

∣

∣

∣

τ=0

=
d

dτ

∫

Ω

(

ρ̂ε(x) + η(τ)h(x)
)

ψ
(

ρ̂ε(x) + η(τ)h(x)
)

detΦ,x(τ, x) dx
∣

∣

∣

τ=0

=

∫

Ω
ρ̂εψ(ρ̂ε(x))∇ · ξ(x) dx +

∫

Ω

∂ρ̂εψ(ρ̂ε(x))

∂ρ̂ε
η′(0)h(x)dx

=

∫

Ω
ρ̂εψ(ρ̂ε)∇ · ξ dx +

∫

Ω

∂ρ̂εψ(ρ̂ε)

∂ρ̂ε

∫

Ω ρ̂ε ∇ · ξ dx
∫

Ω hdx
h dx

=

∫

Ω
ρ̂εψ(ρ̂ε)∇ · ξ dx + λ

∫

Ω
ρ̂ε ∇ · ξdx,

13



with λ =
∫

Ω
∂ρ̂εψ(ρ̂ε)

∂ρ̂ε
hdx/

∫

Ω hdx. By trace–arguments of BV–functions we derive
∫

Ω

(

ρ̂ε(x)ψ(ρ̂ε(x)) + λ ρ̂ε

)

∇· ξ dx =

∫

A

(∂ρ̂εψ(ρ̂ε)

∂ρ̂ε
+ λ

)

ξ · d[Dρ̂ε]

+

∫

Ω\A

(∂ρ̂εψ(ρ̂ε)

∂ρ̂ε
+ λ

)

ξ · d[Dρ̂ε]

+

∫

∂∗A

(

ρ̂−ε ψ(ρ̂−ε ) − ρ̂+
ε ψ(ρ̂+

ε ) + λ(ρ̂−ε − ρ̂+
ε )

)

ξ · ν dHn−1.

Here, [Df ] denotes the derivative of f in the sense of Radon measure. Thus we obtain

0 =
d

dτ
Ĵ(ρ̂τ

ε)
∣

∣

∣

τ=0
= σ̂ε

∫

∂∗A

(

div∂∗Aν
)

(ξ · ν)dHn−1

+

∫

A

(∂ρ̂εψ(ρ̂ε)

∂ρ̂ε
+ λ

)

ξ · d[Dρ̂ε] +

∫

Ω\A

(∂ρ̂εψ(ρ̂ε)

∂ρ̂ε
+ λ

)

ξ · d[Dρ̂ε]

+

∫

∂∗A

(

ρ̂−ε ψ(ρ̂−ε ) − (ρ̂+
ε ψ(ρ̂+

ε ) + λ(ρ̂−ε − ρ̂+
ε )

)

ξ · ν dHn−1.

Since ξ may be arbitrarily chosen, we get

∂ρ̂εψ(ρ̂ε)

∂ρ̂ε
= −λ for a.e. x ∈ Ω.

Now we take variations in the neighbourhood of a point of ∂∗A which are of the form
ξ = gν, where g ∈ C∞

0 (Ω) is arbitrary. This yields

σ̂ε div∂∗Aν = ρ̂+
ε ψ(ρ̂+

ε ) − ρ̂−ε ψ(ρ̂−ε ) + λ(ρ̂+
ε − ρ̂−ε ) on ∂∗A.

In consequence,
p(ρ̂+

ε ) − p(ρ̂−ε ) = −σ̂ε (n − 1)km on ∂∗A

since km = 1
n−1div∂∗Aν and p(ρ̂ε) = ρ̂ε

∂ρ̂εψ(ρ̂ε)
∂ρ̂ε

− ρ̂εψ(ρ̂ε).

To item (ii): We subtract from the energy functional Ĵε(ρ̂ε) the Maxwell line, i.e.

J́ε(ρ̂ε) = Ĵε(ρ̂ε) −
∫

Ω
d0 + d1ρ̂ε dx.

Then the minimizers of J̃ε and J́ε are the same due to the constraint
∫

Ω ρdx = M . The

global minimizers of J̃ε are obviously of the structure:

ρ́ε(x) = β1 for a.e. x ∈ A and ρ́ε(x) = β2 for a.e. x ∈ Ω\A.

This completes the proof. ¥

Remark 7 From Theorem 1 and Theorem 6 we can extract the following conclusions.

If we replace the small layer of thickness ε between the two media by a curvilinear surface
as Landau and Lifschitz suggested, we also have to rescale the surface tension. The di-
mensionless surface tension is then given by the free energy per unit length, i.e. σ̂ = σ/ε.
Correspondingly we have to replace the difference of the pressures by their dimensionless
ones, i.e.

p̂+ − p̂− =
p+

ε
− p−

ε
= 2σ̂km.
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(ii) The scaled free energy ρψε(ρ)
Another possibility is to scale already the free energy density in the phase field model,
cf. (32), such that we obtain in the sharp limit ε → 0 a non–vanishing contribution of the
surface energy. This type of scaling is in particular for many numerical applications of
crucial importance.

We will modify the energy functional of (32) in such a way that we keep the structure of
the minimizers but the corresponding limit for ε → 0 is different from M̃ . This can be
obtained by a suitable scaling of

W (ρ) +
ε2

2
|∇ρ|2

by some power of ε. In order to get some contribution which is different from 0 and ∞ we
have to scale with 1

ε
.

Therefore we consider the case

Iε(ρ) :=
1

ε

∫

Ω
W (ρ) +

ε2

2
|∇ρ|2dx + M̃ → Minimum. (35)

The limit (ε → 0) of the energy Iε is now
√

2c0PΩ(A) + M̃ , which is different from that
one in (32). The minimizers are the same as in (32).

It turns out that the functional in (35) satisfies the following identities.

Iε(ρ) =

∫

Ω

1

ε
W (ρ) +

ε

2
|∇ρ|2dx + M̃

=

∫

Ω

1

ε
(ρψ(ρ) − l(ρ)) +

ε

2
|∇ρ|2dx + d0M + d1|Ω|

=

∫

Ω

1

ε
(ρψ(ρ) − l(ρ)) +

ε

2
|∇ρ|2dx +

∫

Ω
l(ρ) (36)

=

∫

Ω

1

ε
(ρψ(ρ) − l(ρ)) + l(ρ) +

ε

2
|∇ρ|2dx

=

∫

Ω
ρψε(ρ) +

ε

2
|∇ρ|2dx

where ψε(ρ) is defined by

ρψε(ρ) =
1

ε
(ρψ(ρ) − l(ρ)) + l(ρ). (37)

Therefore instead of (32) we consider the functional

Iε(ρ) =

∫

Ω
ρψε(ρ) +

ε

2
|∇ρ|2dx. (38)
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For the following arguments it is important to notice, that the minimizers of Iε and J̃ε are
the same since Iε − M̃ = 1

ε
(J̃ε − M̃) but the values of the minima of Iε are different. Let

us consider the Euler-Lagrange-equation of (38):

d

dρ
(ρψε(ρ)) − ε∆ρ = λ̃ε (39)

where λ̃ε is the Lagrange multiplier with respect to the constraint
∫

Ω ρ = M .

Since pε(ρ) := ρ2ψ′
ε(ρ) we have

pε(ρ) =
1

ε
p(ρ) +

1 − ε

ε
d1 (40)

where p(ρ) = ρ2ψ′(ρ) is defined as in (2) (see also [8]). If x ∈ U or x ∈ V we can prove
that pε(ρε(x)) converges for a subsequence ε → 0. This can be seen as follows. On U we
have (notice that also ρ depends on ε)

pε(ρ) = −ρψε(ρ) +
ρ

ε
W ′(ρ) + ρ(x)d0

= −1

ε
(ρψ(ρ) − l(ρ)) − l(ρ) +

ρ

ε
W ′(ρ) + ρ(x)d0

= −1

ε
W (ρ(x)) +

ρ

ε
W ′(ρ) − d1.

Due to [8] (see proof of Theorem 3.4) the convergence of ρ
ε
W ′(ρ) is valid. Since W is con-

tinuous and |ρ(x)− β1| = O(ε) (see [8], Theorem 4.10) we have the pointwise convergence
also for the term 1

ε
W (ρ(x)). On V we can argue in a similar way.

In order to see the relation to the static version of the Navier-Stokes- Korteweg equation we use

∇pε(ρ) = 2ρ∇ρψ′
ε(ρ) + ρ2ψ′′

ε (ρ)∇ρ. (41)

and (39) to obtain

ρ∇ d

dρ
(ρψε(ρ)) = ερ∇∆ρ

ρ∇
(

ψε(ρ) + ρψ′
ε(ρ)

)

= ερ∇∆ρ

ρ
(

ψ′
ε(ρ)∇ρ + ∇ρψ′

ε(ρ) + ρψ′′
ε (ρ)∇ρ

)

= ερ∇∆ρ

ρ
(

2ψ′
ε(ρ)∇ρ + ρψ′′

ε (ρ)∇ρ
)

= ερ∇∆ρ

∇pε(ρ) = ερ∇∆ρ.
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In fact this is the static form of the Navier-Stokes-Korteweg equation for the pressure pε as
defined in (40) and the functional Iε as in (35). From Theorem 4 we obtain for p

p(ρεk
(x2)) − p(ρεk

(x1)) = −
√

2c0(n − 1)kmεk + o(εk)

for x1 ∈ U and x2 ∈ V as k → ∞, where km is the mean curvature of the boundary of A. Then
(40) implies for pε the jump condition

pε(ρ(x2)) − pε(ρ(x1)) =
1

ε
p(ρ(x2)) −

1

ε
p(ρ(x1))

= −
√

2c0(n − 1)km + o(1).

This means that for the pressure pε(ρ) as defined in (40) we obtain the jump condition as in
Landau and Lifschitz ([19], page 301), i.e. (15). While p is the thermodynamic pressure as defined
in (2) and which appears in (1) the pressure pε(ρ) as in (40) behaves more ”incompressible”,
since small perturbations for ρ imply large perturbations for the pressure pε(ρ) if ε is small.
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