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A B S T R A C T

Bio-inspired fibrillar surfaces with reversible adhesion to stiff substrates have been thoroughly
investigated over the last decade. In this paper we propose a novel composite fibril consisting of
a soft tip layer and stiffer stalk with differently shaped interfaces (flat vs. curved) between them.
A tensile stress is applied remotely on the free end of the fibril whose other end adheres to a rigid
substrate. The stress distributions and the resulting adhesion of such structures were
numerically investigated under plane strain D(2 ) and axisymmetric D(3 ) conditions. The stress
intensities were evaluated for different combinations of layer thickness and Young’s moduli. The
adhesion strength values were found to increase for thinner layers and larger modulus ratio;
these trends are also reflected in selected experimental results. The results of this paper provide
a new strategy for optimizing adhesion strength of fibrillar surfaces.

1. Introduction

Nature provides many concepts for temporary and reversible adhesion to various substrates, e.g. on plants and animals (Gorb,
2007, 2008). Geckos and insects use hairy structures whose adhesion is due to intermolecular forces (Arzt et al., 2003; Autumn et al.,
2000, 2002; Gao et al., 2005; Huber et al., 2005). Transferring nature’s solution into artificial structures that may eventually find
technological applications is the current objective of research and development efforts (Boesel et al., 2010; Kamperman et al., 2010;
Menon et al., 2004; Purtov et al., 2015; Sathya et al., 2013). Many reversible attachment systems (Paretkar et al., 2011) based on
micropatterns (del Campo and Arzt, 2011) have been investigated in the literature (Arzt et al., 2002; Barreau et al., 2016; del Campo
and Arzt, 2007; Greiner et al., 2009; Mengüç et al., 2012; Spolenak et al., 2005).

Recent modelling studies have pointed to the importance of optimizing the distribution of interfacial stresses in order to realize
high adhesion. Following biological examples, fibrils with spatula and mushroom-shaped tips have repeatedly been demonstrated to
exhibit superior adhesion performance (del Campo et al., 2007; Gorb et al., 2007; Greiner et al., 2007; Kim and Sitti, 2006).
Numerical simulations have suggested that the main reasons for improved adhesion is the reduction of the stress magnitudes
associated with the corner singularity, which is likely to act as a crack initiation point in straight homogeneous punch (SHP) fibrils
(Khaderi et al., 2015). Spuskanyuk et al. (Spuskanyuk et al., 2008) showed numerically that in mushroom fibrils the edge stresses
were significantly reduced when compared to those of SHP and other shapes. Based on earlier work by Akisanya and Fleck (1997)

http://dx.doi.org/10.1016/j.jmps.2016.11.017
Received 16 September 2016; Received in revised form 8 November 2016; Accepted 17 November 2016

⁎ Corresponding author at: INM – Leibniz Institute for New Materials, Campus D2 2, Saarbrücken, Germany.
E-mail address: progress@leibniz-inm.de (E. Arzt).

J. Mech. Phys. Solids 99 (2017) 357–378

Available online 01 December 2016
0022-5096/ © 2016 Published by Elsevier Ltd.

MARK

http://www.sciencedirect.com/science/journal/00225096
http://www.elsevier.com/locate/jmps
http://dx.doi.org/10.1016/j.jmps.2016.11.017
http://dx.doi.org/10.1016/j.jmps.2016.11.017
http://dx.doi.org/10.1016/j.jmps.2016.11.017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmps.2016.11.017&domain=pdf


and Khaderi et al. (2015) on the corner stress singularity, we have recently addressed the stress distributions of mushroom fibrils
(Balijepalli et al., 2016). In an extensive parametric study, we showed that such structures benignly distribute tractions along the
interface and reduce the magnitude of the stresses associated with the singularity at the corner. This is suggested to be the main
cause of the higher adhesion of mushroom structures while the onset of detachment is shifted away from the corner to the centre of
the interface (Aksak et al., 2014; Balijepalli et al., 2016; Carbone and Pierro, 2012).

Mushroom tips are often manufactured by manual inking of previously made microstructures in a prepolymer and subsequent
curing in contact with a smooth counter surface (Fischer et al., 2016; Greiner et al., 2007; Murphy et al., 2009; Varenberg and Gorb,
2007). Tip and stalk material can be identical, but choosing a softer tip layer can further increase adhesion, especially to rough and
deformable surfaces such as skin (Bae et al., 2013b; Kroner et al., 2012b; Kwak et al., 2011). In related work, Waters et al. (2009)
have studied numerically how a slight waviness in the surface can increase the adhesion strength in the JKR regime. Gao and Yao
(2004) have shown theoretically that adhesion can be enhanced by optimizing shape and by reducing size. Depending on the packing
density and the amount of prepolymer used for the inking, not only isolated tips can be achieved but also connection among several
or all fibrils (Liu et al., 2009; Vajpayee et al., 2009). Despite these benefits, mushroom structures suffer from the drawbacks that
their fabrication is complicated, does not always lead to reproducible results and can hardly be scaled up to larger areas.

An alternative way to manipulate the interfacial stresses is to create fibres with gradients in mechanical properties (Bae et al.,
2013a; Minsky and Turner, 2015; Scholz et al., 2008; Yao and Gao, 2010; Yoon et al., 2011). The ladybug has recently been shown to
exhibit attachment hairs with at least two property levels, i.e. a soft tip layer with a modulus of about 1.2 MPa attached to a stiff stalk
with a modulus of about 6.8 GPa (Peisker et al., 2013). According to Gorb and Filippov (Gorb and Filippov, 2014) such structures
tend to enhance adhesion properties, especially against substrates with unpredictable roughness.

In this paper, we propose a novel two-material composite fibril with a sharp transition in modulus as an alternative to reduce the
singularity at the corner. For modelling the stress singularities, the fibril was assumed to have a straight punch shape, but to consist
of a comparatively stiff stalk and a soft layer at its tip. A detailed numerical study is presented of the stress distributions along and
near differently shaped interfaces between the two materials, as shown in Fig. 1. The system parameters are the Young’s moduli
E E( , )1 2 and the thicknesses L L( , )1 2 of, respectively, the stalk and the soft tip layer. For comparison, adhesion experiments to glass
were performed with single macroscopic composite fibrils.

2. Numerical and experimental methods

2.1. Numerical simulations

A compliant composite fibril, with diameter D and length L, was assumed to adhere to a rigid substrate with no defects
(interfacial cracks) along the interface. The ratio of L to D was 2 in all the simulations and experiments, because of practical
limitations in the fabrication procedure. The fibril was considered to be an isotropically elastic and incompressible solid. The
boundary condition was assigned to be sticking friction which totally suppressed sliding of the fibril against the substrate. A remote
stress σAwas applied on the free end of the fibril (Fig. 1), which results in a stress singularity at the fibril-substrate interface (Akisanya
and Fleck, 1997). The corner singularity method was adopted from (Akisanya and Fleck (1997) and Khaderi et al. (2015). The
treatment follows that of our earlier paper on mushroom-shaped fibrils (Balijepalli et al., 2016). The solution based on the detailed
asymptotic corner singularity is explained in Appendix A. As seen in Eq. (A10) (Appendix A), the adhesion strength of the composite
fibril SI can be expressed as follows

Fig. 1. Schematic of different composite fibril interfaces, namely a flat interface, a spherical (R D= ), and a hemispherical interfaces (R D= /2), considered in the
current paper. The parameter R is the radius of curvature of the interface, D is the fibril diameter, L is the total height of the composite fibril,L1 and L2 are the

thicknesses of the stiff stalk (#1, with modulus E1) and the soft layer (#2, with modulus E2) respectively. The composite fibrils adhere to a rigid substrate. For a remote

tensile stressσA applied on the free end, the normal stress distribution is calculated along the fibril/substrate interface.
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where E2 is Young’s modulus of the soft layer in contact with the rigid substrate,W is the adhesion energy, l is the crack length and a∼

is the calibration coefficient of a composite fibril.
The normalized adhesion strength is defined as (Eq. (A11)): S S a a/ = /∼I punch

1 where Spunch is the adhesion strength of the straight
homogeneous punch (SHP) and a1 its calibration coefficient.

Following the expectation that the interfacial stress distribution would be modulated by the geometry of the interface, three
different interface shapes were considered, i.e. flat and two spherical interfaces (R D= and R D= /2) as shown in Fig. 1. Calculations
were performed for plane strain D(2 ) and axisymmetric D(3 ) conditions. Only D3 results will be discussed in the main paper while the
D2 results are presented in Appendix C. For each interface shape, we have examined six different thickness ratios
(L L/ = 0.25, 0.20, 0.15, 0.10, 0.052 and 0.005) and five different Young’s modulus ratios (E E and/ =2, 10, 10 , 10 101 2

2 3 6) for all
axisymmetric D(3 ) fibrils. For plane strain D(2 ) fibrils only five different thickness ratios (L L/ = 0.25, 0.20, 0.15, 0.102 and 0.05)and
four different Young’s modulus ratios (E E and/ =2, 10, 10 101 2

2 3) were considered. For the simulations, the Poisson’s ratio was
0.49999 for all materials in accordance to incompressibility.

A mesh validation study was performed to identify the optimum mesh density and the element size along the interface was
chosen such that further mesh refinement did no longer influence the results (within 0.5% in the stress values). We used linear
quadrilateral hybrid elements for plane strain (Abaqus terminology element CPE4RH) and axial symmetry (CAX4RH) (Abaqus6.11,
2011). The total number of elements varied accordingly from 100,000 to 600,000 for different investigated geometries. The mesh
along the interface was much finer than elsewhere to extract more precise information from this region.

2.2. Fibril fabrication

In addition to the numerical simulation, adhesion was tested in selected experiments on composite fibrils with macroscopic
dimensions (diameter 2mm, height ca. 4mm and varying soft layer thickness). The fibrils consisted of a stiff stalk; for this,
poly(ethyleneglycol) dimethacrylate (PEGdma, Sigma-Aldrich, St. Louis, MO, USA; E = 350 MPa) or polydimethylsiloxane (PDMS,
Sylgard 184, Dow Corning, Midland, MI, USA; E=2 MPa) were used. The softer tip layer consisted of polyurethane Polyguss 74 − 41
(PU, PolyConForm GmbH, Duesseldorf, Germany) with E = 900 kPa. Thus, composites fibril structures with an elastic modulus ratio
of stiff to soft of about 350 and 2, and two interface geometries, flat and hemispherical (R D= /2), were generated. As control
samples, fibrils consisting entirely of PU were manufactured.

The fibrils were fabricated in a two-step moulding process as shown in Fig. 2. In a first step, the stalk of the composite fibril was
generated using a custom-made aluminum mould (Fig. 2a). The soft layer was added to the fibril in the second moulding step
(Fig. 2b): The second pre-polymer, PU, was applied on top of the fibril and the superfluous polymer was removed. To realize different
thicknesses of the soft material, spacers with different thickness were used. Cross-sections of the final fibrils are shown in the optical
micrograph in Fig. 2b. A more detailed description of the fabrication will be published elsewhere (Fischer et al., 2016).

2.3. Adhesion experiments

Normal adhesion experiments were performed using a custom-built, slightly modified setup following Kroner et al. (2012a). A
nominally flat glass substrate was used as a probe and the specimen was aligned by optical inspection. During the adhesion

Fig. 2. Two-step manufacturing process of macroscopic composite fibrils. (a) The fibril stalk is manufactured by filling a prepolymer into a mould with a flat or
hemispherical (HS) bottom; after the backing layer is flattened using a razor blade, the material is crosslinked. Optical micrographs show exemplary stalk structures.
(b) A softer layer is added in a second mould. The layer thickness is determined by spacers (in black). The prepolymer of the soft material is covered with a Teflon
coated glass slide (in grey) to obtain a flat surface after crosslinking. Optical micrographs show cross sections of final structures. For a more detailed description see
Fischer et al. (2016).
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measurements, a constant velocity of 5μm/s was maintained. Sample and substrate were brought towards each other until a
maximum force, i.e. the preload force, was reached and then moved apart until the sample detached from the substrate. Two
different characteristic forces were determined: The pull-off force indicates the maximal force that has to be applied to cause full
detachment. However, a crack can propagate in a stable manner along the interface or further cracks can be initiated before
delamination takes place. Therefore, the force necessary to initiate the first crack was also determined.

For each sample, five different preloads between 40 to 150 mN were applied and all pull-off forces obtained were averaged. The
adhesion measurements were repeated at two different positions on the substrate.

3. Results

3.1. Numerical results

3.1.1. Flat interface
The results for axisymmetric ( D3 ) composite fibrils with a flat interface, where the total height of the fibril is twice the diameter

(L D/ =2), will be presented in this section. The effects of variations in Young’s modulus at constant soft layer thickness (L L/ = 0.052 )
are reported in Fig. 3a. The normal stress along the fibril-substrate interface, normalized by the remote stress, is plotted against the
normalized distance from the corner, r D/ . It is seen that an increase in E E/1 2 from 1 to 106 leads to a progressive decrease in the
magnitude of the corner singularity; at the same time, the stress values at the centre of the fibril increase and reach a maximum value
of about 0.3. Further increase beyond the ratio of 1000 no longer affects the stress behaviour significantly, at least for fibrils with
L L/ = 0.252 to 0.05. By comparison with the solution for the straight homogeneous punch fibril (shown as a dashed line), all

Fig. 3. Analysis of a composite fibril with flat interface (axisymmetric case). (a) Normalized tensile stress σ σ/22 Aalong the fibril-substrate interface for different

Young’s modulus ratios E E/1 2 at constant L L/ = 0.052 . (b) Plots for different combinations of L2 /L at constant E E/ =10000001 2 . (c) Calibration coefficient for different

combinations of L L/2 and E E/1 2. The dashed black lines represent the straight homogeneous punch (SHP) results.
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composite fibrils exhibit lower corner stresses, at the expense of higher centre stresses. The results for plane strain fibrils are
reported in Fig. C3 in Appendix C.

Fig. 3b depicts the influence of the thickness L2 of the softer material at a constant Young’s modulus ratio E E/ = 101 2
6. It can be

seen that L2 exerts a strong influence on the calculated stress distribution: smaller thicknesses reduce the corner stress more
significantly and, again, the centre stresses increase until a maximum value of about 0.3 is reached. The plane strain case is again
reported in Fig. C4 in Appendix C. In order to explain the increase of the centre stress, an asymptotic stress analysis was performed
(Appendix B). We consider an axisymmetric cylindrical fibril of diameter D adhering to a rigid flat substrate. The fibril is also rigid
other than an infinitesimally thin layer of compliant material at the tip where the fibril adheres to the substrate (i.e., E E/ →∞1 2 and
L L/ → 02 ). The solution shows that the tensile stress along the fibril-substrate interface varies with r2 (Eq. (B31) in Appendix B) and
is therefore greatest at the centre of the fibril. Furthermore, the analysis predicts that the tensile stress at the centre is twice as high
as the applied stress (Eq. (B34) in Appendix B), which is in good agreement with the numerical solution ( σ σlog / ≈0.3A22 ) obtained for
high Young’s modulus ratios and very thin soft layers.

The results shown in Fig. 3a and b were fitted with the asymptotic stress solution from Eq. (A3) to find the calibration coefficients
a∼ for different combinations of E E/1 2 and L L/2 (Fig. 3c and Table 1). Plane strain results are reported in Fig. C3 and Table C1 in
Appendix C.

3.1.2. Curved interfaces
The normal stress distributions and the calibration coefficients for the two curved interfaces with spherical interface (SI, R D= )

and hemispherical interface (HSI, R D= /2) can be seen in Figs. C4–C7 in Appendix C, respectively, for plane strain and
axisymmetric cases. The calibration coefficients are provided in Table C2 in Appendix C for the plane strain (Table C2(a)) and
axisymmetric case (Table C2(b)). A comparison for the different interface shapes (FI, SI and HSI) for constant E E/1 2 ratio of 1000,
but two different L L/2 ratios of 0.25 and 0.05, is given in Fig. 4 and the corresponding plane strain comparison can be seen in Fig. C8
in Appendix C. It can be observed that for L L/ = 0.252 the influence of interface shape is insignificant as all curves collapse and
approach the SHP case. For thinner soft layers (e.g., L L/ = 0.052 ), interface shape strongly influences the distribution of stress along
the interface: In the case of R D= and L L/ = 0.052 , the centre stress is 2.9 times the applied stress (Fig. 4), which is similar to the
value of 3.3 calculated analytically (Eq. (B37) in Appendix B). For even thinner soft layers (L L/ = 0.0052 ), the centre stress rises up to
14.1 and15.2 times the applied stress in the numerical (Fig. C5 in Appendix C) and the analytical solution (Eq. (B37) in Appendix B).
Hence, thinner soft layers always lead to higher centre stresses. By increasing the radius of the interface curvature, the corner and
the centre stress are slightly reduced. The flat interface is most efficient in reducing both the corner stress and the centre stress.

3.1.3. Adhesion strength
The normalized adhesion strength S S/I punchwas calculated by using Eqs. (A10) and (A11) in Appendix A. The result for flat,

spherical and hemispherical interfaces and various L L/2 and E E/1 2 ratios are shown in Fig. 5 and Table 2. The corresponding plane
strain results for circular interfaces are given in Fig. C9 and Table C3. It is seen that both parameters, which are design parameters
for composite fibrils, affect adhesion: smaller layer thicknesses and higher Young’s modulus ratios result in higher adhesion strength.
Close inspection shows that the interface curvature becomes important only for very thin soft layers (L L/ < 0.052 ), where the flat
interface showed highest adhesion.

3.2. Experimental results

While the stress distribution along the substrate-fibril interface is not directly accessible in experiments, the adhesion strength
was defined as the normal pull-off force divided by the total apparent contact area of A = 3.14mm2. The adhesion performance of a
SHP fibril and one with a flat interface and a hemispherical interface (R D= /2) for two elastic modulus ratios E E/ =2 and 3501 2 were
studied. By dividing the adhesion strengths of the composites by those of the SHP fibril, a normalization was achieved for direct
comparison with the numerical results.

The normalized adhesion strengths for flat and hemispherical interface structures are shown in Fig. 6 along with the predictions
from the numerical simulations for very similar Young’s modulus ratios. Each point in the graph represents the average value of all
measurements performed with one sample, the errors being smaller than the symbol size. The absolute pull-off forces measured for

Table 1
Calibration coefficients a∼ for flat interface for the axisymmetric case.

L L/2 a∼

E E/ = 21 2 E E/ = 101 2 E E/ = 1001 2 E E/ = 10001 2 E E/ = 10000001 2

0.25 0.2692 0.2630 0.2570 0.2570 0.2570
0.2 0.2630 0.2512 0.2399 0.2399 0.2399
0.15 0.2512 0.2188 0.2089 0.2042 0.2042
0.1 0.2344 0.1698 0.1479 0.1479 0.1479
0.05 0.2188 0.1259 0.0708 0.0631 0.0631
0.005 0.2089 0.1000 0.0251 0.0063 0.0063
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the composite fibrils were always higher than for the reference fibril made entirely from the soft material (i.e., the SHP case). Two
regimes of the experimental data can be distinguished:

3.2.1. Regime of large soft layer thickness
Provided L L/ > 0.062 for E E/ =3501 2 and L L/ > 0.032 for E E/ =21 2 , the measured adhesion strength increased with decreasing L L/2

ratio for both interface shapes. In this regime, the increase in adhesion was found to be higher for the flat interface than for the
hemispherical interface. This trend is reflected in the simulations. Optical microscopy of the interfaces showed that cracks were
always initiated at the contact edges and propagated to cause fast delamination. Therefore, no differences between pull-off and crack
initiation forces were observed.

3.2.2. Regime of small soft layer thickness
For soft layers with L L/2 ratios smaller than 0.06 (E E/ =350)1 2 or than 0.03 (E E/ =21 2 ), detachment occurred by a different

mechanism and seemed to depend on interface shape. For flat interfaces (Fig. 6a), a drop in adhesion strength was observed. The
detachment mechanism changed from single edge crack to several finger-like cracks which propagated radially towards the centre of
the fibril; this detachment mechanism is reminiscent of earlier studies on thin soft films (Nase et al., 2008). By contrast, the fibrils
with the hemispherical interface (Fig. 6b), showed a steady increase of the adhesion strength with decreasing L L/2 ratio. Here, a
transition from edge to centre cracks could be observed. Interestingly, the primary crack did not cause fast detachment, but grew in a
stable manner up to a critical diameter of more than half of the total diameter. Therefore, the pull-off forces were much larger than
the crack initiation forces as is indicated by the arrows in Fig. 6b.

4. Discussion

A novel concept for designing bioinspired dry adhesives was introduced in this paper: comparatively stiff fibrils with a thin soft
material layer on the terminal face. Numerical results demonstrated that such composite fibrils have reduced stress singularities at
the contact edges, which typically control the detachment of flat punch fibrils from substrates (Akisanya and Fleck, 1997; Khaderi
et al., 2015). Stronger adhesion is achieved by reducing the corner stresses; this is similar to the findings previously reported for
mushroom fibrils, where the gradually widening terminal face results in a more uniform stress distribution and strongly enhanced

Fig. 4. Normalized stress σ σ/22 Aalong the fibril-substrate interface for fibrils with different interface curvatures, E E/ =10001 2 and (a) L L/ = 0. 252 and (b) L L/ = 0.052 .

The dashed black lines represent the straight homogeneous punch (SHP) results.
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adhesion (Balijepalli et al., 2016; del Campo et al., 2007; Heepe and Gorb, 2014). Our composite fibril design, by contrast, exhibits a
uniform axial cross-sectional area with several possible advantages: fibrils without re-entrant corners are easier to fabricate and will
be less prone to elastic collapse, which is known to counteract adhesion.

Our parametric study reveals a counter-intuitive trend: thinner soft layers (with smaller L L/2 ) create substantially better
adhesion. The reason is that, for all Young’s modulus ratios, a smaller layer thickness results in a decreased corner stress while the
stress at the centre is increased. Recently, a similar trend was found by Minsky and Turner (Minsky and Turner, 2015), who studied
a different, but related fibril geometry. A stiff fibril stalk, when fully coated with a thin soft polymer layer, exhibited improved
adhesion, based on a cohesive zone model. However their results were limited to only one elastic modulus ratio. In our work, the
variation of that ratio also affects the tensile stress distribution along the fibril-substrate interface, with higher ratios leading to
significantly better adhesion. However, when L L/ > 0.052 , the effect decreases for higher ratios and disappears for a Young’s modulus
ratio exceeding three orders of magnitude. Interestingly, the composite fibrils of ladybugs (Peisker et al., 2013) exhibit a modulus
ratio of such a magnitude, and not more.

Fig. 5. Calculated influence of Young’s modulus ratio on adhesive strength, normalized to that of a straight homogeneous punch (SHP), with the following interface
shapes: (a) flat, (b) spherical (R D= ), and (c) hemispherical (R D= /2). The different Young’s modulus ratios are E E/ =21 2 (green, circles),10 (grey, triangles),100 (red,

squares), 1000 (orange, diamonds) and 1000000 (blue, stars). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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The materials interface curvature strongly affected the tensile stress distribution along the fibril-substrate interface, particularly for
very thin films. Out of the different interface shapes examined, the adhesion of a composite fibril with a flat interface shows the lowest
maximum stress at the corner and the centre along the fibril-substrate interface. The simulations indicate that higher curvatures lead to
higher stresses at the centre and the edge compared to the flat interface. However, the contribution of the materials interface curvature to
the stress distribution disappears for L L/ ≈ 0.252 .

It is instructive to examine more closely the correlation between our numerical results and the experimental measurements on single
macroscopic composite fibrils. While the agreement is not perfect, the trend to higher normalized adhesion strength with decreasing layer
thickness is also found in the experiments (Fig. 6). What is not found in the calculations is the drop in adhesion strength seen in the flat
interface fibril for small L L/2 ratios. It is very likely that this is caused by an alternative detachment mechanism not considered in the
model, i.e. finger-like crack growth starting from the edge as observed in Fig. 6a. Such behaviour is well known in interface mechanics as
the Saffman–Taylor instability (Derks et al., 2003; Nase et al., 2011; Shull and Creton, 2004). Interestingly, the transition from single-
edge crack propagation to delamination by instabilities depends on the stiffness of the stalk. In the case of the hemispherical interfaces, a
drop of adhesion strength was not found in the experiments although a change in detachment mechanism initiated by centre cracks
occurred (Fig. 6b). The mechanism change is in agreement with the numerical calculations, which predict a strong increase of the centre
stresses when the soft layer becomes thinner. Why the presence of centre cracks still leads to increasing adhesion strengths is a matter of
conjecture. A possible explanation lies in the steep decrease of the stress from the centre to the edges (see Fig. 4), which may induce stable

Table 2
Adhesion strength values for different interfaces which include flat interface (FI), spherical interface (SI) with radius R D= and hemispherical (HSI) for
radiusR D= /2, represented as adhesion of composite fibrils normalized by that of a straight homogeneous punch.

S S/I punch E E/ =21 2 E E/ = 101 2 E E/ = 1001 2 E E/ = 10001 2 E E/ = 10000001 2

FI SI HSI FI SI HSI FI SI HSI FI SI HSI FI SI HSI
L L/2 R=∞ R=D R=D/2 R=∞ R=D R=D/2 R=∞ R=D R=D/2 R=∞ R=D R=D/2 R=∞ R=D R=D/2

0.25 1.03 1.01 1.01 1.06 1.03 1.03 1.08 1.06 1.06 1.06 1.06 1.03 1.06 1.06 1.03
0.2 1.06 1.06 1.03 1.11 1.08 1.06 1.16 1.11 1.11 1.16 1.11 1.11 1.16 1.11 1.11
0.15 1.11 1.11 1.06 1.27 1.19 1.19 1.33 1.24 1.21 1.36 1.21 1.21 1.36 1.21 1.21
0.1 1.19 1.16 1.13 1.64 1.46 1.39 1.88 1.56 1.53 1.88 1.64 1.53 1.88 1.64 1.53
0.05 1.27 1.24 1.24 2.21 2.06 1.97 3.93 2.91 2.59 4.41 3.12 2.65 4.41 3.12 2.65
0.005 1.33 1.33 1.33 2.78 2.78 2.78 11.07 8.79 9.42 44.06 22.08 20.61 44.06 35.00 25.94

Fig. 6. Comparison of normalized adhesion strengths from experiments (symbols) and numerical calculations (lines) for composite fibrils with (a) flat interface and
(b) hemispherical interface R D( = /2) for E E/ =21 2 and 350. The lines refer to calculations for a SHP (black, dashed), and a composite fibril with E E/ =21 2 (orange, dashes

and dots) and 350 (red, solid). Light green circles represent experiments with E E/ =21 2 and dark green stars with E E/ =3501 2 . Filled symbols represent pull-off forces,

empty symbols crack initiation forces. Arrows indicate the samples for which the two forces differ significantly. Optical micrographs represent the characteristic
detachment mechanisms that were observed for (a) flat and (b) hemispherical interfaces depending on the soft layer thickness. The crack fronts are highlighted by red
lines. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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crack propagation. Incorporation of this additional mechanism into the numerical calculations would be possible (see, for instance,
(Balijepalli et al., 2016)), but is beyond the scope of the present paper.

Overall, our research provides a promising alternative for straight homogeneous punch or mushroom-type fibrils. The
combination of numerical calculations with model experiment has provided us with new insight for the optimization of
micropatterned dry adhesive surfaces. The more benign stress distribution of the composite fibrils is reminiscent of the effect
found in previous studies for mushroom fibrils while reducing the manufacturing complexity. Additionally, our geometry allows for
the use of softer materials, as the stiffer stalk will stabilize the fibrils against collapse or clustering. A more detailed experimental
study of such composite fibrils is currently underway (Fischer et al., 2016).

5. Conclusion

In this investigation, we demonstrated the potential of composite fibril structures that combine relatively stiff stalks with very soft
tip layers. With this design, high aspect ratio structures with straight sidewalls can be manufactured without the risk of collapse of
thin features. The soft material forming the tip of the microstructures provides a benign stress distribution and high adaptability to
the substrate while the stiffer underlying material ensures mechanical stability. The following conclusions can be drawn:

• The adhesion of composite fibrillar structures can be tuned by varying the Young’s moduli of the two material components, by
manipulating the curvature of their interface, and by changing the soft layer thickness.

• Thinner soft layers (smaller L L/2 ) are found to result in lower corner stresses and hence in higher adhesive strength provided that
detachment is controlled by the corner singularity.

• Higher Young’s modulus ratios (E E/1 2) increase the adhesive strength.

• Flat interfaces lead to better adhesion than spherical and hemispherical interfaces for the case of edge crack detachment. For very
thin soft layers, the experimentally observed detachment is different and depends on the interface curvature. Thus, detachment
from the centre provoked by a curved interface may result in better adhesion.

• The experimental results can be explained reasonably well by the numerical simulations as long as detachment occurs by edge
cracks. Below a limiting L L/2 ratio, a transition from edge to centre crack occurred in the experiments; these mechanisms are not
yet part of the calculations.
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Appendix A. Analytical solution for corner singularity

The singular terms in the asymptotic normal stress σ( )22 and shear stress σ( )12 components are given by Eqs. (A1) and (A2):

σ H r=22 1
−0.406 (A1)

σ H r= 0. 50512 1
−0.406 (A2)

where r is the distance from the fibril edge, and the directions X1 and X2 are shown in Fig. 1. The amplitude term H1 is dependent on
the fibril diameter, the remote stress and a calibration coefficienta∼:

H σ D a= ∼
A1

0.406 (A3)

The calibration coefficients of a straight homogeneous punch (SHP) are a =0.3311 for the plane strain and a =0.2781 for the
axisymmetric case according to Khaderi et al. (2015). The asymptotic stress solutions for the plane strain case in logarithmic form
are thus:

σ σ r D σ σ r Dlog ( / )=−0. 480 − 0. 406 log ( / )log ( / )=−0. 777 − 0. 406 log ( / )A A22 12 (A4)

and, for axial symmetry,

σ σ r D σ σ r Dlog ( / )=−0. 556 − 0. 406 log ( / )log ( / )=−0. 853 − 0. 406 log ( / ).A A22 12 (A5)

The resulting normal and shear stress along the interface of a SHP and a rigid substrate for plane strain and axisymmetric fibrils
are shown in Fig. C1 and in Appendix C. In order to predict the adhesive strength of the fibril, we assume a small detachment length l
at its edge where the corner singularity controls the detachment behaviour. A detailed analysis was provided by Balijepalli et al.
(2016).

The stress distribution near the crack tip can be described by
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σ K
πζ

σ K
πζ

=
2

and =
2

I II
22 12

(A6)

where ζ is the distance from the crack tip as shown in Fig. C2 in Appendix C. The Mode I and Mode II stress intensity factors, KI and
KII , are given by

K H l σ D al=2. 6 =2. 6 ∼
I A1

0.094 0.406 0.094 (A7)

and

K H l σ D al=0. 8 =0. 8 ∼
II A1

0.094 0.406 0.094 (A8)

The energy release rate during detachment is given by

G v
E

K K
E

K K
σ D l a

E
= 1−

2
( + ) = 3

8
( + ) = 2. 8 ∼

I II I II
A

2

2

2 2

2

2 2
2 0.81 0.19 2

2 (A9)

where E2 is Young’s modulus of the soft layer in contact with the rigid substrate and ν is the associated Poisson’s ratio, equal to 0.5
consistent with incompressibility. For detachment to occur, the energy release rate must be equal to the adhesion energy, W . The
adhesion strength of the composite fibril SI can be expressed as

S
E W

D l a
=

0. 6
∼

I 2
0.406 0.094 (A10)

We define a normalized adhesion strength by dividing by the value for the straight homogeneous punch Spunch, which is assumed
to have the same initial crack length:

S
S

a
a

= ∼
I

punch
1

(A11)

Appendix B. Asymptotic analysis of the stress in a stiff adherent axisymmetric cylindrical fibril with a thin
compliant layer at its tip

We consider a circular cylindrical fibril of diameter D adhering to a rigid flat substrate. The fibril is also rigid other than a thin
layer of compliant material at the tip where the fibril adheres to the substrate. The geometry is axisymmetric. The compliant material
is incompressible and linear elastic with shear modulus μ. The relevant equilibrium equations are

+ + = 0

+ + = 0

σ
r

σ σ
r

σ
z

σ
r

σ
r

σ
z

∂
∂

− ∂
∂

∂
∂

∂
∂

∼ ∼

∼ ∼

∼

∼

∼ ∼ ∼ ∼

∼ ∼ ∼

rr rr θθ rz

rz rz zz
(B1)

where the stress components are given in cylindrical polar coordinates and r θ z, ,∼ ∼ are those cylindrical polar coordinates. The
elasticity relationships are

σ p

σ p

σ p

= ( + )

= ( + )

= ( + )

+ =

∼

∼

∼

∼

∼

∼

u
r μ rr
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r μ θθ
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∂
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1
2

1
2
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1
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∂
∂

∂
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∼

∼

∼

∼

∼

∼

∼
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∼ ∼ ∼

r

r

z

z r rz
(B2)

where u∼r and u∼z are the axial displacements and p σ σ σ= − ( + + )/3∼ ∼ ∼∼
rr θθ zz is the pressure, i.e. the negative of the hydrostatic stress.

Incompressibility is embedded in Eq. (B2) but can also be stated as

u
r

u
r

u
z

∂
∂

+ + ∂
∂

= 0∼ ∼ ∼
∼ ∼ ∼

r r z

(B3)

The boundary conditions are

u u z= = 0 on = 0∼∼ ∼
r z (B4)

and

u
u Δ

z h r
= 0
=

on = ( )∼∼
∼
∼

∼r

z (B5)

where Δ is the upward displacement of the rigid segment of the fibril and z h r= ( )∼∼ ∼
is the interface between the complaint layer and

the rigid segment of the fibril. We assume that h r D( ) < <∼∼
so that the complaint layer is thin compared to the diameter of the fibril.

The traction boundary conditions are
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⎞
⎠⎟σ D z σ D z

2
, = 0 and

2
, = 0∼ ∼∼ ∼

rr rz
(B6)

Now define the parameter η such that η h D= ( /2)∼
. It follows that η D< < and thus δ η D= 2 / < < 1 is a small parameter. Now

normalize lengths such that r Dr= /2∼ , z ηz=∼ , and the displacements are such that u Δu=∼
r r and u Δu=∼

z z. It follows that uz, r and z are
O(1). We normalize the stresses by Σ , to be determined, such that σ Σσ=∼

ij ij. However, we specify that σzz isO(1), so that Σ is the order
of the stress applied to the fibril. As a result of the normalizations, the equations become as follows. For equilibrium we have
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(B7)

For elasticity we deduce that

σ p

σ p

σ p

= ( + )

= ( + )

= ( + )
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where p Σp=∼ , incompressibility becomes

δ u
r

δ u
r

u
z

∂
∂

+ + ∂
∂

= 0r r z

(B9)

and the boundary conditions are

u u z= = 0 on = 0r z (B10)

u z h r η= 0 on = ( )/∼
r (B11)

u z h r η= 1 on = ( )/∼
z (B12)

and

σ z σ z(1, ) = 0 and (1, ) = 0rr rz (B13)

From the set of equations above we deduce that to satisfy incompressibility ur must beO δ(1/ ), i.e. much bigger than uz. The first of
Eq. (B7) shows that σ σ/rz rr is O δ( ) and we assume that σzz and σrr are the same order of magnitude. Therefore σrz is O δ( ). Inspection of
the last of Eq. (B8) then allows us to deduce that Δ ηδ/ and Σδ μ/ are of the same order. Therefore, we write Σ Δμ ηδ= / 2. As a
consequence, Eq. (B8) becomes

δ σ p

δ σ p
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(B14)

This immediately tells us that the deviatoric stresses are no greater than O δ( ). Therefore, we deduce that we can expand the
stresses asymptotically as

p p δp O δ
σ p δp δ σ O δ
σ p δp δ σ O δ
σ p δp δ σ O δ
σ δσ O δ

= + + ( )
= − − + + ( )
= − − + + ( )
= − − + + ( )
= + ( )

rr rr

θθ θθ

zz zz

rz rz

(0) (1) 2

(0) (1) 2 (2) 3

(0) (1) 2 (2) 3

(0) (1) 2 (2) 3

(1) 2 (B15)

where the terms with the parenthetical superscripts are O(1). We have therefore assumed that the stresses are hydrostatic to leading
order and that deviatoric stress terms are O δ( ). To validate that assumption, we performed numerical simulations for a composite
fibril with a flat interface and L L/ = 0.0052 , E E/ = 101 2

6 and a Poisson’s ratio of 0.49999 for both materials. The result obtained
demonstrates that the stress in the thin layer is almost hydrostatic with a very small shear stress superimposed (not shown). This
means that the applied load in the thin layer is supported to leading order by the hydrostatic stress, arising because of the
incompressibility of the material. Similarly, we expand the displacements as
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( ) (1) 2 (B16)

which is consistent with our deductions above.
We substitute Eq. (B15) into Eq. (B7) and obtain to leading order for equilibrium
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The stress strain relationships to leading order become
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Incompressibility to leading order is then

u
r

u
r

u
z

∂
∂

+ +
∂
∂

= 0r r z
(−1) (−1) (0)

(B19)

Since there is no equation in which p(1) appears, we conclude it must be zero.
We now proceed to solve the Eqs., (B17–B19). The 2nd of Eq. (B17) tells us that p(0) is independent of z and thus

p p r= ( )(0) (0) (B20)

The 1st of Eq. (B17) thus gives us

σ
z

dp r
dr

∂
∂

= ( )rz
(1) (0)

(B21)

which can be integrated to give

σ τ r z dp r
dr

= ( ) + ( )
rz

(1)
(0)

(B22)

where τ r( ) is the as yet unknown value of the normalized shear stress at the interface with the substrate. The result from Eq. (B22)
may be inserted into the 4th of Eq. (B18) to give

u
z

τ r z dp r
dr

∂
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= ( ) + ( )r
(−1) (0)

(B23)

This integrates to give

u zτ r z dp r
dr

= ( ) + 1
2

( )
r
(−1) 2

(0)

(B24)

where the boundary condition Eq. (B10) has been used. The boundary condition Eq. (B11) gives us from Eq. (B24)

h r τ r h r dp r
dr

( ) ( ) + 1
2

( ) ( ) = 02
(0)

(B25)

where h r h η( ) = /∼
. We use Eq. (B25) to eliminate τ r( ) in favour of dp r dr( )/(0) and then incompressibility in the form of Eq. (B19), with

results from Eq. (B25) inserted, to give
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We then integrate this to obtain
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where we have used the boundary condition Eq. (B10) at z = 0. Now use Eq. (B12) and we deduce that this leads to
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We integrate this once and obtain

dp r
dr

r c
rh r

( ) = 6 +
( )

(0) 2
1

3 (B29)

where c1 is a constant. We confine ourselves to cases where h(0) is finite, and conclude that this leads to c = 01 , since otherwise the
gradient of p(0) diverges. As a consequence, integration of B 29 gives us

∫p ξdξ
h ξ

= 6
( )

r
(0)

1 3 (B30)

where we have used the 1st of the boundary conditions in Eq. (B13) as it gives p (1) = 0(0) .
Examples:
(1) Layer of uniform thickness.
In this case h r( ) = 1 and Eq. (B30) becomes

p r r( ) = 3( − 1)(0) 2 (B31)

which, through Eq. (B21) leads to

σ r z= 3 (2 − 1)rz
(1) (B32)

Therefore, we have all the leading order stresses since

σ σ σ p r= = = − = 3(1 − )rr θθ zz
(0) (0) (0) (0) 2 (B33)

The tensile stresses are therefore greatest at the centre of the fibril. Note that the shear stress in Eq. (B32) is not zero at r = 1, violating
the 2nd boundary in Eq. (B13). However, the boundary condition is satisfied in an average sense since the integral of Eq. (B32) with
respect to z from zero to1 is zero. Since the shear stresses are lower order, this discrepancy is not significant. It would have to be fixed by a
boundary layer, which the St. Venant principle shows would only affect the solution over a radial distance comparable to the thickness of
the layer.

The results in Eqs. (B32 and B33) are normalized. We obtain the physical results by restoring the factors by which normalization
took place. This gives
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where h is the thickness of the compliant layer. It can be seen that the shear stress is much smaller than the direct stresses. The error
in all stresses is small compared to the magnitude of the shear stress.

As a result of Eq. (B34) the highest tensile stress on the interface is ΔμD η EΔD η3 /(4 ) = /(4 )2 3 2 3 , where E is Young’s modulus. This
is the stress at the centre of the fibril that will cause detachment if failure at the corner singularity is suppressed. Note that the
solution in Eq. (B34) gives no information about the corner singularity as it represents a boundary layer at the edge of the fibril. We
note that the maximum tensile stress at the interface is twice as high as the average stress on the interface.

(2) Layer with quadratic shape
This case can represent the rigid segment of the fibril having a circular shape where, following Hertz, we approximate these

shapes by recognizing that the layer thickness is smaller than the diameters of the circle. However, the slope of the circular interface
must remain small throughout its extent for the asymptotic analysis to be valid. This rules out the caser of R D= /2, though the case
of R D= may be admissible (see Fig. 1).

The shape of the thin layer is

h r h h r( ) = + (1 − )o o
2 (B35)

where h η η= /o o with h η(0) =∼
o and therefore is the narrowest segment of the thin layer.

Integration of Eq. (B30) then gives us
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h h h r
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[ + (1 − ) ]o o o
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2 2

(B36)

and then
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σ r z
h h r

= 3 (2 − 1)
[ + (1 − ) ]rz

o o

(1)
2 3 (B37)

These normalized can be converted to physical values by multiplication by the appropriate factors as was carried out to obtain Eq.
(B34). Details will not be pursued. In this case, the maximum stress, which is at r = 0∼ , is h h h D h(1 + )/ = 1 + ( /2)/ (0)∼ ∼

o o times the
average stress on the interface. We note that this result is valid for the flat interface, and predicts that the maximum stress rises
above twice the average stress when the interface is circular, consistent with the results in Fig. 4.

Appendix C. Plane strain and Axisymmetric results

See Figs. C1-C9 and Tables C1-C3.

Fig. C1. Normalized normal (σ22; light grey, dashed line) and shear (σ12; dark grey, dashes and dots) tractions for the straight homogeneous punch (SHP) (corner to

centre) for (a) plane strain and (b) axisymmetric cases. The remote applied stress is denoted by σA. The orange solid lines show linear fits of the two stress curves at

the edge of the fibril.

Fig. C2. Schematic of a small crack emanating along the interface from the corner of the contact.
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Fig. C3. Analysis of a composite fibril with a flat interface for plane strain. Tensile stress σ22along the fibril and substrate interface for different combinations of (a)

Young’s modulus ratio E E/1 2of the top and bottom part of the fibril respectively for a constant L L/ = 0.052 , and (b) height of the soft portion L2 normalized by total

height L and constant E E/ =10001 2 . (c) Calibration coefficient for composite fibrils for different combinations of the ratio of height L L/2 and Young’s modulus E E/1 2. The

dashed black lines represent the straight homogeneous punch (SHP) results. The colours and symbol shapes reflect the varying parameters E E/1 2 and L L/2 .
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Fig. C4. Tensile stress σ22along the fibril and substrate interface for a composite fibril with a circular interface R D( = ) for different combinations of Young’s modulus

ratio E E/1 2and layer thickness ratio L L/2 . The results are reported for the plane strain case. The dashed black lines represent the straight homogeneous punch (SHP)

results. The colours and symbol shapes reflect the varying parameters E E/1 2 and L L/2 .
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Fig. C5. Tensile stress σ22along the fibril and substrate interface for a composite fibril with a spherical interface R D( = ) for different combinations of Young’s

modulus ratio E E/1 2and layer thickness ratio L L/2 . The results are reported for the axisymmetric case. The dashed black lines represent the straight homogeneous

punch (SHP) results. The colours and symbol shapes reflect the varying parameters E E/1 2 and L L/2 .
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Fig. C6. Tensile stress σ22along the fibril and substrate interface for a composite fibril with a circular interface R D( = /2) for different combinations of Young’s

modulus ratio E E/1 2, layer thickness ratio L L/2 and the corresponding calibration coefficients. The results are reported for the plane strain case. The dashed black lines

represent the straight homogeneous punch (SHP) results. The colours and symbol shapes reflect the varying parameters E E/1 2 and L L/2 .
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Fig. C7. Tensile stress σ22along the fibril and substrate interface for a composite fibril with a hemispherical interface R D( = /2) for different combinations of Young’s

modulus ratio E E/1 2, layer thickness ratio L L/2 and the corresponding calibration coefficients. The results are reported for the axisymmetric case. The dashed black

lines represent the straight homogeneous punch (SHP) results. The colours and symbol shapes reflect the varying parameters E E/1 2 and L L/2 .

Fig. C8. Normal stress σ22along the fibril and substrate interface for fibrils with different interface shapes and with L L/2 ratio 0.05 for the plane strain case. The

dashed black lines represent the straight homogeneous punch (SHP) results.
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Fig. C9. Adhesion strength values for composite fibrils for different interfaces, and different combinations of height ratio L L/2 and Young’s modulus E E/1 2. The results

are shown for a composite fibril with flat (a) and circular interface (b) where the radius R is equal to the diameter Dof the fibril and (c) the radius R is equal to half of
the diameter. The dashed black lines represent the straight homogeneous punch (SHP) results. The different Young’s moduli compared are E / E =1 2 2 (green, circles),

10 (grey, triangles), 100 (wine red, squares) and 1000 (orange, diamonds).
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Table C2
Calibration coefficients a∼ for (a) circular (plane strain) and (b) spherical interface with radius R D= (axisymmetric) and hemispherical for radius R D= /2
(axisymmetric).

(a)

L L/2 a∼

E E/ =21 2 E E/ = 101 2 E E/ = 1001 2 E E/ = 10001 2

R D= R D= /2 R D= R D= /2 R D= R D= /2 R D= R D= /2

0.25 0.316 0.316 0.295 0.295 0.282 0.282 0.282 0.282
0.2 0.295 0.295 0.269 0.269 0.251 0.251 0.251 0.251
0.15 0.282 0.282 0.224 0.224 0.204 0.204 0.204 0.204
0.1 0.263 0.263 0.178 0.178 0.141 0.141 0.135 0.141
0.05 0.251 0.251 0.126 0.126 0.066 0.066 0.059 0.059

(b)

L L/2 a∼

E E/ =21 2 E E/ = 101 2 E E/ = 1001 2 E E/ = 10001 2 E E/ = 10000001 2

R D= R D= /2 R D= R D= /2 R D= R D= /2 R D= R D= /2 R D= R D= /2

0.25 0.275 0.275 0.269 0.269 0.263 0.263 0.263 0.269 0.263 0.269
0.2 0.263 0.269 0.257 0.263 0.251 0.251 0.251 0.251 0.251 0.251
0.15 0.251 0.263 0.234 0.234 0.224 0.229 0.229 0.229 0.229 0.229
0.1 0.240 0.245 0.191 0.200 0.178 0.182 0.170 0.182 0.170 0.182
0.05 0.224 0.224 0.135 0.141 0.095 0.107 0.089 0.105 0.089 0.105
0.005 0.209 0.209 0.100 0.100 0.032 0.030 0.013 0.013 0.008 0.011

Table C1
Calibration coefficients a∼ for a flat interface for the plane strain case.

L L/2 a∼

E E/ =21 2 E E/ = 101 2 E E/ = 1001 2 E E/ = 10001 2

0.25 0.316 0.295 0.282 0.282
0.2 0.295 0.269 0.251 0.240
0.15 0.281 0.224 0.190 0.190
0.1 0.263 0.178 0.126 0.123
0.05 0.251 0.126 0.050 0.050
0.005 0.251 0.1 0.032 0.006

Table C3
Adhesion strength S S/I punch for the flat interface (FI) and circular interfaces (CI) R D= and R D= /2 for the plane strain case.

S S/I punch E E/ =21 2 E E/ = 101 2 E E/ = 1001 2 E E/ = 10001 2

FI CI FI CI FI CI FI CI

L L/2 R=∞ R=D R=D/2 R=∞ R=D R=D/2 R=∞ R=D R=D/2 R=∞ R=D R=D/2

0.25 1.05 1.05 1.05 1.12 1.12 1.12 1.17 1.17 1.17 1.17 1.17 1.17
0.2 1.12 1.12 1.12 1.23 1.23 1.23 1.32 1.32 1.32 1.32 1.32 1.32
0.15 1.17 1.17 1.17 1.48 1.48 1.48 1.74 1.62 1.62 1.74 1.62 1.62
0.1 1.26 1.26 1.26 1.86 1.86 1.86 2.63 2.34 2.34 2.63 2.45 2.34
0.05 1.32 1.32 1.32 2.63 2.63 2.63 6.61 5.01 5.01 6.61 5.62 5.62
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