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Abstract

The two dimensional equation for transversal vibrations of an elastoplastic
plate is derived from a general three dimensional system with a single yield tenso-
rial von Mises plasticity model in the five dimensional deviatoric space. It leads
after dimensional reduction to a multiyield three dimensional Prandtl-Ishlinskii
hysteresis model whose weight function is explicitly given. The resulting partial
differential equation with hysteresis is solved by means of viscous approximations
and a monotonicity argument.

1 Introduction

We pursue here the investigation of oscillating lower dimensional elastoplastic struc-
tures. We have shown in |13] that in the case of a one dimensional beam, the classical
von Mises plasticity criterion with a single yield condition leads after dimensional re-
duction to a multiyield model of Prandtl [20] and Ishlinskii [10] type. This can be
explained by the fact that in the 1D model only deformations of longitudinal fibers
parameterized by the transversal coordinate are taken into account, and the individ-
ual fibers do not switch from the elastic to the plastic regime at the same time. More
precisely, the “eccentric” fibers look as if they had higher elasticity modulus and lower
yield point than the central ones. Hence, the effect of the existence of plasticized
zones is translated into the mathematical language by means of the Prandtl-Ishlinskii
combination of elastic, perfectly plastic elements with different yield limits that are
not all simultaneously activated.

In this paper, a similar behavior is observed for the Kirchhoff plate model with single
yield, von Mises plasticity. Plasticized zones as on Fig. 1 occur as well, although “fibers”
have to be replaced with “layers”. As a result of dimensional reduction, we obtain again
a multiyield Prandtl-Ishlinskii operator in a reduced three dimensional space instead
of the original five dimensional space of symmetric tensor deviators. This emerging
multiyield character of the elastoplastic plate bending problem does not seem to have
been taken into consideration earlier. The multiyield quasistatic model in [1] does not
directly refer to plates. In |2, 15, 18|, only the quasistatic case is investigated as well,
and after dimensional reduction, the yield condition is still described by one sharp
surface of plasticity. Methods based on I'-convergence of energy minimizers (|8, 19])
are indeed more rigorous than a simple scaling analysis, but unfortunately cannot be
used for the study of nonequilibrium problems.



Figure 1. A plate section with grey plasticized zone.

Vectorial Prandtl-Ishlinskii operators are less easy to deal with that the scalar ones.
Therefore, at variance with the 1D case in [13|, we are not able to solve the resulting
PDE without regularizing the constitutive law by an additional kinematic hardening
term. After normalizing the physical constants to unity, we thus obtain the transversal
deformation w(x,y,t) of a simply supported elastoplastic plate by solving the following
variational problem:

/ (wttu} + Wy Wy + Wy Wy + BDgw . Dgw) dx dy
Qo

—l—/ (F [Dow], Do) dxdy = / gwdrdy Y eV, (1.1)
Qo QO

where Qo C R? is the reference shape of the plate, V = H2(Qy) N HL(Qp), B is a
symmetric positive definite (3 x 3)-matrix that accounts for the kinematic hardening,
F stands for the 3D Prandtl-Ishlinskii operator, (-,-) is the generating scalar product
of F in R3 given by formula (2.39) below, ¢ is a given right hand side, and Dyw =
(Wagy Wy, Way) , Dot = (Wyy, Wyy, Way) . We may write (1.1) in a more concise form as

Wy — Awtt +D§ <BD2’UJ+?[D2’UJ]> =g, (12)

where D} : (L?())? — V' is the formal adjoint of Dy. The term —Awy; represents
the contribution to the momentum balance due to the rotational inertia of the vertical
fibers.

We prove the existence and uniqueness under appropriate regularity assumptions
on the data. The solution is constructed first for an approximating visco-elasto-plastic
problem via contraction in a suitable metric space, the limit as the viscosity coefficient
tends to zero is justified by the Minty trick.

The paper is structured as follows. In Section 2, we use the scaling method of |4, 6] to
derive the multiyield Prandtl-Ishlinskii plate model. Basic properties of the vectorial
Prandtl-Ishlinskii model are summarized in Section 3. Existence and uniqueness of
weak solutions to the resulting PDE with a Prandtl-Ishlinskii hysteresis operator is
established in Section 4.



2 Derivation of the model

In this section, we derive our model from a general three dimensional system. We focus
on the question how the multiyield behavior results from the single yield von Mises
model and from the dimensional reduction. This is why we do not look for maximal
generality and keep the assumptions as simple as possible. We restrict ourselves to
plates of constant thickness, that is, to sets Q C R3 of the form Q = Qy x (=h,h),
where €y C R? is the shape of the plate and 2h is its thickness. We denote by
(z,y) € Qo the longitudinal coordinates, by z € (—h,h) the transversal coordinate,
and by t € [0,T] the time, where T > 0 is given.

In order to compare the resulting equations, we start with the linear elastic isotropic
case (Subsection 2.1), and then pass to the elastoplastic model (Subsection 2.2). We
follow the scaling technique of [4, Part A| and |6, Sect. 5.4] in terms of a small pa-
rameter a > 0 with the intention of keeping only the lowest order terms in « in the
resulting equations. In particular, we assume that

h=0(a), Q=0(1).

Let us consider smooth displacements u: Q x (0,7) — R?, decomposed into

Uy uf ul
u=| u | = uk |+ ul [=u"+ud”,
us u§ U?

where the superscripts L and H stand for low order and high order components with
respect to «a, respectively. We make the following assumptions (cf. Fig. 1).

(A1) The low order displacement of the midsurface C = {(z,y,0) € Q : (z,y) € Qo}
is only transversal, that is,

0
u’(2,y,0,1) = 0 V(zy) €, Yte(0,T),  (21)
w(z,y,t)
with some function w : Qg x (0,7) — R.

(A2) The low order deformation

X
Fiz,y,z,t)= | y | +u’(z,y,210)
4

leaves the fibers {(z,y)} x (—h,h) perpendicular to the midsurface, and their
deformation is proportional to their distance to it; that is,

Fi(z,y,2,t) =F(z,y,0,t) + zn(z,y,t) Y(z,y 2t) € Qx(0,T), (22

where n(z,y,t) is the unit “upward” normal to the deformed midsurface C(t) =
FL(C,t) at time ¢, see Fig. 1.



(A3) wWay, Way, Wy, = O(av).

Under the hypothesis (A3), we can linearize the problem by replacing

_wx(x> Y, t)
1
n(x,y,t) = —wy(x,y,1t)
1wy ) + w0 |
with
—wg(x,y,t)
n(z,y,t) = | —wy(z,y,t) | . (2.3)
1

This replacement is justified, since an elementary computation yields that
- 2 2
|0(z,y, 1) —n(e,y,t)| < |w(,y, ) + [w,(z,y,1)]" = O(a?).

This enables us to write for every (x,y,z,t) € Q x (0,7) the low order displacement
ul(z,y,2,t) as
—zwg(z,y,t)
ul(z,y,2,t) = | —zwy(x,y,t) | . (2.4)
w(z,y,t)
The smallness assumptions ensure in particular that the deformation (2.2) is a local
homeomorphism. We further compute

—Zz wxx(x>y>t) —z wxy(x>y>t) _wx(x>y>t)
VuL(:c,y,z,t) = | —zwy(r,y,t) —zwy(r,y,t) —w,(z,y,t) , (2.5)
we(r,y,1) wy(7,y,t) 0

and the low order strain tensor el = (Vul + (Vu®)T)/2 becomes

—z wm(:v,y,t) —z w:cy(x>y>t) 0
el(z,y,2,t) = | —zwy(z,y,t) —zwy,(r,y,t) 0 | . (2.6)
0 0 0

2.1 Small elastic deformations

3%x3
sym

We denote by “ : 7 the canonical scalar product in the space T2X? of symmetric (3x3)-

tensors, i.e.,
3
E:m= &imy;. YE=(&), m=(ny), i.j=123. (2.7)
i,j=1

Moreover, we define for any given & € ']I‘S’yxni’ its (trace free) deviator D& by

Dg:g—%(g:a)é, (2.8)

4



where § = (0;;) denotes the Kronecker tensor.

To motivate the elastoplastic case treated below, we first study the case of linear
isotropic elasticity, in which the strain tensor € and the stress tensor o are related to
each other through the formula

o = 2ue+A(e:d)4, (2.9)

where p, A are the Lamé constants such that > 0, 24+ 3\ > 0. The main issue is
to choose a proper scaling of o. The components ;1,092,015 are of the lowest order,
which is O(a?) due to (A3), (2.6), and (2.9). Assuming that the motion is “sufficiently
slow” and no volume forces act on the body, we may for scaling purposes refer to the
elastostatic equilibrium conditions dive = 0 which, by virtue of the natural scaling
of the variables z = O(«), =,y = O(1) and due to the symmetry of o, justify the
scaling hypothesis

(A4) 013,023 = O(O&g), 033 = O(a4) .
According to (2.9) and Hypothesis (A4), the high order strain tensor € is scaled as

(A5) el el = O(a?), el = O(a?), el el efl = O(a?).

In terms of the high order displacements uf?, (A5) corresponds to the scaling u{{, uf =

O(at), ull = 0(a?).

Let &, € denote the stress and strain components of the order O(a?) at most.
Then

onn o2 0 eh e 0
o = 012 029 0 s E = 5%2 8%2 0 . (210)
0 0 0 0 0 E%

We compute ¢4} from the relation

0 =033 = 2;153{{3 + >\(61L1 + 652 + 53{{3) ,

that is,
A
H L L
€33 = ——— (€11 + €99) -
33 2,[,L+>\( 11 22)
Hence,
2
€ : 6 ,U/ (8{/1 + 552) .

- 2u+ A
We now rewrite the constitutive relations in terms of the Young modulus £ and the
Poisson ratio v, given by the formula

124+ 30) A ( 1)
= BTNy, = ef(-1,2).
7t A T (Y

"2



In addition to the obvious identity @ = u”, we have
E eh +vey (1—v)efy 0 el €y 0
o= 1_ .2 (1—v)efy vefy+eg 0 |, E=| e ep 0 )
0 0 0 0 0 —15(ch +eb)

(2.11)
with e’ given by (2.6). On the upper boundary, we prescribe the boundary condition
o(x,y,h,t) vy = f(x,y,t), where v3 = (0,0,1)T is the upward normal vector, and
f = (f1, f2, f3)7 is a given external surface load. In component form, this boundary
condition reads o3 = fi, 093 = fa, 033 = f3. In agreement with the scaling hypoth-
esis (A4), we require f1, f, = O(a?), fs = O(a*). On the rest of the boundary, we
assume the vanishing normal stress boundary conditions o - v = 0, where v is the
unit outward normal vector. On 0y x (—h,h), we add the boundary condition for

w
w(z,y,t) =0 for (z,y) € I, (2.12)

in order to eliminate possible transversal rigid body displacements. This corresponds
to a simply supported plate. In accordance with these boundary conditions, we con-
sider the Sobolev space

V= {w € H* (D) : wl,g, = 0}. (2.13)
Finally, suppose that the initial conditions

’UJ(.CL’,y,O) :U)O(;U,y)’ wt(x7y70) :wl(x,y), (214)
are given. As in [16]|, we write the momentum balance equation in variational form
/putt-ﬁdxdydsz/a:édxdydz = / (o-v)-uds, (2.15)
Q Q 89

with the unknown vector u and tensor o, for all admissible displacements 1 and
strains & of the form (2.4), (2.6), and (2.11); i.e., we have

—z W (x,y) — Wy —2Wgy 0
u(z,y,2) = | —zwy(z,y) , BTy, z) = | —RWyy —2iy, 0 ,
w(z,y) 0 0 =2 A

(2.16)
where w varies over the space V. It follows from the choice of the boundary conditions
that

/(0'~V)-f1ds = /(—hflwx—hfgwijfgw)dxdy
o9 Qo

- /Q (h(f1)a+ h(fo)y + f) 0 didy



Keeping on the left hand side of (2.15) only terms of the lowest order in «, we may
replace (u,o) by (u,&) from (2.4), (2.6), and (2.11), and obtain

LR . .
p/ (wttw + 5 (Wor o + Wy wy)) dx dy
Qo

—I-Eihz/ Wy Wer + 2Way Wey + Wy W —I—LA’LUA’LZJ dr d
31+4v) Jo, \ T O B 2 Y
_ / g dedy, (2.17)
Qo
where we have set
1 1

The variational equation (2.17) leads formally to the partial differential equation de-
scribing transversal vibrations of a thin elastic plate

ph? ER? N
- —A —— Aw = 2.19
pwtt 3 Wit _I_ 3(1 _ V2) w g? ( )
with boundary conditions
w = 0
ny (wm + ﬁAw) + nowyy = 0 on 0f), (2.20)
NWay + N2 (Wyy + 75 Aw) = 0

where n = (ny,ns) is the outward normal to €.

2.2 Elastoplastic oscillations

We still consider here 1 = ul, &, and € as in (2.4) and (2.10), with €’ given by
(2.6). In addition, following |7, 9], we make further specific hypotheses.

(B1) The strain tensor & is decomposed in elastic and plastic components & = g¢+eP.

(B2) The elastic constitutive law is as in (2.9), that is,
o =2pe’+ \e®:90)d. (2.21)
(B3) The plastic deformations are volume preserving in the sense that

e:5 = 0. (2.22)

The von Mises plastic yield condition is stated in terms of the stress deviator D& =

o— 1(6:08)8 as

3



(B4) Do :Do < 2R?,

where R > 0 is a given yield limit. Using the formula Dg: Do =6:Do=6:0 —
1(6:6)?, we may rewrite (B4) as

0’%1 ‘l‘UgQ —0’110'224—30'%2 S R2. (223)
For the plastic strain, we prescribe the normality flow rule

(B5) ef: (6—0) > 0 VOeTy?: DO:DO<IR?,

sym

where the subscript ; denotes the time derivative. Introducing the set

sym

2
K = {ee TS: : DO: DO < 532}
of admissible stresses and using the convex analysis formalism of e.g. [21], we can
rewrite (B4)+(B5) in subdifferential form as
e € 0lk(o), (2.24)

where Iy is the indicator function of K and Ol its subdifferential. For the sake
of completeness, we recall other equivalent formulations of the von Mises criterion,
cf. also [17].

Proposition 2.1. Each of the following two conditions is equivalent to (B4)+(B3).

(i) (multiplier formulation) Condition (B4) holds, and there exists a multiplier ¢, >
0 such that ¢, =0 if Do :Da < §R2, and

e’ = (,Da; (2.25)

(ii) (dissipation formulation) Let

M):{ VIRVEE ifgs=0,
+00 if€:0 #£0,

be the pseudopotential of dissipation. Then
o € 0V(e), (2.26)

that s,
g:(ef — &) = W(ef) —U(E) VEe Ty, (2.27)
Sketch of the proof. Choosing in (2.27) consecutively & = 2e} and € = 0, we see
that (2.26) is equivalent to the system

o:ef —VU(eY) = 0, (2.28)
g:(—V(E) < 0 VEeTy. (2.29)



The implication (i)=(B4)+(B5) is straightforward. Assume now that (B4)+(B5)
holds. We obtain (2.29) from (B4) and the Cauchy-Schwarz inequality. Putting in
(B5) @ =&+, we see that €} : d = 0. Identity (2.28) holds automatically if €7 =0,
otherwise we set in (B5) 8 = 2R%}/U(e?), and (2.28) follows again from the Cauchy-
Schwarz inequality.

It remains to check the implication (ii)=-(i). To this end, we choose & = D¢ in
(2.29), and obtain (B4). This and (2.28) imply in turn that

2
Do: el = \/;R\/sf:sf > VD& :Da /el : el

and (2.25) follows from the reverse Cauchy-Schwarz inequality. 0

Note that both (2.24) and (2.26) can be interpreted as a mazimal dissipation princi-
ple. In (2.24), for a given stress &, the strain rate €/ is chosen so as to maximize the
dissipation rate & :ef among all stress values @ € K ; in (2.27), for a given strain rate
g}, the stress & is required to maximize the reduced dissipation rate & :ef — W(e})
over the set of all values & of the strain rate.

Similarly as in (2.11), we have

E efy +vegy (1—w)efy 0 el €lo 0
=17 (1—v)efy vefy+e5, 0 |, &= &y €5 0
0 0 0 0 0 —g5(e5 +e5)

(2.30)
Assume that 3 = b, = 0 at initial time ¢ = 0. Then we have by (B3) and (2.25)
that
el €l 0
el = | &, &b, 0 : (2.31)
0 0 —(ef) +¢h)

It is convenient to consider &, €°, and &P as vectors with three components. To this
end, we introduce the notation

p

5 — e __ — p = —

o.=| o092 |, ei=1 €% |, el=] €% |, &= —2wy |. (232
p

According to (B1) and (2.30), we have
g, =¢el+el, o,=Ce, (2.33)

where C is the positive definite matrix

g v 0
C= 1 0 . 2.34
T (2.34)
0 1—v



Let D,,J be the matrices

1 -10 1 00
D= -3 1 0|, J=]010 (2.35)
0o 0 3 00 2
In view of (2.23), condition (B4) can be restated as
0. -D,o. < R?,
and (B5) reads
JEv)-(6.—6,) > 0 VO,€K,, (2.36)
where
K.,=1{6,€R’:0,-D.0, <R’} (2.37)
Alternatively, we can write this variational inequality in the form
Ei € C_I(K*)>
(2.38)

JC(e. —€f)i-(eS—m,) = 0 Vn, € CTH(K,).
Let us choose in R? the scalar product

(& m.) =JCE, .. (2.39)

This is meaningful, since JC = CJ is a symmetric positive definite matrix. We then
prescribe the canonical initial condition

££(0) = Qo1 (£:(0). (2.40)

where Qc-1(.) is the orthogonal projection onto C~*(K,) with respect to the scalar
product (2.39). For every &, € WH(0,T;R?), Problem (2.38)-(2.40) has a unique
solution ¢ in the metric space WH1(0,T; C71(K,)), and the solution mapping

Sc1k,y  WHH0, T3 R?) — WHH0,T; CH(K,)) : &, — €5

introduced in [11] is called the stop with characteristic C™'(K,). The set C71(K,) is
an ellipsoid, hence Sc-1(x,) is locally Lipschitz continuous and admits a 1/2-Holder
continuous extension to C([0,T];R?*) — C([0,T]; C™'(K.)), see |5, Chapter 2]. More
about the vectorial stop will be said in Section 3. This concept enables us to rewrite
(2.38) as

e

g, — Scfl(K*)[é*],

or, equivalently,
0. = CSc-1(k.)[E4] - (2.41)

The stop Sz with any symmetric convex closed characteristic Z has the following
elementary scaling property:

Syle.] = —Syl—e.] = %Scz[cs*] (2.42)

10



for every ¢ >0 and every e, € W"'(0,T;R?), where ¢Z = {6, € R® : 10, € Z}.
Notice first that we obtain from (2.41), (2.32), and (2.42) that

wxx
6'* = _ZCSﬁcfl(K*) wyy . (243)

Wy

We see that in view of (2.34) and (2.37), at distance |z| from the midsurface, the virtual
elasticity modulus is |z|E and the virtual yield limit is R/|z|. This is precisely the
behavior mentioned in the introduction. The eccentric layers seem harder in elasticity
and softer in plasticity than the central ones. This produces the multiyield effect when
integrating over the thickness of the plate.

To derive a counterpart of the partial differential equation (2.19), we consider test
functions @ and € as in (2.16), and set in agreement with (2.32)
_zwmm
e, = | —zy, | . (2.44)
— 2 Wy

The first and the third integral in (2.15) are evaluated in the same way as in (2.17).
The remaining one has to be treated more carefully. Using (2.42), we obtain

/&:éda:dydz = /J&*-é*dxdydz
Q Q

h — 2 Wy — 2 Wy
= / / JCSc-1(k,) | —2wyy | - | —2Wy, | drdydz
e — 2Wyy, — 2y,
= 2 / / Z2JCSlcf1(K*) Wy . ’UAJyy dx d’y dz
0 Qo z ~
Way Way
00 wZBZE ] w"ﬂfﬂ
= / JC / 20 ' Sc1x) | wyy | dg | | Wy, | dzdy.
Qo 1/h w @
zy | Ty
The mapping
wSCSC 00 wxx
Fil wy [— / 2‘1_4&10’1(&) wyy | dgq
Way L/ Way

11



is called the wvectorial Prandtl-Ishlinskiv operator. The equation for oscillations of an
elastoplastic plate can thus be written in the form

. h? . .
P/ (wttw + 3 (Watt Wy + Wy wy)) dx dy
Qo

wxx ,I'ZJCCCC
+ / JCF | wy, | | Wy |dedy = / gwdz dy Vi €V, (2.45)
Qo - Qo
Way Way

with ¢ as in (2.17)-(2.18).

2.3 Kinematic hardening

In order to model kinematic hardening, we assume that the stress & of the form (2.10)
is decomposed into the sum & = o? + o® of a purely elastoplastic stress tensor o
satisfying hypotheses (B1)—(B6), and the so-called backstress o®, which, in the three
dimensional representation (2.32), is assumed to obey an elastic constitutive law

o’ = JBe,, (2.46)

*

where B is a constant symmetric (3 x 3)-matrix such that JB = BJ, and the
inequality

11
IJBE, - €, > B(E + &) VE. = | & (2.47)
12

holds with some v > 0. Repeating the computation from the previous subsection, we
obtain, as a counterpart of (2.45), the equation for w in the form

h2
p/ (wtﬂf} + ? (wmtt 'UA)x + Wyt ’UAJy + JBDQ’LU . Dgw)) dz dy
Qo
+ / JCF [Dyw] - Dot da dy = / gidedy Yoev, (248
Qo QO

where the vector-valued differential operator Dy is defined as

DQUJ = Wyy

3 Vectorial Prandtl-Ishlinskii operator

The original Prandtl-Ishlinskii construction (|20, 10]) is one dimensional. A vector
Prandtl-Ishlinskii model in connection with phase transitions was considered in [14]. Tt

12



is based on the concept of stop operator, which we recall here in an abstract framework.
Consider a real, separable Hilbert space X endowed with a scalar product (-,-) and
norm |-| = +/(:,-) (in application to our model, we will consider X = R? with scalar
product (2.39)), and assume that a convex closed set Z C X containing the origin
is given. For each function v € Wh1(0,T; X), we define y € WH(0,7; X) as the
unique solution of the variational inequality

() ez vtelo,T],
x(0) = Qz(v(0)), (3.1)
(0(t) = x(t),x(t) —y) > 0 ae. VyeZ,

where Q7 : X — Z is the orthogonal projection onto Z, and the dot denotes differ-
entiation with respect to t. The solution mapping

Sz WH(0,T; X) — W0, T; X) : v x (3.2)

is called the stop with characteristic Z. It was introduced in [11] and its analytical
properties were studied in detail in |[5|. We list here some properties of the stop that
are needed in the sequel.

Proposition 3.1. The mapping Sz defined by (3.1)—(3.2) has the following properties.
(i) Sz is continuous in the strong topology of W11(0,T; X);

(ii) If the boundary of Z is of class W (that is, the outward normal mapping is
Lipschitz continuous), then Sy is locally Lipschitz continuous in W1(0,T; X) ;

(iii) If Z has a nonempty interior, then Sz can be extended to a continuous mapping

c((0,T}; X) — C([0,T]; X);
(iv) If Z is uniformly strictly convez, then Sz : C([0,T]; X) — C([0,T]; X) is 1/2-

Hélder continuous;

(v) The mapping Sy is monotone in the sense that

(Szlvr](t) = Szlva(t), 01(t) — Ba(t)) = 5= |Sz[n1](t) — Sz[va) (D) a.e. (3.3)
for every vy, vo € WH(0,T; X) ;

(vi) The mapping Sz is locally monotone, i. e.

2

g o a. e. (3.4)

for every v e WH(0,T; X);

<igz 0] (1), i;(t)> LS

(vii) The “second order energy inequality”

<%SZ[U](t),i)(t)> > %% <%52[U](t)a@(t)> (3.5)

holds in the sense of distributions for every v € W1(0,T; X).

13



Detailed proofs of the above statements are given in [5, Chapter 2| except for the
inequality (3.5) which is derived in [12, pp. 37 38|. Notice a certain similarity of (3.5)
with the “real” physical energy inequality

. Ld 2
(Sz[vl(t),0(2)) 2 5 [Sz[]@)]" . ae. (3.6)
which follows immediately from (3.3) by choosing vs = 0. In (3.6), the right hand
side is the time derivative of the potential energy associated with the stop, and the
(nonnegative) difference between the left hand and the right hand sides is the dissipa-
tion rate. If dim X = 1, then it can be identified with the area of the corresponding
hysteresis loops. Instead, the “dissipation” in (3.5) is related to the curvature of the

hysteresis branches. A detailed discussion on this subject can be found in |12, Section
I1.4|.

As another consequence of Proposition 3.1 (v) we have

%\52[01](t)—52[v2](t)| < 0u(t) = 02(2)] e, (3.7)

hence
|Sz[v1](t) = Sz[va] ()] < [Sz[v1)(0) — Sz[v2](0)] +/0 [01(7) = 02(T)|dT (3.8)

for all ¢ € [0,77].

We now assume additionally that Z is a bounded, convex, closed set containing 0
in its interior, that is, there exist M > m > 0 such that

B,.(0) C Z C By(0), (3.9)

where B,(x) for p > 0 and 2 € X denotes the open ball centered at x with radius p.
Given a nonnegative function ¢ € L*(0,00), we define the Prandtl-Ishlinskii operator
JF with characteristic Z and density ¢ by the formula

Flol(t) = / " Syl (t) ola) dg (3.10)

for v € WH(0,T;X). The definition is meaningful due to the fact that, setting
Uso = max{|v(t)| : t € [0,T]}, we have S z[v](t) = v(t) for all ¢ > vy/m and all
t €[0,7], so that, using the elementary estimate |S,z[v](t)] < ¢M, we have

FR] < v

for all t € [0,7]. As a direct consequence of Proposition 3.1, the mapping F has the
following properties.

Proposition 3.2. Let ¢ € L'(0,00) be given, ©(q) > 0 a.e., not identically zero,
and let F be defined by (3.10). Then we have:
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(i) Both F : WHH0,T;X) — W0, T;X) and F : C([0,T]; X) — C([0,T); X)

are continuous with respect to the strong topologies;
(ii) The mapping F is monotone in the sense that the inequality

1d [~

> 5 ) 18400 — SalulOF ela) do

(3.11)

(Floa](t) = Floa](£), 01() = 02(1))

holds for every vy,vy, € WHH0,T; X) and a.e. t € (0,T);

(iii) The mapping F is locally monotone, i. e.

OF [ e ds = (GFwa0) = [gruo| ([Teoa) o
(3.12)
for every v e WH(0,T; X) ;
(iv) The “second order energy inequality”
(ZF0l0.00) > 32 (L Au0.00) (3.13)

holds in the sense of distributions for every v € W20, T; X).

The canonical choice of initial conditions in (3.1) makes it possible to evaluate
explicitly F[v](0) at time ¢ = 0. We have

FOI0) = [ Qurlv(0) ¢ta) da. (3.14)
0
We thus can define the initial value mapping
Ar(v):R* - R?: v / Quz(v) p(q)dg. (3.15)
0

Since @,z is nonexpansive, we see that Az is Lipschitz continuous in R3.

4 Existence and uniqueness of solutions

Let us first fix the hypotheses and notation. We assume that Qy C R? is a Lipschitzian
domain, and denote in agreement with Section 2.1

H = L*Q),
W = Hj(Q) :={we H () : w‘mO:O},

15



By n = ( Zl ) we denote the outward normal vector to 2,. For functions v : Qy —
2

R3 with components (v!,v? v3), we define the differential operator

vl + v}
= z Y

For w € V and v € L*(Q;R?) such that Dyv € L?(;R3), we have the following
Green/Gauss-type formula

/ (Jv - Dow + Dyv - V) da:dy:/ (ven) Vwds, (4.2)
Qo B

Qo

v.n:m(:;)mQ(:i). (4.3)

Note also the formal identity

where we denote

We now restate Equation (2.48) in a slightly more general form. Removing the positive
constants that have no influence on the existence and uniqueness result, and keeping
the matrices J, C, B from Section 2, we consider the variational problem

Qo
= / (9 + VG- Vi) dedy VeV, (4.5)
Qo

where g and G are given functions, and F is a Prandtl-Ishlinskii operator as in
(3.10) associated with a convex constraint Z C R? satisfying (3.9). We prescribe
initial conditions

w(z,y,0) =w'(z,y), wlz,y,0)=w'(z,y) for(z,y)e, (4.6)
and boundary condition
w(z,y,t) =0 for (z,y) € 09y . (4.7)

Indeed, smooth solutions of the variational equation (4.5) satisfy a second (“no stress”)
boundary condition (cf. (4.2), (2.20))

(CF [Dyw] + BDyw)en =0 on 0€. (4.8)

Hypothesis 4.1. The data of Problem (4.5)-(4.7) fulfill the following conditions.

(i) The function ¢ in (3.10) is nonnegative and belongs to L'(0,00) ;
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(i) w® w' e H*(Qo) NV, and the compatibility conditions
(CA#(Dyuw’) + BDyw") en =0, Dow'en =0,

hold a. e. on 0, where Ax is the initial value mapping (3.15) of the operator
F;

(iii) g € L*(0,T;H) and G € L*(0,T; H'(Qy)) are such that g, € L*(0,T; H) and
Gt S L2(0, T, Hl(Qo))

The main result of this section reads as follows.

Theorem 4.2. Let Hypothesis 4.1 hold. Then Problem (4.5)—(4.7) admits a unique
solution w € L*(0,T;V) such that

w, € L*0,T;V)NC0, T, W),  wy € L*(0,T; W), (4.9)
and Eq. (4.5) holds for a.e. t € (0,T).

The uniqueness proof is easy. Let w', w? be two solutions, and let w = w!' — w?.

Then for every w € V' we have
/ (W (0 — Aw) +J (C(F [Dow'] — F [Dow?]) + BDyw) - Do) dzdy = 0. (4.10)
Qo

We may set @ = w; in (4.10), and use (3.11) together with (2.39) to obtain

d
— (|wt|2+|th|2+JBD2w-D2w
dt Jo,

+ /0 ) e()JC (Syz [Daw'] — Syz [Dow?]) - (Syz [Daw'] — Syz [Dow?]) dq) dz dy
< 0.

Both w! and w? satisfy the same initial conditions, hence w! = w?.

The existence proof is more complicated and we carry it out in several steps in
Subsections 4.1 4.3 below, following in principle the standard methods of solving PDEs
with hysteresis as in [3, 12, 22].

We first introduce an artificial viscosity parameter v > 0, then solve an auxiliary
linear problem, and use the Banach fixed point argument to construct a “viscous”
approximation of the solution. In the last step, we let v tend to 0 and check that the
limit is the desired solution to Problem (4.5)-(4.7).
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4.1 A linear parabolic equation

Let v € (L*0,T;H))3, g* € L*(0,T;H), G* € L*(0,T; H'(Qp)), and ug € W be

given functions. We fix a parameter v > 0, and consider the problem
/ (up(o — Aid) + I (v + ~Dyu) - D) da dy
Qo
= / (g*u?—i—VG*-VzIJ) dx dy Yw eV, (4.11)
Qo

u(z,y,0) = u’(z,y) for (z,y) € Q. (4.12)

Proposition 4.3. There exists a unique solution u € L*(0,T;V) N C([0,T); W) to
Problem (4.11) (4.12) such that u; € L*(0,T; H).

Proof. Uniqueness is easy again. Let u',u? be two solutions, and let 4 = u! — u?.
Then

/ (a(u — Au) +~IDot - D2a> dedy = 0
Qo

Using the formula (note that both 4, and Au belong to L*(0,T; H))

! 1
/ / — wAu(z,y, 7)dedydr = —/ |Vl (z,y,t) de dy,
0 Qo 2 Qo

we obtain © = 0. Existence follows immediately by considering for example Galerkin
approximations

ZIZ' y> Zuk ek X y)

where {e; : k € N} is the complete orthonormal system in H of eigenfunctions of
the problem

—Aek = >\k €L in Qo, =0.

€k ‘890

4.2 Viscous approximation

We now consider data ¢, G,w", w! as in Hypothesis 4.1, and fix a function v €

(L*(0,T; H))? such that v, € (L*(0,T;H))?, v(0) = CAx(Dyuw’) + BDyw®. We
define w as the solution to the problem

/ (wtt(w — Aw) + J (v + yDowy) - Dgﬁ}) dzx dy
Qo

= / (gzZJ+VG-V1,D)dzdy Y eV, (4.13)
Qo
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with initial and boundary conditions (4.6) (4.7), still keeping v > 0 constant. We
have wy(0) € W by Hypothesis 4.1 (ii). Hence, by Proposition 4.3, there exists a
unique w € L*(0,7;V) such that

Wy € L2(0, T, V) N C([O, T]7 W) , Wyt € L2(0, T, H) s (414)

and (4.13), (4.6) (4.7) hold for all ¢ € [0,77].

Let us introduce the space
L = {£cL*0,T;V) : l(z,y,0) =w’(z,y), ¢ € L*(0,T;V)}. (4.15)

We define the mapping R : L — L, which with each ¢ € L associates the solution w
to the problem

/ (wy (W — A) + I (Fp [D2f] + vDowy) - Do) dz dy
Qo
= / (g0 + VG - Vi) drdy VeV, (4.16)
Qo

where we set

Fp [Dal] = CF[Dyf] + BDyt (4.17)

with initial and boundary conditions (4.6)—(4.7). By (3.12), we see that Fp [Dy/],
belongs to (L*(0,7T; H))?; hence, w fulfills (4.14). Our goal now is to show that R is
a contraction on L endowed with a suitable metric.

Let 1,0y € L be given, and let wy,w, be the corresponding solutions. Put ¢ =
ly — Uy, W =w; —ws, and W = w; (this choice is admissible by virtue of (4.14)). We
obtain, using also (3.8), for all ¢ € (0,T) that

1d

5 (Jwe]? + |V, *) (z,y,t) do dy + 7/ (JDow; - Dotty) (2, y,t) dx dy
Qo

Qo

_ /Q (3 (Fp [Dals] — F [Dobs]) - Do) (., 1) da dy

t
< CyB \Dﬂﬂt\(l’,y,t)/ |Doly| (2, y, 7)dT d dy,
Qo 0

with a constant C, g depending only on ¢, C, and B. Hence, there exists a constant
C* > 0 depending only on v, ¢, C, and B, such that

d
at (loe]* + [V@u|?) (2, t) do dy + ’Y/ (JD2w; - Dowy) (2, y,t) do dy
Qo QO

¢
< C’*t/ / (JDgZngl@) (x,y,7)drdydr . (4.18)
0 Qo
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We now multiply (4.18) by e with x = C*/v, and integrate fOT dt. This yields

T [ (o + V) (2,0, 7) o dy
Qo
T 2
—i—/ 2/<ate_“t/ (J@e]* + |V@,|?) (z,y,t) de dy dt
0 Qo

T
—I—v/ e_“tQ/ (JDyw; - Dowy) (x,y,t) de dy dt
0 Q0

IA

T t

C’*/ te_’“Q// (JDJt-DJt) (z,y,7T)dxdydrdt
0 0 Jo
T

T
= C’*/ (/ to—rt? dt)/ (JDQZt'DQEt) (x,y,7)dxdydr
0 T Qo
C* T ) B B
< —/ e_’”/ (JD2£t-D2£t) (x,y,7)drdydr. (4.19)
2/€ 0 Q0

We now introduce in L (see (4.15)) the metric

T 1/2
dL(£1,£2) = (/ e_ntQ/ (JD2E§ . D2Zt> (S(Z,y,t) dx dy dt) y g: 61 - 62 .
0 Qo

This is indeed a metric, since it is induced by a weighted norm in L?*(Q x (0,T)).
To check that dp(¢1,05) = 0 implies ¢; = {5, note that if Dol; = Dayly a.e., then
Al =0 a.e., which together with the homogeneous Dirichlet boundary condition on
0 yields ¢; = f5. Moreover, (L,d;) is a complete metric space. From (4.19) we

obtain .
dr(wy,we) < —QdL(€17£2)7

%

hence R : L — L is a contraction. The Banach Contraction Principle then yields the
following result.

Proposition 4.4. Let Hypothesis 4.1 hold, and let v > 0 be given. Let Fp be given
by (4.17). Then there exists a unique solution w) to the problem

/ (wg) (W —Aw) +J (fB [Dyw™] + 7D2w§“’)) - Do) da dy
Qo
- / (g + VG- Vi) ddy Vi eV, (4.20)
Qo

with the regularity (4.14), and satisfying the initial and boundary conditions (4.6)-

(4.7).
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4.3 Passage to the limit

We first derive estimates for w( that enable us to pass to the limit as v — 0+. In
what follows, we denote successively by C7,Cs,... constants independent of v and
depending possibly on the other data of the problem.

By virtue of (4.14), we are allowed to differentiate (4.20) with respect to ¢ and set

@ =w!) . Invoking (3.13), we obtain

1d

T ( wil 2+ [V | + IFp [Dow™], - Dth(w)) (2,9, 1) dz dy
Qo

+ 7/ (JDzwt(?) : Dzwﬁf)) (z,y,t)dz dy
Qo

< [ (9? + Y9G Vuld) (o.p. ) dody (1.21)
Qo
in the sense of distributions. From (3.12) and (2.47), it follows for all ¢ € [0, T] that

| (10 19l P+ 51800 F) 29,00 do dy
Qo

<G ( | (10 19l P+ 3050 - Do) (,.0)
Qo

T
+/ / (|gt|2—|— |VGt|2) (x,y,t) da:dydt). (4.22)
0o Jao
We now estimate the right hand side of (4.22). We have indeed
/ (JDgw,gV) -Dgwp)) (z,y,0)drdy < Cy|w'f; =: Cs. (4.23)
Qo

The estimate for w(’(z,y,0) and Vw(’(z,y,0) is more delicate. The functions

Vw;’, Dyw”, and Dyw® belong to C([0,T); H) by virtue of (4.14). We thus
may set t =0 in (4.20) and obtain (omitting the arguments x,y for simplicity)

[ @0+ Vul?(0)- Vi + 3 (CA=(Dau’) + BDau® +9Daw’) - Datt) o dy
Qo
= / (9(0) & + VG(0) - Vi) dedy Vi €V, (4.24)
Qo

where Az is the initial value mapping (3.15) of the operator F. We now use the
compatibility conditions in Hypothesis 4.1 (ii) and identities (4.2), (4.4), and integrate
by parts in (4.24). This yields

/ (w$(0) @ + Vw(0) - Vi — Dy (CA£(Dyu®) + BDoyu® + 4Dyw') - V) da dy
Qo
= / (g(()) w+ VG(0) - Vﬁ}) dx dy Yw eV. (4.25)
Qo
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Since V' is dense in W, identity (4.25) holds for all & € W, and in particular for

w = w,g’)(O). The mapping A is Lipschitz continuous, hence the L?-norm of

D; (CA#(Dyuw’) + BDyw’ + yDyw')

can be estimated from above by the H?-norms of w® and w!, and we obtain
| (@ OF + v OF) dedy < Ci. (4.26)
Qo

From (4.22), (4.23), and (4.26) we conclude that
w,fg),ng),DgwéV) are bounded in L*>(0,T; H) independently of ~.  (4.27)

Hence, there exist a sequence 7, — 0+ as n — oo, and functions o € (L>(0,T; H))?,
w € L®(0,T;V) such that wy € L>®(0,T;H), Vwy € (L*(0,T; H))?, and Dow; €
(L°°(0,T; H))3, with the properties

(yn)

Wiy — Wy
(yn)
V" = Vi weakly- (4.28)
Dgwg%) — DQUJt
CF [Dyw] — o
(yn)
we oW } uniformly. (4.29)
w('Yn) — w

Passing to the limit in (4.20) as n — oo yields

/ (wtt(ﬁ} — Aw) 4+ J (o + BDyw) - Dgt@)(x, y, 1) dx dy
Qo
= / (9w + VG- V)(z,y,t)dedy Y eV (4.30)
Qo

for a.e. t € (0,7). The initial and boundary conditions (4.6)—(4.7) are indeed satis-
fied. Hence, the existence proof will be complete if we check that

o = CF[Dyw] . (4.31)

To prove (4.31), we use a variant of Minty’s trick based on the monotonicity property
(3.11) of F. We first put w = wy) in (4.20), so that

1d
2dt (|w§”|2 + Ve, + IBDyuw™ - Dzw«”) (z,y,t) dx dy
Qo
+ /Q 3 (CF D] + 4D ) - Dywl” (z,y, 1) da dy
0

= / <gw§w + VG- Vw@) (z,y,t)dx dy. (4.32)
Qo
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Hence, for all ¢ € [0,7] we have

1
5/ (\wgwe + Vw2 + IBDyu® - Dsz)) (z,y,1) dz dy
Qo

t
+ / / 3 (CF D] +9Dou) - Dyw (. . 7) do dy dr
0 Qo

t
= / / <gw§ﬁ’) + VG- wa”) (v,y,7)dx dydr
0 Jao
1

+ 5/ (Jw']* + |[Vw'|* + IBDyw” - Dow®) (z,y) da dy . (4.33)
Qo

Setting v = 1, in the above identity and passing to the limit as n — 0o, we see, using
(4.28)-(4.29), that a.e. in (0,7") we have

1
5/ (|wt|2 + |Vuwy|? + IBDyw - Dgw) (x,y,t)dedy
Qo

t
+ limsup/ / (JC]—" [Dyw™)] -Dgwﬁ%)) (,y,7)dxdydr
0 Jao

n—oo

t
< / / (qgwy + VG - Vuy) (x,y,7) dz dy dr
0 JQo
1
+ 5/ (Jw']* + |[Vw'|* + IBDyw” - Dow”) (z,y) dz dy . (4.34)
Qo

We now set 1w = wy in (4.30) and integrate over ¢. This yields for each t € [0, T] that

1
5/ (Jwe)® + |Vw|* + IBDyw - Dow) (2, y,t) dz dy
Qo

¢
—i—/ / (Jo - Dowy) (z,y, 7) dx dy dr
0 )

t
< / / (gwe + VG - Vuy) (z,y,7)dx dydr
0 Qo
1
+ 5/ (|w1|2 + |Vw' > + IBDyuw? - DQUJO) (z,y)dxdy. (4.35)
Qo

It follows from the comparison of (4.34) with (4.35) that

t
lim sup / / (JC]—"[Dgw("’”)}~D2wa”)> (z,y,7) dz dydr
0 )

n—oo

t
< / / (Jo - Dowy) (z,y,7) dx dy dt (4.36)
0 Qo
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for all t € [0,7]. On the other hand, for an arbitrary function v € (L?(0,T; H))?
such that v, € (L*(0,T; H))? and v(z,y,0) = Dow’(x,y), we have by (3.11) that

t
/ / IC (F [Dw™)] = FV]) - (Daw™ = i) (w,9,7) dudydr > 0.
0 )

Passing to the limit and using (4.36), we obtain

/T/ I (o — CF V) - (Dyws —v1) (2, 9,8) de dydt > 0. (4.37)

We now choose v in the form
v = Dow—9((t)s,

where § > 0 is a parameter, ¢ € WH1(0,T) is an arbitrary, nondecreasing function
such that ¢(0) =0, and s € H x H x H is an arbitrary element. Then

/OTC'(t)/Q J (o0 — CF [Dyw — 6¢(+)s]) (z,y,t)-s(x,y) dvdydt > 0 Vse€ HxHxH.

(4.38)
We have by (3.8) for a.e. (z,y) € Qy and every ¢t > 0 that

| F [Daw — 0¢(-) 8] (2,9, t) — F [Daw] (z,y, )] < 6¢(t) |s(z,y) /OOO p(q)dq.

Letting § tend to 0 in (4.38), we conclude that o = CF [Dyw], hence (4.31) holds
and the proof of Theorem 4.2 is complete.

Conclusion. The two dimensional partial differential equation for transversal vibra-
tions of an elastoplastic plate is derived from a general three dimensional system with
a single yield tensorial von Mises plasticity model in the five dimensional deviatoric
space. The multiyield behavior is due to the fact that not all layers parallel to the
midsurface become plastic at the same time. The resulting partial differential equation
with a Prandtl-Ishlinskii hysteresis operator is solved via viscous approximations and
a monotonicity argument.
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