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Abstract
This paper evaluates the ability of eight global vegetation models to reproduce recent trends and
inter-annual variability of biomass in natural terrestrial ecosystems. For the purpose of this
evaluation, the simulated trajectories of biomass are expressed in terms of the relative rate of change in
biomass (RRB), defined as the deviation of the actual rate of biomass turnover from its equilibrium
counterpart. Cumulative changes in RRB explain long-term changes in biomass pools. RRB
simulated by the global vegetation models is compared with its observational equivalent, derived from
vegetation optical depth reconstructions of above-ground biomass (AGB) over the period 1993–2010.
According to the RRB analysis, the rate of global biomass growth described by the ensemble of
simulations substantially exceeds the observation. The observed fluctuations of global RRB are
significantly correlated with El Niño Southern Oscillation events (ENSO), but only some of the
simulations reproduce this correlation. However, the ENSO sensitivity of RRB in the tropics is not
significant in the observation, while it is in some of the simulations. This mismatch points to an
important limitation of the observed AGB reconstruction to capture biomass variations in tropical
forests. Important discrepancies in RRB were also identified at the regional scale, in the tropical
forests of Amazonia and Central Africa, as well as in the boreal forests of north-western America,
western and central Siberia. In each of these regions, the RRBs derived from the simulations were
analyzed in connection with underlying differences in net primary productivity and biomass turnover
rate —as a basis for exploring in how far differences in simulated changes in biomass are attributed to
the response of the carbon uptake to CO2 increments, as well as to the model representation of factors
affecting the rates of mortality and turnover of foliage and roots. Overall, our findings stress the
usefulness of using RRB to evaluate complex vegetation models and highlight the importance of
conducting further evaluations of both the actual rate of biomass turnover and its equilibrium
counterpart, with special focus on their background values and sources of variation. In turn, this task
would require the availability of more accurate multi-year observational data of biomass and net
primary productivity for natural ecosystems, as well as detailed and updated information on
land-cover classification.
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1. Introduction

Large uncertainties of the global carbon budget (Le
Quéré et al 2015) are associated with the terrestrial
carbon cycle (Bloom et al 2016). Reducing those
uncertainties requires an improved capacity to esti-
mate the fluxes of carbon between the atmosphere
and terrestrial ecosystems, along with gaining better
understanding of the dynamics of the correspond-
ing carbon pools and their sensitivity to climate. For
this purpose, global vegetation models (GVMs) have
been developed to describe the effects of climate,
atmospheric CO2 and other drivers on a large num-
ber of ecological processes, including photosynthesis,
respiration, carbon allocation, phenology, and plant
mortality which altogether control the dynamics of
carbon pools. The possibility to evaluate the perfor-
mance of such complex vegetation models is currently
improving thanks to novel satellite-based observation
methods.

Recently, the ensemble of GVMs available through
the Inter-Sectoral Model Intercomparison Project
Phase 2a (ISIMIP2a) has been evaluated with regards
to the models’ ability to reproduce the historical trends
and variability of the gross primary production and
net biome productivity (Ito et al 2017, Chang et al
2017, Chen et al 2017). Using the same ensemble of
GVMs, this paper aims at corroborating recent trends
and interannual variations of biomass stocks. Beyond
comparing changes in biomass, derived from GVMs
and observations, we propose to address the processes
explaining these changes. As recently shown, the equi-
librium turnover rate of biomass (TRB) Thurner et al
(2017) and the rate of loss of biomass (RLB) (Friend
et al 2014, Bloom et al 2016) are major sources of
uncertainty in model representations of biomass
dynamics. The RLB is the inverse of the residence time
of carbon in vegetation, i.e. the time carbon remains
in living biomass pools from fixation to removal. In
natural ecosystems, biomass removal occurs through
background mortality of stems, foliage and roots, and
through losses from disturbances such as fire, storm or
insect damage. The TRB is defined as the value of RLB
when the biomass pool is in equilibrium, i.e. the inverse
of the equilibrium residence time.

The objective of this paper is to analyze changes in
biomass stocks from the view point of the deviations
of the biomass loss flux, from the loss in the virtual
equilibrium state, i.e. the difference between TRB and
RLB. This difference, here referred as the relative rate
of change in biomass (RRB), is relevant for model eval-
uation since a positive/negative value in the temporal
mean of RRB entails that the biomass system tends
to move towards its equilibrium following an expo-
nential increase/decrease in biomass. Observed RRB
is diagnosed from annual maps of biomass retrieved
fromvegetationopticaldepthsatelliteobservations (Liu
et al 2015) during the period 1993–2010. We note that
this product may be less accurate than other biomass

datasets, but it is the only temporally resolved one
allowing for comparison with model outputs on annual
time-scale.

We focus on the variations of processes control-
ling biomass change in so called ‘natural’ terrestrial
ecosystems, i.e. in ecosystems not being affected by
land use change. For this purpose, areas covered with
cropland and pastures were filtered out from the grid-
ded data of the observation and GVM simulations,
prior to the analysis of RRB. At the global scale, this
work evaluates the performance of GVMs to repro-
duce the observed temporal mean of RRB. In addition,
global biomass variations are evaluated with focus
on the relation between RRB fluctuations and the
El Niño Southern Oscillations (ENSO) that occurred
since 1993.

The behavior of RRB in the models is further ana-
lyzed in specific regions representative of the main for-
est biomes (table S1 in supplementary information (SI)
available at stacks.iop.org/ERL/13/075002/mmedia).
The underlying differences in RRB in the GVM simu-
lations are investigated in relation with the trends and
variations of the net primary productivity (NPP) and
RLB. In addition, the spatial share of regional biomass
trends in the simulations is evaluated in terms of the
land cover fraction where the temporal mean of RRB
exhibits negative values –i.e. areas where the observa-
tion indicates loss of biomass.

2. Datasets and methods

2.1. Datasets
2.1.1. The global vegetation model simulations
The simulations were performed by eight GVMs,
namely, CARAIB (Warnant et al 1994, Gérard et al
1999, Dury et al 2011), DLEM (Tian et al 2015),
JULES-UoE (Best et al 2011, Clark et al 2011, Harper
et al 2016), LPJ-GUESS (Smith et al 2014), LPJmL
(Bondeau et al 2007), ORCHIDEE (Krinner et al
2005), VEGAS (Zeng et al 2005), and VISIT (Ito
and Inatomi 2012). These models embody different
degrees of detail in the representation of biomass
dynamics reflecting, productivity, allocation, main-
tenance respiration, vegetation dynamics and losses
from mortality and disturbances (see tables 1 and 2).
Each simulation was forced by a time-series of global
atmospheric CO2 concentration (Keeling and Whorf
2005) and historical reconstructions of climate on a
0.5◦ global grid in daily temporal resolution. In addi-
tion, simulations of all models, except CARAIB, were
constrained with historical land-use maps. The land-
use dataset describes cropland and pasture areas for
the year 2000 (Ramankutty et al 2008). Changes in
cropland and pasture covers were extrapolated into
past and future using the trends reported in HYDE3
(Goldewijk et al 2011). A further detailed classifica-
tion of crops and irrigated land was achieved using the
MIRCA2000 crop dataset (Portmann et al 2010).
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Table 1. Summary of key processes represented in the global vegetation models used in this study: dynamical vegetation (DYNV), nitrogen
limitation (NITL); CO2 fertilization effect (CO2E); light interception (LIGI); light use efficiency (LIGU); phenology (PHEN); number of
plant functional types in natural vegetation (#PFTS); water stress on photosynthesis (WASP); heat stress on photosynthesis (HEAP);
evapo-transpiration (EVAT); differences in root depth (DROD); root distribution over depth (RDOD); closed energy balance (CBAL); latent
heat (LATH); sensible heat (SENH); information non-specified (N/S) (for further details see ISIMIP2a,
https://esg.pik-potsdam.de/projects/isimip2a/).

MODELS DYNV NITL CO2E LIGI LIGU PHEN #PFTS WASP HEAP EVAT DROD RDOD CBAL LATH SENH

CARAIB ∙ — ∙ ∙ ∙ ∙ 26 ∙ ∙ ∙ — — ∙ ∙ ∙
DLEM — ∙ ∙ ∙ ∙ ∙ 14 ∙ ∙ ∙ — — — ∙ —
JULES ∙ — ∙ ∙ ∙ ∙ 9 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
LPJ-GUESS ∙ ∙ ∙ ∙ ∙ ∙ 11 ∙ — ∙ — ∙ — — —
LPJmL ∙ — ∙ ∙ ∙ ∙ 9 ∙ ∙ ∙ — ∙ ∙ ∙ ∙
ORCHIDEE ∙ — ∙ ∙ ∙ ∙ 10 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
VEGAS ∙ ∙ ∙ ∙ ∙ ∙ 4 ∙ — ∙ ∙ N/S ∙ ∙ ∙
VISIT — — ∙ ∙ — ∙ 26 ∙ ∙ ∙ ∙ ∙ — ∙ —

Table 2. Factors influencing the rate of biomass loss in the global vegetation models used in this study.

Mortality factors Bioclimatic limits on biomass
to litter conversion processes

MODELS Tree
Age

Fire Random
disturbances

Light
competition

Climatic
influences

Background
mortality

formulation

Leaf turnover Fine roots
turnover

CARAIB ∙ ∙ ∙ ∙ ∙ Const. — —

DLEM ∙ — — — —
Saturation
effect on
biomass

— —

JULES — — — — —
Saturation
effect on
biomass

∙ —

LPJ-GUESS ∙ ∙ ∙ — —
Growth

efficiency ∙ ∙

LPJmL — ∙ — ∙ ∙
Growth

efficiency ∙ ∙

ORCHIDEE ∙ — — — ∙
Growth

efficiency ∙ ∙

VEGAS — ∙ — ∙ — Const. — —

VISIT — ∙ — — — Const. — —

All simulations were accomplished following a
two-step process: (1) a ‘spin-up’ run in order to
ensure that the carbon pools in the models reach
an equilibrium, according to the climate, CO2 and
land-use conditions at the beginning of the 20th
century (1901–1930); (2) starting fromyear1901,mod-
els were forced away from equilibrium by historical
climate, CO2 concentrations and land-use data, up
to 2010 (www.isimip.org/gettingstarted/#simulation-
protocol). The model output used in this work covers
the period 1971–2010.

One original feature of this study is the appli-
cation of three different climate forcing datasets,
instead of only one forcing usually used in other
model inter-comparison projects (Sitch et al 2015,
Huntzinger et al 2013). We consider the following
climate forcing datasets: PGFv2 (http://hydrology.
princeton.edu/data.pgf.php) (not available for
VEGAS), GSWP3 (http://hydro.iis.u-tokyo.ac.jp/
GSWP3) and WFDEI (combined with WATCH)
(www.waterandclimatechange.eu/about/watch-forcin
g-data-20th-century) (not available for JULES); The
data pre-processing is described in section S1.1 in SI.

2.1.2. Gridded observation-based annual above-
ground biomass dataset.
Theabove-groundbiomass (AGB) inter-annualdataset
used for model evaluation was produced by Liu et al
(2015) by regressing satellite observations of vegeta-
tion optical depth (VOD) with the map of tropical
AGB from Saatchi et al (2011), VOD is an indicator
of the water content of woody and leaf vegetation tis-
sues, related to biomass. The VOD-AGB regression
coefficients were used to extrapolate AGB on a grid of
0.25◦ for each year during the period 1993–2012, based
on annual maps of VOD. We re-gridded the Liu et al
(2015) biomass dataset to the 0.5◦ resolution of the
GVMs, using a conservative remapping algorithm (see
details in S1.2 in SI).

2.1.3. Masking areas where biomass is affected by land
use change
Since changes in land-use and land-cover drastically
affect the turnover rate of carbon in vegetation (Erb et al
2016) and thereby biomass change estimates, we focus
on so-called ‘natural’ ecosystems (those not affected by

3

https://esg.pik-potsdam.de/projects/isimip2a/
http://www.isimip.org/gettingstarted/#simulation-protocol
http://www.isimip.org/gettingstarted/#simulation-protocol
http://hydrology.princeton.edu/data.pgf.php
http://hydrology.princeton.edu/data.pgf.php
http://hydro.iis.u-tokyo.ac.jp/GSWP3
http://hydro.iis.u-tokyo.ac.jp/GSWP3
http://www.waterandclimatechange.eu/about/watch-forcing-data-20th-century
http://www.waterandclimatechange.eu/about/watch-forcing-data-20th-century


Environ. Res. Lett. 13 (2018) 075002

land use). For this purpose, a land-mask was applied
to both the AGB and GVM output to exclude: 1) grid-
cells where the cover fraction occupied by pastures and
cropland in 2005 (the last available time-step in the
land-use pattern used in the simulations) exceeds 5%;
2) grid-cells where VOD is known to be affected by
the presence of open water bodies, snow and ice cover
(see figure S1 in SI). Excluding the effect of land use
changes is especially critical when comparing GVMs
with observations at the regional scale. Therefore, for
the regional scale analysis we consider only grid cell
values where the land-use pattern indicates a natural
vegetation cover of 100% (see table S1 in SI). Finally,
it is important to consider that managed forests have a
faster turnover rate and a lower biomass than primary
forests simulated by the GVMs. However, our mask
does not exclude forested areas under management
even though forest management is not represented in
the GVMs. This constitutes a source of systematic error
in the model evaluation, as the effect of management
should be captured in the AGB observations.

2.1.4. Multivariate ENSO Index (MEI)
The time-series of multivariate El Niño SouthernOscil-
lation index (MEI) has been derived on the basis
of six observed climate variables (Wolter and Timlin
2011) over the 1993–2010 period of interest: sea level
pressure, sea surface temperature, zonal and merid-
ional components of the surface wind, surface air
temperature and cloudiness (www.esrl.noaa.gov/psd/
enso/mei/).

2.2. Methods
2.2.1. Relative rate of change of biomass (RRB)
This studyaimsat corroboratingbiomasschanges in the
GVM simulations, using the AGB data as observational
reference. However, the GVMs do not report AGB, but
only on total biomass. Thus, a direct comparison would
require first to reconstruct the AGB to below-ground
biomass (BGB) relation, in order to transform AGB
onto total biomass (or the other way around). Alter-
natively, changes in total biomass and AGB can be
consistently compared in relative terms (i.e. using met-
rics quantifying changes per unit of biomass), provided
the ratio of AGB to BGB is constant in time and space
(see section S1.4 in SI). The plausibility of this assump-
tion is supported by empirical evidence (Niklas 2005,
Yang and Luo 2011, Cheng et al 2015). An additional
advantage of applying a relative metric is that it enables
one to compare the intensity of biomass changes across
different ecosystems. Among the possible relative met-
rics that can be used to assess changes in biomass, we
consider the relative rate of change of biomass (RRB),
defined as:

RRB𝑡 =
1
B𝑡

ΔB𝑡

Δ𝑡
. (1)

Here,B𝑡 denotes the value of biomass (or AGB) at time
t andΔB𝑡 = B𝑡 − B𝑡−Δ𝑡 the changeoccurredwithin the

time window [t, t−𝛿t] (hereafterΔt = 1 yr). We obtain
global and regional sequences of aggregated RRB by
feeding inequation (1) the time-series of the spatial sum
of the gridded biomass (or AGB) values. We note that
if the values of RRB are considerably small compared
to Δ𝑡, the trajectory of biomass is described by the
exponential

B𝑡 ≈ B0 exp
(
K𝑡

)
(2)

with K𝑡 denoting the sum K𝑡 =
m∑
j=1

RRBjΔ𝑡 and m

the number of time steps after the beginning of the
study interval, i.e. t = m Δt (for the historical period
1994–2010, m ∈ [1, 17]) (see derivation of equation
(2) in S1.5). The exponential relation in equation (2)
shows the pertinence of using RRB to evaluate biomass
changes. According to equation (2), a systematic dif-
ference between independent estimates of K𝑡 implies,
in the long-term, an exponential deviation at the level
of the corresponding biomass trajectories (as explained
in section S1.5 and illustrated by figure S2 in SI).

Trends of biomass and AGB over the historical
period were characterized in terms of the temporal
mean of RRB, denoted by RRB — which in the short
term (or as long as K𝑡 ≪ 1) provides similar informa-
tion as the mean percentage change of biomass with
respect to the beginning of the historical period (see
S1.5 in SI). The amplitude of annual variations of
biomass were evaluated in terms of the temporal stan-

dard deviation of RRB, denoted as STD. Both, RRB
and STD were obtained for each model and climate
forcing combination. In addition, for every quantity
under investigation we estimate the ensemble mean,
i.e. the average over the whole set of simulations.

2.2.2. Multivariate ENSO Index-based reconstruction
of biomass time series
We model the response of RRB to ENSO by assuming a
heuristic linear relationship RRB𝑡 = 𝛽 + 𝛾MEI𝑡. After
computing the intercept (𝛽) and sensitivity (𝛾) param-
eters using least-squares regression, the reconstruction
of biomass trajectories can be achieved by combining
the RRB to MEI linear relation with equation (2), i.e.

B𝑡 ≈ B0 exp(m𝛽Δ𝑡 + 𝛾

m∑
j=1

MEIjΔ𝑡). (3)

2.2.3. The turnover rate of biomass and its relation to
RRB
Biomass changes can be described by a simple balance
equation (Friend et al 2014)

ΔB𝑡

Δ𝑡
= NPP𝑡 − RLB𝑡B𝑡. (4)

Here, NPP𝑡 is the average net primary production
and RLB𝑡 the rate of loss of biomass per B𝑡 (in the
models leaf and fine root turnover and mortality), dur-
ing the time interval [t, t−Δt]. After dividing both
sides of equation (4) by B𝑡, and with TRB𝑡 defined as
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NPP𝑡∕B𝑡 one finds

RRB𝑡 = TRB𝑡 − RLB𝑡 (5)

which expresses the relation between the RRB𝑡, the
equilibrium turnover rate of biomass, TRB𝑡, with
respect toNPP input and theRLB𝑡 (indistinctly referred
in the text as the actual turnover rate). Regional scale
NPP was obtained as the spatial sum of gridded val-
ues. The RLB𝑡 was computed from the simulations, by
first calculating TRB from NPP and biomass and then
subtracting it from RRB, diagnosed from equation (1).

2.2.4. Relative sensitivity of RRB to NPP and RLB
The relative influences of NPP and RLB on RRB were
evaluated in terms of the coefficients 𝛾NPP and 𝛾𝑅𝐿𝐵 ,
obtained from the least-squares regression of the lin-
ear equation R̃RB = 𝛾NPPÑPP + 𝛾RLBR̃LB + c, with
symbol∼ denoting standardized variables (i.e. for each
variable, subtracting the temporal mean over the his-
torical period and then dividing by the corresponding
standard deviation). Here, 𝛾NPP > 𝛾RLB (𝛾NPP < 𝛾RLB)
indicates that the variations of RRB are mostly influ-
enced by NPP (RLB).

2.2.5. Fraction of area affected by biomass decrease.
For a region R, we analyze the spatial share of biomass
trends. For this purpose, we consider the fraction (fA)
of the area affected by a decrease of biomass as

f𝐴 =

∑
𝑖
𝜒
(
−RRB𝑖

)
A𝑖

∑
𝑖
A𝑖

. (6)

With Ai the area of the grid-cell i in region R, and 𝜒

a step function equal to 1 if its argument is positive
or 0 otherwise. Alternatively, one may consider the
area fraction where RRB > 0. This would amount to
estimating1-fA , given thevirtual absenceof areaswhere
strictly RRB = 0.

3. Results

3.1. Global RRB and its sensitivity to ENSO
The GVM simulations show positive significant trends
of global biomass, steeper than the observed one.
Whereas the observed RRB = 0.03% yr−1, the ensem-
ble of simulations shows RRB = 0.3%yr−1 (figure
1(a)) (hereafter RRB results are reported in units of %
of change per unit of biomass per year). TheRRB in the
individual simulations range between 0.1 (in VEGAS-
WFDEI) and 0.6 (in CARAIB-WFDEI). In the case of
VISIT, LPJmL and CARAIB, the RRB results strongly
depend upon the climate forcing.

The inter-annual variability of biomass is con-
trolled by annual RRB fluctuations. The observations
and the ensemble mean are characterized by a tem-

poral standard deviation of RRB of STD = 0.5 and

STD = 0.2, respectively. The smallest STD equals 0.1
(ORCHIDEE-PGFv2) and the highest 0.9 (JULES-

GSWP3) (table 3). The exceedingly large STD in
JULES-GSWP3 results from a single strong RRB fluc-
tuation around 2002. Amid the models, similar values
of STD as in the observation are found for VEGAS-
GSWP3 and CARAIB-WFDEI.

When lookingat the signchangesof detrendedRRB
anomalies, the ensemble meanmatches the observation
in 11 out of 17 years. The best match between individual
models and observation is found for VEGAS-GSWP3
(11 years) and the lowest one for DLEM-GSWP3
(6 years) (table 3).

The results of the regression of global RRB with the
Multivariate ENSO Index (MEI) (equation (3)) show
the importance of ENSO events in explaining the inter-
annual variability of global biomass (figure 1(d)). The
observed RRB to MEI regression shows a R2 value of
0.5 (figure 1(b)), as opposed to a model ensemble mean
R2 of 0.2. The highest valueR2 = 0.5 in the simulations
corresponds to ORCHIDEE-WFDEI (table 4).

In the observations, the sensitivity of RRB to MEI
(figure 1(c)) (denoted by 𝛾 and hereupon reported in
the text in units of % yr−1 per MEI unit change) is nega-
tive and equals−0.32 ± 0.08. The ensemble mean does
not show a significant sensitivity (at p-value≤ 0.05).
However, significant negative sensitivities were iden-
tified in VISIT-GSWP3 where 𝛾 = −0.12 ± 0.1, as
well as in all the simulations of ORCHIDEE (from
−0.05 ± 0.02 in PGFv2 to −0.17 ± 0.05 in GSWP3)
and CARAIB (from −1.8± 0.7 in PGFv2 to −2.8± 1.1
in GSWP3). The intercept regression coefficients in the
simulations can be practically assimilated to RRB (see
figure S3 in SI).

After restricting the analysis to the Northern
Hemisphere extra-tropical region (23◦N–85◦N), the
observed RRB to MEI regression shows a negative sen-
sitivity with 𝛾 = −0.8 ± 0.2 and R2 = 0.4 (see figure S4
in SI). In this region, the sensitivities of RRB in the
GVM simulations are not significant (see figure S4 in
SI). The opposite occurs in the Tropical region (23◦S—
23◦N), where the sensitivity of RRB is not significant
in the observation (see figure S5 in SI), but in the
simulations of VISIT-GSWP3 (−0.2 ± 0.1), JULES-
PGFv2 (−0.1 ± 0.03), CARAIB (from −0.3 ± 0.1 in
WFDEI to −0.4 ± 0.1 in GSWP3) and of ORCHIDEE
(from −0.05 ± 0.02 in PGFv2 to −0.2 ± 0.06 in
GSWP3). The simulation CARAIB-PGFv2 shows
the highest R2 (0.5).

3.2. The regional RRB and underlying differences in
NPP and RLB in the global vegetation models.
To gain understanding on the discrepancies in global
biomass change, between the GVM simulations and
the observation (figure 1(a)), the RRB analysis was
applied to regions of natural forest with high biomass
densities, namely the tropical forests of Amazonia
(AMA) and Congo (CON) and the boreal forests of
Western Siberia (WES), Central-Siberia (CES) and
North-Western America (NWA)–the latter including
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Figure 1. Global RRB derived from AGB-VOD and the global vegetation models and their relation to ENSO (described by the MEI) for
the historical period 1993–2010. (a) The temporal mean of global RRB; (b) R2 values of the RRB to MEI; (c) the RRB to MEI sensitivity
parameter (∗ significant sensitivity (𝑝 ≤ 0.05)); (d) trajectory of global AGB-VOD (green) and its reconstruction using the results of
the regression with MEI and the connection between RRB (equation (3)) (blue). The parameter values derived from AGB-VOD in
green and the model ensemble mean of these quantities in white. Models: VEGAS, DLEM, VISIT, LPJ-GUESS, ORCHIDEE, LPJmL
JULES, CARAIB. Climate forcings: PGFv2 (red), GSWP3 (orange) and WFDEI (yellow).

also temperate forest (figure 2 and table S1 in SI).
Altogether, the contributions of these regions sum up
ca. 40% of the total AGB considered in the global
analysis.

The observation shows a major increase of biomass
in WES (19% growth of AGB with respect to the
beginning of the study period), that is characterized
by RRB = 0.8 (figure 3(a)). This increment largely
surpasses in magnitude the loss of biomass observed
in NWA (RRB = −0.08), CES (RRB = −0.07), AMA
(RRB = −0.07) and CON (RRB = −0.01). With the
exception of CON, the decremental trends of biomass
associated to the observed regional values of RRB
are significant. In contrast, the RRB shown by the
ensemble mean of the simulations is positive in all
of the regions. According to the ensemble mean,
the most intense growth of biomass occurs in CES
(RRB = 0.8), followed by WES (RRB = 0.6), NWA
(RRB = 0.4), CON (RRB = 0.2) and AMA (RRB =
0.2). The overestimation of biomass growth in the sim-
ulations is also expressed as an underestimation of
the fraction fA of the total area where RRB < 0 (see
section 2.2.5). The least underestimation of this frac-
tion in the boreal regions is found in NWA (ensemble
mean: 32.4%; observation: 56.3%) and in the tropical

regions in CON (ensemble mean: 27.3%; observation:
61.7%) (see summary in tables S2-S6 in SI).

The individual simulations show positive values of
RRB in all of the regions, excerpt for LPJmL-PGFv2,
VEGAS (forced by GSWP3 and WFDEI) and VISIT
(GSWP3 and WFDEI) in CON (figure 3). Practically
all of the trends of biomass associated to the RRB val-
ues in the simulations are significant across the regions.
The simulated increments of biomass show their
best mutual agreement in AMA, with RRB ranging
between 0.06 (VEGAS-WFDEI) and 0.3 (JULES-
GSWP3). On the contrary, the largest inter-simulation
discrepancies in RRB take place in CON, with values
ranging from −0.4 (VISIT-WFDEI) to 1.4 (LPJmL-
WFDEI). In the boreal regions, the largest spread of
RRB occurs in CES, with values ranging between
0.1 (VEGAS-GSWP3) and 1.4 (LPJmL-GSWP2).
In WES, RRB ranges from 0.3 (CARAIB-WFDEI)
to 1.4 (ORCHIDEE-GSWP3) and in NWA from
0.08 (DLEM-PGFv2) to 0.9 (CARAIB-GSWP3) (see
summary of RRB results in tables S2–S6 in SI).

In those simulations showing the largest values of
regional RRB, RRB is positive in at least 14 out of
the 17 years covered by the study period. We remind
that positive values of RRB occur whenever TRB, i.e.
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Table 3. Summary statistics of the analysis of global RRB.

Observation/Model RRB
(
10−3yr−1

)
STD

(
10−3yr−1

) Fraction of years where the sign of detrended RRB
agrees with the sign of RRB derived from VOD

VOD 0.4 4.6

VEGAS
GSWP3 1.3 4.5 0.7
WFDEI 1.2 4.3 0.5

VISIT
PGFv2 3.0 2.0 0.6
GSWP3 1.4 2.1 0.5
WFDEI 2.8 2.3 0.6

DLEM
PGFv2 2.1 2.0 0.4
GSWP3 2.1 2.1 0.4
WFDEI 2.1 2.3 0.4

LPJ-GUESS
PGFv2 3.5 3.0 0.5
GSWP3 3.6 3.3 0.5
WFDEI 4.0 3.3 0.6

ORCHIDEE
PGFv2 3.8 1.0 0.6
GSWP3 4.1 1.3 0.4
WFDEI 4.1 2.4 0.5

LPJmL
PGFv2 3.1 3.1 0.6
GSWP3 5.6 2.7 0.6
WFDEI 3.7 2.9 0.7

JULES-UoE
PGFv2 4.2 1.3 0.5
GSWP3 4.5 9.4 0.5

CARAIB
PGFv2 3.6 3.0 0.4
GSWP3 4.3 5.0 0.5
WFDEI 6.3 3.7 0.5

ENSEMBLE 3.4 1.8 0.7

Figure 2. Map of temporal mean of RRB derived from annual biomass observations from Liu et al (2015) over the historical period
1993–2010. Blue boxes enclose the analyzed regions in Amazonia (AMA), Congo (CON), western Siberia (WES), Central Siberia
(CES) and north-western America (NWA). Non-available and masked values (where the cover of farmland and pastures exceeds the
5% threshold of the grid-cell) are shown in gray.

the ratio NPP/B, exceeds RLB (equation (5)). The sim-
ulations show strong TRB to NPP correlations (with a
R2 above 0.7 (0.8) in 100 (86) of the 110 cases com-
prised by the simulations across the regions). In all

the regions the significant trends of NPP are posi-
tive (figure 4) (NPP trends are hereafter denoted as
TNPP and reported in units of Tg C yr−2; significant
refers to 𝑝 ≤ 0.05)). Most of the simulations show
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Table 4. Summary of the global RRB to MEI regression analysis (∗ 𝑝 ≤ 0.05).

Observation/Model 𝛾
(
10−3yr−1

)
𝛽
(
10−3yr−1

)
R2 P-value

VOD −3.3± 0.8 0.7 0.5 2 × 10−3

VEGAS
WFDEI −1.0± 1.1 1.4 0.0 0.4
GSWP3 −0.9± 1.1 1.3 0.0 0.4

VISIT
PGFv2 −0.3± 0.5 3 0.0 0.5
WFDEI −0.5± 0.5∗ 1.5 0.1 0.4

GSWP3 −1.2± 0.5 2.9 0.3 0.04

DLEM
PGFv2 0.1± 0.4 2.1 0.0 0.8
WFDEI −0.1± 0.5 2.1 0.0 0.9
GSWP3 −0.1± 0.4 2.1 0.0 0.8

LPJ-GUESS
PGFv2 −0.4± 0.8 3.6 0.0 0.7
WFDEI −0.3± 0.8 3.6 0.0 0.8
GSWP3 −0.7± 0.8 4.1 0.0 0.4

ORCHIDEE
PGFv2 −0.5± 0.2∗ 3.9 0.3 0.04

WFDEI −0.9± 0.3∗ 4.2 0.4 6 × 10−3
GSWP3 −1.7± 0.5∗ 4.3 0.5 3 × 10−3

LPJmL
PGFv2 −1.0± 0.8 3.2 0.1 0.2
WFDEI −1.2± 0.6 5.8 0.2 0.07
GSWP3 −1.3± 0.7 3.9 0.2 0.08

JULES-UoE
PGFv2 −0.5± 0.3 4.2 0.1 0.1
GSWP3 1.2± 2.4 4.4 0.0 0.7

CARAIB
PGFv2 −1.8± 0.7∗ 3.8 0.3 0.02

WFDEI −2.0± 0.8∗ 4.6 0.0 0.02

GSWP3 −2.8± 1.1∗ 6.7 0.3 0.02

ENSEMBLE −0.8± 0.4 3.5 0.2 0.06

significant TNPPs in CES, with slopes rang-
ing from 2.2± 0.8 (CARAIB-GSWP3) to 10.9± 2.2
(ORCHIDEE-WFDEI). In WES and NWA, signifi-
cant TNPPs are shown only by the simulations of
ORCHIDEE. InWES, these trends range from 1.7± 0.5
(GSWP3) to 2.6± 0.5 (WFDEI) and in NWA from
1.5± 0.7 (GSWP3) to 1.8± 0.6 (WFDEI). In the
tropical regions, significant TNPPs occur mostly in
CON, in all of the simulations forced by PGFv2,
in DLEM, LPJmL, ORCHIDEE and LPJ-GUESS
forced by GSWP3, as well as in DLEM-WFDEI. The
lowest significant TNPP in CON equals 1.2± 0.5
(ORCHIDEE-GSWP3) and the highest one 6.7± 1.3
( LPJmL-PGFv2). In AMA, significant TNPPs are dis-
played only by DLEM, in the range between 2.2± 0.9
(PGFv2) and 3.6± 1.2 (WFDEI).

Hence, only in the case of ORCHIDEE-GSWP3
in WES the highest regional RRB coincides with
a significant positive TNPP. In CES, the highest
RRB is associated with a negative significant trend
in RLB (−0.16% yr−2, in LPJmL-GSWP3) (figure 4)
(RLB trends are subsequently denoted as TRLB and
reported in units of % yr−2). Similarly in CON, the
highest RRB is associated to a negative significant
TRLB (−0.095, in LPJmL-WFDEI). Other cases where

biomass growth appears reinforced by negative sig-
nificant TRLBs are: in WES, LPJmL-WFDEI (−0.05);
in NWA, ORCHIDEE-WFDEI (−0.1) and the simu-
lations of LPJmL (−0.08) and VISIT (−0.05) forced
by PGFv2; in CON, in LPJ-GUESS-PGFv2 (−0.026),
LPJ-GUESS-WFDEI (−0.03) and CARAIB-GSWP3
(−0.08). On the other hand, the increment of biomass
is attenuated by positive significant TRLBs inCES, in all
the simulations of VISIT (0.06–0.07) and ORCHIDEE
(0.2–0.3); in WES, in VISIT-WFDEI (0.03); in CON,
in VISIT-WFDEI (0.02) and in all the simulations of
DLEM (0.004–0.006). Finally, in AMA, the positive
significant TRLBs occur in DLEM (0.003, with forc-
ings GSWP3 and WFDEI) and in LPJmL-PGFv2 (0.09)
(summary of regional trends of NPP and RLB in tables
S2–S6 in SI).

In the absence of significant TNPPs and TRLBs,
as is the case of most of the simulations in NWA,
differences in RRB could be simply interpreted as dis-
crepancies at the level of the background simulated
values of TRB (NPP) and RLB during the histori-
cal period. However, important changes in biomass
also occur during shorter subintervals. The negative
RRB values (figure 3) in CON, in the simulations
of VEGAS, are mainly due to an overall decrease in
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Figure 3. Regional mean of RRB derived from AGB-VOD and the GVM simulations in the historical period 1993–2010 (here, ∗
indicates that the trends of biomass/AGB are significant (𝑝 ≤ 0.05)). Models: VEGAS, DLEM, VISIT, LPJ-GUESS, ORCHIDEE,
LPJmL, JULES, CARAIB. Climate forcings: PGFv2 (red), GSWP3 (orange) and WFDEI (yellow). Color coding of forcing datasets as
in figure 1.

TRB values within the periods 1995–1998 and 2003–
2005, that co-occur along with important increments
in RLB (see plots of regional trajectories of TRB and
RLB in figures S6-S10 in SI). Similarly, the decrease of
biomass described by LPJmL-PGFv2 in CON is mainly
due to a sharp rise in RLB between 1994 and 1996,
after which RLB remains above TRB until 2002. On
the other hand, we notice that the high standard devi-
ation of global RRB in JULES-GSWP3 (cf section
3.1) is related to large RLB variations occurring in
CON, AMA and NWA, between years 2001 and 2004.
Overall, in each region the simulations generated by
different models and forcings show dissimilar trajec-
tories of RLB and TRB. In spite of this, we notice
that in AMA all the simulations describe a decrease
in TRB between 1996–1998, followed by recovery
until 1999.

These findings point to important differences
regarding the relative influence of NPP (via TRB) and
RLB on RRB (section 2.2.4). Altogether, in most of
the simulations the annual variations in regional RRB
are mostly influenced by NPP (see figure S11 in SI).
Particular cases where the influence of RLB on RRB
is dominant are: in WES, CES and NWA, the simula-
tions of VEGAS, LPJ-GUESS and CARAIB; in AMA,
in the simulations of VEGAS, LPJ-GUESS (forced
by WFDEI and GSWP3), CARAIB (GSWP3 and
PGFv2), JULES-GSWP3 and LPJmL-PGFv2 and, in
CON, LPJ-GUESS, LPJmL-WFDEI and CARAIB-
GSWP3. Finally, the influences of NPP and RLB
are closely comparable in the simulations LPJ-
GUESS-WFDEI in CES, CARAIB-PGFv2 in WES,
JULES-GSWP3 in CON and CARAIB-WFDEI in
AMA.
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Figure 4. Regional trends of NPP and RLB in the GVM simulations and their ensemble mean (white) in the historical period 1993–
2010 (∗significant trends (𝑝 ≤ 0.05)). Trends reported in terms of the percentage with respect to initial values at the beginning of
the historical period. Models: VEGAS, DLEM, VISIT, LPJ-GUESS, ORCHIDEE, LPJmL, JULES, CARAIB. Climate forcings: PGFv2
(red), GSWP3 (orange) and WFDEI (yellow).

4. Discussion

4.1. The RRB concept, its interpretation and caveats
The main objective of this work is to analyze the abil-
ity of the GVMs to reproduce historical changes in
biomass. Evaluating the physiological component of
biomass changes is important as a preliminary step
towards assessing the model representations of direct
anthropogenic influences. Consequently, this study
focused on natural terrestrial ecosystems.

We used the AGB maps provided in Liu et al
(2015) as observational reference to verify the trends
and inter-annual variability of biomass. Other similar
datasets are available (cf Saatchi et al 2011), but the
Liu et al (2015) dataset is the only product provid-
ing multi-year coverage. Since the GVMs do not report
explicitly AGB but only total biomass, their comparison
with observations can be achieved based on a relative
metric (e.g. percentage change of biomass with respect
to a baseline value). The underlying assumption of this
approach is that the AGB to BGB ratio is constant in
space and time (see explanation in S1.3 in SI). A lin-
ear AGB to BGB relation has been shown to be a valid
approximation for non-woody plants (Niklas 2005),
forest ecosystems (Yang and Luo 2011), as well as for
aggregate biomass estimates involving different plant

communities (Cheng et al 2015). The use of a rela-
tive metric has the additional advantage of enabling
the comparison of the intensity of changes in biomass
across different ecosystems.

Moreover, we choose the RRB metric because: (i)
biomass trajectories are determined by the exponential
of the cumulative sum of RRB over time (see equa-
tion (2) in the text and section S1.4 in SI). This is
relevant since a persistent bias of RRB in the models,
with respect to observations, may imply a non-linear
increase in the error of biomass trajectories in long
term projections (see illustration in figure S2 in SI);
(ii) RRB equals the deviation of the actual turnover
rate of biomass RLB from its equilibrium value TRB
(equation (5)). Gaining knowledge on the dynam-
ics and climate sensitivity of the turnover rate of
biomass is critical to understand possible future tra-
jectories for the terrestrial carbon cycle (Bloom et al
2016). For instance, the behavior of RLB has been
recognized as a substantial source of uncertainty in
multi-model projections of biomass in a similar set of
GVMs (Friend et al 2014). Moreover, a recent anal-
ysis of boreal forests by Thurner et al (2017) has
shown that an underestimation of the average of TRB
leads to important discrepancies in biomass between
observation and simulations.
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Recently, Luo et al (2017) introduced a new
framework to analyze the transient dynamics of car-
bon pools in ecosystems from a systems perspective.
In their formulation, changes in the ecosystem carbon
storage are described by the carbon storage potential:
the difference between the actual carbon storage and
the carbon storage capacity (Olson 1963). The latter
being defined as the maximum amount of carbon that
an ecosystem can store, given the environmental
condition at a point in time. Under stationary envi-
ronmental conditions, the transient dynamics of the
carbon pools is determined by the decrease of the car-
bon storage potential towards zero. The RRB bears
similarity with the carbon storage potential concept.
In absence of trends in environmental conditions, the
biomass pool attains stationarity through the gradual
balancing of RLB and TRB, occurring via the uptake
and the loss of carbon.

Different factors may affect the reliability of the
approach followed in this study to evaluate historical
changes of biomass in the selected GVMs. For instance,
intense drought episodes may compromise the consis-
tency of the RRB comparison, between observed AGB
and simulated total biomass, due to changes in car-
bon allocation patterns in vegetation (Doughty et al
2015). However, the AGB product in Liu et al
(2015) also embodies significant uncertainties, that
are partly related to the spatial extrapolation method
(Mitchard et al 2014) based on Saatchi et al (2011).
Moreover, this AGB dataset may be of limited use
for evaluating impacts of climate extremes on tropi-
cal forests, in view of the possible underestimation of
inter-annual variations of biomass by VOD signals, in
comparison with other satellite indicators of vegeta-
tion (Liu et al 2011). In addition, we notice that the
AGB time-series indicate a decrease of biomass in arid
regions of Australia (figure 2), which still has to be
confirmed by other techniques. It is also important to
bear in mind the limitations of the land-mask applied
to disentangle the anthropogenic and physiologic com-
ponents of RRB. The land cover selection criterion
applied for the regional analysis was especially strict,
in the sense that only grid cells with a classification
of 100% natural vegetation were considered (see com-
parison of surface areas in table S1 in SI). However,
the land-cover classification was based on the available
information from year 2005 and important changes
in land-cover have occurred ever since Houghton
et al (2012). Finally, the construction of the mask did
not accounted for information on other human activi-
ties, such as wood harvest in managed and unmanaged
forests, regrowth in abandoned agricultural areas
(Pan et al 2011), or landscape fragmentation (Pütz
et al 2014).

4.2. Global aspects of RRB
The global observed RRB indicates an increase in
global biomass between 1994 and 2010 (figure 1(a)).
As reported by Zhu et al (2016), recent increments of

global biomass have been attributed to positive plant-
physiological effects of increasing atmospheric CO2,
as well as to the prolongation of growing seasons in
the Northern Hemisphere, as a result of global warm-
ing. The global increase of biomass described by the
GVMs appears too optimistic, with the ensemble mean
of the simulations showing a global RRB one order of
magnitude larger than the observed one (figure 1(a)).

The sensitivity of the global RRB variations to
ENSO in the observation (figure 1(c)) is practically
explained by the response of AGB in the Northern
Hemisphere extra-tropic (see figure S4 in SI). The
apparent absence of a significant ENSO sensitivity in
the observation of RRB in the tropics (see figure S5
in SI) is striking, as it contrasts with evidence on the
strong influence of El Niño events, on extreme heat
and drought conditions, over the Amazonia forests
(Jiménez-Muñoz et al 2016). This ambiguity suggests a
limited capacity of VOD signals to adequately capture
inter-annual variations of AGB in tropical forests. On
the contrary, the simulations of 4 out of the 7 GVMs
show significant sensitivities of RRB in the tropics (see
figure S5 in SI), but none of them in the Northern
Hemisphere (see figure S4 in SI). The underlyingdiffer-
ences inRRB variations in the simulations are discussed
in further detail below in section 4.3.

4.3. Regional aspects of RRB
The regional value of RRB in WES is higher in the
observation than in most of the simulations (figure 3).
In the rest of the boreal regions analyzed, the sign of
RRB is negative in the observation, and positive in all of
the simulations. A similar situation is found for AMA.
The analysis of RRB in CON shows no significant
change of biomass in the observation, but increments
in most of the simulations. These findings are rele-
vant for the purpose of understanding the difference
between the observed and simulated trends of global
biomass (figure 1(a)), given the broad extent and high
concentration of biomass in these regions (whose con-
tributions sum up to ca. 40% of the global total AGB
in this analysis).

The overestimation of the regional RRB in the
simulations may be related to the CO2 sensitivity of
carbon uptake. All of the regional significant TNPPs
simulated by the GVMs are positive (figure 4). The
significantTNPPs in theboreal regions aremostly local-
ized in CES, whereas in the tropics these mainly occur
in CON. A recent analysis of the CMIP5 earth system
models, forced only by the increase of CO2 (Smith et al
2016) over the period 1982–2011, has pointed to an
overestimation of incremental NPP trends. The exces-
sive CO2 response of NPP was attributed to the lack
of nutrient constraints in most of the CMIP5 mod-
els. This possibility could be debated in the case of
the GVMs used here, where the degree of overesti-
mation of trends of gross primary productivity (GPP)
depends on the observational reference that is used
as benchmark (Ito et al 2017). Although the presence
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of an excessive CO2 fertilization effect in all of the
GVM simulations cannot be excluded, its role in
explaining differences inRRB is not conclusive. Nitro-
gen limitation is included in VEGAS, DLEM and
LPJ-GUESS (table 1) and the significant TNPPs dis-
played by VEGAS and LPJ-GUESS in CES are below
the ensemble mean (figure 4). However, the RRB
values shown by the LPJ-GUESS simulations in this
region (figure 3) are comparably high as those shown
by the models where an excess in CO2 fertilization
could be expected (due to their lacking representation
of nitrogen limitation). Overall, we find that the single
case where the largest regional value of RRB coincides
with a positive significant TNPP corresponds to the
simulation ORCHIDEE-GSWP3 in WES (see figures
3 and 4). Indeed, regardless how disproportionate the
CO2 response of simulated NPP may be, we recall that
an increase of NPP at a point in time will lead to a
greater increment of biomass provided it raises further
the value of TRB above RLB (equation (5)). In other
words, understanding discrepancies in biomass growth
necessarily requires to assess NPP (or more specifically
TRB) and RLB simultaneously.

In the Boreal regions, the variations of RRB are
mainly influencedbyRLB in the simulationsofVEGAS,
LPJ-GUESS and CARAIB, and are dominated by
NPP (via TRB) in the rest of the models (see fig-
ure S11 in SI). The simulations do not reproduce the
observed significant ENSO sensitivity of RRB in the
Northern Hemisphere extra-tropics. The analysis of
boreal regions by Thurner et al (2017) pointed out
the failure of a very similar set of GVMs at repro-
ducing phenomenological relations between climate
variables and average TRB. Amidst the physiological
processes involved in the turnover of biomass, mor-
tality is highly complex, not thoroughly understood
and, consequently, insufficiently described in global
vegetation models (Steinkamp and Hickler 2015). In
addition to the responses of TRB and RLB to climate
and CO2 concentrations, disturbances can constitute
an important source of differences in biomass change.
During the historical period covered by the RRB anal-
ysis, decrements of biomass occurred in NWA as a
result of widespread and severe pine beetle outbreaks
(Kurz et al 2008). The positive RRB values shown by
the simulations in NWA may thus be attributed to the
lack of representation of insect infestation effects in
the GVMs. In CES, incremental trends of fire inten-
sity and frequency were reported also for the analyzed
period (Ponomarev et al 2016, Schaphoff et al 2016).
Consequently, significant increments of RLB in CES
could be expected in the simulations of those mod-
els featuring fires, i.e. CARAIB, LPJmL, LPJ-GUESS,
VISIT and VEGAS (table 2). Among them, the sim-
ulations of CARAIB show a high fraction of the total
area of CES with RRB < 0, as in the observation (see
table S5 in SI). However, significant positive TRLBs in
CES are shown only by VISIT and ORCHIDEE (figure
4). Given the time average of TRB displayed by VISIT

and ORCHIDEE in CES, an increase in the time aver-
age of RLB by at most 3.8% and 6.5%, respectively,
would be required to match the observed RRB in this
region. It is important to mention that limitations of
fire models in reproducing observed trends in burned
areahavebeen identified ina recentGVMintercompar-
ison (Andela et al 2017). In WES, the drastic increase
of the observed carbon sink can be partly attributed
to the expansion of forested areas, following agricul-
tural abandonment and reduced harvesting (Zhu et al
2016). The generally lower RRB values shown by the
simulations in this region, compared to the observa-
tion, could be explained by the lack of representation
of these processes in the models (or equivalently, by the
failure of the land-mask applied to exclude their influ-
ence from the RRB analysis). Nonetheless, the case of
WES illustrates the importance of analyzing the spatial
aspects of the NPP and RLB trends, as the observa-
tion also shows a decline of biomass over ca. 32%
of the total area (see table S3) –occurring mainly in
the North-Eastern part of this region (figure 2). We
find that comparable area fractions in WES, as in the
observation, are displayed by LPJmL-PGFv2 (32.7%)
and CARAIB-GSWP3 (34.6%), whereas those shown
in the rest of the simulations are lower. Overall, these
findings suggest that further analysis of differences in
average TRB (NPP) and RLB, as well as of the imple-
mentation of fire dynamics and disturbances in the
GVMs is required.

In the case of tropical forests, the approach
followed in this study may not be reliable to verify
the behavior of RRB in the GVMs. The positive sign of
RRB in the simulations of AMA is in qualitative agree-
ment with previous observations of biomass change
in intact forest (Pan et al 2011). However, recent
analyses of in-situ data of Amazonia have shown a
significant positive trend in mortality during the last
decades (Brienen et al 2015) and subsequent biomass
loss and carbon release after droughts in 2005 and 2010
(Lewis et al 2011). The role of drought as a driver of
tree mortality is corroborated by experimental results
in this region (Rowland et al 2015, Feldpausch et al
2016). Yet the analysis of Brienen et al (2015) asserts
that, in spite of the impact of severe droughts, mature
forests in Amazonia remained accumulating biomass
during the 1983–2010 period. In this view, in addition
to droughts, the negative sign of the AGB deriva-
tion of RRB in AMA can be related to the impacts
of human activities, such as clearing, landscape frag-
mentation and selective logging (Morton et al 2011,
Houghton et al 2012) –not being excluded by the
land-mask. A similar situation holds for the CON
region, which has also experienced degradation (Zhu-
ravleva et al 2013). Moreover, the presence of intense
droughts in Amazonia may cast doubts on the validity
of the AGB-to-BGB isometry over time, due to changes
in carbon allocation patterns in vegetation (Doughty
et al 2015). Moreover, the AGB product in Liu
et al (2015) may underestimate the effects of climate
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extremes related to ENSO on biomass variations in
tropical forests.

The GVM simulations show the best mutual agree-
ment in RRB in AMA, compared to the rest of the
regions. On the contrary, the largest spread of simu-
lated RRB occurs in CON. The positive and negative
extreme values of RRB in CON are associated, respec-
tively, with negative and positive significant TRLBs. In
relation to the ENSO sensitivities of RRB exhibited
by some of the simulations in the tropics (see fig-
ure S5 in SI), the analysis of AMA and CON shows
that RRB variations are mostly influenced by NPP in
JULES-PGFv2, VISIT-GSWP3, ORCHIDEE-GSWP3;
whereas these are dominated by RLB in CARAIB-
GSWP3. Altogether, in models where the description
of mortality and/or leaf turnover is directly modulated
by climate (see table 2), the degree of influence of RLB
on RRB varies across regions and climate forcings (see
figure S11 in SI). Conversely, in VISIT and DLEM,
where the turnover of biomass is simply modulated by
one factor (fire and tree age, respectively), the varia-
tions of RRB are consistently dominated by NPP. In
spite of these differences, in AMA all of the simulations
show a drop of NPP between 1996 and 1998, that leads
to a decrease in TRB (see figure S7 in SI). This can be
interpreted as a response to the extreme El Niño event
that occurred during this period. For further informa-
tion on the response of the carbon uptake to climate
variations in the GVMs analyzed here we refer to Ito
et al (2017), Chang et al (2017). Finally, the RRB results
at the global (figure 1(a)) and regional (figure 2) scales
are in general sensitive to the climate forcing dataset.
This can be partly attributed to differences in the car-
bon uptake flux induced by the discrepancy in solar
radiation among the forcing datasets (Ito et al 2017).

5. Conclusions

The historical changes of biomass in natural terrestrial
ecosystems described by the simulations of an ensem-
ble of eight GVMs was evaluated against time-series
of AGB, reconstructed from the signals of Vegeta-
tion Optical Depth retrieved from satellite passive
microwave sensors over the period 1993–2010. For this
purpose, the model output and the AGB observation
were compared in terms of the relative rate of change
of biomass RRB. In particular, the study focused on:
the temporal mean and standard deviation of global
RRB and its relation to ENSO events, as well as on the
regional aspects of the temporal mean and annual vari-
ations of RRB, in relation to changes in NPP and RLB.
The main findings of the analysis are: (a) the temporal
mean of RRB in the models is one order of magni-
tude higher than in the observed AGB records; (b) the
observed RRB shows a significant sensitivity of AGB in
the Northern Hemisphere to ENSO events, but not in
the tropics; (c) on the contrary, someof theGVMsshow
a significant sensitivity of RRB to ENSO in the tropics,

while none of them reproduces the observed sensitivity
in the Northern Hemisphere; (d) in most of the models
the annual variations of RRB are mostly influenced by
NPP, in comparison to RLB. Overall, these findings
underline the importance of conducting a further
detailed analysis of both RLB and its equilibrium coun-
terpart TRB and more specifically on their background
values and sources of variation, including the effect
of CO2, climate extremes and disturbances. In turn,
this may require improving our current capacity to
accurately quantify annual changes in biomass and
NPP. In addition, a detailed and updated land-cover
classification is necessary to effectively disentangle the
physiological and anthropogenic components of TRB
and RLB.

Acknowledgments

This work has been carried under the framework of
the Inter-Sectoral Impact Model Intercomparison
Project Phase 2a (ISIMIP2a) funded by the Ger-
man Federal Ministry of Education and Research
(BMBF, grant no. 01LS1201A1). The work of A Garcı́a
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Pütz S et al 2014 Long-term carbon loss in Neotropical forests Nat.
Commun. 5 503

Ramankutty N, Evan A, Monfreda C and Foley J 2008 Farming the
planet: 1. Geographic distribution of global agricultural lands
in the year 2000 Glob. Biogeochem. Cycles 22 1

Rowland L et al 2015 Death from drought in tropical forests is
triggered by hydraulics not carbon starvation Nature 528
119–22

Saatchi S et al 2011 Benchmark map of forest carbon stocks in
tropical regions across three continents Proc. Natl Acad. Sci.
USA 108 9899–904

Schaphoff S, Reyer C P O, Schepaschenko D, Gerten D and
Shvidenko A 2016 Observed and projected climate change
impacts on Russia’s forests and its carbon balance Forest Ecol.
Manage. 361 432–44

Sitch S, Friedlingstein P, Gruber N, Jones S, Murray-Tortarolo G,
Ahlström A, Doney S, Graven H, Heinze C and Huntingford
C 2015 Recent trends and drivers of regional sources and
sinks of carbon dioxide Biogeosciences 12 653–67

Smith B et al 2014 Implications of incorporating N cycling and N
limitations on primary production in an individual-based
dynamic vegetation model Biogeosciences 11 2027–54

Smith K et al 2016 Large divergence of satellite and Earth system
model estimates of global terrestrial CO2 fertilization Nat.
Clim. Change 6 306–10

Steinkamp J and Hickler T 2015 Is drought-induced forest dieback
globally increasing? J. Ecol. 103 31–43

Thurner M et al 2017 Evaluation of climate-related carbon
turnover processes in global vegetation models for boreal and
temperate forests Glob. Change Biol. 23 3076–3091

Tian H et al 2015 North American terrestrial CO2 uptake largely
offset by CH4 and N2O emissions: toward a full accounting of
the greenhouse gas budget Clim. Change 129 413–26

Warnant P, Francois L, Strivay D and Gerard J 1994 CARAIB: a
global model of terrestrial biological productivity Glob.
Biogeochem. Cycles 8 255–70

Wolter K and Timlin M 2011 El Niño/Southern Oscillation
behaviour since 1871 as diagnosed in an extended multivariate
ENSO index (MEI.ext) Intl. J. Climatol. 31 1074–87

14

https://doi.org/10.1038/nature13731
https://doi.org/10.1038/nature13731
https://doi.org/10.1038/nature13731
https://doi.org/10.1088/1748-9326/aa63fa
https://doi.org/10.1088/1748-9326/aa63fa
https://doi.org/10.1093/aob/mcu238
https://doi.org/10.1093/aob/mcu238
https://doi.org/10.1093/aob/mcu238
https://doi.org/10.5194/gmd-4-701-2011
https://doi.org/10.5194/gmd-4-701-2011
https://doi.org/10.5194/gmd-4-701-2011
https://doi.org/10.1038/nature14213
https://doi.org/10.1038/nature14213
https://doi.org/10.1038/nature14213
https://doi.org/10.1073/pnas.1222477110
https://doi.org/10.1073/pnas.1222477110
https://doi.org/10.1029/1998gl900269
https://doi.org/10.1029/1998gl900269
https://doi.org/10.1029/1998gl900269
https://doi.org/10.1111/j.1466-8238.2010.00587.x
https://doi.org/10.1111/j.1466-8238.2010.00587.x
https://doi.org/10.1111/j.1466-8238.2010.00587.x
https://doi.org/10.5194/gmd-9-2415-2016
https://doi.org/10.5194/gmd-9-2415-2016
https://doi.org/10.5194/gmd-9-2415-2016
https://doi.org/10.5194/gmd-6-2121-2013
https://doi.org/10.5194/gmd-6-2121-2013
https://doi.org/10.5194/gmd-6-2121-2013
https://doi.org/10.1088/1748-9326/aa7a19
https://doi.org/10.1088/1748-9326/aa7a19
https://doi.org/10.1088/1748-9326/aa7a19
https://doi.org/10.1029/2003gb002199
https://doi.org/10.1029/2003gb002199
https://doi.org/10.1073/pnas.0708133105
https://doi.org/10.1073/pnas.0708133105
https://doi.org/10.1073/pnas.0708133105
https://doi.org/10.5194/bg-14-145-2017
https://doi.org/10.5194/bg-14-145-2017
https://doi.org/10.5194/bg-14-145-2017
https://doi.org/10.1186/1750-0680-6-18
https://doi.org/10.1186/1750-0680-6-18
https://doi.org/10.1186/1750-0680-6-18
https://doi.org/10.1093/aob/mci028
https://doi.org/10.1093/aob/mci028
https://doi.org/10.1093/aob/mci028
https://doi.org/10.2307/1932179
https://doi.org/10.2307/1932179
https://doi.org/10.2307/1932179
https://doi.org/10.3390/f7060125
https://doi.org/10.3390/f7060125
https://doi.org/10.3390/f7060125
https://doi.org/10.1029/2007gb002952
https://doi.org/10.1029/2007gb002952
https://doi.org/10.1073/pnas.1019576108
https://doi.org/10.1073/pnas.1019576108
https://doi.org/10.1073/pnas.1019576108
https://doi.org/10.5194/bg-11-2027-2014
https://doi.org/10.5194/bg-11-2027-2014
https://doi.org/10.5194/bg-11-2027-2014
https://doi.org/10.1111/1365-2745.12335
https://doi.org/10.1111/1365-2745.12335
https://doi.org/10.1111/1365-2745.12335
https://doi.org/10.1111/gcb.13660
https://doi.org/10.1111/gcb.13660
https://doi.org/10.1111/gcb.13660
https://doi.org/10.1007/s10584-014-1072-9
https://doi.org/10.1007/s10584-014-1072-9
https://doi.org/10.1007/s10584-014-1072-9
https://doi.org/10.1029/94gb00850
https://doi.org/10.1029/94gb00850
https://doi.org/10.1029/94gb00850
https://doi.org/10.1088/1748-9326/8/2/024034
https://doi.org/10.1088/1748-9326/8/2/024034
https://doi.org/10.1088/1748-9326/8/2/024034


Environ. Res. Lett. 13 (2018) 075002

Yang Y and Luo Y 2011 Isometric biomass partitioning
pattern in forest ecosystems: evidence from temporal
observations during stand development J. Ecol. 99
431–7

Zeng N, Mariotti A and Wetzel P 2005 Terrestrial mechanisms of
interannual CO2 variability Glob. Biogeochem. Cycles
19 1

Zhu Z et al 2016 Greening of the Earth and its drivers Nat. Clim.
Change 6 791–5

Zhuravleva I, Turubanova S, Potapov P, Hansen M, Tyukavina A,
Minnemeyer S, Laporte N, Goetz S, Verbelen F and Thies C
2013 Satellite-based primary forest degradation assessment in
the Democratic Republic of the Congo, 2000–2010 Environ.
Res. Lett. 8 024034

15


