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Probing the reconstructed Fermi surface of antiferromagnetic
BaFe2As2 in one domain
Matthew D. Watson 1,2, Pavel Dudin 1, Luke C. Rhodes1,2,3, Daniil V. Evtushinsky4, Hideaki Iwasawa1,5, Saicharan Aswartham 6,
Sabine Wurmehl6, Bernd Büchner6,7, Moritz Hoesch 1,8 and Timur K. Kim 1

A fundamental part of the puzzle of unconventional superconductivity in the Fe-based superconductors is the understanding of the
magnetic and nematic instabilities of the parent compounds. The issues of which of these can be considered the leading instability,
and whether weak- or strong-coupling approaches are applicable, are both critical and contentious. Here, we revisit the electronic
structure of BaFe2As2 using angle-resolved photoemission spectroscopy (ARPES). Our high-resolution measurements of samples
“detwinned” by the application of a mechanical strain reveal a highly anisotropic 3D Fermi surface in the low-temperature
antiferromagnetic phase. By comparison of the observed dispersions with ab initio calculations, we argue that overall it is
magnetism, rather than orbital/nematic ordering, which is the dominant effect, reconstructing the electronic structure across the Fe
3d bandwidth. Finally, using a state-of-the-art nano-ARPES system, we reveal how the observed electronic dispersions vary in real
space as the beam spot crosses domain boundaries in an unstrained sample, enabling the measurement of ARPES data from within
single antiferromagnetic domains, and showing consistence with the effective mono-domain samples obtained by detwinning.
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INTRODUCTION
Unconventional superconductivity in the Fe-based systems
emerges in proximity to antiferromagnetic (AFM) and “nematic”
phases, which are both characterised by pronounced magnetic
and electronic anisotropies. As the fluctuations associated with
these phases are likely to be important for the superconducting
pairing, the ordered phases of the parent compounds, of which
BaFe2As2 is the archetype, have been the subject of intense
investigations. Although in BaFe2As2 the orthorhombic structural
(nematic) and magnetic transitions occur simultaneously at Ts =
TN = 137 K, the decoupling of the two transition temperatures in
Ba(Fe1−xCox)2As2,

1 NaFeAs,2 and FeSe3 has caused much debate
about the relative importance of magnetic and orbital degrees of
freedom.4,5 Some theoretical studies have interpreted the nematic
(non-magnetic orthorhombic) phase as still being essentially
magnetically driven,4,6 with a critical role played by significant
biquadratic exchange interactions.7,8 However, another view is
that the presence of a non-magnetic symmetry-breaking transi-
tion shows that orbital degrees of freedom need to be treated on
at least an equal footing.5,9–11 It is therefore important to
experimentally probe the ground state of the parent compounds,
but a recurring experimental challenge is that when fourfold
symmetry is spontaneously broken at Ts, the samples naturally
form orthorhombic twin domains, restoring macroscopic fourfold
symmetry and masking the underlying anisotropies. To address
this, it was found that samples could be effectively “detwinned” by
the application of a mechanical strain along the Fe–Fe direction.12

Experiments performed on such “detwinned” samples have

yielded several important breakthroughs, in particular revealing
pronounced intrinsic in-plane electronic anisotropies in measure-
ments of resistivity and optical spectroscopy,13,14 phonon
frequencies split by magnetic interactions,15 and strongly
anisotropic magnetic excitations in inelastic neutron scattering.16

In the case of angle-resolved photoemission spectroscopy
(ARPES), the beam spot of conventional systems is typically much
larger than the size of the structural domains, and thus a
superposition of the electronic structures from 90°-rotated
domains is normally observed experimentally, doubling the
number of observed bands and complicating the interpretation.
While early measurements of such twinned samples suggested a
reconstruction of the electronic structure below TN,

17–21 a more
detailed picture started to emerge with the first ARPES reports on
detwinned samples of NaFeAs22,23 and BaFe2As2.

24–26 Those
results were influential in guiding the ideas of electronically
driven nematicity,4,5 and in particular it was claimed22,23,25,27 that
the detwinned results provided evidence for a large 50–80meV
energy scale associated with the splitting of bands with dxz and dyz
orbital character which are degenerate in the tetragonal phase.
However, recent studies of NaFeAs,28 FeSe29–31 and BaFe2As2

32

have questioned the existence of any large nematic energy scale.
Moreover, the ARPES measurements on BaFe2As2 in the literature
were never fully reconciled with the Fermi surface determined by
quantum oscillations.33 Meanwhile, alongside the general
improvements in state-of-the-art ARPES systems and perfection
of crystal growth techniques, a new opportunity is presented by
the technical development of nano-ARPES, where the beam can
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be focused to sub-micron areas, allowing the possibility of directly
measuring ARPES in one domain – doing away with the necessity
for straining the sample entirely. There is therefore a strong
motivation to revisit the electronic structure of BaFe2As2 in one
domain with ARPES.
In this paper we use high-resolution ARPES and nano-ARPES to

find new insights into the electronic structure of the archetype
parent compound BaFe2As2. We first present high-resolution
measurements of a sample which was tuned from being twinned
into an almost fully detwinned sample by the application of strain
in situ. The electronic structure in one domain is found to match
the 3D Fermi surface as determined by quantum oscillations. We
reproduce a notable separation of bands along Γ� X and Γ� Y
directions, previously interpreted in terms of a dxz−dyz orbital
splitting. However, we argue that this energy scale should not be
considered as a proxy for the energy scale of orbital ordering.
Rather, our conclusion is that the electronic structure is strongly
reconstructed across the whole bandwidth by the stripe AFM
order. In addition, we used a nano-ARPES end station with a beam
spot of <1 μm to directly measure ARPES spectra in one domain
without requiring the application of any strain. These results show
consistence with the high-resolution strained measurements, and
allow us to use anisotropic features in the electronic structure to
map the extensive stripe-like structural domains in real space.

RESULTS
The Fermi surface: theory and experiment
One of the most significant similarities between the cuprates and
the Fe-based superconductors is that in both cases the parent
compounds are antiferromagnetic, but a notable difference is that
the parent compounds of Fe-based superconductors remain
semimetallic34 below TN, albeit with a significantly reduced carrier
density. A broad overview of the effects of this AFM order on the
electronic structure of BaFe2As2, from the Density Functional
Theory (DFT) perspective, is presented in Fig. 1a–d. When
enforcing a non-magnetic solution, the calculation yields a
compensated multiband Fermi surface in Fig. 1b, typical of Fe-
based superconductors. This consists of three hole-like pockets at
the centre of the Brillouin zone, and two electron-like pockets at
the zone corner. In the ground state, however, the (π, 0, π) stripe
AFM order of BaFe2As2 (Fig. 1a) doubles the size of the unit cell
and maps the electron dispersions at the Brillouin zone corner
back to the zone centre, where they hybridise strongly with the
hole dispersions. However, the Fermi surface is not fully gapped,
and the resulting Fermi surface in the magnetic phase can be
qualitatively understood by considering three concepts. First, the
size and shapes and of the pockets are not perfectly matched in
the normal phase, particularly if one takes into account their
warping along kz, so the backfolding and hybridisation leaves
behind small, typically 3D, pockets. Second, it has been shown
that certain band hybridisations in the stripe AFM phase are
forbidden exactly on the high-symmetry axes, enforcing a so-
called “nodal SDW”;35 this leads to an expectation of tiny pockets
with Dirac-like band dispersions localised on the high-symmetry
axes.18 Finally, charge compensation ensures that both hole- and
electron-like pockets must contribute. These general considera-
tions give a useful intuition into the form of the Fermi surface
found in our antiferromagnetic DFT calculations shown in Fig. 1d,
where the reconstructed Fermi surface of BaFe2As2 is found to
consist of tiny 2D electron-like pockets centred in the ky = 0 plane,
and other small 3D hole- and electron-like pockets.
Turning now to the experimental determination of the

electronic structure using ARPES, the overview Fermi surface
map in Fig. 1e obtained at 150 K, above TN, reveals a structure
typical of non-magnetic Fe-based superconductors, with three
hole pockets at the zone centre and two electron pockets at the

Brillouin zone edge. Based on a combination of measurements in
different geometries, our understanding is that all three hole
pockets cross the Fermi level at 150 K, consistent with non-
magnetic DFT and ref. 27 The measurements are strongly
modulated by matrix elements effects,36 but are qualitatively
similar to the calculated Fermi surface, except that the sizes of the
pockets are smaller than in the calculation,32,37 and the features
are broadened due to the elevated temperatures. However, at low
temperatures, the overview Fermi surface on a twinned sample in
Fig. 1f shows a completely different structure, prominently
featuring four sharp bright spots around each high-symmetry
point. These bright spots are in fact tiny electron-like Fermi
surfaces, too small to be resolved in the measurement, and
correspond to the tiny 2D tubes found in the DFT calculation.
Notably, however, the calculation contains only two such tubes in
the Γ� X direction only, whereas four bright spots are observed
experimentally due to the superposition of intensity from the two
domains. This illustrates the necessity of extracting ARPES data
from mono-domain samples to fully probe the intrinsic aniso-
tropies of the electronic structure. In Fig. 1g, h we show overview
Fermi surface maps measured on a sample under an applied
strain; the data are taken on the same sample and in the same
measurement geometry, but with the sample rotated by 90° (see
Methods section). Here it is confirmed that, as in the calculations,
in one domain there are only two bright spots, i.e. two tiny tube-
like electron pockets. Moreover, the total absence of any spots in
the other orientation, despite their intrinsic brightness in this
geometry, indicates that this sample must be close to being 100%
detwinned.
Much less brightly, one can also observe some faint intensity in

replica bands, which are present with weak intensity in all
measurements but are relatively more pronounced in Fig. 1g,
where these replica states are marked by circles. This intensity
cannot be ascribed to bulk electronic structure, but rather is a
surface effect: after cleavage, the surface is terminated by Ba
atoms, but not all atomic sites are occupied. This leads to possible
surface reconstructions,38 of which a
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reconstruction
seems to best account for our observations. However, importantly
this intensity is weak, and localised away from the high-symmetry
points of interest. We are thus confident in ascribing the principle
intensity observed to bulk electronic structure, though a
contribution from surface-derived states even on the high-
symmetry axes is hard to fully exclude.38,39

A geometric detail of BaFe2As2 is that the body-centred
symmetry of the unit cell imposes a screw symmetry along kz at
the corner of the Brillouin zone (Fig. 1a, b), similar to Sr2RuO4,

40

but notably different to the simpler primitive Brillouin zones of
LiFeAs and FeSe. This adds complexity to the formal labelling of
the Brillouin zone, which becomes further complicated by the
stacking of the antiferromagnetic Brillouin zones (Fig. 1c). Since in
experiments we always find a degree of kz integration, in this
paper we follow the convention of Yi et al.25 to index our data in
terms of a simplified effective surface Brillouin zone, using X; Y to
denote the corners of the non-magnetic Brillouin zone indepen-
dent of kz, and using X and Y separately for the a and b axes (a >
b) in the case of data on detwinned samples.

Detailed Fermi surface structure in one domain
With this broad overview of the Fermi surface reconstruction in
mind, we now turn to the high-resolution measurements in Fig. 2.
In Fig. 2a, the sample was prepared on the detwinning rig, but the
measurement was taken before any strain was deliberately
applied. Some residual strain due to differential thermal expansion
may have been present, but it seems to have been insufficient to
significantly detwin the sample in this case. The data in Fig. 2a
clearly contains contributions from both domain orientations, i.e.,
the sample was twinned. We then tuned the strain to induce a

M.D. Watson et al.

2

npj Quantum Materials (2019)    36 Published in partnership with Nanjing University

1
2
3
4
5
6
7
8
9
0
()
:,;



transfiguration of the sample, from being fully twinned to being
almost fully detwinned, entirely in situ. These detwinned
measurements in Fig. 2b–g, taken in two orthogonal linear
polarisations for completeness, allow the unmasking of the finer
details of the Fermi surface in the AFM ground state.
According to the DFT calculation, the larger pockets are both

predicted to be 3D, and centred at different kz. At the chosen
photon energy of 62 eV, the inner, almost circular hole band
dominates the intensity in Fig. 2a. As the photon energy is linked
to the kz of the states probed in photoemission measurements,
this indicates that the effective kz here is tuned to an intermediate
point bisecting the hole-like Fermi surface in Fig. 1d (see ref. 32 for
detailed discussion of kz-dependence in BaFe2As2). However, the
fact that the outer taco-shaped electron-like band can be
simultaneously observed in the measurements is already testa-
ment to the fact that there is a substantial degree of kz-uncertainty
in photoemission, due to both the finite escape depth of the
photoelectron, and because the final state dispersions are in
general unknown. Moreover, due to the variation of kz with in-
plane momentum, the measurements at X and Y probe kz close to
the kz= 0 plane, and so only show the bright spots. Still, this
geometry is convenient for relatively precise determinations of the
in-plane shape of the Fermi surfaces, which are represented in the
schematics in Fig. 2d, g.
The outlines of all the Fermi surfaces, especially the taco-shaped

pockets, are seen most clearly in Fig. 2h, i, k where we present
measurements at 25 eV photon energy. In Fig. 2h in particular, the
highest resolution measurements in this paper, one can begin to
see that the “bright spots” have an internal structure, and are in
fact tiny electron-like pockets. The asymmetry of the spectral
weight with respect to kx in this geometry closely resembles the
one-step photoemission calculations in ref. 41 and reflects a
complex multiorbital character of the reconstructed Fermi
surfaces. The kz averaging effect results in the observation of

mainly the outlines of extremal areas of the pockets, but also a
continuum of spectral weight inside.
In order to make a more quantitative comparison to DFT

calculations, in Fig. 2j we plot the Fermi surface obtained by
collapsing the AFM DFT calculations over all kz values. Although
the observed Fermi surfaces in Fig. 2i, k are qualitatively similar to
the calculation, the overall size of the Fermi pockets are
significantly smaller than the DFT calculation shown in Fig. 2j,
especially along ky. It is well known that the Fermi surfaces of near-
stoichiometric Fe-based superconductors in their tetragonal
phases typically show smaller hole- and electron- pockets than
predicted by DFT.28,32,37,42,43 This applies to BaFe2As2 in the non-
magnetic phase, since the observed Fermi surfaces in Fig. 1e are
smaller than the corresponding calculation in Fig. 1b. The same
effect persists in the magnetic phase, as the reconstructed Fermi
surfaces in the AFM ground state are smaller than predicted
by DFT.

Anisotropic band dispersions in the AFM phase
Having established the shape of the Fermi surface, we now turn to
the electronic dispersions along the high-symmetry directions.
The measurements on the twinned sample before applying strain
in Fig. 3a are difficult to interpret, since the Γ� X and Γ� Y
dispersions are observed simultaneously. After the strain is
applied, however, the measurements on the now detwinned
sample in Fig. 3b, c reveal the very distinct band dispersions along
the Γ� X and Γ� Y directions at low temperatures.24,25 Near Y in
Fig. 3b, a relatively flat band is observed which remains fully
occupied, whereas near X a band crosses the Fermi level in Fig. 3c,
creating the tiny 2D tube-like Fermi surface pocket in combination
with the an electron-like dispersion with dxy character. This latter
band is seen only in the opposite polarisation, labelled κ in Fig.
3e).39 The lack of hybridisation between the two bands observed
in opposite polarisations along Γ� X is the origin of the ‘Dirac’
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character of the tiny electron-like Fermi surfaces. Focusing on a
particular k|| marked by the red arrows, we extract the Energy
Distribution Curves (EDCs) shown in Fig. 3d. This analysis reveals a
large 70 meV energy scale between the primary band dispersions
in the two directions. It was previously proposed by Yi et al., that
this large energy scale reflects an orbital ordering underlying the
magnetic phase in the pure BaFe2As2, which was also observable
independent of magnetic order in a Ba(Fe0.975Co0.025)2As2 sample
where Ts and TN were split.25 Very recently, Pfau et al. took this
view a step further by trying to account for the low temperature
dispersions by applying such an orbital ordering, and subse-
quently backfolding (but not hybridising) the dispersions.27

However, here we take a contrasting view, by placing the AFM
ordering in the driving seat.
From the DFT perspective, the stripe AFM of BaFe2As2 is not a

weak-coupling SDW; that is to say, the low-temperature band
dispersions cannot simply be accounted for by backfolding bands
from the normal phase and weakly hybridising them. Rather, the
magnetic order completely reconstructs the electronic structure,
modifying the dispersions, orbital characters, and even the
number of bands at low energies. For example, in the DFT
calculation in Fig. 4f in the orthorhombic phase, there are three
hole pockets at the Γ point. After backfolding the two electron
dispersions, one might thus expect to find five states at low
energies at the Γ point of the AFM phase; however, there is only
one band found within 100 meV of the Fermi level at the Γ point in
the AFM DFT calculation in Fig. 4e. The AFM thus completely
reconstructs the band dispersions, with only a select few band
dispersions surviving in a recognisable form (such as the dxy
dispersion at X in Fig. 4e). Moreover, as the Γ− X and Γ− Y
directions correspond to AFM and FM spin alignments

respectively, the band dispersions along Γ− X and Γ− Y will
substantially differ in the AFM phase.
At first glance, the experimental dispersions in Fig. 4a, b do not

appear to be so drastically reconstructed in the low temperature
AFM phase, but in fact there are several signatures that point to a
strong effect of the AFM order on the electronic structure. For
instance, the states labelled χ in Fig. 4a, c, and ε in Fig. 3e are new
states found only in the AFM phase, with no counterpart in the
non-magnetic phase, but can be identified in the AFM calculation.
The band labelled α in Fig. 4a was previously attributed to a
shifted dyz dispersion.

25,27 However, its appearance as an almost-
symmetric V-shape along Γ-X cannot be reconciled with the much
flatter dispersion of the dyz band in Fig. 4d, f. Rather, a matching V-
shaped dispersion is found in the AFM DFT calculations in Fig. 4c,
e, which is qualitatively distinct from any dispersion in the non-
magnetic phase. We already showed that the Fermi surface is in
qualitative agreement with the DFT prediction, but it is worth
emphasising that, if one were to simply backfold the non-
magnetic bands, one would inevitably find several more small
pockets than are actually found. The comparison between the DFT
and experiment requires some careful thought, as some band
shifts are required. Moreover, not all the eigenvalues in the AFM
calculation will give significant spectral weight in ARPES, and the
kz integration is always relevant to the observations. However,
overall we can make enough one to one correspondences in Fig.
4a, c that we can be satisfied that, broadly speaking, the DFT
perspective is correct: the AFM ordering strongly reconstructs the
electronic structure, across the whole bandwidth, and dominates
over any orbital or nematic ordering.
Returning to the ~70meV energy scale as originally found by Yi

et al.,25 the corresponding bands are identified by circles in the
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DFT calculation in Fig. 4e, which suggests that the lower band,
found near Y, is likely to have dxz orbital character, but the upper
dispersion X is predicted to have mainly dx2�y2 character and only
minority dyz character. Thus we argue that it is not possible to

cleanly ascribe this energy scale as being due to “orbital ordering”
lifting the degeneracy of dxz and dyz states, firstly, because the
orbital content changes (at least, in this DFT calculation), secondly,
because it is only applicable to a particular k|| and our data is not
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generally suggestive of a persistent orbital polarisations at other
points and thirdly, because all of the changes in the band
structure are inseparable from the dominant effect of the
magnetic ordering. Furthermore, our temperature-dependent
data (shown in supplementary information, SI) demonstrates that
the majority of the band structure changes occur relatively
abruptly at Ts = TN = 137 K. This is in line with the observation of a
first-order phase transition in thermodynamic measurements.44

However, since the transition is first order, the procedure of
tracking bands from the non-magnetic phase into the ordered
phase25,27 is questionable in BaFe2As2, especially given the high
scattering rate at temperatures around TN.
Of course, there is a significant discrepancy between the energy

scales of the data and the DFT calculations. The experiments show
an overall renormalisation of the bandwidth of a factor of ~3,24 in
both the non-magnetic and ordered phases, which is usually
attributed to strong on-site electron correlations. Dynamical Mean
Field Theory (DMFT) has been a widely used tool to treat the
strong local Hund’s and Coulomb terms within the Fe 3d orbitals,
overcoming the limitations of DFT in describing such interactions
and achieving much better correspondence with experiments on
the overall energy scales of the dispersions.45,46 Although
relatively few studies have treated the AFM phase within DMFT
or similar techniques, our data appear to be well matched in terms
of overall energy scales and anisotropies with the magnetic DMFT
calculation of Yin et al.47 However, we find that other than the
overall bandwidth renormalisation, DFT in the stripe AFM phase
offers a good description of the band dispersions, as is evidenced
by the agreement between calculated and measured Fermi
surfaces in Fig. 3.

nano-ARPES: band dispersions from within individual domains
Until recently, the only method of directly accessing the under-
lying anisotropies in the electronic structure of antiferromagnetic
parent compounds has been the application of an external strain,
as we have used above. However, the external strain will smear
out the phase transition as the symmetry is already broken, and
due to magnetoelastic coupling the strain could even lead to the
stabilisation of new phases, as found in LiFeAs.48 Moreover, the
combination of strain with ARPES gives several challenges related
to possible bending and cracking of the sample surface, and strain
inhomogeneity. In the following, we take a new approach: instead
of creating effective macroscopic mono-domain samples by
applying strain so that it is suitable for traditional ARPES, we use
the tightly focused beam of a nano-ARPES system to direct
measure photoemission from within single antiferromagnetic
domains in an unstrained sample.
Previous studies of domain formation in BaFe2As2 have shown

that in unstrained samples, domains typically form as long stripes,
with straight boundaries separated by a characteristic spacing of a
few microns.12,14,49 This inevitably means that a superposition of
intensity from two domains is detected in a traditional ARPES set-
up, with a typical beam spot of 50 μm or larger (Fig. 5a).
Developments in laser-ARPES have reduced the spot size to a few
microns,50 and in a recent study Schwier et al. were able to
visualise some spatial variation of the intensities of hole pocket
dispersions near the Γ point in FeSe, which was associated with
domain structures.51 However, the capability to combine excellent
spatial resolution and full k-space mapping has become recently
accessible to state-of-the-art nano-ARPES, where the beam spot
can be focused to better than 700 nm in diameter. The greatly
decreased spot size in our nano-ARPES apparatus comes at the
price of a substantially lower count rate, necessitating measure-
ments with lower energy resolution, and also a lower signal/noise
ratio. Nevertheless, it provides an excellent opportunity to study
electronic anisotropies in a strain-free measurement, resolving any

questions over the influence of the external strain in the
traditional ARPES measurements.
Our chosen measurement geometry probes a dispersion

through the X; Y points at 70 eV in LH polarisation. Due to the
selection rules in this geometry, each domain mainly contributes
just one band: as can be seen in our traditional ARPES reference
data in Fig. 5f, the band from one domain approaches the Fermi
level to create the tiny spot-like pockets; in the other domain, a
band is observed at higher binding energies (with correspond-
ingly higher linewidth due to electron–electron scattering),
reaching a maximum ~100meV below EF at the high-symmetry
point, where the intensity also vanishes.
As these two bands are well-separated in both energy and

momentum, they function as convenient indicators of the
contribution of each domain, at any given spot on the sample.
They are roughly equivalent in total intensity, so the spatial map of
the integrated intensity in Fig. 5c is largely uniform, showing no
clear domain-like structures. However, the underlying domain
structure is revealed in Fig. 5d, where the colour scale is
proportional to the intensity of a region of interest corresponding
to the upper dispersion (R1 in Fig. 5g. This reveals straight, parallel
domains, with a lateral spacing of ~2 μm, consistent with the
structures observed in the literature.12,14,49 The upper part of the
spatial map includes a probable crack or defect in the sample, also
visible in the total counts in Fig. 5c. This feature seems to locally
pin a particular domain, presumably due to some residual stress.
However, the main domains appear to run straight through this.
We may speculate that a crack or terrace-like feature may be
present only at the surface, while the main domains presumably
extend vertically deep into the sample. An important test is that
the domain contrast should flip when analysing the spatial map
for the lower R2 regions of interest. This is confirmed in Fig. 5e,
where the intensity pattern is reversed compared with Fig. 5d.
This analysis allows us to precisely position the beam spot

inside either domain, allowing for the unprecedented collection of
band dispersions from within a single domain (see SI for spectra
obtained at a fixed light spot). Alternatively, one can build up a
mono-domain spectrum by summing intensity from pixels in the
spatial map which have the highest contrast for the desired
domain; the results of this filtering technique are shown in Fig. 5g,
h, which indeed reveals “detwinned-like” dispersions. This filtering
technique generates effective mono-domain dispersions, while
overcoming the experimental challenges of sample drift and
degradation.
From a technical perspective, these nano-ARPES results push

the boundaries of achieving detailed band structure information
from within micron-size domains. Our results are very promising
for further nano-ARPES studies of other quantum materials which
exhibit magnetic or structural domains in their ground states,
allowing the spatial mapping of electronic anisotropies. The
combination of spatial and momentum resolutions demonstrated
in this paper is also beginning to find more widespread
applications to systems where approximate micron length scales
are relevant, such as in the study of crystals where cleavage yields
multiple surface terminations52–54 or only small regions with flat
surfaces,55,56 systems exhibiting phase separation, and patterned
devices. We hope that the data presented above can therefore
serve as a proof-of-concept study on a material which is well
known to the quantum materials community, to motivate further
use of this technique.
Beyond the technical achievement, however, there are two

important scientific points. Firstly, our nano-ARPES results are
consistent with the traditional ARPES measurements on det-
winned samples: we have shown that the bands forming the
bright spots in the Fermi surface derive from different domains,
with each domain giving just two bright spots (tiny electron
pockets). Thus, we can lay to rest any worry that the ARPES
measurement on detwinned samples are unduly influenced by the

M.D. Watson et al.

6

npj Quantum Materials (2019)    36 Published in partnership with Nanjing University



application of the external strain, and confirm that the ARPES data
here and in the literature on detwinned samples can indeed be
safely interpreted as the intrinsic spectral function of one domain
(for a fully detwinned sample). Secondly, our measurements act as
a reminder that, within the 50 μm beam spot on a nominally clean
single crystal, there can be several cracks, inclusions, inhomo-
geneities, as well as domain structures, which are all integrated
into the traditional ARPES measurement. Such microscopic
information, on a length scale which spans the regimes of STM
and traditional ARPES, is important for interpretation of the
spectroscopy data obtained with a macroscopic beam spot.

DISCUSSION
The Fermi surface we have measured closely resembles that
deduced by quantum oscillations.33 Moreover, the small pockets
of compensated carriers, including a small number of highly
mobile carriers from the quasi-2D tube-like electron pockets with
Dirac-like dispersions, would also provide a consistent explanation
of the magnetotransport data.57 Although the DFT prediction
differs from this in terms of the size of the pockets, the topology of
the band is found to be consistent. Our study also resolves several
inconsistencies in the previous ARPES data: Yi et al.25 indicated
several more Fermi surfaces than were detected by quantum

oscillations or predicted by DFT, while other previous studies also
lacked the resolution to be precise on the nature of the Fermi
surface.18,19,24,39 Only very recently, Fedorov et al.32 reported
Fermi surfaces measured on twinned samples that, for the first
time, appeared broadly consistent with DFT calculations on
BaFe2As2. Here, with high-resolution measurements on detwinned
samples, we cement the experimental Fermi surface of BaFe2As2 in
one domain, and reveal how the magnetic ordering anisotropi-
cally reconstructs the electronic structure over the whole
bandwidth.
In another very recent study, Pfau et al. described the ground

state dispersions of BaFe2As2 by applying band shifts which they
associated with nematic order, and then backfolded the bands,
i.e., giving prominence to the orbital ordering due to its
apparently large energy scale and taking a weak-coupling
approach to the AFM.27 Our ab-initio-based approach gives us
the opposite philosophy: we argue that the AFM severely
reconstructs the electronic structure over the whole bandwidth,
and magnetism is firmly in the driving seat. The low temperature
Fermi surface provides strong support for our approach, since it is
nearly correct in the AFM DFT calculation, but any simple
backfolding procedure would lead to far more pockets than are
actually observed.27 However, we note that the scenario is
somewhat different in NaFeAs, where due to the much lower TN
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and much weaker ordered moment (0.09 μB rather than 0.87 μB in
BaFe2As2

58), the magnetic ordering is more SDW-like and the
approach of understanding the ground state Fermi surface in
terms of backfolded bands is more fruitful.28 The presence of two
tiny tube-like Fermi pockets, appearing as two bright spots along
the Γ� X direction in the measurements, gives a strongly
unidirectional character to the measured Fermi surface of
BaFe2As2, and is reminiscent of the as-yet unexplained observa-
tion of only the electron pocket oriented along the a axis in
detwinned measurements of the nematic phase of FeSe.30 We
speculate that there is indeed a connection between the two
observations, but we leave this to future work to unravel.
In conclusion, we have used high-resolution ARPES measure-

ments of detwinned BaFe2As2 to revisit the ground electronic
state in the magnetically ordered phase. We have shown that the
Fermi surface in the AFM phase includes both 3D pockets and tiny
quasi-2D tubes, closely matching the prediction of DFT in the AFM
phase, though with smaller in-plane size. The observed low
temperature dispersions cannot be understand by simply shifting
and backfolding the high-temperature dispersions, but rather the
magnetic order reconstructs the electronic structure over the
whole bandwidth. Our measurements of samples detwinned by
the application of a mechanical strain were corroborated by nano-
ARPES measurements, in which the spot scanned over individual
domains and single-domain spectra were obtained on an
unstrained sample. Overall, the revision of the ARPES evidence
presented here puts the spotlight back onto magnetic interactions
as the main ingredient in the phase diagrams based on BaFe2As2,
the archetypal parent compound of Fe-based superconductors.

METHODS
High quality single crystals of BaFe2As2 were grown by the self flux
technique.59 For the detwinned measurements, a sample with approx-
imate dimensions of 1500 × 1200 × 50 μm with uniform thickness and
regular facets was selected and mounted across the plates of the
horseshoe-shaped device, aligned by eye (within ~2°) such that the Fe–Fe
direction was parallel with the direction of strain. Silver epoxy (Epo-Tek
H27D) was used to mount the sample and also acted as a medium to
transmit the strain into the sample. Due to the finite Poisson’s ratio, the
actual strain on the sample ought to be described by a full strain tensor,
but for simplicity we refer to a unidirectional tensile strain. The
photoelectron energy and angular distributions were analysed with a
SCIENTA R4000 hemispherical analyser The angular resolution was 0.2°,
and the overall energy resolution was better than 10meV. Nano-ARPES
measurements were performed on a similar sample using 70 eV photon
energy and SCIENTA DA30 analyser, at a temperature of 30 K and with a
typical energy resolution of ≈30meV chosen due to the much lower count
rate, and angular resolution of ~0.2°. It was found that prolonged exposure
(>30min) of the sample to the focused beam spot at a fixed position
caused local sample degradation, but in scanning mode (typically 1 min/
pixel) this was not a serious problem. Both ARPES and nano-ARPES
measurements were performed at the I05 beamline at the Diamond Light
Source, UK.60 The density functional theory (DFT) calculations were
performed using the Wien2k code, as detailed in the SI.

DATA AVAILABILITY
The datasets analysed during the current study are available from the corresponding
authors upon reasonable request.
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