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Non-Nested Multi-Grid Solvers for Mixed
Divergence-free Scott–Vogelius Discretizations

A. Linke∗, Berlin, G. Matthies, Bochum, L. Tobiska, Magdeburg

September 27, 2007

We apply the general framework developed by John et al. in [15] to analyze the con-
vergence of multi-level methods for mixed finite element discretizations of the generalized
Stokes problem using the Scott–Vogelius element. Having in mind that semi-implicit op-
erator splitting schemes for the Navier–Stokes equations lead to this class of problems, we
take symmetric stabilization operators into account. The use of the class of Scott–Vogelius
elements seems to be promising since discretely divergence-free functions are pointwise
divergence-free. However, to satisfy the Ladyzhenskaya–Babuška–Brezzi stability condi-
tion, we have to deal in the multi-grid analysis with non-nested families of meshes which
are derived from nested macro element triangulations.

1 Introduction

The numerical solution of the instationary, incompressible, and isothermal Navier–Stokes equations

ut −
1

Re
∆u + (u · ∇)u +∇p = f , ∇ · u = 0 in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ], u
∣∣
t=0

= u0 in Ω,

on a space-time cylinder Ω× (0, T ] is a challenging task, in particular at higher Reynolds numbers Re.
Here, Ω ⊂ Rd, d ∈ {2, 3}, denotes a polyhedral domain. Different discretizations schemes have been
proposed in the literature in order to proceed efficiently in time and to reduce this nonlinear problem
to a sequence of linearized subproblems. We only mention the semi-implicit operator splitting scheme
introduced in [8] and fully implicit time stepping schemes which have to solve in each time step a
sequence of linearized Navier–Stokes problems [12]. In the semi-implicit approach, we have to solve
efficiently two generalized Stokes problems in each time step. Although the fully implicit approach
leads to a sequence of nonsymmetric Oseen type problems for which the multi-grid analysis is not
established, we know from numerical experiments that these methods behave well if the analysis holds
for the symmetric part of the stabilized operator. Thus, in our analysis we take the use of symmetric
stabilizations into account and consider stabilized generalized Stokes problems.

In this paper, we investigate the convergence of multi-grid methods for the recently proposed stabi-
lized Scott–Vogelius element Pk/P

disc
k−1 with k ≥ d, see [11]. The lowest order Scott–Vogelius element

for d = 2 consists of continuous, piecewise quadratic velocities and discontinuous, piecewise linear
pressures. The analogous lowest order element in the case d = 3 consists of continuous, piecewise
cubic velocities and discontinuous, piecewise quadratic pressures. For a long time, it has been well
known that the two-dimensional Scott–Vogelius element is LBB-stable on certain meshes which are
derived from macro element triangulations [1, 22]. Recently, an extension to the three-dimensional
case has been proven [29]. The most promising property of the Scott–Vogelius element is its pointwise
fulfillment of the incompressibility constraint. Indeed, since ∇ · (Pk)d ⊂ P disc

k−1 holds, the usual weak
mass conservation is transformed into a strong mass conservation and the discrete velocities are not
∗The author is funded by the DFG Research Center Matheon in Berlin.
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only discretely divergence-free but also pointwise divergence-free. Moreover, the convergence of the
discrete velocities does not depend on the regularity of the pressure. How these properties can be pre-
served for the discrete Oseen equations and how reaction and convection terms can be stabilized by
symmetric stabilization operators has been shown in [11]. In the present paper, we consider abstract
stabilization operators having certain properties which guarantee the convergence of our multi-grid
method. Note that the edge stabilization method by Burman and Hansbo [10, 9], the two-level local
projection method by Braack and Becker [3, 4], and the one-level enriched local projection method
proposed in [20, 13] fulfill all necessary properties.

The analysis of the multi-grid algorithm is based on the theory developed in [15] applied to the linear
algebraic systems arising from the proposed stabilized Scott–Vogelius discretization for the Navier–
Stokes equations. Since proofs of the LBB-stability in 3D are only known for meshes, which are
derived from macro element triangulations, we will restrict our considerations to such meshes. Then,
the corresponding multi-grid hierarchy is non-nested. But be aware that in the 2D case, for polynomial
velocity spaces with k ≥ 4 and meshes without so-called singular points, the entire multi-grid scheme
below works also without macro element meshes, leading then to a nested grid hierarchy [26, 28].

The outline of the paper is as follows. We introduce in Section 2 the discretization and state
the approximation properties needed for the multi-grid convergence. Section 3 is devoted to the
prolongation and restriction operators of the multi-grid algorithm and to the approximation and
smoothing property. Numerical examples are given in Section 4 which illustrate the theoretical results.

Notation. Throughout the paper, C will denote a generic positive constant which is independent of
the mesh. Our generalized Stokes problem will be considered in the domain Ω ⊂ Rd, d = 2, 3, which
is assumed to be a polygonal or polyhedral domain with boundary ∂Ω. For a measurable subset G of
Ω, the usual Sobolev spaces Wm,p(G) with norm ‖ · ‖m,p,G and semi-norm | · |m,p,G are used. In the
case p = 2, we have Hm(G) = Wm,2(G) and the index p will be omitted. The L2 inner product on
G is denoted by (·, ·)G. Note that the index G will be omitted for G = Ω. This notation of norms,
semi-norms, and inner products is also used for the vector-valued and tensor-valued case.

2 Continuous and Discrete Problem

2.1 Generalized Stokes Problem and Weak Formulation

We consider the generalized Stokes equations for (u, p) in a domain Ω ⊂ Rd, d ∈ {2, 3},

−∆u + αu +∇p = f in Ω,
∇ · u = 0 in Ω,

u = 0 on ∂Ω,
(1)

where u and p denote the velocity and the pressure, respectively, α is a non-negative constant, and f
is a given source term.

Let V := H1
0 (Ω) and Q := L2

0(Ω) := {q ∈ L2(Ω) : (q, 1) = 0}. A weak formulation of problem (1)
reads

Find (u, p) ∈ V d ×Q such that

A[(u, p), (v, q)] = (f ,v) ∀(v, q) ∈ V d ×Q (2)

where

A[(u, p), (v, q)] := a(u,v) + b(p,v)− b(q,u),
a(u,v) := (∇u,∇v) + α(u,v),
b(p,v) := −(p,∇ · v).

We can formulate problem (2) also as an elliptic one for the velocity u in the space

H(Ω) := {v ∈ V d : ∇ · v = 0}
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of divergence-free functions. Indeed, choosing divergence-free test functions v ∈ H(Ω) leads to the
problem

Find u ∈ H(Ω) such that
a(u,v) = (f ,v) ∀v ∈ H(Ω). (3)

Note that the pressure drops out completely from the equation but it can be reconstructed due to the
continuous inf-sup condition, see [14].

Theorem 1 (H1). The generalized Stokes problem (2) is well-posed. For any given data f ∈
(
L2(Ω)

)d
there is a unique solution (u, p) ∈ V d ×Q such that

‖∇u‖0 +
√
α‖u‖0 + ‖p‖0 ≤ C‖f‖0.

Proof. The theorem is proven by applying the Cauchy-Schwarz inequality, the Poincaré inequality,
and the continuous LBB-condition.

We make in the following always a regularity assumption on problem (1).

Assumption 1. Whenever the right hand side f belongs to the space
(
L2(Ω)

)d, the solution (u, p)
satisfies u ∈

(
V ∩H2(Ω)

)d and p ∈ Q ∩H1(Ω). Moreover, the estimate

‖u‖2 + ‖p‖1 ≤ C‖f‖0

holds true.

This assumption holds if Ω is of class C2 or Ω is a plane convex polygon.

2.2 Stabilized Scott–Vogelius Discretization

We are given a family
{
T̃h

}
of simplicial triangulations of the domain Ω without hanging nodes. The

simplices T̃ ∈ T̃h are supposed to be open. Let heT denote the diameter of the simplex T̃ ∈ T̃h and
h := maxeT∈eTh

heT . Moreover, we assume that the mesh is shape regular, i.e., there exists a constant C
independent of h such that

heT
ρeT ≤ C ∀T̃ ∈ T̃h, ∀h > 0

where ρeT is the diameter of the largest ball which can be inscribed into T̃ .
The mesh T̃h is called macro triangulation. The triangulation Th which will be the base of our

discretization is derived from T̃h as follows. We connect for each macro simplex T̃ ∈ T̃h its barycenter
with its vertices in order to construct a new triangulation. Hence, we get three triangles from each
macro triangle in two space dimensions and four tetrahedra from each macro tetrahedron in three
space dimensions. This new triangulation Th is also shape regular in the above sense.

We consider the Scott–Vogelius element (V k
h , Q

k−1
h ) defined by

V k
h :=

{
v ∈ H1

0 (Ω) : v|T ∈ Pk(T ) ∀T ∈ Th

}
,

Qk−1
h :=

{
q ∈ L2

0(Ω) : q|T ∈ Pk−1(T ) ∀T ∈ Th

}
.

Hence, each velocity component is approximated by continuous, piecewise polynomials of degree k
while the pressure is approximated by discontinuous, piecewise polynomials of degree k− 1. Since the
triangulations Th are derived from a macro triangulation and since we assume that k ≥ d, the pair
(V k

h , Q
k−1
h ) is LBB-stable, see [22, 1, 29].

Using the Scott–Vogelius element, we propose the following method for discretizing (2)

Find (uh, ph) ∈ (V k
h )d ×Qk−1

h such that

Ah[(uh, ph), (vh, qh)] = (f,vh) ∀(vh, qh) ∈
(
V k

h

)d ×Qk−1
h (4)
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where
Ah[(uh, ph), (vh, qh)] := A[(uh, ph), (vh, qh)] + Sh(uh,vh).

Here, Sh(·, ·) is an abstract stabilization operator which might be needed in the case of a dominant
reaction term αu in the generalized Stokes problem or in the case of non-neglectable convection in the
non-symmetric part of the generalized Oseen problem. The required properties of Sh will be discussed
later on.

The Scott–Vogelius element has the important property

∇ · [V k
h ]d ⊂ Qk−1

h (5)

which enforces pointwise mass conservation for the discrete solution uh of (4). Indeed, we derive
from (4) that

(∇ · uh, qh) = 0 ∀qh ∈ Qk−1
h .

Now, it follows from uh ∈
(
H1

0 (Ω)
)d that the function ∇ · uh belongs to L2

0(Ω). Due to (5) and since
uh ∈ (V k

h )d, the function ∇ · uh belongs also to Qk−1
h . Thus, ∇ · uh can be taken as a test function

qh. This results in exact mass conservation in the L2-sense. Moreover, since the discrete solution uh

is piecewise polynomial, we conclude that ∇ · uh = 0 holds pointwise on the closure of each simplex
of the triangulation. Hence, the scalar function ∇ · uh is pointwise 0 on Ω.

The mixed problem (4) can be formulated equivalently as an elliptic one in the space of discretely
divergence-free functions. Since discretely divergence-free functions of the considered discretization
are divergence-free in the strong sense, the problem (4) is equivalent to

Find uh ∈
(
V k

h

)d ∩H(Ω) such that

ah(uh,vh) = (f ,vh) ∀vh ∈
(
V k

h

)d ∩H(Ω) (6)

where
ah(uh,vh) := a(uh,vh) + Sh(uh,vh).

Note that instead of the usual Galerkin orthogonality, we only have

ah(u− uh,vh) = Sh(u,vh) ∀vh ∈
(
V k

h

)d ∩H(Ω) (7)

and the consistency error has to be estimated additionally.

2.3 Finite Element Analysis

Let πh : Q→ Qk−1
h be the L2-projection into Qk−1

h such that

‖q − πh(q)‖0 ≤ Ch‖q‖1 ∀q ∈ Q ∩H1(Ω).

We further assume that there exists a projection operator πdiv
h : V d ∩H →

(
V k

h

)d ∩H which maps
divergence-free functions to divergence-free functions and which satisfies

‖v − πdiv
h (v)‖0 + h‖∇(v − πdiv

h (v))‖0 ≤ Ch2‖v‖2 (8)

for all v ∈
(
V ∩H2(Ω)

)d ∩H(Ω). The existence of those interpolation operators is shown in [23].
We now come back to the abstract stabilization operator Sh and postulate the following properties

• (linearity) for all u,v,w ∈
(
(V ∩H2(Ω)) + V k

h

)d and λ, µ ∈ R:

Sh(λu + µv,w) = λSh(u,w) + µSh(v,w); (9)

• (symmetry) for all u,v ∈
(
(V ∩H2(Ω)) + V k

h

)d:
Sh(u,v) = Sh(v,u);
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• (non-negativity) for all u ∈
(
(V ∩H2(Ω)) + V k

h

)d:
Sh(u,u) ≥ 0; (10)

• (weak consistency) for all u ∈
(
V ∩H2(Ω)

)d:
|Sh(u,u)|1/2 ≤ Ch3/2‖u‖2,

|Sh(πdiv
h u, πdiv

h u)|1/2 ≤ Ch3/2‖u‖2.
(11)

The properties (9) and (10) ensure that for all u,v ∈
(
(V ∩H2(Ω)) + V k

h

)d the inequality∣∣Sh(u,v)
∣∣ ≤ Sh(u,u)1/2 Sh(v,v)1/2 (12)

holds. The edge stabilization by Burman and Hansbo [10] and the local projection method by Becker
and Braack [3] fulfill all properties of this abstract setting. We also refer to [20, 13] for a more
general framework of local projection stabilization. Further information on necessary properties for
the stabilization operator in the case of dominant convection can be found in [11].

In order to derive the approximation property of our multi-grid scheme, we will give an L2-estimate
for the velocity of the considered stabilized Scott–Vogelius discretization. First, we prove an estimate
in the corresponding error norm of the problem, and then we apply an Aubin–Nitsche argument to
get the desired L2-estimate for the velocity error. An estimate of the energy norm for a more general
case is given in [11] where also error estimates for the pressure can be found.

The energy norm of the continuous elliptic problem (3) given in the space of divergence-free functions
is equivalent to the H1-norm ‖ · ‖1. The energy norm of the discrete elliptic problem (6) is defined as

|||v|||h :=
(
|v|21 + α‖v‖2

0 + Sh(v,v)
)1/2

which is well defined for all v ∈
(
(V ∩H2(Ω))+V k

h

)d. Note that |||·|||h is a norm on
(
(V ∩H2(Ω))+V k

h

)d
due to the assumptions on Sh.

To study the unique solvability of (6), we start with the coercivity of the bilinear form ah.

Lemma 2 (Discrete coercivity). The stabilized bilinear form ah satisfies

ah(vh,vh) ≥ |||vh|||2h

for all vh ∈
(
V k

h

)d ∩H(Ω).

Proof. The coercivity follows directly from the definitions of the bilinear form and the discrete energy
norm.

We proceed with an approximation property in the discrete energy norm.

Lemma 3 (Approximation). Suppose v ∈
(
V ∩H2(Ω)

)d, then there holds

|||v − πdiv
h (v)|||h ≤ Ch‖v‖2.

Proof. The lemma is a direct consequence of (8) and the property (11) of the stabilizing term Sh.

We are now able to state an a-priori energy estimate.

Lemma 4 (A-priori energy estimate). Let u and uh be the solutions of (3) and (6), respectively.
Under the additional smoothness assumption u ∈

(
H2(Ω)

)d, we have

|||u− uh|||h ≤ Ch‖u‖2.
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Proof. We get for any vh ∈
(
V k

h

)d ∩H(Ω)

|||u− uh|||h ≤ |||u− vh|||h + |||uh − vh|||h

by the triangle inequality. To estimate the second term, we start with

|||uh − vh|||2h ≤ ah(uh − vh,uh − vh)
= ah(u− vh,uh − vh) + ah(uh − u,uh − vh)
= ah(u− vh,uh − vh)− Sh(u,uh − vh)

where the representation of the consistency error from (7) was applied. Using (12) and the definition
of |||·|||h, we end up with

|||uh − vh|||h ≤ |||u− vh|||h + Sh(u,u)1/2.

After setting vh := πdiv
h (u), we apply Lemma 3 and (11) to yield the assertion of the Lemma.

Additionally, we prove an a-priori L2-estimate using a duality argument. To this end, we consider
the following continuous adjoint problem for a given g ∈

(
L2(Ω)

)d
Find wg ∈ V d ∩H(Ω) such that

a(v,wg) = (g,v) ∀v ∈ V d ∩H(Ω). (13)

This problem is well-posed. Due to Assumption 1 on the regularity of the Stokes problem, we conclude
wg ∈ H2(Ω) and ‖wg‖2 ≤ C‖g‖0.

Theorem 5 (A-priori L2-estimate, H2). Let u and uh be the solutions of (3) and (6), respectively.
If in addition u ∈

(
H2(Ω)

)d, we have the a-priori L2-estimate

‖u− uh‖0 ≤ Ch2‖u‖2.

Proof. We start the proof by using v := u− uh as a test function in (13) to obtain

(g,u− uh) = a(u− uh,wg) = ah(u− uh,wg)− Sh(u− uh,wg)

where the definition of a and ah were used. Let for a moment vh ∈
(
V k

h

)d ∩ H(Ω) be arbitrary.
Using (7) in the form Sh(u,vh)− ah(u− uh,vh) = 0, we get

(g,u− uh) = ah(u− uh,wg)− ah(u− uh,vh) + Sh(u,vh)− Sh(u− uh,wg)
= ah(u− uh,wg − vh) + Sh(u,vh)− Sh(u− uh,wg).

By setting g := u− uh, we obtain

‖u− uh‖2
0 = (g,u− uh)

≤ |||u− uh|||h|||wg − vh|||h + |Sh(u,u)|1/2|Sh(vh,vh)|1/2

+ |Sh(u− uh,u− uh)|1/2|Sh(wg,wg)|1/2

≤ |||u− uh|||h
(
|||wg − vh|||h + |Sh(wg,wg)|1/2

)
+ |Sh(u,u)|1/2|Sh(vh,vh)|1/2.

Choosing vh := πdiv
h (wg), we get by applying Lemmata 3 and 4 the stated estimate where (11) and

‖wg‖2 ≤ C‖g‖0, which follows from Assumption 1, were used.

Remark 6. We can see from the proof above that the expected asymptotic convergence order of the
scheme does not deteriorate by adding the symmetric stabilization operator.
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3 Multi-Level Approach

In [15], five sufficient conditions (H1)–(H5) have been identified which allow to conclude that some
multi-level solvers for quite general discretizations of mixed problems converge at optimal convergence
rates. The considerations in [15] include non-nested discretizations and even discretizations with
different finite element ansatz functions on different levels. The Theorems 1 and 5 which were proved
in the previous section are the the conditions (H1) and (H2) for the special case of the proposed
stabilized Scott–Vogelius scheme. We will outline in the following section a multi-level approach for
the proposed stabilized Scott–Vogelius element and we will apply the general framework given in [15]
to this situation. For the sake of completeness, we will repeat some of the arguments used in [15].
We also mention that hints to a multi-level convergence analysis for the unstabilized Scott–Vogelius
element are already given in [29].

3.1 Multi-Level Discretization

Let T̃0 denote the coarse macro triangulation. The finer macro triangulations T̃l, l ≥ 1, are obtained
by successive regular refinement. Since the Scott–Vogelius element is not necessarily LBB-stable on
such meshes, we construct triangulations Tl from the macro triangulations T̃l as described in Sect. 2.2.
Note that the mesh size of Tl is just the half of the mesh size of Tl−1. Let Vl and Ql denote the
spaces V k

h and Qk−1
h with respect to the triangulation Tl. Note that both the sequence {V d

l }l≥0 of
velocity spaces and the sequence {Ql}l≥0 of pressure spaces are non-nested. This is caused by the non-
nested triangulations which are, however, derived from nested triangulations. Figure 3.1 shows two

Figure 1: Two subsequent triangulations of the unit square with two and eight macro elements which
result in six and 24 elements, respectively.

subsequent triangulation of the unit square into two and eight macro triangles which are refined into 6
and 24 triangles, respectively. The non-nested character of the grid hierarchy is clearly demonstrated.

3.2 Matrix Representation

Let {ϕl,i : i ∈ Il} and {ψl,j : j ∈ Jl} be bases of the spaces V d
l and Ql, respectively, where Il, Jl

denote the corresponding index sets. The solution (uh, ph) of (4) with V k
h and Qk−1

h based on the
triangulation Th = Tl will be denoted by (ul, pl). The unique representations

ul =
∑
i∈Il

ul,i ϕl,i, pl =
∑
j∈Jl

pl,j ψl,j

define the finite element isomorphisms Φl : Ul → V d
l , Ψl : Pl → Ql between the vector spaces

Ul = Rdim V d
l , Pl = Rdim Ql of coefficient vectors ul = (ul,i)i∈Il

, p
l
= (pl,j)j∈Jl

and the finite element
spaces V d

l and Ql, respectively. Let al be the bilinear form ah based on Th = Tl. We introduce the
finite element matrices Al and Bl having the entries al,ij = al(ϕl,j , ϕl,i) and bl,ij = b(ψl,i, ϕl,j). Now
the discrete problem (4) is equivalent to(

Al BT
l

Bl 0

)(
ul

p
l

)
=
(
f

l
0

)
(14)
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with fl,i = (f , ϕl,i). Note that Al is a symmetric matrix. We will use in the vector spaces Ul and Pl

the usual Euclidean norms scaled by suitable factors such that the following norm equivalences

C−1‖vl‖Ul
≤ ‖vhl

‖0 ≤ C‖vl‖Ul
∀vhl

∈ V d
l ,

C−1‖q
l
‖Pl

≤ ‖qhl
‖0 ≤ C‖q

l
‖Pl

∀qhl
∈ Ql,

are satisfied with a mesh- and level-independent constant C.

3.3 Smoothing Property

For smoothing the error of an approximate solution of (14), we take the basic iteration(
αlDl BT

l

Bl 0

)(
uj+1

l − uj
l

pj+1
l − pj

l

)
=
(
f

l
0

)
−
(
Al BT

l

Bl 0

)(
uj

l

pj
l

)
, j ≥ 0. (15)

This can be considered as a special case of the symmetric incomplete Uzawa algorithm proposed by
Bank, Welfert, and Yserentant in [2]. The smoothing properties of (15) have been studied in [6] for
the special case Dl = Il, in [24] for the general case provided that an additional projection step is
performed, and in [30] for a more general setting.

The matrix Dl is a pre-conditioner of Al such that the linear system (15) is more easily solvable
than (14). Note that we have

Bl(uj+1 − uj
l ) = −Blu

j
l , j ≥ 0,

implying that after one smoothing step the iterate uj+1
l is divergence-free, i.e. Blu

j+1
l = 0.

Theorem 7 (H5). The matrix BlB
T
l in (14) is non-singular.

Proof. The invertibilty of BlB
T
l is a consequence of the fulfillment of the discrete LBB-condition.

Remark 8. It is easy to verify that(
ul − uj+1

l

p
l
− pj+1

l

)
=
(
αlDl BT

l

Bl 0

)−1(
(αlDl −Al)(ul − uj

l )
0

)
where (ul, pl

) is the solution of (14). This shows that the iteration is a so-called u-dominant method
since the new iterate (uj+1

l , pj+1
l ) depends on uj

l but not on pj
l .

Lemma 9. Now we assume that Dl is symmetric and that αl can be chosen such that

1
δ
λmax(Al) < αlλmin(Dl) ≤ αl‖Dl‖ ≤ γλmax(Al)

for some level- and mesh-independent constants δ ∈ [1, 2) and γ > 0. Moreover, let the basis of V d
l be

chosen such that λmax(Al) = O(h−2
l ). Then, the basic iteration (15) satisfies the smoothing property

‖Al(ul − um
l ) +BT

l (p
l
− pm

l
)‖Ul

≤ C

m
h−2

l ‖ul − u0
l ‖Ul

.

Proof. See [6, 24, 30].

3.4 Prolongation and Restriction

Essential ingredients of a multi-level algorithm for mixed problems are appropriate prolongations

P u
l−1,l : Ul−1 → Ul, P p

l−1,l : Pl−1 → Pl

and restrictions

Ru
l,l−1 := (P u

l−1,l)
∗ : Ul → Ul−1, Rp

l,l−1 := (P p
l−1,l)

∗ : Pl → Pl−1.
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Since we deal with a non-nested finite element discretization, we define prolongations by

P u
l−1,l := Φ−1

l ◦ iu ◦ Φl−1, P p
l−1,l := Ψ−1

l ◦ ip ◦Ψl−1

where iu : (Vl−1 + Vl)d → V d
l and ip : Ql−1 +Ql → Ql are suitable prolongation operators.

The convergence analysis in [15] is based on the u-dominance of the smoother, i.e., the new iterate
(uj+1

l , pj+1
l ) depends on uj

l but not on pj
l . Thus, we only have to investigate in depth the velocity

prolongation which is in our situation much simpler than in the general framework. First, we restrict
our considerations to a scalar prolongation for one velocity component. Second, we can make important
simplifications since the velocity spaces Vl are continuous. Third, the local finite element space Vl|eT on
any macro simplex T̃ ∈ T̃l is derived from a single corresponding finite element space V̂ on a reference
macro simplex T̂ by

Vl|eT =
{
v̂ ◦ F−1eT : v̂ ∈ V̂

}
where FeT : T̂ → T̃ is an affine transformation with FeT (T̂ ) = T̃ and T̂ denotes the unit reference
simplex.

We will construct a scalar velocity prolongation iu : Σl → Vl with Σl := Vl−1 + Vl which fulfills
the necessary properties given in [15]. Note that for macro elements T̃ ∈ T̃l−1 the local finite element
space Σl|eT = Vl−1|eT +Vl|eT can be derived from Σ̂ = V̂c + V̂f where the finite element spaces V̂c and V̂f

on the reference macro element T̂ correspond to the refinement levels l = 0 and l = 1 of the reference
simplex T̂ . Let n := dim V̂f . We introduce n linear nodal functions N̂i, i = 1, . . . , n, such that

N̂i : Σ̂ → V̂f , v̂ 7→ v̂(xi), i = 1, . . . , n,

for the set {xi, i = 1, . . . , n} of Lagrange points with respect to V̂f . Let {ϕ̂1, . . . , ϕ̂n} be the basis of
V̂f which is dual with respect to {N̂1, . . . , N̂n}, i.e., N̂i(ϕ̂j) = δij , i, j = 1, . . . , n, where δij denotes the
Kronecker delta. We define

ı̂u : Σ̂ → V̂f , v̂ 7→
n∑

i=1

N̂i(v̂) ϕ̂i.

Obviously, ı̂u is a continuous linear operator on Σ̂ since the nodal functionals N̂i are linear and since
dim Σ̂ <∞. Hence, the estimate

‖ı̂uv̂‖0, bT ≤ C‖v̂‖
0, bT ∀v̂ ∈ Σ̂ (16)

holds true. We define for each macro element T̃ ∈ T̃l−1 a local prolongation operator by

i
eT
u : Σl|eT → Vl|eT , v 7→

n∑
i=1

N̂i(v ◦ FeT ) (ϕ̂i ◦ F−1eT ).

Due to the chosen set of Lagrange points, the restriction of ieT
u v to ∂T̃ depends only on the restriction

of v to ∂T̃ . Hence, the local operators can be put together to a global operator iu : Σl → Vl such that

iuv|eT = i
eT
u

(
v|eT ), T̃ ∈ T̃l−1.

Theorem 10 (H3). For the interpolation operator iu : Σl → Vl, there holds for all v ∈ Vl

iuv = v.

Proof. The statement of this theorem is a direct consequence of the definition of the operator iu.

Theorem 11 (H4). For all vl ∈ Σl, it holds

‖iuv‖0 ≤ C‖v‖0.

9



Proof. Setting in the following v := v̂ ◦ F−1eT and x̂ := F−1eT (x), we compute

‖iuv‖2
0 =

∑
eT∈eTl−1

∫
eT
{
(ieT

u v)(x)
}2
dx =

∑
eT∈eTl−1

d! |T̃ |
∫

bT
{
(ieT

u v)(FeT (x̂))
}2
dx̂

=
∑

eT∈eTl−1

d! |T̃ |
∫

bT
{
(̂ıuv̂)(x̂)

}2
dx̂ =

∑
eT∈eTl−1

d! |T̃ | ‖ı̂uv̂‖2
0, bT .

We can apply the estimate (16) and conclude

‖iuv‖2
0 ≤ C2

∑
eT∈eTl−1

d! |T̃ | ‖v̂‖2
0, bT = C2

∑
eT∈eTl−1

‖v‖2
0, eT = C2‖v‖2

0.

Thus, the L2-stability of the prolongation is shown with a constant C independent of the level.

Remark 12. It would have been possible to retract completely on the much more general proof in [15]
about the L2-stability of a general class of possible velocity prolongation operators. There, two addi-
tional assumptions (H6) and (H7) are introduced which imply (H3) and (H4). These assumptions
are clearly true in our case but the proof presented above is much more simpler.

3.5 Approximation Property

Let an approximation (ũl, p̃l) ∈ V d
l × Ql of the discrete solution (ul, pl) be given. We can think of

(ũl, p̃l) as the result after some smoothing steps and consequently assume that

∇ · ũl = 0.

Then, the coarse-level correction is defined as the solution of the following problem

Find (u∗l−1, p
∗
l−1) ∈ V d

l−1 ×Ql−1 such that for all (vl−1, ql−1) ∈ V d
l−1 ×Ql−1

Al−1[(u∗l−1, p
∗
l−1), (vl−1, ql−1)] = (f , iuvl−1)−Al[(ũl, p̃l), (iuvl−1, 0)]. (17)

The coarse-level correction yields via the transfer operator iu from Section 3.4 the new velocity ap-
proximation

unew
l := ũl + iuu∗l−1. (18)

The basic idea for proving the approximation property is to construct a auxiliary continuous problem
such that (u∗l−1, p

∗
l−1) and (ul − ũl, pl − p̃l) are finite element solutions of the corresponding discrete

solutions in the spaces V d
l−1 × Ql−1 and V d

l × Ql, respectively. This idea has been used for scalar
elliptic equations in [7] and has been applied to more general situations in [5] and [18].

The auxiliary problem will be

Find (z, w) ∈ V d ×Q such that for all (v, q) ∈ V d ×Q

A[(z, w), (v, q)] = (Fl,v).

where Fl ∈ Σd
l is given via the Riesz representation of the residue by

(Fl, s) := (f , ius)−Al[(ũl, p̃l), (ius, 0)] ∀s ∈ Σd
l .

Due to (H3), we have for s ∈ V d
l that

(Fl, s) = (f , s)−Al[(ũl, p̃l), (s, 0)] = Al[(ul − ũl, pl − p̃l), (s, 0)]

which means that (ul − ũl, pl − p̃l) is a finite element approximation of (z, w) in the space V d
l × Ql.

On the other hand, (Fl, s) becomes just the right hand side of (17) if s ∈ V d
l−1, i.e., (u∗l−1, p

∗
l−1) is the

finite element approximation of (z, w) in the space V d
l−1 ×Ql−1. Furthermore, we have for s ∈ Σd

l

(Fl, s) = ah(ul − ũl, ius) + b(ius, pl − p̃l) =
(
Al(ul − ũl) +BT

l (p
l
− p̃

l
), ius

)
Ul
.
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Applying the Cauchy–Schwarz inequality and setting s = Fl, we get

‖Fl‖0 ≤ C‖Al(ul − ũl) +BT
l (p

l
− p̃

l
)‖Ul

(19)

where ‖ius‖Ul
≤ C‖ius‖0 ≤ C‖s‖0 was used which follows from the equivalence of norms in V d

l and
Ul together with (H4).

Lemma 13. The approximation property holds with

‖ul − unew
l ‖0 ≤ Ch2

l ‖Al(ul − ũl) +BT
l (p

l
− p̃

l
)‖Ul

.

Proof. We get from (H3) and (18) that ul − unew
l = iu(ul − ũl − u∗l−1). Applying (H4), the triangle

inequality, and Theorem 5, we get

‖ul − unew
l ‖0 ≤ C‖ul − ũl − u∗l−1‖0 ≤ C

(
‖ul − ũl − z‖0 + ‖z− u∗l−1‖0

)
≤ C(h2

l + h2
l−1) ‖z‖2.

Using Assumption 1, (19), and hl−1 = 2hl yields the statement of this lemma.

3.6 Multi-Level Convergence

We shortly describe the two-level algorithm using m smoothing steps on the level l, l ≥ 1, and the
coarse-level correction (18). Let (u0

l , p
0
l ) be an initial guess for the solution (ul, pl) of (4). We apply m

smoothing steps of the basic iteration (15) and obtain (um
l , p

m
l ). Now the coarse-level correction (18)

is performed using
(ũl, p̃l) = (um

l , p
m
l )

as an approximate solution of the discrete problem (4). Finally, the new velocity approximation is
obtained by

unew
l := um

l + iuu∗l−1.

Combining the smoothing and the approximation property, we get the multi-level convergence.

Theorem 14. Under the assumptions of Lemma 9 and Lemma 13, the two-level method converges for
sufficiently many smoothing steps with respect to the L2- and Ul-norm. In particular, there are level-
and mesh-independent constants C and C̃ such that

‖ul − unew
l ‖Ul

≤ C

m
‖ul − u0‖Ul

and

‖ul − unew
l ‖0 ≤

C̃

m
‖ul − u0

l ‖0.

Once proven the convergence of the two-level method, the convergence of the W-cycle multi-level
method follows in a standard way.

4 Numerical Results

This section presents some numerical results for the Scott–Vogelius element applied to the unstabi-
lized Stokes problem, i.e. the case with α = 0 and Sh ≡ 0. Numerical results for different mixed
finite element pairs applied to the stabilized generalized Stokes problems can be found in [21] where
convergence of the stabilized scheme was demonstrated only numerically.

All numerical computations used the software package MooNMD [17] and were performed on a
Linux PC (Pentium IV, 2.8 GHz).

Let Ω = (0, 1)2. The right-hand side f and the inhomogeneous boundary condition in the Stokes
problem are chosen such that

u(x, y) =
(

sin(x) sin(y)
cos(x) cos(y)

)
,

p(x, y) = 2 cos(x) sin(y)− 2 sin(1)
(
1− cos(1)

)
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is the solution. This example was taken from [6].
We have used the lowest order two-dimensional Scott–Vogelius element pair P2/P

disc
1 on the family

of non-nested meshes described in Sect. 2.2.
Table 1 shows the number of triangles and the number of degrees of freedom for the discretizations

on different refinement levels. The coarsest mesh (level 0) consists of six triangles obtained from a
macro decomposition of the unit square into two macro triangles by the diagonal of slope +1, see
Fig. 3.1, left. We see that the number of triangles and the number of degrees of freedom increase by

Table 1: Number of triangles and number of degrees of freedom (dofs) on different refinement levels.

level 5 6 7 8

number of triangles 6,144 24,576 98,304 393,216
velocity dofs 24,834 98,818 394,242 1,574,914
pressure dofs 18,432 73,728 294,912 1,179,648
total dofs 43,266 172,546 689,154 2,754,562

a factor of four from one level to the next finer one. Furthermore, the number of degrees of freedom
for both velocity components together is approximately 4/3 times the number of pressure degrees of
freedom.

In our calculation with the Braess–Sarazin smoother [6, 24], we have chosen Dl to be the incomplete
LU-decomposition of the matrix Al and αl = 1.

Furthermore, we carried out calculations with Vanka-type smoothers, see [16, 27]. These smoothers
can be seen as block Gauss-Seidel smoothers. We have chosen as blocks in our calculations all degrees
of freedom which are connected to a single macro element, i.e., each block contains 20 velocity and 9
pressure degrees of freedom.

Table 2 shows the averaged multigrid rates for a W -cycle with m pre-smoothing and m post-
smoothing steps. It can be seen that the averaged multigrid rates are independent of the number

Table 2: Averaged multigrid rates for a W (m,m)-cycle.

Braess-Sarazin Vanka-type
m 7 levels 8 levels 8 levels 9 levels

1 0.8013 0.8056 0.3563 0.3550
2 0.6674 0.6756 0.1600 0.1606
3 0.5553 0.5657 0.0924 0.0911
4 0.4626 0.4749 0.0545 0.0580
5 0.3878 0.3978 0.0455 0.0459
6 0.3235 0.3347 0.0338 0.0345
7 0.2757 0.2861 0.0260 0.0264
8 0.2270 0.2396 0.0250 0.0257
9 0.1922 0.1932 0.0215 0.0221

10 0.1592 0.1702 0.0180 0.0218

of levels within the multigrid hierarchy. Moreover, the rates for the Vanka-type smoother are much
better than those for the Braess–Sarazin smoother. However, it should be noted that almost nothing
is known about the smoothing properties of multiplicative Vanka-type smoothers which we have used
in our calculations. In [25], additive Vanka-type smoothers have been considered and transformed
into inexact Uzawa methods under certain conditions. Unfortunately, these conditions cannot be
satisfied in general [19]. Nevertheless, in case of the nonconforming Crouzeix–Raviart discretization of
lowest order, a convergence rate of O(

√
m) for the additive Vanka-type smoother has been proven [25].
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Concerning the convergence of Vanka-type solvers for the Stokes and Navier–Stokes problem (in case
of small Reynolds numbers), we refer to [19].
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