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A B S T R A C T

This paper presents a fast and reliable approach to analyze the biogas production process

with respect to the biogas production rate. The experimental data used for the developed

models included 15 process variables measured at an agricultural biogas plant in Germany.

In this context, the concentration of volatile fatty acids, total solids, volatile solids acid

detergent fibre, acid detergent lignin, neutral detergent fibre, ammonium nitrogen, hydrau-

lic retention time, and organic loading rate were used. Artificial neural networks (ANN)

were established to predict the biogas production rate. An ant colony optimization and

genetic algorithms were implemented to perform the variable selection. They identified

the significant process variables, reduced the model dimension and improved the predic-

tion capacity of the ANN models. The best prediction of the biogas production rate was

obtained with an error of prediction of 6.24% and a coefficient of determination of R2 = 0.9.

� 2019 China Agricultural University. Production and hosting by Elsevier B.V. on behalf of

KeAi. This is an open access article under the CC BY-NC-ND license (http://creativecommons.

org/licenses/by-nc-nd/4.0/).
1. Introduction

Biogas belongs to the renewable energy sources, which under-

went a worldwide expanding technological development over

the last decades. The basis of the biogas production is anaer-

obic digestion (AD) and subsequent biomethanation of bio-

mass and organic wastes, e.g. from husbandry or industrial

production processes. AD is a complex process involving

complex microbial consortia with numerous metabolic pro-

cesses and kinetic reactions [1,2]. While the biogas production

is a complex and long lasting biological process, the use of the

conventional analytical methods, e.g. according to German

VDI norm 4630 [3], is time- and equipment-consuming and,

hence, expensive. Numerous process variables must be taken

into consideration and be controlled to evaluate the process.
Mathematical modelling represents a quick and cheap

alternative to the conventional analytics, among others espe-

cially chemometric methods and metaheuristics. These pow-

erful tools are helpful to identify the process structure and to

analyze the correlations between the process components

without any prior knowledge about the process correlations

[4]. One of the most popular mathematic methods applied

for the optimization of biological systems are the artificial

neural networks (ANN) [5,6]. In agricultural sciences it was

used for visual identification of orange varieties [7], to detect

plant diseases [8], to improve milk service platform [9] and to

estimate the biophysical variables [10]. This approach was

successfully implemented in field of AD systems in order to

predict the process intermediates, to optimize the bioreactor

performance and to improve the process conditions. As an

example, Strik et al. used ANN to predict the trace com-

pounds in biogas from anaerobic digestion [11]. Here the

ANN models were successfully used to predict hydrogen
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Table 1 – The measured process variables (measured with a
frequency one measurement per week).

Variable name (abbreviation) Unit

Acetic acid (AcA) g l�1

Acid detergent fibre (ADF) g kg�1 VS�1

Acid detergent lignin (ADL) g kg�1 VS�1

Alkalinity ration (FOS/TAC) –
Ammonium (NH4

+-N) g l�1

n-Butyric acid (nBA) g l�1

Iso-butyric acid (iBA) g l�1

Total solids (TS) % Fresh matter (FM)
Hydraulic retention time (HRT) day
Neutral detergent fibre (NDF) g kg�1 VS�1

Volatile solids (VS) % TS
Organic loading rate (OLR) kg VS m�3 d�1

Propionic acid (PA) g l�1

n-Valeric acid (nVA) g l�1

Iso-valeric acid (iVA) g l�1

350 I n f o r m a t i o n P r o c e s s i n g i n A g r i c u l t u r e 6 ( 2 0 1 9 ) 3 4 9 –3 5 6
sulfide and ammonia concentrations in biogas under dynam-

ical conditions. The developed approach can be used to con-

trol and to reduce the toxic trace compounds in fuel cells.

In terms of the prediction of the bioreactor performance,

Sahinkaya et al. implemented the neural networks to analyze

the thermophilic sulfidogenic fluidized-bed reactor [12],

which help to control the operational conditions improving

the process cycles. Also based on ANN, Ozkaya et al. predicted

the methane fraction in biogas [13]. Here the anaerobic diges-

tion process was evaluated using the leachate characteristics

measured in two different time periods used to predict the

biogas output. Kanat et al. evaluated the biogas production

rate [14] using the ANN models based on the data measured

by steady-state and abnormal process conditions to control

the thermophilic bioreactors. Bernari et al. used an auto-

mated medium scale prototype for anaerobic co-digestion of

olive mill wastewater [15]. The described implementations

of ANN used for the modelling of biogas digestion process

based on different process variables used for control and eval-

uation either of the separate process parameters or of the

entire process, proved to be a reliable technique to optimize

and to control AD processes. In comparison to other existing

models, such as the anaerobic digestion model No.1 (ADM1)

[16], neural networks have a simple structure. The ADM1

model includes 19 process rate equations, six acid-base reac-

tions, three gas transfer reactions, a number inhibition bal-

ances and over 30 water phase equations for soluble and

particulate matter. Moreover, ADM1 requires a number of

kinetic parameters and rates need to be estimated for each

process. Thus the complexity of the microbiological degrada-

tion processes limits the application to a certain course of the

process. In comparison to ADM1, ANNmodels are data-driven

and do not require any prior knowledge about the kinetics

and the microbiological digestion processes [17]. ANN models

are represented by the multilayered perceptron, that enables

to evaluate the correlation between the independent process

input variables and the dependent output variables without

any prior knowledge about their interrelations.

Metaheuristic techniques, such as genetic algorithms (GA)

[18] and ant colony optimization (ACO) [19] have been applied

to solve complex problems within biological systems. For

example, ACO was implemented in the medical sciences for

solving problems in protein folding. Here ACO was used to

predict the protein conformation based on the amino acids

sequences [20]. The used ACO represents a successful tool

to solve the problems in bioinformatics, where other state-

of-the-art methods failed. In field of bioinformatics, GA was

used to detect recombination problems [21] and to analyze

an enzyme kinetic process [22]. In food science ACO and GA

were implemented for the flour characterization based on

the NIR spectral filter data [23] and to predict pH and lactate

in porcine meat [24]. In agricultural sciences Silalahi et al.

used GA based on infrared spectral data for the identification

of ripeness of oil palm [25], while Mehdizadeh et al. for simu-

lation of greenhouse processes [26]. The interdisciplinary use

of metaheuristics proved it to be reliable optimization tools

and opens the perspective to be also applied for the optimiza-

tion of AD systems.

The main objective of this study was to develop a reliable

tool able to predict the bioreactor performancewith respect to
the biogas production rate. It should improve the biogas pro-

duction process and could select the significant process fea-

tures in order to simplify the analytical evaluation

procedure. The developed methodology represents a fast

and adaptable method to be used for different AD processes

under real conditions based on the real anaerobic digestion

process data. In detail, it should be able to identify the corre-

lations within the process and predict accurately the process

evolution. For this approach, ANNwas used to predict the bio-

gas production rate. As variable selection tools, GA and ACO

were applied, which were compared according to their feasi-

bility and usefulness in field of AD optimization. In that

sense, the optimization step is unique due to the algorithm

combination method and the application of ACO for the real

data of an anaerobic digestion process.

2. Materials and methods

2.1. Origin of experimental data

The experimental data used in this study are off-line mea-

surements collected at a biogas plant in Germany over a

time-period of ten months with a frequency of one sam-

pling per week. The used data originated from the joint

project BIOGAS-ENZYME supported by the German Federal

Ministry of Food and Agriculture (BMEL), grant no.

22027707 [27]. The measurements were done in July 2011

and from February till October 2012. In this biogas plant

four feedstocks, i.e. maize and grass silages together with

pig and cattle manure, were co-digested at mesophilic tem-

perature (42 �C). From digestate samples, the concentrations

of acetic acid, propionic acid, n- and iso-butyric acid, n-

and iso-valeric acid and ammonium (NH4
+-N) were deter-

mined as well as the contents of total solids (TS), volatile

solids (VS), neutral detergent fibre (NDF), acid detergent

fibre (ADF), the organic loading rate, alkalinity ratio and

acid detergent lignin (ADL). Hydraulic retention time (HRT)

was additionally calculated. The measured variables are

represented in Table 1. TS and VS serve generally as
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Fig. 1 – Evolution of the biogas production rate during

sampling period.
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reference values for other substrate compounds, such as

proteins, nitrogen and trace elements. ADF, ADL and NDF

describe the content of nutrients. HRT is the average period

that a given quantity of biomass material remains in the

digester. Organic loading rate indicates the quantity of dry

solids loaded per m3 of digester volume and unit of time.

Alkalinity ratio indicates the quantity of volatile organic

acids in relation to the buffer capacity of carbonate. Biogas

production rate measured during the sampling period is

presented in Fig. 1. The succession of organic acids, TS,

VS, NDF, ADL, ADF, alkalinity ratio, NH4
+-N, HRT, and OLR

is shown in Supplementary, Figs. S1–S4.

2.2. Computational platform

For the development of the neural network models the Mat-

lab� Neural Network Toolbox Version 7.10 2010a (The Math-

Works Inc., Natick, USA) provided with a user’s guide [28]

was used. A Matlab script generated by the Neural Network

Toolbox loaded the data, trained, validated and tested the

models. The data were normalized before application in the

neural network using a script written in Matlab. The imple-

mented optimization tools, here the ant colony optimization

and the genetic algorithm were written in Matlab. All Matlab

scripts are available free of costs from the corresponding

author. The treatment of the experimental data and the

model calculations were carried out on a processor AMD Phe-

nom TM II X2 B57 with 3.2 GHz.

2.3. Pre-processing technique

Data pre-processing is an essential step of any data analysis

[29]. In this work a normalization method, the standard nor-

mal variate (SNV) was used. Eqs. (1) and (2) represent the

mathematical computation of SNV-transformation.

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
k¼1

xk � x
�� �2

= n� 1ð Þ
s

ð1Þ

xk;norm ¼ xk � x
�� �

=r ð2Þ

Here xk is a measured value, while x
�
is the mean value of

xk. The computed r represents the standard deviation of xk.
2.4. Artificial neural networks

For the prediction of the biogas production rate, a two layered

feedforward neural network from the Matlab� ANN Toolbox

was applied. The ANN network was trained using the

Levenberg-Marquardt algorithm, embedded in Matlab ANN

Toolbox. ANN included an input layer, a hidden layer with a

sigmoid activation function and an output layer with a linear

output function. A random initialization was used to provide

more accurate prediction results. The sigmoid transfer func-

tion at the hidden layer enables to treat the data with non-

linear features. It takes the input (any values between plus

and minus infinity) and squashes the output into the range

0–1 [30]. The sigmoid activation function is presented in Eq.

(3).

f xð Þ ¼ 1= 1þ exp�xð Þ ð3Þ
The data of the measured variables were used as input

neurons, while the biogas production rate was calculated by

the output neuron. To identify the optimal model structure

the number of hidden neurons was varied from 3 to 20. The

data set was split into three data sets for training (70%, 28

samples), validation (15%, 6 samples) and test (15%, 6 sam-

ples). The network is trained to find the optimal weights,

which minimize the cost functional. Here the RMSE training

was used as a cost functional andwasminimized. The valida-

tion data served to overcome overfitting and is used to stop

training, which was determined by the failure of the error

decrease for six consecutive iterations. Using the test data

the prediction of the biogas production rate was done. The

assessment of the calculated models was done using the root

mean square error (RMSE) and the coefficient of determina-

tion (R2), which are presented in Eqs. (4) and (5). RMSE was

used to evaluate the accuracy of the models, while R2 to eval-

uate their robustness. Here cyk refers to the predicted value,

whereas yk represents the measured value and y
�
is the mean

value of yk. n is the number of samples.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1

cyk � yk

� �2 !
=n

vuut ð4Þ

R2 ¼ 1�
Xn
k¼1

cyk � yk

� �2 !
=
Xn
k¼1

yk � y
�� �2 ! !

ð5Þ

RMSE and R2 were computed for training, validation and

test models.

2.5. Metaheuristic methods

For the variable selection purpose two metaheuristic methods

were implemented, the genetic algorithm and an ant colony

optimization. GA represents a mathematical interpretation

of the Darwin’s evolution theory, which is based on the natu-

ral rule of survival and the Mendel’s principles of inheritance

[31]. Due to the selection of the best individuals and further

mutation and cross-over transformation of their genome only

the best qualities will be transferred to the next generation

[32]. In this work, the implemented GA was used to identify

the significant process variables [33]. The principle of the
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GA variable selection is based on the lowest cross-validated

RMSE of the calculated models. Thus, the significant process

variables are those used in the partially least square regres-

sion models (PLSR) with the lowest cross-validated RMSE.

For the applied GA approach the following algorithm param-

eters were set: PLS as regression model type, cross over points

of 2, mutation rate of 0.005, 15 individuals with a population

size of 256 and 100 runs. PLSR is a multivariate statistical tool,

which identifies the latent variables (factors) regarding the

most of variance in data and linear correlation between the

process variables. The cross-over operator is related to the

natural reproduction cross-over and will be set randomly. At

each step GA selects randomly 15 individuals out of a set pop-

ulation during all runs.

The principle of ACO was inspired by natural behavior of

ants seeking for food [23]. They leave on the way to food

and back to the nest a pheromone trail, which serves as a nat-

ural guide for other ants. Accordingly the ‘‘shortest ways’’

have the highest pheromone concentration and will be fre-

quently used by ants. Hence, the pheromone concentration

can serve as an independent criterion for the variable selec-

tion [19]. In the approach used here, the measured process

variables represent the possible ways to the ‘‘food source’’,

namely the biogas production rate. The virtual ants use differ-

ent combinations of measured process variables to find out

the best possible solution. The pheromone concentration will

be calculated for each process variable separately and

depends on the quality of correlation with the predicted vari-

able. Generally, pheromone concentration is in range between

0 and 1. The measured process variables, which correlated

best with the biogas production rate and are mostly used by

the virtual ants, have a higher pheromone concentration in

comparison to those correlating less with the predicted vari-

able. The measured variables which had the highest phero-

mone concentration are the ones most important for the

prediction of the biogas production rate. For ACO the follow-

ing algorithm parameters were applied: 100 ants, PLS as

regression method with a principal component number von

1–15, initial pheromone concentration of 10�6 and pheromone

evaporation rate of 0.5 per iteration, 50 iterations. Here the

pheromone trail is an independent evaluation parameter,

which will be adapted by ants to determine the solutions to

the problem. It will be updated for each variable separately
Table 2 – Stages of the ACO algorithm.

Stage Routines

1. Initiation Initial pher
Model type
Pheromone
Number of
Number of
Number of

2. Calculation and iterations Objective f
The best gl
Iterations w
The best an
Update of t
Selection o

3. Results Display of
regarding the evaporation rate during the ACO implementa-

tion. The implemented ACO algorithm proceeds in three

stages, the 0th stage is the initiation, where themodel param-

eters will be set. In the 1st stage the objective function will be

calculated and the best global output variables will be

defined, following by a number of cycles. In the last stage

the results will be presented (Table 2).

3. Results & discussion

3.1. Ann prediction of the biogas production rate

The input layer of the implemented ANN included 15 neu-

rons, which were represented by the measured process vari-

ables; the number of hidden neurons was varied from 3 to

20 in order to get the optimal model structure. The biogas pro-

duction rate resulted as an output neuron. In general, the

results of 5–20 hidden neurons did not show significant differ-

ences. The best prediction results with a small-dimensioned

model structure are shown in Table 3. The less successful pre-

diction of the biogas production rate is not shown.

As can be seen in Table 3, the prediction of biogas produc-

tion rate using 15 input neurons was successful. The best

results were achieved using 5 and 10 hidden neurons,

although the results obtained with more than 5 neurons are

not significantly different and were not shown. The models

with 10 hidden neurons were more robust and accurate in

comparison to models with 5 hidden neurons. Here the train-

ing RMSE was 4.81% and the training R2 was 0.90. The test

RMSE was 9.66%, while the test R2 reached 0.80. The evolution

of the predicted biogas production rate done with ANN using

15 input neurons and 10 hidden neurons is presented in Fig. 2.

3.2. Optimized ANN prediction of the biogas production
rate

The metaheuristic tools implemented in the model were used

to identify the significant process variables and to improve

model performance. The calculated pheromone concentra-

tion served as an independent evaluation criterion to select

the significant process variables. It depends on the correlation

with the predicted biogas production rate. The calculated

value equivalent to the pheromone concentration in the ant
omone concentration

evaporation rate
ants
iterations
principal components
unction will be calculated
obal output variables will be defined
ill be performed
ts will be selected and compared with the best stored ones
he pheromone trail
f the best variable combinations
the results



Table 3 – ANN prediction of the biogas production rate using
15 input neurons.

Number of input neurons 15 15
Number of hidden neurons 5 10
Number of iterations 12 8
RMSE training [%] 5.89 4.81
RMSE validation [%] 13.66 5.15
RMSE test [%] 13.08 9.66
R2 training [–] 0.90 0.88
R2 validation [–] 0.46 0.70
R2 test [–] 0.76 0.80

The results of the prediction were highlighted in bold. Other

results belong to validation and training models.
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Fig. 2 – Prediction of the biogas production rate done with

ANN using 15 input variables and 10 hidden neurons.
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model of all variables is shown in Supplementary (Table S1).

The measured process variables with a virtual pheromone

concentration value higher than 0.5 were identified as the

most significant ones. The ACO model identified seven signif-

icant process variables, namely TS, HRT, NDF, ADL, alkalinity

ratio, n-butyric acid, and iso-valeric acid.

The GA algorithm selected nine process variables, namely

HRT, TS, NDF, ADF, ADL, propionic acid, n-butyric acid, iso-

butyric acid, and n-valeric acid. Five process variables,

namely HRT, TS, NDF, ADL, and n-butyric acid were identified

as process relevant by both optimization algorithms.

The selected variables were used for the further prediction

of the biogas production rate. Therefore, nine significant pro-

cess variables selected by GA, seven significant process vari-
Table 4 – Prediction results done using the optimized ANN mod

GA optimized

Number of input neurons 9 9
Number of hidden neurons 10 15
Number of iterations 14 12
RMSE training [%] 6.98 13.90
RMSE validation [%] 11.68 13.89
RMSE test [%] 13.70 11.86
R2 training [–] 0.95 0.85
R2 validation [–] 0.62 0.74
R2 test [–] 0.80 0.89

The results of the prediction were highlighted in bold. Other results belo
ables selected by ACO and five significant process variables

selected by both optimization algorithms were used. The pre-

diction results are presented in Table 4.

Regarding in Table 4 presented results a good prediction

performance could be achieved using a small-dimensioned

model structure. The ACO- and GA-optimized ANN models

showed generally similar results. For the GA-optimized ANN

models more hidden neurons were required. A more accurate

prediction was obtained using the ACO selected process vari-

ables and 10 hidden neurons. Here, the training RMSE was

3.53%, while the training R2 was 0.98. The test RMSE was

10.37%, and the test R2 was 0.83. The models with the signif-

icant process variables selected by both algorithms showed

the best result. Here, the best model performance was

achieved using 5 input neurons and 5 hidden neurons. The

training models had RMSE of 3.49% and an R2 of 0.98. By the

test models RMSE was reduced to 6.24%, the R2 reached 0.9.

The regression performance of the GA-ACO-optimized ANN

models is shown in Fig. 3.

The dynamic evolution of the predicted biogas production

rate done with the optimized ANN models are shown in

Figs. 4–6.

The achieved results proved the implemented approach to

be a feasible methodology to analyze the biogas production

process. The implemented ANN models predicted success-

fully the biogas production rate. In contrast to the approach

used in this study, previously published studies used more

complex ANN to achieve a good prediction performance in

context of biomethanation processes. For example, Ozkaya

et al. used eight input neurons and 15 hidden neurons to pre-

dict the methane fraction of biogas [13]. In another study pub-

lished by Sahinkaya et al., six input neurons and 20 hidden

neurons were required to predict sulphate, acetate and sul-

phide concentrations in a thermophilic sulfidogenic

fluidized-bed reactor [12]. In our study we applied five input

neurons and five hidden neurons to predict the biogas pro-

duction rate. Thus, an effective simplification of the model

dimension was done due to the implemented optimization

algorithms. In addition, the used metaheuristics enabled an

accurate variable selection by defining the significant mea-

sured process variables. The approach using an ACO algo-

rithm is unique in the field of assessment of AD systems.

Several publications used a genetic algorithm to optimize

ANN models. Abu Qdais et al. used GA to optimize the

methane output of the bioreactor and to define the best
els.

ACO optimized GA-ACO optimized

7 7 5
5 10 5
16 13 18
11.21 3.53 3.49
6.97 7.07 3.30
12.37 10.37 6.24
0.94 0.98 0.98
0.56 0.56 0.96
0.75 0.83 0.90

ng to validation and training models.



Fig. 3 – Regression performance of the GA-ACO-optimized ANN models: (1): training; (2): validation; (3): test; and (4): all data.
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operational conditions while Gueguim Kana et al. (2012)

applied GA to improve the biogas production on saw dust

and other co-substrates [34,35]. The use of two optimization

algorithms, namely ACO and GA, was aimed to assess their

feasibility in field of variable selection by AD systems. Thus

five significant measured process variables could be identi-

fied, which enabled an accurate prediction of the biogas pro-

duction rate. Thus, the developed approach represents a fast
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Fig. 4 – Prediction of the biogas production rate calculated

using the GA-optimized ANN with nine input neurons and

15 hidden neurons.
and robust method to analyze the process evolution. In com-

parison to other commonly accepted models, such as ADM1,

the methodology developed in this study requires only a

small number of process variables to perform a successful

evaluation of the process. In contrast to it, ADM1 needs a

comparatively huge number of process variables and kinetic

parameters as well as rates additionally determined for each

kind of substrate, that makes its application complex.
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4. Conclusion

The approach developed in this study represents a fast and

reliable method to evaluate the biogas production process.

Herewith the evaluation and prediction of typical process

variables namely the biogas production rate could be per-

formed. For the prediction of the biogas production rate,

ANN models were implemented. The used ANN models had

a simple structure [36] performing a robust and accurate pre-

diction of the biogas production rate. The optimization tools

were used to evaluate the process variables selecting the sig-

nificant ones. The used variable selection tools made it possi-

ble to reduce the model dimension and to improve its

performance. The best results were gained using ACO-GA

optimized ANN models. Here the prediction error was

reduced to 6.24% and R2 increased to 0.90. The developed

approach can be further used to develop an on-line control,

which will help to improve the process conditions and to pre-

vent possible process failures. The variable evaluation tools

can support the operating engineer with information about

the main process correlations. The developed approach

demonstrates that ANN in combination with GA and ACO

optimization tools showed reliable results in evaluation of

the biogas production rate. Here the neural logic could predict

the process development, while the optimization tools could

improve the prediction capacity by selection of the significant

process variables. Moreover, for the modelling a small num-

ber of data sets was required. This strategy can be used as a

control operator to evaluate the process development based

on the measured data. It can be used as an alternative

approach to replace the computationally intensive and

time-consuming ADM1 as well as to speed up the simulation

procedure of biological processes [37]. Another way to use the

developed approach is to evaluate the composition of the sub-

strates. The intelligent model can rapidly estimate the best

process conditions, accurately analyzing the process variables

regarding the complex non-linear process behavior. It will

help to improve the process development, to gain the highest

biogas output, saving time, costs and to avoid the time-

consuming and expensive analytics. The developed approach

can be used for different AD processes regarding chemical
and technical influence coefficients. Nevertheless, it is recom-

mended in future studies to focus on the evaluation of the

effects of the individual input variables. For that a more elab-

orated data is required.
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Verfahrenstechnischen Einflussfaktoren Auf Die Mikroflora.
Potsdam-Bornim: Leibniz-Institut Für Agrartechnik Potsdam-
Bornim E.V.; 2014 [in German].

[28] Demuth H, Beale M. Neural network toolbox user’s
guide. Natick: The Mathworks; 2000.
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