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ABSTRACT. We consider viscous and heat conducting mixtures of molecularly miscible chemical
species forming a fluid in which the constituents can undergo chemical reactions. Assuming a com-
mon temperature for all components, a first main aim is the derivation of a closed system of partial
mass and partial momentum balances plus a common balance of internal energy. This is achieved
by careful exploitation of the entropy principle which, in particular, requires appropriate definitions of
absolute temperature and chemical potentials based on an adequate definition of thermal energy that
excludes diffusive contributions. The latter is crucial in order to obtain a closure framework for the
interaction forces between the different species. The interaction forces split into a thermo-mechanical
and a chemical part, where the former turns out to be symmetric if binary interactions are assumed.
In the non-reactive case, this leads to a system of Navier-Stokes type sub-systems, coupled by inter-
species friction forces. For chemically reacting systems and as a new result, the chemical interaction
force is identified as a contribution which is non-symmetric, unless chemical equilibrium holds.

The theory also provides a rigorous derivation of the so-called generalized thermodynamic driving
forces, avoiding the use of approximate solutions to the Boltzmann equations which is common in
the engineering literature. Moreover, starting with a continuum thermodynamic field theory right away,
local versions of fundamental relations known from thermodynamics of homogeneous systems, like
the Gibbs-Duhem equation, are derived. Furthermore, using an appropriately extended version of the
entropy principle and introducing cross-effects already before closure as entropy invariant couplings
between principal dissipative mechanisms, the Onsager symmetry relations are a strict consequence.
With a classification of the factors forming the binary products in the entropy production according to
their parity instead of the classical distinction between so-called fluxes and driving forces, the apparent
anti-symmetry of certain couplings is thereby also revealed.

If the diffusion velocities are small compared to the speed of sound, the well-known Maxwell-Stefan
equations together with the so-called generalized thermodynamic driving forces follow in the special
case without chemical reactions, thereby neglecting wave phenomena in the diffusive motion. This
results in a reduced model having only the constituents’ mass balances individually. In the reactive
case, this approximation via a scale separation argument is no longer possible.

Instead, we first employ the partial mass and mixture internal energy balances, common to both
model classes, to identify all constitutive quantities. Combined with the concept of entropy invariant
model reduction, leaving the entropy production unchanged under the reduction from partial momen-
tum balances to a single common mixture momentum balance, the chemical interactions yield an
additional contribution to the transport coefficients, leading to an extension of the Maxwell-Stefan
equations to chemically active mixtures. Within the considered model class for reactive fluid mixtures
the new results are achieved for arbitrary free energy functions.

1. INTRODUCTION

We consider fluid systems being composed of N constituents, i.e. multicomponent mixtures of
gases or liquids, typically containing additional dissolved chemical components. Main emphasis is
put on chemically reacting mixtures, since the existing literature on fluid mixtures does not account
for chemical processes in depth and, moreover, a thermodynamically consistent coupling between
chemistry and fluid mechanics is often missing. This is especially true in case of highly concentrated
mixtures for which cross-effects and non-idealities are to be included.

Our approach is based on continuum physics, where we strictly distinguish between universal laws
and constitutive relations. We employ the field equations which follow from conservation laws for the
extensive (i.e., mass additive) quantities mass, momentum and energy. This leads to unclosed sets of
partial differential equations which need to be complemented by material dependent closure relations,
so-called constitutive equations. Within continuum thermodynamics, the balance of entropy of the
system is added to this set of differential equations together with the second law of thermodynamics.
This severely restricts the closure relations admissible for the description of the constitutive functions
appearing in these equations.
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Let us start with some information about the different available continuum physics approaches,
since our theory combines ideas from all these. The systematic theory of non-equilibrium thermo-
dynamics for continuous matter was started in the year 1940 by C. Eckart who wrote the two basic
papers [13, 14], entitled The thermodynamics of irreversible processes I: The simple fluid and The
thermodynamics of irreversible processes II: Fluid mixtures. In the following years the theory was
completed by J. Meixner. In the seminal paper [35], Zur Thermodynamik der irreversiblen Prozesse in
Gasen mit chemisch reagierenden, dissoziierenden and anregbaren Komponenten, Meixner studied
the phenomenological coefficients in detail and equipped these with Onsager-Casimir reciprocal re-
lations. Finally in 1963, S.R. de Groot and P. Mazur reached a certain endpoint by putting everything
together in the fundamental monograph Non-equilibrium thermodynamics ([19]). This theory is still in
broad use under the labeling Thermodynamics of irreversible processes, TIP.

In 1962, W. Noll (cf. [55]) introduced new ideas to rationalize the mechanical theory of continua.
In the following years the school around C. Truesdell applied these strategies to irreversible thermo-
dynamics and established a variant of thermodynamics that has become very popular, at least for a
certain time, under the name Rational Thermodynamics, RT. The first fundamental contribution from
this school to mixture theory has been given by I. Müller in [37], correcting several erroneous contri-
butions by other authors (see also [54]). Later, in [38], Müller introduced Lagrange multipliers for the
exploitation of the entropy inequality. For a more complete presentation of rational thermodynamics
of continuous media with Lagrange multipliers see [39]. An excellent overview on the initial difficulties
in formulating rational continuum mixture theories has been provided by R.M. Bowen [5].

Both theories, TIP and RT, are not very different from each other. In particular, both split the laws
of thermodynamics into universal laws, relying on balance equations, and characterizations of the
material at hand via constitutive equations. Another agreement between TIP and RT is the fact that
the description of diffusive transport processes leads to parabolic PDEs with infinite speed of propa-
gation of disturbances. Since the latter apparently contradicts the fundamental physical principle that
nothing should be faster than the speed of light, several researchers started a quest for a hyperbolic
theory. This led to the invention of Extended Thermodynamics, ET, see [41]. Within ET, fluxes of
the mentioned extensive quantities, like the heat flux in case of the energy balance, are themselves
considered as governed by balance equations.

Our approach to the continuum thermodynamics of reacting fluid mixtures is a combination of
elements of all three theories: We employ the partial balances of not only mass, indispensable for any
mixture theory, but also momentum. This corresponds to an extended thermodynamics for the mass
balances in which the time evolution of diffusion velocities is also monitored. Indeed, the contribution
of chemical reactions to the diffusivities is similar as the contribution to the heat conductivity obtained
in relativistic ET; cf. [41]. Actually we start also with partial energy balances in order to extract some
structural information about the common energy balance on which the final modeling relies, where
we only consider a single, common temperature.

We use an axiomatic approach guided by RT, including the principle of material frame indiffer-
ence and also the strict separation into universal balance laws and material dependent constitutive
relations. But we do not impose the principle of equipresence: we select the set of primitive thermody-
namic variables when defining the form of the constitutive equation for the entropy. The dependence
of all other quantities is then a consequence of their relations to the latter. Another important differ-
ence to RT lies in the entropy principle. In fact, in our theory–in agreement with W. Alt and I. Müller
(see [1, 39])–the form of the entropy flux depends on the material at hand and comes as a result
instead of being assumed via an axiom as in RT. Here we do not believe Gurtin’s statement in [24]
saying that the form of the entropy flux is ”a matter of taste”.
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We consider the entropy principle by Alt and Müller as the prototype. However, we postulate an
extended version by assuming further properties of the entropy production. The most important exten-
sion concerns its structure: Relying on classical TIP, we postulate it as a sum of binary products and
exploit this structure to obtain closure relations which satisfy the entropy inequality. However, instead
of the misleading notion of ”fluxes” and ”driving forces” as used in TIP, we build on Meixner [36] in in-
troducing the parity of thermodynamic quantities and impose binary products of positive and negative
parity factors. Incorporating a priori knowledge on the physics, we also predefine which dissipative
mechanisms are to be included in the modeling. As compared to TIP, this allows for a strengthened
version of the principle of detailed balance: Every dissipative mechanism alone has to fulfil the en-
tropy inequality. Finally, we observed several forms of non-uniqueness of both the entropy flux and the
entropy production, arising by addition of new terms to these quantities, but which sum up to zero in
total. This way even new dissipative mechanisms can be introduced; cf. [11] for a non-trivial example.

All together, this enables a pragmatic evaluation of the entropy principle, yielding a particularly
strong framework for the constitutive theory. This way, we obtain the following main results:

1 We provide various alternative forms of the energy balance and appropriately select the one
which enables to obtain information about the inter-species interactions from the entropy prin-
ciple.

2 We introduce a strengthened form of the entropy principle which includes a general version of
the principle of detailed balance.

3 We employ the notion of parity to classify the co-factors in the binary products inside the en-
tropy production and show that the parity of a physical quantity is directly related to its physical
dimension.

4 We introduce a way to couple between different dissipative mechanisms by zero additions
to the entropy production. This procedure of entropy invariant mixing describes cross-effects
which automatically satisfy the Onsager symmetry. Hence the corresponding phenomenolog-
ical cross-coefficients have arbitrary signs. Combined with the concept of parity, this way of
introducing cross-effects also explains the appearance of the Onsager-Casimir relations, i.e.
the apparent anti-symmetry of some cross-coupling coefficients.

5 We derive a consistent closed model for viscous, heat conducting and chemically reacting fluid
mixtures, comprisingN partial mass andN partial momentum balances. The model includes,
in particular, a thermodynamically consistent closure for the interaction forces in the partial
momentum balances and for the reaction rates as nonlinear functions of the affinities in the
partial mass balances.

6 We introduce a new method for the reduction of a model with balances of partial momenta
to a model where only the barycentric velocity in a common momentum balance appears.
This derivation relies on identification of corresponding quantities in the partial mass and the
mixture internal energy balance, since these are common to both model classes, combined
with the invariance of the entropy production under this reduction process. Without chemistry,
the derivation is also possible (and essentially known) via a scale-limit; but the latter is not
rational in the choice of the approximation.

7 We extend the Maxwell-Stefan equations to the case of chemically reacting constituents, lead-
ing to a non-symmetric addition. We also take into account partial viscosities, leading to a
stress-driven diffusion contribution.

8 We introduce a consistent general scheme to construct free energy functions for fluid mixtures.
These elastic mixtures are obtained by combining information about the chemical potentials
and the pressure-density relation at given composition.

9 Incompressibility of mixtures can be defined in different ways. We show the passage to in-
compressible limits based on appropriate equations of state for the mixture pressure, where
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we consider several alternatives concerning the dependence on the constituents. We also re-
visit the apparent paradoxon concerning thermal expansion in an incompressible medium and
explain how this is resolved.

To conclude this introduction, let us mention that there are also kinetic mixture theories available,
the most famous one being the multi-species Boltzmann equations; cf. [15, 26]. While they provide a
consistent derivation of a mixture theory, the admissible fluid mixtures contain only rather simple ma-
terials, viz. so-called simple mixtures (see Section 15 below) of monatomic gases. For more details
on corresponding mixture models without partial momentum balances we refer to [15], kinetic models
which account for partial momenta can be found in [25]. Let us note in passing that the Boltzmann
equations can be motivated from first principles, but their rigorous derivation from the fundamental
Liouville equation is still lacking; however, see [18]. Nevertheless, the multi-species Boltzmann equa-
tions provide a valuable micro-theory and we demand from our mixture theory that it contains the
equations resulting from kinetic theory as a special case.

In our opinion, the strict separation into balance equations being rigorously valid within the contin-
uum physics framework, and constitutive theory to model the material depend quantities, is the crucial
factor for the success of TIP, RT and ET. There are other mixture continuum theories, relying on vari-
ational approaches, which do not have this clear distinction. Moreover, these theories are developed
for specific classes of thermodynamic processes such as isentropic motions or isothermal systems.
We refer to §231 in [17] for an assessment and only mention the classical d’Alembert/Lagrange the-
ory; see, e.g., [21] for its extension to mixtures. In recent years, a further variant of the variational
approach, called GENERIC ([23]), has emerged, where another disadvantage is that, up to now, this
theory can only describe adiabatically isolated, closed systems.

2. BASIC QUANTITIES AND MODEL CLASSES

We consider fluid systems being composed of N constituents A1, . . . , AN , i.e. multicomponent
mixtures of gases or liquids, typically containing additional dissolved chemical components. Special
emphasis is put on chemically reacting mixtures, where we allow for NR chemical reactions between
the Ai according to

(1) αa1 A1 + . . .+ αaN AN 
 βa1 A1 + . . .+ βaN AN for a = 1, . . . , NR

with stoichiometric coefficients αai , β
a
i ∈ IN0.

The mixture occupies a region Ω ⊂ IR3. At any time t ≥ 0, the thermodynamic state of the matter
inside Ω is described byN partial mass densities ρ1, . . . , ρN , byN partial velocities v1, . . . ,vN of
the constituents and by the temperature T of the mixture. These quantities will be functions of time
t ≥ 0 and space x ∈ IR3. Partial mass densities and partial velocities are used to define the total
mass density ρ and the barycentric velocity v of the mixture according to

(2) ρ :=
N∑
i=1

ρi and ρv :=
N∑
i=1

ρivi.

The diffusion velocities ui and the corresponding diffusional mass fluxes ji are defined by

(3) ui := vi − v and ji := ρiui with
N∑
i=1

ji = 0.

Finally, we introduce the molar concentrations and the molar fractions according to

(4) ci :=
ρi
Mi

with molar mass Mi, xi :=
ci
c

with c :=
N∑
i=1

ci.
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Fluid mixtures can be modeled within three different levels of detail: class-I, class-II and class-III.
Class-I considers as primitive variables the mass densities ρi of the constituents, the barycentric
velocity v and the temperature T of the mixture. The basic variables of class-II are the mass densities
ρi, the velocities vi of the constituents and the temperature T of the mixture. Finally, in class-III
one has the partial mass densities ρi, the partial velocities vi and partial temperatures Ti of the
constituents. With this notion we follow [27].

There are several motivations for the more complex models, including in particular the following.
For class-II model: (i) the different components can experience different boundary conditions for the
partial velocities; (ii) the appearance of wave phenomena in the diffusive motion which are often
ignored on a macroscopic scale; (iii) even for the derivation of class-I models, class-II models are
important because they offer more information concerning the constitutive quantities. For class-III
model: in plasma modeling, the constituents experience individual temperatures on time scales com-
parable to transport process times, hence separate energy balances are necessary and, in general,
the individual species have different temperatures.

In the present study, we consider the model classes I and II. In particular, we derive consistent
closures for class-II models of chemically reacting, heat conducting viscous fluid mixtures. Based on
these, we derive improved class-I models which contain information from the class-II level within the
constitutive relations. For example, due to the explicit structure of the thermal energy balance (27),
certain cross-effects with Onsager symmetry can already be derived.

3. BALANCE EQUATIONS FOR CHEMICALLY REACTING FLUID MIXTURES

Partial Balances. The starting point of our modeling are the partial balances of mass, momentum
and energy, which will later be complemented by the entropy balance. The local balances for the fluid
components Ai read as

partial mass balance

(5) ∂tρi + div (ρivi) = ri,

partial momentum balance

(6) ∂t(ρivi) + div (ρivi ⊗ vi − Si) = fi + ρibi,

partial energy balance

(7) ∂t(ρiei +
ρi
2

v2
i ) + div ((ρiei +

ρi
2

v2
i )vi − vi · Si + qi) = hi + ρibi · vi.

In (5)-(7), the newly introduced quantities are: ri - mass production due to chemical reactions, Si -
partial stress, fi - momentum production, bi - body force acting on Ai, ei - specific internal energy,
qi - individual heat flux, hi - internal energy production. Energy sources due to electromagnetic fields
(i.e., radiation) are not considered here.

With these notations, the conservation laws for total mass, momentum and energy read

(8)
N∑
i=1

ri = 0,
N∑
i=1

fi = 0,
N∑
i=1

hi = 0.

The mass productions ri have the structure

(9) ri =
NR∑
a=1

Miν
a
i Ra,
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where Ra = Rfa −Rba is the rate of reaction a, given by the rate Rfa of the forward minus that of the
backward path, and νai := βai − αai . Because mass is conserved in every single reaction, it holds
that

(10)
N∑
i=1

Miν
a
i = 0 for all a.

The reaction rates Ra as well as the interaction forces fi − rivi are to be modeled. A constitutive
model for the hi is not required, since they do not appear in the common energy balance.

We define the partial pressures Pi and the traceless part S◦i of the stresses Si by

(11) Pi := −1
3

tr (Si), Si = −PiI + S◦i .

We further decompose the partial pressures according to

(12) Pi = pi + Πi,

where the Πi vanish in equilibrium. The pressure contribution pi is often called hydrostatic pressure
in which case Πi is usually called dynamic pressure. For reasons which will become clear below, we
call pi the partial thermodynamic pressure and Πi the irreversible partial pressure contribution. To
economize notation, we use the abbreviation

(13) Sirr
i = −ΠiI + S◦i

to denote the irreversible stress contribution. Consequently, Si = −piI + Sirr
i . Finally, the total

pressure of the mixture is defined as P :=
∑

i Pi. The latter is decomposed as P = p + Π
with p :=

∑
i pi the total thermodynamic pressure. We also use the short hand notation Sirr =

−Π I + S◦ for the irreversible part of the mixture stress, where S◦ is the traceless part of S. Above,
the short-hand notation

∑
i stands for the sum, where i runs from 1 to N . If nothing else is said, the

same applies throughout the entire paper.

In the present work, we only consider non-polar fluid mixtures, i.e. there are no so-called surface
or body couples and the fluid has vanishing spin density, which implies symmetry of stresses.

Mixture balances. We start by formulating the balances of total mass, momentum and energy,
which follow by summation of the corresponding partial balances. Then appropriate further mixture
quantities need to be defined, where the three meta-rules given by C. Truesdell (see [54]) provide a
guidance:

(I) All properties of the mixture must be mathematical properties of the constituents.
(II) So as to describe the motion of a constituent, we may in imagination isolate it from the rest of the

mixture, provided we allow properly for the actions of the other constituents upon it.
(III) The motion of the mixture is governed by the same equations as is a single body.

Following this principle, we introduce the following additional quantities in order to obtain mixture
balance equations which resemble the partial balances:

ρb :=
∑

i ρibi (total external force),

S :=
∑

i

(
Si − ρiui ⊗ ui

)
(mixture stress tensor),

ρetot :=
∑

i ρi(ei + v2
i

2 ) = ρv2

2 +
∑

i ρi(ei + u2
i

2 ) (total energy density),

qtot :=
∑

i(qi − ui · Si + ρi(ei + u2
i

2 )ui) (total energy flux),

ρπ :=
∑

i ρibi · ui (power of body force due to diffusion).



7

Summation of the partial balances now yields the balances for total mass, momentum and energy
which read as

mass balance (continuity equation):

(14) ∂tρ+ div (ρv) = 0,

momentum balance:

(15) ∂t(ρv) + div (ρv ⊗ v − S) = ρb,

energy balance:

(16) ∂t(ρetot) + div
(
ρetotv − v · S + qtot

)
= ρv · b + ρπ.

For the constitutive modeling, in particular for exploitation of the entropy principle, we need a bal-
ance of internal energy instead of total energy. Here it is important to observe that different definitions
of an internal part of the energy are possible. If partial energy balances are ignored, like in the case
of standard TIP, the internal energy is (in the present context of non-polar fluids) that part of the total
energy which cannot be eliminated by a Euclidean transformation, i.e. by a change to a different frame
of reference. This leads to the definition of

(17) ρeint := ρetot −
1
2
ρv2 (mixture internal energy).

Subtracting the balance of kinetic energy due to barycentric motion from the balance of total energy,
a straightforward computation yields the

mixture internal energy balance:

(18) ∂t(ρeint) + div (ρeintv + qtot) = S : ∇v + ρπ.

As already noted in Chapter III, §4 of [19], the above defined internal energy contains kinetic
energy of diffusion, while ”the internal energy should only contain contributions from the thermal
agitation and the short-range molecular interactions”. In the present context of class-II modeling, this
turns out to be even more relevant and we base our theory on the use of the thermal part of the
internal energy, defined as

(19) ρe :=
∑

i ρiei (thermal energy).

Evidently, the link between the two quantities is given by

ρeint = ρe+ 1
2

∑
i ρiu

2
i .

To derive the balance of thermal energy, we start from the partial internal energy balance, obtained
as usual by subtracting the (partial) kinetic energy balance from (7). This leads to the

partial balance of internal energy:

(20) ∂t(ρiei) + div (ρieivi + qi) = Si : ∇vi + hi − vi ·
(
fi − ri

vi
2
)
.

Summation of (20) for all constituents yields a first version of the thermal energy balance which reads
as

(21) ∂t(ρe) + div (ρev + q̃) =
∑

i Si : ∇vi −
∑

i ui ·
(
fi − rivi + ri

2 ui
)
,

where

(22) q̃ :=
∑

i(qi + ρieiui).
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The form (21) of the thermal energy balance will be used for exploitation of the entropy principle
below. It will then turn out that another definition of the heat flux, containing the equilibrium part of the
trace part of the stresses, is more convenient. Thus, for later use, observe that the identity∑

i Si : ∇vi =
∑

i S
irr
i : ∇vi − p div v − div (

∑
i piui) +

∑
i ui · ∇pi

generates a further useful alternative to represent the

thermal energy balance:

(23) ∂t(ρe) + div (ρev + q) =
∑

i S
irr
i : ∇vi − p div v−

∑
i ui ·

(
fi − rivi + ri

2 ui −∇pi
)
,

where the heat flux contains non-convective transport of heat and diffusive transport of the species
enthalpy ρiei + pi and reads as

(24) q :=
∑

i

(
qi + (ρiei + pi)ui

)
.

Later, we use the abbreviation hi := ρiei+pi. Since, from here on, we do not consider partial energy
balances, this will not lead to confusion with the interspecies energy exchange rate.

As already mentioned, the balance equations given above are not closed. Together with the en-
tropy principle below, they form the starting point of our constitutive theory.

4. FUNDAMENTALS OF CONSTITUTIVE MODELING

General Strategy. We consider the model classes I and II. Our strategy is to start with the closure
procedure for class-II, followed by a reduction to a class-I model. Since the latter has to be ther-
modynamically consistent, we need to know the entropy production for both model classes. In the
next sections, we focus on the model class II, although some considerations could be done for both
classes simultaneously. The reason why we defer considerations on the class-I model to Section 13
is a subtle difference in the temperature definition. This will be explained in detail at the appropriate
place below.

Recall the basic variables of the class-II model, which are ρi, vi and the common temperature
T . The determination of these variables relies on the balance equations (5), (6) and (23). For conve-
nience, we repeat them here, but with the momentum balance in its nonconservative form:

(25) ∂tρi + div (ρivi) = ri with ri =
NR∑
a=1

Miν
a
i Ra,

(26) ρi
(
∂tvi + (vi · ∇)vi

)
− div Si = fi − rivi + ρibi,

(27) ∂t(ρe) + div (ρev + q) =
∑

i S
irr
i : ∇vi − p div v−

∑
i ui ·

(
fi − rivi −∇pi + ri

2 ui
)
.

This system becomes a PDE-system for the basic variables, if these are related to the constitutive
quantities

Ra, pi, Πi, S◦i , fi − rivi, ρe, q

in a material dependent manner.

Euclidean transformations. We consider the behavior of the involved quantities under coordinate
transformations. The most general transformation between two Cartesian coordinate systems, with
coordinates written as (x1, x2, x3) = (xi)i=1,2,3 and (x∗1, x

∗
2, x
∗
3) = (x∗i )i=1,2,3, respectively, is of

the form (employing summation convention)

(28) t∗ = t+ a, x∗i = Oij(t)xj + bi(t), O(t)O(t)T = I.
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These are called Euclidean transformations. We define the notion of objective scalars, vectors and
tensors (of rank two) if their components transform according to

s∗ = s for scalars,(29)

v∗i = Oijvj for vectors,(30)

T ∗ij = OikOjlTkl for rank two tensors.(31)

Note that there are two different classes of quantities: those for which the transformation behavior can
be derived are called kinematic quantities. Among them are the velocity, the velocity gradient,the ac-
celeration and the diffusion velocities. The transformation properties of the remaining, non-kinematic
quantities must be postulated, motivated by experimental experience. Important examples are the
scalars mass densities and temperature, the vectors interaction forces and heat flux and the stress
tensor. Note that a velocity is not an objective vector in the above sense, but diffusion velocities are,
being the difference of two velocities.

Parity. To every physical quantity we introduce an associated parity, called positive (+1) or negative
(-1), by simply assigning the factor -1 if the time unit ”second” appears with an uneven power and +1
if it appears with even power. Here we assume SI base units. For example, this yields the parity of the
densities of mass, momentum and internal energy according to

(32) [ρ] =
kg
m3
→ +1, [ρv] =

kg
m2s

→ −1, [ρe] =
kg

m s2
→ +1.

Evidently, the time derivative of a quantity has the opposite parity, while spatial derivatives keep the
parity unchanged.

Universal constitutive principles. The constitutive modeling of fluids needs to be consistent with, in
particular, the following two universal principles; cf. [55], [39].

(i) The principle of material frame indifference makes a statement on constitutive functions of
objective quantities, saying that constitutive functions remain invariant under Euclidean trans-
formation. As an example, consider the constitutive relation of an objective tensor T, i.e.
T ∗ij = OikOjlTkl, where we assume that T is a function of ∇v. In two different Cartesian
frames we have

(33) Tij = fij(
∂vk
∂xl

), respectively T ∗ij = f∗ij(
∂v∗k
∂x∗l

).

Then, with v∗i = Oij(vj − ȮjlOkl(x∗k − bk)− ḃj), objectivity of T requires

(34) f∗(O(t)∇v O(t)T + Ȯ(t)O(t)T) = O(t)f(∇v)O(t)T.

Now the principle of material frame indifference states that f∗ = f , hence – in this simple
case – it implies that f is an isotropic function. Moreover, f can only depend on the symmetric
part D of ∇v which follows from (34) by choosing O = I and Ȯ = −R, where R is the
anti-symmetric part of∇v.

(ii) The entropy principle, which consists of a certain set of axioms given below, further restricts
the generality of the constitutive relations. This principle is also called the 2nd law of thermo-
dynamics.

Formulation of the entropy principle. Any solution of the above system of partial differential equa-
tions, composed of the balance equations (25), (26), (27) for the different model classes, is called a
thermodynamic process. Here, by a solution we just mean functions which satisfy the equations in a
local sense. In particular, the value of a quantity and of its derivative can be chosen independently.
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With this notion, the 2nd law of thermodynamics consists of the following axioms.

(I) There is an entropy/entropy-flux pair (ρs,Φ) as a material dependent quantity, where ρs is an
objective scalar and Φ is an objective vector.

(II) The pair (ρs,Φ) satisfies the balance equation

(35) ∂t(ρs) + div (ρsv + Φ) = ζ.

(III) The entropy has the physical dimension J kg−1 K−1 = m2s−2K−1, hence is of positive
parity. The entropy flux and the entropy production thus have negative parity.

(IV) Any admissible entropy flux is such that

(i) ζ consists of a sum of binary products according to

(36) ζ =
∑
m

NmPm,

where theNm denote quantities of negative parity, while Pm refers to positive parity.
(ii) Each binary product describes a dissipative mechanism which must be introduced in ad-
vance. Then,NmPm ≥ 0 for all m and for every thermodynamic process.

(V) A thermodynamic process for which ζ = 0 is said to be in thermodynamic equilibrium. This
statement is to be understood in a pointwise sense; in particular, this must not hold everywhere,
i.e. thermodynamic equilibrium can be attained locally.
A thermodynamic process is called reversible if ζ = 0 everywhere.

In addition to these universal axioms, we impose two further ones which refer to the most
general constitutive models we are interested in. These are:

(VI) There are the following dissipative mechanisms for the fluid mixtures under consideration:
mass diffusion, chemical reaction, viscous flow (including bulk and shear viscosity) and heat
conduction.

(VII) For the class of fluid mixtures under consideration, we restrict the dependence of the entropy
according to

(37) ρs = ρs̃(ρe, ρ1, . . . , ρN ),

where ρs̃ is a strictly concave function which satisfies the principle of material frame indiffer-
ence. By means of this function, we define the (absolute) temperature T and chemical poten-
tials µi according to

(38)
1
T

:=
∂ρs̃

∂ρe
, −µi

T
:=

∂ρs̃

∂ρi
.

Remarks on the Entropy Principle. 1. Axioms (I) and (II) are identical to those versions given by
Müller in [39] and Alt in [1].

2. Our concept of parity employed in axiom (III) and (IV-i) for generic quantities was stimulated
by Meixner’s paper [36]. In the present work this concept is simplified to the above rule on how to
determine the parity of a given quantity. This concept of parity is crucial for a proper introduction of
cross-couplings via entropy invariant mixing between dissipative mechanisms. This will be taken up
in Section 6 below.

3. There is no axiom (IV-i) in the entropy principles of Müller in [39] or Alt in [1]. Instead, the ver-
sions of Müller and Alt rely on the principle of equipresence whereupon all constitutive quantities may
depend on the same set of variables. For example, if the velocity gradient appears in the constitutive
law of the stress tensor it should also appear in the constitutive law of the entropy density. The entropy



11

flux in their theories is completely determined by the principle of equipresence. Our version does not
use this principle and thus is much simpler to exploit. In particular for advanced constitutive mod-
els the equipresence principle requires an enormous computational effort, cf. [33]. However, without
equipresence, more preliminary knowledge is required.

4. Axiom (IV-ii) is a strengthened form of the principal of detailed balance, which essentially says
that in equilibrium all individual dissipative mechanisms are themselves in equilibrium, i.e. zero en-
tropy production implies that all binary products vanish. The latter property can be guaranteed if every
binary product has non-negative entropy production for any thermodynamic process. This is precisely
the content of axiom (IV-ii). The valid use of this strengthened form requires a careful choice of the
decomposition of the entropy production into binary products such that each product contains a co-
factor which can be varied independently of the others; cf. also the next remark and observe that the
representation of the entropy production is not uniquely determined. For example, in the following we
will show that chemical reactions contribute with two binary products to the entropy production. There
is one product due to the generation of thermal energy and another one, which is new, that produces
momentum.

5. The exploitation of Axiom (V) requires preliminary knowledge on equilibrium thermodynamics,
where those quantities that vanish in thermodynamic equilibrium are to be identified. For example, we
know by experience in advance that in thermodynamic equilibrium we must have

(39) Ra = 0, ui = 0, ∇vi +∇vT
i = 0, ∇T = 0.

Correspondingly, these conditions motivate the constitutive axiom (VI), saying that the mechanisms
that drive a body to equilibrium are: chemical reactions, mass diffusion, viscous flow and heat con-
duction. These mechanisms contribute with NR, N − 1, N , respectively 1 binary product to the
entropy production. Linear relations between the factors Nm and Pm with appropriate coefficients
provide the simplest possibility to guarantee non-negativity of the entropy productions. However, note
that this does not imply linearity with respect to the variables.

6. The assumptions on the constitutive functions function ρs̃ in Axiom (VII) are crucial since they
fix the class of fluid mixtures under consideration. In particular, the omission of density gradients in
the list of variables for ρs̃ excludes nonlocal effects, e.g. due to mesoscopic forces, which are required
for so-called phase field models. Here, we consider single-phase fluid mixtures. The choice of ρe and
the ρi as independent variables in (37) is generic, since these are the balanced quantities. A further
dependence directly on the vi is not possible due to material frame indifference. But a dependence
on the diffusion velocities ui is possible. Furthermore, a dependence on div v and/or∇T would also
be consistent with the principle of material frame indifference. However, if we were to include such
dependencies in the entropy function they will be ruled out by the exploitation of the entropy principle.
The proof of this proposition is left to the reader.

7. The concavity postulate (VII) can be motivated as a generalization of a well-known result of
equilibrium thermodynamics for homogeneous bodies. To this end we consider a fluid mixture in a
container with time-dependent volume V (t). The container is closed by a movable piston subjected
to a constant pressure p0, and the outer surface of the whole device is at constant temperature T0.
In this case the equations of balance for total energy E and total entropy S read

(40)
dE

dt
+ p0

dV

dt
= −

∮
q · n da and

dS

dt
+

1
T0

∮
q · n da ≥ 0 .

Elimination of the heat flux leads to the inequality

(41)
dA

dt
≤ 0 with A = E − T0S + p0V.

Thus the quantity A, which is called available free energy, can only decrease and assumes its mini-
mum in equilibrium.
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Now we study for fixed external values T0 and p0 a homogeneous process inside the mixture
which is characterized by the state (T (t), p(t),m1(t), ...,mN (t)) and ask for its equilibrium state.
Note that A is neither the Gibbs energy G = E − TS + pV nor the Helmholtz free energy Ψ =
E − TS. Rather, we have A = G+ (T − T0)S + (p0 − p)V . Moreover, in a homogenous system
we can write Ψ = ρψV .

To keep this motivation short we only consider the non-reactive case, where the masses mi(t)
are independent of time. Then the relevant variables of A are T and p and the minima follow from
∂A/∂T = 0 and ∂A/∂p = 0. The physically obvious result is that T = T0 and p = p0 give the
necessary condition for equilibrium.

Its derivation makes use of three identities which are valid for homogenous systems, viz.
(42)
∂G(T, p,m1, ...,mN )

∂T
= −S, ∂G(T, p,m1, ...,mN )

∂p
= V,

∂G(T, p,m1, ...,mN )
∂mi

= µi.

The proof of these relations starts from G(T, p,m1, ...,mN ) = V (ρψ̂(T, m1
V , ..., mN

V ) + p) with
V = V (T, p,m1, ...,mN ). For example, we have

(43)
∂G

∂mi
=

∂V

∂mi
(ρψ̂ + p) +

N∑
i=1

∂ρψ̂

∂ρj
(
δij
V
− mj

V 2

∂V

∂mi
) =

∂ρψ̂

∂ρi
= µi.

We proceed to characterize the equilibria. The sufficient conditions that A assumes a minimum at
T = T0, p = p0 is the positive definiteness of the matrix of its second derivatives. We obtain, in the
simple case with constant masses, the condition that

(44)


∂S

∂T
−∂V
∂T

−∂V
∂T

−∂V
∂p

 is positive definite.

If chemical reactions and, hence, time-dependent mi(t) are included above, the condition that the
matrix (∂µi

∂ρj

)
i,j∈{1,...,N}

is positive definite

is also derived as an additional part of the sufficient conditions for a minimum. We refrain from giving
the details here.

These conditions coincide with corresponding inequalities which will be derived in the following
section from the concavity postulate. But they will be more general in two aspects: They do not refer
to homogeneous systems and they also hold in non-equilibrium.

8. The definition of temperature is accompanied by some subtleties. From a theoretical point of
view there is a certain freedom how to define temperature. Because an object that we might call tem-
perature does not explicitly appear in the equations of balance it cannot be introduced as a primitive
quantity in thermodynamics. At first glance our definition (38)1 seems natural, because it agrees with
the corresponding definition of equilibrium thermodynamics. But the key point of the present approach
is the choice of the total internal energy ρe according to (19) as a variable in (38)1. Other choices are
possible. Interestingly, de Groot and Mazur [19] mention our choice (19) but due to some unidenti-
fied reasons they finally prefer to choose ρeint from (17) as a variable in the entropy function. Müller
proceeds differently in [39]. He starts with an empirical temperature and after a chain of reasonings
Müller obtains our definition (19) as a result. Let us also mention here the situation in Boltzmann’s
kinetic theory. Recall that the theory is restricted to monatomic ideal gases. Here the temperature is
defined via p/ρ, where pressure and density are directly related to the distribution function. In equilib-
rium our choice obviously agrees with the kinetic definition, but in nonequilibrium there is a difference,
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see [41] for more details. However, this fact does not generate any problem. One simply has to deal
with two different temperature measures.

5. EXPLOITATION OF THE ENTROPY PRINCIPLE

Entropy inequality. Starting point for the evaluation of the 2nd law is the entropy balance, which
we use in the form

ζ = ∂t(ρs) + v · ∇(ρs) + ρs div v + div Φ.
We insert ρs = ρs̃(ρe, ρ1, . . . , ρN ) into the first two terms and carry out the differentiations. Then we
eliminate the resulting time derivatives by means of the balance equations (5) and (21). We introduce
temperature and chemical potentials according to the definitions (38). Then, after straightforward
computations, a first representation of the entropy production is

ζ = div
(

Φ− q̃
T

+
∑
i

ρiµiui
T

)
− 1
T

(
ρe− Tρs−

∑
i

ρiµi

)
div v − 1

T

∑
i

Pi div vi(45)

− 1
T

∑
i

ui ·
(
ρiT∇

µi
T

+ fi − rivi +
1
2
riui

)
− 1
T

NR∑
a=1

RaAa +
1
T

∑
i

S◦i : D◦i + q̃ · ∇ 1
T
.

In (45), we have rewritten the term
∑N

i=1 riµi as
∑NR

a=1RaAa, introducing the so-called affinities

(46) Aa =
N∑
i=1

νaiMiµi.

This reflects the fact that every chemical reaction relates to a dissipative mechanism.

Now, for the derivation of the entropy production in the class-II model one has to account for
the fact that, while for instance div ui can be chosen independently of ui in exploiting the entropy
principle, the defining relations ui = vi−v lead to the constraints div ui = div vi−div v. These
constraints are incorporated into the exploitation using Lagrange multipliers Λi = Λi(T, ρ1, . . . , ρN )
and adding the terms ∑

i

Λi
T

(div vi − div v − div ui)

to the entropy production; cf. Lemma 7.3.1 in [33] concerning a proof that the entropy inequality with
this addition and without constraints is equivalent to the original inequality, but evaluated under the
constraints. Finally, we introduce the free energy density ρψ := ρe−Tρs. Then, after rearrangement
of terms, the entropy production for a class-II model reads as

ζ = div
(

Φ− q̃
T

+
∑
i

(ρiµi − Λi)ui
T

)
− 1
T

(
ρψ −

∑
i

(ρiµi − Λi)
)

div v

− 1
T

∑
i

(
Pi − Λi

)
div vi −

1
T

∑
i

ui ·
(
ρiT∇

µi
T

+ fi − rivi +
1
2
riui − T∇

Λi
T

)
(47)

− 1
T

NR∑
a=1

RaAa +
1
T

∑
i

S◦i : D◦i + q̃ · ∇ 1
T
.

Now, we proceed as follows.

(a) To satisfy axiom (IV-i), we choose the entropy flux as

(48) Φ =
q̃
T
−
∑
i

(ρiµi − Λi)ui
T

,

where the Λi will be determined below.
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(b) The entropy production reduces to a sum of six binary products and we first choose

Ra = 0, ∇T = 0, ui = 0, D◦i = 0;

recall that tr (Di) = div vi and Pi = pi + Πi, where Πi = 0 in equilibrium. In this case the
entropy inequality becomes

Tζ = (
∑

i(ρiµi − Λi)− ρψ) div v +
∑

i(pi − Λi) div vi −
∑

i Πi div vi ≥ 0,

where div v and all div vi can be varied independently in the exploitation. For div v =
div vi = 0 the processes are in equilibrium, where the entropy production assumes a mini-
mum. This implies

(49) ρψ −
∑

i(ρiµi − Λi) = 0, pi − Λi = 0 and −
∑

i Πi div vi ≥ 0.

Inserting Λi = pi from (49)2 into (49)1 yields

(50) ρψ + p−
∑

i ρiµi = 0.

Relation (50) is the Gibbs-Duhem equation which is well-known and also holds true for class-I
models. Since it only involves equilibrium quantities, the Gibbs-Duhem equation also holds for
general thermodynamic processes. Note that here an important result is the fact that only a
single Gibbs-Duhem equation results.

Inserting Λi = pi from (49)2 into (48) yields

(51) Φ =
q
T
−
∑
i

ρiµiui
T

,

if we define the heat flux for the class-II model as we already noted in (24), namely

q :=
∑

i

(
qi + (ρiei + pi)ui

)
.

The remaining part is the sum of four binary products which cause entropy production. These are
the four postulated dissipative mechanisms, namely (i) mass diffusion, (ii) chemical reactions, (iii)
viscous flow (bulk and shear viscosity) and (iv) heat conduction. The second law gives restrictions for
constitutive equations of these dissipative mechanisms, where the axiom (VI-ii) requires all individual
contributions to be non-negative.

With (a) and (b) above, the entropy production of the class-II model assumes its final form:

ζ =−
∑
i

ui ·
(
ρi∇

µi
T

+
1
T

(fi − rivi +
1
2
riui −∇pi)− (ρiei + pi)∇

1
T

)

− 1
T

NR∑
a=1

RaAa +
1
T

∑
i

Sirr
i : Di +

∑
i

qi · ∇
1
T
.(52)

Remarks on the derivation of the entropy production. 1. The specific form of the intermediate
representation (45) is not unique. Above, we employed the relation

div (ρivi) = v · ∇ρi + ui · ∇ρi + div (ρiui)

to arrive at (45).

2. If the entropy balance is exploited with the thermal energy balance in the form (23) and if, further-
more, the term div v is eliminated using the relation

div v =
∑
i

yi div vi +
∑
i

ui · ∇yi,
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then no Lagrange multipliers are required. Apparently, this is the only form in which the interdepen-
dencies between the diverse velocity divergences are not interfering with the exploitation. Note that
the Lagrange multipliers could still be used in which case Λi = 0 for all i.

We nevertheless preferred the derivation above with q̃ instead of q because the form of the heat
flux according to (24) is not a priori clear. In fact, this definition for q is only motivated by the final form
which it implies for the entropy flux, i.e. (51), which resembles the classical one from TIP for mixtures.

3. It is interesting to observe that the entropy flux can be written as

Φ =
∑
i

(qi
T

+
ρiei + pi − ρiµi

T
ui
)
.

Let us note that in the case of so-called simple mixtures, introduced in detail in section 15 below,
the quantity (ρiei + pi − ρiµi)/T is nothing but the partial entropy ρisi. This nicely shows the two
different contributions to the entropy flux in a class-II mixture. Note also that the total flux of entropy
then attains the form

ρsv + Φ =
∑
i

(
ρisivi +

qi
T

)
,

thus being just the sum of the individual total entropy fluxes of the constituents, each having Φi =
qi/T as the non-convective flux of partial entropy.

4. Note that in (52), the total heat flux according to (24) contributes with two terms: The first term in-
volves heat transport due to conduction, while the second term describes diffusive heat transport and
is proportional to the diffusion velocities. Therefore, in order to collect all co-factors of the ui which,
hence, belong to the mechanism of diffusion, we shuffled those terms to the first binary product.

Based on the entropy production (52) we are going to derive mixture models for fluid mixtures of in-
creasing physical complexity.

Helmholtz free energy and its derivatives. Recall that absolute temperature and chemical po-
tentials are introduced according to the definitions (38). The specific (Helmholtz) free energy ψ =
e − Ts is useful if we change the variables from {ρe, ρ1, ..., ρN} to {T, ρ1, ..., ρN} with ρe =
ρê(T, ρ1, . . . , ρN ) by solving (38)1 for ρe. Then, for ψ = ψ̂(T, ρ1, ..., ρN ) we obtain from (38) the
relations

(53) ρs = −∂ρψ̂
∂T

, µi =
∂ρψ̂

∂ρi
implying e = −T 2 ∂

∂T
(
ψ̂

T
) .

The Gibbs-Duhem equation (50)1 serves to determine the pressure p from the free energy density
and for this reason we write

(54) p = −ρψ +
N∑
i=1

µiρi .

Two further sets of variables are in common use. Using ρi = ρyi we may change the variables from
{T, ρ1, ..., ρN} to {T, ρ, y1, ..., yN−1} and indicate this by writing, say,

(55) ρψ = ρψ̄(T, ρ, y1, ..., yN−1).

The generic function F (T, ρ, y1, ..., yN−1) = F̂ (T, ρ1, ..., ρN ) satisfies the simple rule Fρ =∑N
j=1 yjF̂ρj which is used to obtain from (54)

(56) p = p̄(T, ρ, y1, ..., yN−1) = ρ2∂ψ̄

∂ρ
.

Next we solve (56) for ρ = ρ(T, p, y1, ..., yN−1) and calculate from e = ê(T, ρ, y1, ..., yN−1),
obtained from (53)3, the function e = e(T, p, y1, ..., yN−1). Finally we introduce the specific heat at
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constant densities, cv , and the specific heat at constant pressure, cp, by

(57) cv =
∂ê

∂T
and cp =

∂e

∂T
+ p

∂

∂T
(
1
ρ

).

The specific heat cp is related to cv by

(58) cp = cv + T
∂(1/ρ̄)
∂T

∂p

∂T
= cv +

T

ρ2
(
∂ρ̄

∂T
)2 ∂p

∂ρ
,

The proof of (58)1 starts from the two definitions of cp and cv and proceeds via e = ψ+Ts and the re-
lation ∂T s = 1/T∂T e+ ∂T (1/ρ)∂T p̄. Equation (58)2 holds due to the identity ∂T p̄ = −∂Tρ/∂pρ.

Concavity of the entropy function. This paragraph addresses the exploitation of the concavity pos-
tulate. Here derivatives are indicated by indices, except in the main results. Moreover, note that two
different representations of the entropy function will be used, viz.

(59) ρs = ρs̃(ρe, ρ1, ρ2, ..., ρN ) = ρŝ(T, ρ1, ρ2, ..., ρN ).

The entropy postulate (VII) states that the entropy function (59)1 is strictly concave with respect
to all variables. Thus the (N + 1)× (N + 1) matrix−M of its second derivatives has the property
that

(60) M = −



(ρs̃)ρeρe (ρs̃)ρeρ1 . . . (ρs̃)ρeρN

(ρs̃)ρ1ρe (ρs̃)ρ1ρ1 . . . (ρs̃)ρ1ρN

. . . . . .

. . . . . .

. . . . . .
(ρs̃)ρNρe (ρs̃)ρNρ1 . . . (ρs̃)ρNρN

 is positive definite,

implying important inequalities. The positive definiteness of M is exploited by Sylvester’s criterion:
All principal determinants must be positive, i.e.
(61)

−(ρs̃)ρeρe > 0, −((ρs̃)ρeρe(ρs̃)ρ1ρ1 − ((ρs̃)ρeρ1)2) > 0, −

∣∣∣∣∣∣∣
(ρs̃)ρeρe (ρs̃)ρeρ1 (ρs̃)ρeρ2
(ρs̃)ρ1ρe (ρs̃)ρ1ρ1 (ρs̃)ρ1ρ2
(ρs̃)ρ2ρe (ρs̃)ρ2ρ1 (ρs̃)ρ2ρ2

∣∣∣∣∣∣∣ > 0,

and so on. These conditions are necessary and sufficient for the strict concavity of the entropy
function. By means of (38) we can also write
(62)

−(
1
T̃

)ρe > 0, (
1
T̃

)ρe(
µ̃1

T̃
)ρ1 − ((

1
T̃

)ρ1)2 > 0,

∣∣∣∣∣∣∣
(− 1

T̃
)ρe (− 1

T̃
)ρ1 (− 1

T̃
)ρ2

(− 1
T̃

)ρ1 ( µ̃1

T̃
)ρ1 ( µ̃1

T̃
)ρ2

(− 1
T̃

)ρ2 ( µ̃1

T̃
)ρ2 ( µ̃2

T̃
)ρ2

∣∣∣∣∣∣∣ > 0, ...

Next, we rewrite these inequalities in the variables T, ρ1, ρ2, ..., ρN . To this end we consider a
generic relation F̃ (ρe, ρ1, ρ2, ..., ρN ) = F̂ (T, ρ1, ρ2, ..., ρN ) with ρe = ρê(T, ρ1, ρ2, ..., ρN ).
The corresponding derivatives are related to each other by

(63) F̂T = F̃ρe(ρê)T , F̂ρi = F̃ρe(ρê)ρi + F̃ρi .

We insert (ρê)T = ρêT = ρcv from (57)1. Furthermore, using the identity (ρê)ρi = µ̂i − T µ̂iT
which follows by differentiation of (53), we obtain

(64) F̃ρe =
1
ρcv

F̂T , F̃ρi = F̂ρi − (µ̂i − T µ̂iT )F̂T .
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Choosing F̃ = −1/T̃ and F̃ = µ̃i/T̃ , respectively, we derive
(65)

(− 1
T̃

)ρe =
1

ρT 2cv
, (− 1

T̃
)ρi = − µ̂i − T µ̂iT

ρT 2cv
, (

µ̃i

T̃
)ρj =

µ̂iρj

T
+

(µ̂i − T µ̂iT )(µ̂j − T µ̂jT )
ρT 2cv

.

Due to these representations we finally may rewrite the inequalities (62) as the simple statement

(66) cv > 0 and
(
∂µ̂i
∂ρj

)
i,j∈{1,...,N}

is positive definite.

From (66) we may derive further important inequalities concerning the constitutive functions for the
specific thermal energy e and the pressure p. We again use ρi = ρyi to change the variables from
{T, ρ1, ..., ρN} to {T, ρ, y1, ..., yN−1}. Recall that the generic function F̄ (T, ρ, y1, ..., yN−1) =
F̂ (T, ρ1, ..., ρN ) satisfies the simple rule F̄ρ =

∑N
j=1 yjF̂ρj which is used to obtain from the Gibbs-

Duhem equation (54) the relations

(67) p̄ρ = −ψ̄ − ρψ̄ρ +
N∑
i=1

yiµi + ρ
N∑
i=1

yiµiρ = ρ
N∑

i,j=1

yiyjµ̂iρj .

Furthermore we need here the relation , i.e.

(68) cp = cv +
T

ρ2
(ρ̄T )2pρ.

Employing the relations (58)2 between the specific heats and (67)2, we obtain from (66) the additional
inequalities

(69)
∂p̄

∂ρ
> 0, cp > cv and (

∂ρ

∂T
)2 <

cpρ
2

T

∂ρ

∂p
.

In particular the inequality (69)3 plays an important role in the limiting case of incompressibility, which
will be the subject of Section 16.

6. ENTROPY INVARIANT CROSS-COUPLINGS AND THE ONSAGER RELATIONS.

By the above entropy principle, the entropy production has the form (36), i.e.

ζ =
∑
m

NmPm,

where the sum runs through all dissipative mechanisms and the factors Nm, Pm have negative, re-
spectively positive parity. But the precise form of this decomposition of the entropy production into
binary products is by no means unique! Indeed, cross-effects between the dissipative mechanisms
can be introduced by mixing inside the parity-groups. Such cross-effects leave both the parity struc-
ture (36) and the entropy production invariant. To be more specific, let us write the entropy production
as a scalar product in an appropriate finite dimensional space, i.e.

(70) ζ = 〈N,P〉,
where all fluxes, respectively forces are placed inside the single vectors N, respectively P. Consid-
ering this representation, axiom (IV-ii) enforces a diagonal closure, corresponding to let

(71) N = Λ P with Λ = diag(λk), λk ≥ 0.

Let us note in passing that we may want to impose several restrictions on the coefficients λk in (71)
due to the assumption of isotropy; e.g., we assume the same coefficient for closing different Cartesian
components of the same vector. However, for the subsequent explanation this does not play a role.

Now consider, instead of (70), the form

(72) ζ = 〈Ñ, P̃〉 with Ñ = AN, P̃ = BP,
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where A and B are regular matrices. In order that, for arbitrary thermodynamic processes, the form
ζ does not change we must have

(73) 〈N,P〉 = 〈Ñ, P̃〉 = 〈AN, BP〉 for all N,P,

implying ATB = I. Axiom (IV-ii) also applies to this representation of ζ , i.e. ÑmP̃m ≥ 0 for all m
which again enforces a diagonal closure. This leads to the constitutive relations

(74) Ñ = Λ̃ P̃ hence N = A−1 Λ̃BP = BT Λ̃BP

with a diagonal matrix Λ̃ with non-negative entries. Hence

(75) N = LP with L being symmetric and positive semi-definite.

Consequently, the entropy principle above, together with a linear (in non-equilibrium quantities) clo-
sure after entropy invariant mixing exactly leads to a full cross-coupling with a positive semi-definite
and symmetric matrix of phenomenological coefficients. Hence the Onsager reciprocity relations are
satisfied.

To arrive at (75), one does not need to start with a fully general regular matrix A. Indeed, recall
from elementary matrix calculus that every regular matrix A allows for a decomposition of the type
A = LU with L a lower-triangular and U an upper triangular matrix, both being also quadratic and
regular, such that also Uii = 1, say, for all i. This follows for instance by applying the classical Gauss
algorithm. Hence the entropy after mixing between mechanisms becomes

(76) ζ = 〈AN, BP〉 = 〈U N, LTBP〉 = 〈U N, U−T P〉,

sinceB = A−T because the entropy production is required to stay invariant. Consequently, it suffices
to mix with an upper diagonal matrix U such that all Uii = 1. For mixtures with few constituents, this
fact allows for an easy cross-coupling ”by hand”.

The above observation leading to (75) is related to known considerations of the invariance of On-
sager’s relations under transformations of the system of fluxes and driving forces; cf. [19]. Note also
that the entropy production invariance is to be understood for the form of the unclosed entropy produc-
tion, not for the production rate in the final PDE-system. The considered cross-coupling via entropy
neutral mixing between mechanisms is given above for fixed number of dissipative mechanisms. It is
also possible to apply such a mixing in a more general way, also adding new dissipative mechanisms.
This way, also the entropy flux will be altered. An example is provided below in Section 13, where we
reduce our class-II model to obtain improved class-I closure relations. A totally different example can
be found in [11].

In the classical literature on irreversible processes, the factors building the binary products in the
entropy production are called fluxes and driving forces. This notion can be rather misleading in the
context of cross-effects, since the assignment of the label ”flux” to a quantity is usually guided by its
appearance under a divergence, independently whether it has positive or negative parity. In fact this
can lead to an apparent anti-symmetric coupling. To understand this, assume a second classification
of the set of all factors appearing as components in N and P into fluxes and driving forces such that

N =
[

F1

D2

]
, P =

[
D1

F2

]
,

where the Fi and Di are blocks entirely composed of fluxes or driving forces. Applying entropy
invariant mixing and linear closure as above, we arrive at the constitutive relation[

F1

D2

]
= L

[
D1

F2

]
with L =

[
L11 L12

L21 L22

]
≥ 0, LT

ii = Lii, L
T
12 = L21.
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Rewritten as a relation between fluxes and driving forces, this becomes[
F1

F2

]
= L

[
D1

D2

]
with L =

[
L11 L12

L21 L22

]
,

where

L11 = L11 − L12L
−1
22 L21, L12 = L12L

−1
22 = −LT

21, L22 = L22.

Evidently, the matrix L is not symmetric, but consists of symmetric blocks on the block-diagonal and
skew-symmetric off-diagonal blocks. Note also that L inherits the positive semi-definiteness of L; in
particular, the block L11 − L12L

−1
22 L21 itself is positive semi-definite which follows from

〈L11 x, x〉+ 〈L12 y, x〉+ 〈L21 x, y〉+ 〈L22 y, y〉 ≥ 0 for all x, y

applied with y = −L−1
22 L21x.

The above considerations on the one hand show how to introduce cross-effects on the entropy
production level. On the other hand, the replacement of the notions ”flux / driving force” by ”co-factors
of positive and negative parity” resolves the apparent anti-symmetry of certain cross-coefficients. This
will be taken up again in Section 11.

7. INVISCID, NON-REACTIVE FLUID MIXTURES

We are going to employ the entropy inequality for obtaining constitutive laws for the thermo-
mechanical interactions, i.e. for the structure of the fi. Specialized to fluid mixtures without chemical
reactions (Ra = 0) and with vanishing viscosity (S◦i = 0, Πi = 0), the entropy production is reduced
to the two dissipative mechanisms of diffusion and heat conduction and becomes

(77) ζ = −
∑

i ui ·
(
ρi∇µi

T + 1
T (fi −∇pi − hiT∇ 1

T )
)

+
∑

i qi · ∇
1
T

with the partial enthalpies hi = ρiei + pi. For an efficient notation,we proceed to write (77) as

(78) ζ = ζdiff + ζheat with ζheat =
∑

i qi · ∇
1
T .

We impose linear relations between the conjugate factors in the entropy production; but note that the
resulting constitutive equations are of course nonlinear relations between the variables. For simplicity,
we start with the case in which the two principal mechanisms are treated independently, without
explicitly introducing an additinal thermo-diffusion coupling. Full thermo-diffusion will be considered
in Section 8 below.

We now exploit axiom (IV-ii). The term ζheat is non-negative if we assume Fourier’s law for the
thermal part

∑
i qi of the heat flux q from (24), i.e.∑

i qi = α∇ 1
T with α = α(T, ρ1, . . . , ρN ) ≥ 0.

In this case the heat flux itself is given by

(79) q =
∑

i qi +
∑

i hiui = α∇ 1
T +

∑
i hiui.

Hence, despite the simple Fourier law, some cross-effects are already included in q.

The remaining part ζdiff is of the form

(80) ζdiff = −
∑

i ui ·
(
Bi + 1

T fi
)

with Bi := ρi∇µi

T −
1
T∇pi − hi∇

1
T .

This shows a further advantage of the separation into the principal mechanisms, since now the Bi

turn out to sum up to zero which is basic for the exploitation of axiom (IV-ii) below. We indeed have

(81)
∑

i Bi = 1
T

(∑
i ρi∇µi −∇p

)
+
(∑

i ρiµi − (ρe+ p)
)
∇ 1
T
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and the Gibbs-Duhem equation (50) implies

∇p =
∑N

i=1 ρi∇µi + ρs∇T,

hence
∑

i Bi = 0. Axiom (IV-ii) of the entropy principle now requires

(82) −
∑N

i=1 ui ·
(
Bi + 1

T fi
)
≥ 0.

To incorporate the constraints

(83)
∑N

i=1 Bi = 0,
∑N

i=1 fi = 0,

these are built into (82) by eliminating BN and fN . Thus, the necessary condition becomes

(84) −
∑N−1

i=1 (ui − uN ) · (Bi + 1
T fi) ≥ 0.

The corresponding linear Ansatz for Bi + 1
T fi, in order to guarantee (84), is

(85) Bi + 1
T fi = −

∑N−1
j=1 τij (uj − uN ) (for i = 1, . . . , N − 1)

with a positive definite (N − 1) × (N − 1)-matrix [τij ]. This yields the constitutive laws for the
momentum productions fi.

The representation (85) can be made symmetric with respect to the constituents by extending the
Maxwell-Stefan matrix [τij ] to N ×N -format according to

(86) τNj = −
∑N−1

i=1 τij (j = 1, . . . , N − 1), τiN = −
∑N−1

j=1 τij (i = 1, . . . , N).

Note that the definition of the τNj is required to obtain

Bi + 1
T fi = −

∑N
j=1 τij (uj − uN ) for i = 1, . . . , N,

including i = N , while the definition of the τiN yields
∑N

j=1 τij = 0 for all i, hence uN above can
be replaced by ui to attain the symmetric form

(87) Bi + 1
T fi =

∑N
j=1 τij (ui − uj) for i = 1, . . . , N.

The extended matrix will be positive semi-definite. We record this observation as

Proposition. The extendedN ×N -matrix [τij ]N1 is positive semi-definite if the (N −1)× (N −1)-
matrix [τij ]N−1

1 is positive (semi-)definite.

Proof. By the criterion of Sylvester, a quadratic matrix M is positive semi-definite iff the determinant
of every upper left sub-matrix is non-negative. Here, we only need to check this for the determinant
of the full matrix. The latter vanishes since, by definition, the N -th column is a linear combination of
the first N − 1 columns. 2

In the present case of non-reactive multicomponent fluids, we add the following assumption of binary-
type mechanical interactions:

(88) τij = τij(T, ρi, ρj)→ 0 if ρiρj → 0 + .

Let us emphasize that this assumption is not true for chemically reacting mixtures – this will become
clear in section 9 below. Following Truesdell [53], binary-type interactions imply the symmetry of [τij ]
as follows: evaluate

∑N
i,j=1 τij (ui−uj) = 0. In caseN = 2, one obtains (τ12−τ21) (u1−u2) =

0 for any thermodynamical process, hence τ12 = τ21. Note that forN = 2 the system can only have
binary interactions. In case N = 3, the summation gives

(τ12 − τ21) (u1 − u2) + (τ13 − τ31) (u1 − u3) + (τ23 − τ32) (u2 − u3) = 0.
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Exploitation of (88) yields:

ρ3 → 0+ ⇒ τ12 = τ21; ρ2 → 0+ ⇒ τ13 = τ31; ρ1 → 0+ ⇒ τ23 = τ32.

The general case N > 3 follows in an analogous manner. Consequently, under the assumption (88),
the full matrix [τij ] is symmetric and positive semi-definite. Let us note in passing, that this derivation
of the symmetry of the mechanical interactions works exclusively in the considered case of binary
(non-reactive) interactions and it exploits conservation of total momentum.

Exploiting the symmetry of [τij ] and using (87), the diffusive entropy production is

(89) ζdiff = −
∑N

i=1 ui ·
(
Bi + 1

T fi
)

= −1
2

∑N
i,j=1 τij(ui − uj)2,

showing that, necessarily,
τij ≤ 0 for all i 6= j.

Hence the natural Ansatz to incorporate both symmetry and binary-type interactions is

(90) τij = − fijρiρj with fij = fji, fij = fij(T, ρi, ρj) ≥ 0 (i 6= j).

From a molecular dynamics viewpoint, the fij can be interpreted as "friction factors".

Thus, for class-II mixtures, we obtain

(91) fi = −ρiT∇µi

T +∇pi + Thi∇ 1
T − T

∑
j fijρiρj(vi − vj)

as the constitutive law for the thermo-mechanical interactions. Inserting this into the partial momentum
balances, we obtain their final form in the case of inviscid, non-reactive fluid mixtures with binary-type
interactions as

(92) ρi
(
∂tvi + vi · ∇vi

)
= −ρiT∇µi

T + Thi∇ 1
T − T

∑
j fijρiρj(vi − vj) + ρibi.

In the isothermal case, i.e. in the limit when the approach to thermal equilibrium is infinitely fast so
that no temperature gradients persist, this simplifies according to

(93) ρi
(
∂tvi + vi · ∇vi

)
= −ρi∇µi − T

∑
j fijρiρj(vi − vj) + ρibi.

In the non-isothermal case, the resulting class-II model for inviscid, non-reactive fluids with binary-
type thermo-mechanical interactions in conservative form reads as

mass : ∂tρi + div (ρivi) = 0

mom. : ∂t(ρivi) + div (ρivi ⊗ vi) = −ρi∇µi + T (hi − ρiµi)∇ 1
T − T

∑
j fijρiρj(vi − vj) + ρibi

energy : ∂t(ρe) + div (ρev + q) = −p div v −
∑
i ui · (fi −∇pi)

with q and fi from (79) and (91), respectively.

To derive a mixture heat equation as the temperature form of the energy balance, we choose the
independent variables as (T, ρ, y1, . . . , yN−1). Relying on (53) and the Gibbs-Duhem equation (50),
we obtain

(94) ρcvṪ + div q = −
N∑
i=1

ui · (fi −∇pi)−
N∑
i=1

(
µi − µN − T

∂(µi − µN )
∂T

)
ρẏi −

T

ρ

∂p

∂T
ρ̇

with cv the specific heat capacity at constant density from (57). Furthermore, the dot denotes the
Lagrangean derivative w.r. to the barycentric velocity, e.g. Ṫ = ∂tT + v · ∇T .

Let us briefly mention the special case of simple mixtures (cf. section 15 below for more details)
for which

(95) ρψ =
N∑
i=1

ρiψi(T, ρi) and ρiψi + pi = ρiµi.



22

In this case the constitutive law for the thermo-mechanical interactions (91) reduces to

(96) fi = −T
∑

j fijρiρj(vi − vj),

hence the partial momentum balance simplifies to

(97) ∂t(ρivi) + div (ρivi ⊗ vi) = −∇pi − T
∑

j fijρiρj(vi − vj) + ρibi.

Note that the term−
∑

i ui · fi in the heat equation becomes T
2

∑
j fijρiρj(vi − vj)2 in case of a

simple mixture.

8. THERMO-DIFFUSION REVISITED

It is well known that temperature gradients can generate interaction forces and diffusion fluxes
contribute to the heat flux. In class-I models, these phenomena are called Soret and Dufour effect,
respectively. In fact there is a contribution to the heat flux in (79) that is proportional to the diffusion
velocity and in (91) we observe the corresponding contribution Thi∇ 1

T to the interaction force. How-
ever, for simple mixtures the interaction forces becomes independent of the temperature gradient.

In order to prevent the disappearance of such phenomena, in particular for simple mixtures, we
now apply the entropy invariant mixing. Usually, cross-effects are introduced into the thermo-fluid
mechanical modeling via full coupling in the constitutive relations. Given M binary products in the
entropy production, this leads to M2 phenomenological coefficients. If linear constitutive relations
are employed, symmetry between the phenomenological coefficients are assumed by postulating
the Onsager reciprocity relations. We proceed in a different manner, employing the entropy invariant
mixing from Section 6. The key point is the equivalent reformulation of the entropy production rate,
which here can be simply based on a zero addition, introducing a mixing between the mechanisms
”diffusion” and ”heat conduction”. For this purpose we rewrite ζ from (77) as

(98) ζ = −
∑

i ui ·
(
Bi + 1

T fi − dTi ∇ 1
T

)
+
∑

i(qi − dTi ui) · ∇ 1
T .

Note that ∇ 1
T has been introduced as an additional driving mechanism for diffusion, while the new

term is compensated by an appropriate change in the binary product involving the heat flux. The
newly introduced phenomenological thermal diffusivities dTi are functions of (T, ρ1, . . . , ρN ), they
can attain positive or negative values. This fact is well-known in kinetic theories, cf. [15].

We now intend to repeat the arguments of Section 7, but
∑

i

(
Bi + 1

T fi − dTi ∇ 1
T

)
need not

be zero which was crucial in the derivation of the class-II model. This defect can be removed by
introduction of a Lagrange multiplier. Indeed, given any λ ∈ IR, the entropy production equals

(99) ζ = −
∑

i ui ·
(
Bi + 1

T fi − (dTi − yiλ)∇ 1
T

)
+
∑

i(qi − dTi ui) · ∇ 1
T ,

since
∑

i yiui = 0. With the choice of λ =
∑

j d
T
j , the co-factors of ui sum up to zero as before.

Let δTi = dTi − yi
∑

j d
T
j and observe that the second binary product in (99) remains unchanged

if dTi is replaced by δTi . It is therefore no restriction to consider the entropy production given in (98)
with the additional constraint

(100)
N∑
i=1

dTi = 0.

Now, the arguments from Section 7 apply without changes and yield the closure relations

(101) fi = −ρiT∇µi

T +∇pi + (hi + dTi )T∇ 1
T − T

∑
j fijρiρj(vi − vj) =: fM

i ,

(102) q =
∑

i qi +
∑

i hiui = α∇ 1
T +

∑
i(hi + dTi )ui.
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Insertion of (101) into the momentum balance yields

(103) ρi
(
∂tvi+vi ·∇vi

)
= −ρi∇µi+T (hi+dTi −ρiµi)∇ 1

T −T
∑

j fijρiρj(vi−vj)+ρibi,

which is complemented by the partial mass balances and the mixture internal energy balance to
obtain the class-II model for an inviscid, non-reactive mixture with thermo-diffusion and diffusion-
thermo effects. In case of simple mixtures, the partial momentum balances become

(104) ρi
(
∂tvi + vi · ∇vi

)
= −∇pi − dTi ∇ lnT − T

∑
j fijρiρj(vi − vj) + ρibi.

Note that now∇T remains in the momentum balances even for simple mixtures.

Later on we will generate class-I models by a reduction procedure applied to class-II models.
Then we will see that all cross-effects which are introduced by entropy invariant mixing in class-II
automatically come with the usually postulated Onsager reciprocity relations into the class-I model.
This is the true rationale behind the Onsager symmetry: We have Onsager reciprocity relations if the
corresponding cross-effect does not generate further entropy production. Further examples of this
statement are found in Section 11, where we take up the subject of entropy invariant mixing once
more.

For subsequent sections, in which chemical reactions and viscous effects are to be included, it
is helpful to observe the overall effect of thermo-diffusion: instead of the partial enthalpies hi, one
simply has to write DTi ≡ hi + dTi , where one may impose (100).

9. INVISCID, CHEMICALLY REACTIVE FLUID MIXTURES

Chemical reaction appear in the model with three contribution: (i) mass production in the partial
mass balances, (ii) momentum production in the partial momentum balances and (iii) heat production
in the energy balance. With chemical reactions, the entropy production reads as

(105) ζ =
∑

i(qi−dTi ui)·∇ 1
T−
∑

i ui·
(
Bi−dTi ∇ 1

T + 1
T (fi−rivi+ 1

2riui)
)
− 1
T

∑NR
a=1RaAa

with the affinitiesAa from (46) and the Bi from (80). Recall that
∑

i Bi = 0 and
∑

i d
T
i = 0.

Here we note another ambiguity in the decomposition of ζ into a sum of binary products. The
term 1

2riui appeared in the energy production because of chemical reactions via the mass balances.
Similar to diffusive contributions to the heat flux in Section 7, we prefer to shuffle the term 1

2riui to
become a co-factor of ui in order to collect all terms related to the mechanism of diffusion. If we were
to leave this term attached to the chemical reactions’ entropy production, we then would have

(106) − 1
T

∑NR
a=1Ra

∑N
n=1Miν

a
i (µi + 1

2u2
i ).

While this change would not modify the value of ζ , it has tremendous implications after employing
(linear) constitutive laws. In fact, the latter choice would contradict axiom (IV-ii) and a linear diagonal
closure would result in a non-wellposed PDE-system. This subtle point will be taken up in more detail
below.

We decompose the interaction force fi − rivi according to

(107) fi − rivi = fM
i + fC

i − rivi,
where we assume that the mechanical part fM

i has the same structure as for a non-reactive mixture;
i.e., we model the fM

i according to (101). The chemical interaction part fC
i − rivi corresponds

to exchange of momentum because in a chemical reaction the reacting constituents inherit their
momentum to the products. We now compute fC

i − rivi via balancing of partial momenta. At first, for
simplicity, we only consider the forward path, say, of the ath chemical reaction, viz.

αa1 A1 + . . .+ αaN AN → βa1 A1 + . . .+ βaN AN
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with rate Rfa . The rate of change of momentum of constituent Ai is

−RfaαaiMivi +Rfaβ
a
iMiv

a,f
i .

Here va,fi denotes the average velocity of molecules of type Ai after they are formed in a reactive

collision of the involved reactants, i.e. those for which βai > 0. The only obstacle is that va,fi is not
know, but needs to be modeled based on a micro-theory. At this point it is helpful to notice that mass
and momentum are conserved during chemical reactions, i.e.

(108)
∑N

i=1 α
a
iMi =

∑N
i=1 β

a
iMi and

∑N
i=1 α

a
iMivi =

∑N
i=1 β

a
iMiv

a,f
i .

Now, if only one product is present in the ath reaction, say Ak, this alone is sufficient to determine
the velocity va,fk from (108). In the more complicated general case it is sufficient to think of a reaction
with only one reactant, i.e. the decomposition of Ak, say, into several parts. This is no restriction
of generality, because any chemical reaction proceeds via a so-called transition complex where the
interacting reactants form a (very short lived) intermediate species. An observer which follows this
transition complex sees a stagnant particle which decomposes into several parts which then move
away from the steady barycenter. In any new instance of this reaction, the products will move in
different directions. But since we assume isotropic media in our theory, no direction is preferred.
Consequently, the (ensemble) averaged velocity is zero. In other words, all products from one reaction
path have the same velocity which coincides with the one of the transition complex, which in turn is
nothing but the velocity of the center of mass of the reacting constituents.

Moreover, for the backward reaction the momentum conservation reads, by a similar reasoning,∑N
i=1 α

a
iMiv

b,f
i =

∑N
i=1 β

a
iMivi. Including also the analogous condition on vb,fi for the backward

reactions, this leads to the following

fundamental assumption on reactive collisions:

(109) va,fi = vfa and va,bi = vba for forward and backward reactions, respectively.

From the conservation of momentum in chemical reactions, we obtain

(110) vfa =
∑

i α
a
iMivi/

∑
i β

a
iMi as well as vba =

∑
i β

a
iMivi/

∑
i α

a
iMi.

In imposing this assumption, we follow Burgers [8] who used the same proposition for a study of the
reactive Boltzmann equations.

Using the above assumptions and considerations, balancing of the chemical exchange of partial
momentum leads to the representation

(111) fC
i − rivi = −

∑N
j=1Cij(vi − vj),

where the chemical interaction matrix has the entries

(112) Cij =
NR∑
a=1

MiMj∑
k α

a
kMk

(
Rfaβ

a
i α

a
j +Rbaα

a
i β

a
j

)
.

Note that the matrix [Cij ] is, in general, not symmetric. But in the so-called detailed chemical equilib-

rium, i.e. in case Rfa = Rba for all reactions a = 1, . . . , NR, it attains a symmetric form. Indeed, the
anti-symmetric part of the chemical interaction matrix is

(113) Cij − Cji =
NR∑
a=1

Ra
MiMj∑
k α

a
kMk

(
βai α

a
j − αai βaj

)
.

Summation over i yields

(114)
N∑
i=1

(
Cij − Cji

)
=

NR∑
a=1

RaMj

(
αaj − βaj

)
= −rj ,
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showing that rj = 0 for all j = 1, . . . , N is required for the symmetry of [Cij ].

The decomposition into a chemical part and the mechanical interaction, the latter without changes
compared to the non-reactive case, has to be justified by checking the thermodynamic consistency.
At this point, insertion of fM

i + fC
i − rivi into (105) leads to an interesting observation: if the term

1
2riui were to remain in the binary product which corresponds to entropy production via chemical
reactions in (105), the entropy production due to diffusion can, in general, become negative! As an
example, in the simplest case 2A1 → A2, the contribution of fC

i − rivi is 2RfM1u2(u2 − u1)
which evidently can attain negative values; note that forward and backward reactions separately have
to generate the right sign in the entropy production since no chemical equilibrium is assumed. For this
reason we have shuffled the term 1

2riui to the contribution corresponding to diffusive mass transport.

We proceed to check the fulfilment of the 2nd law, where we already know that the entropy pro-
duction due to the mechanical part is non-negative. For the remainder, the contribution of the forward
path, say, of the ath reaction is

(115) ζa,fdiff = Rfa
(∑

i

Mi
αai + βai

2
u2
i −

∑
i,j

MiMjβ
a
i α

a
j∑

k α
a
kMk

ui · uj
)
.

Note that
∑

k α
a
kMk = (

∑
k α

a
kMk)1/2(

∑
k β

a
kMk)1/2, hence the contribution ζa,fdiff to the entropy

production is symmetric in αai , βai . This only holds if the term 1
2riu

2
i is included in the diffusive

contribution. Now, to see that the entropy inequality holds, we fix the reaction index a, abbreviate
Miα

a
i ,Mi β

a
i as ai, bi and make use of the Cauchy-Schwarz inequality in the form∑

i aizi =
∑

i a
1
2
i · a

1
2
i zi ≤

(∑
i ai
) 1

2
(∑

i aiz
2
i

) 1
2 .

Applying this to
∑

i,j biajui,k uj,k, and summing over the velocity components k = 1, 2, 3, we
obtain∑

i,j biajui · uj =
∑

i biui ·
∑

i aiui ≤
(∑

i ai
) 1

2
(∑

i bi
) 1

2
(∑

i aiu
2
i

) 1
2
(∑

i biu
2
i

) 1
2 .

Employing mass conservation, this yields∑
i,j

biaj∑
kak

ui · uj ≤
(∑

i

biu2
i

) 1
2
(∑

i

aiu2
i

) 1
2 ≤ 1

2

∑
i

(ai + bi)u2
i .

Consequently, ζa,fdiff ≥ 0 and, hence, the Ansatz (107) with fM
i according to (101) and fC

i − rivi
from (111) is consistent with the second law. Note that the above estimation only works due to the
symmetric form of the sums in (115) and the latter only results if precisely the term 1

2riu
2
i is shuffled

within the entropy production.

To sum up, we obtained the closure law for the interaction force to read as

(116) fi − rivi = −ρiT∇
µi
T

+∇pi + (hi + dTi )T∇ 1
T
−

N∑
j=1

(Tfijρiρj + Cij)(vi − vj)

with symmetric fij(T, ρ1, . . . , ρN ) > 0, and Cij from (112).

Let us note in passing that the co-factors of the ui in (105) do not sum up to zero. As in Section 7,
the latter can easily be achieved by addition of a Lagrange multiplier. But it is not needed for checking
the entropy inequality, and this is all we had to do, since the closure relation for the mechanical part
has already been obtained before (where it was important to employ a formulation in which the co-
factors of ui sum up to zero) and the chemical part follows from the balance of momentum transfer in
chemical reactions. But for the reduction to a class-I model below, the addition of a Lagrange multiplier
will again be required.
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Chemical Reaction Kinetics. It remains to close the mass production rates Ra = Rfa − Rba which
have to respect the entropy inequality as well. The relevant reactive dissipation term is

ζchem = − 1
T

NR∑
a=1

(Rfa −Rba)Aa with the affinitiesAa =
N∑
i=1

νaiMiµi.

Since chemical reactions are often far from equilibrium, a linear (in the driving forces) closure forRa is
not appropriate. Guided by the proof of Boltzmann’s H-theorem as well as by experimental knowledge
on reaction kinetics, we use the nonlinear closure

(117) ln
Rfa
Rba

= −γa
Aa
RT

with γa > 0

which implies

ζchem = R

NR∑
a=1

1
γa

(Rfa −Rba)(lnRfa − lnRba) ≥ 0,

since the logarithm is monotone increasing. Because of the strict monotonicity of lnx, the reactive
contribution to the entropy production only vanishes if all reaction are separately in equilibrium, i.e. all
forward and corresponding backward rates coincide. This is an instance of the principle of detailed
balance, called Wegscheider’s condition in the context of chemical reaction kinetics. Notice that still
one of the rates – either for the forward or the backward path – needs to be modeled, while the other
one then follows from (117). Here, the approach via rigorous continuum thermodynamics fixes the set
of variables on which the rates can depend. Note also that the factors γa in (117) are often set to 1,
but a general γa > 0 is required in the Butler-Volmer equation in electrochemistry [12]. Note that the
γa can also depend on the system’s variables.

The standard closure for chemical reaction rates, used in so-called elementary reactions which do
not involve intermediate steps, is referred to as mass action kinetics, where the rate for the forward
reaction, say, is modeled as Rfa = kfa

∏
i x

αi
i with ”rate constants” kfa > 0 which depend on

temperature T and pressure p. To obtain the backward rate via (117), the chemical potentials need
to be modeled by material functions since they appear in the affinities. For the important class of
so-called ideal mixtures, the chemical potentials obey the relations

(118) µi(T, p, x1, . . . , xN−1) = gi(T, p) +
RT

Mi
log xi for i = 1, . . . , N (with

∑
i xi = 1),

where gi(T, p) is the Gibbs energy of the pure component Ai under the temperature and pressure
of the mixture. In particular, (118) holds for a mixture of ideal gases, where gi is explicitly given as a
function of T, p. Define Xi for i = 1, . . . , N such that 0 < Xi < 1,∏

i

X
νa

i
i = exp

(
− 1
RT

∑
k

Mkgk(T, p)νak
)

and
∑
i

Xi = 1;

for details on the (nonempty) solution sets for this system see, e.g., section 2 in [6]. Then

Ra = Rfa −Rba = Rfa
(
1−

∏
i

( xi
Xi

)νa
i )
,

hence if the forward rate is modeled as Rfa = kfa
∏
i x

αi
i , this yields

(119) Ra = kfa
∏
i

xαi
i − k

b
a

∏
i

xβi
i with kba = kfa/

∏
i

Xi
νa

i .

Note that the ”rate constants” kfa , kba > 0 are of course not constant but depend on the primitive
variables. In practice, they especially depend strongly on the temperature. It is important to observe
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that only one of kfa or kba can be modeled in this manner, while the other one is then determined by
(119). However, due to (118) the result (119) is restricted to the class of ideal mixtures.

In the case of non-ideal mixtures, the literature usually starts also from (119), but with activities
instead of molar fractions; for a rather exhaustive review see [45]. In the context of our representation
of the chemical reaction rates it is obvious that the corresponding chemical potentials are of the form

µi(T, p, x1, . . . , xN ) = gi(T, p) +
RT

Mi
log ai for i = 1, . . . , N,

where the so-called activities ai of course depend on all primitive variables. Note that this just means
replacing one unknown function by another one with the same set of variables; cf. also [44]. There is
no advantage in this procedure, hence we prefer to employ (117), keeping the chemical potentials.

10. VISCOUS, CHEMICALLY REACTIVE FLUID MIXTURES

The next task is the closure of the viscous stresses Sirr
i = −ΠiI + S◦i . The viscous part of the

entropy production in the class-II model is

(120) ζvisc = 1
T

∑
i(S
◦
i −Πi I) : (D◦i + 1

3 (div vi) I) = 1
T

∑
i S
◦
i : D◦i − 1

T

∑
i Πi div vi.

Employing linear constitutive theory, we obtain the constitutive relations

(121) S◦i =
∑
j

2ηijD◦j and Πi = −
∑
j

λijdiv vj

with positive (semi-)definite matrices [ηij ] and [λij ], where the shear and bulk viscosities ηij and
λij , respectively, are functions of the primitive thermodynamic variables.

Let us note in passing that in our theory, S◦i is exclusively related to viscous mechanisms; this is
in contrast to Extended Thermodynamics (cf. [41]), where S◦i is itself a primitive variable for which a
balance equation holds.

Inserting the constitutive relations derived in Sections 7, 9 and 10, we arrive at the following class-
II model for a reactive, viscous mixture with binary type mechanical interactions.

Class-II model of a reactive, viscous fluid mixture:

∂tρi + div (ρivi) =
∑

aMiν
a
i (Rfa −Rba)

(122)

ρi(∂tvi + vi ·∇vi) = div Sirr
i −ρiT∇

µi
T

+DTi T∇
1
T
−
∑

j

(
Tfijρiρj + Cij

)
(vi−vj) + ρibi

(123)

∂t(ρe) + div (ρev + α∇ 1
T +

∑
iDTi (vi − v)) = −pdiv v +

∑
i S

irr
i : ∇vi

−
∑

i(vi − v) ·
(
∇pi − ρiT∇µi

T +DTi T∇ 1
T −

∑
j

(
Tfijρiρj + Cij

)
(vi − vj)

)
,

(124)

where the ratio of reaction rates and the chemical matrix are given by

Rfa/R
b
a = exp

(
− 1
RT

N∑
k=1

µkMkν
a
k

)
, Cij =

Na∑
a=1

MiMj∑
k α

a
kMk

(
Rfaβ

a
i α

a
j +Rbaα

a
i β

a
j

)
,

and the irreversible stress parts Sirr
i = −Πi I + S◦i are determined by (121). Moreover, DTi =

hi + dTi with the thermo-diffusivities dTi from above.
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This system becomes a closed PDE-system for the primitive variables, if the following constitutive
functions are given: (i) the free energy function ρψ(T, ρ1, . . . , ρN ) to calculate ρe and µi according
to (53)2,3; (ii) the partial energy ei(T, ρ1, . . . , ρN ) and partial pressure pi(T, ρ1, . . . , ρN ) such that
the constraints ρe =

∑
i ρiei and p =

∑
i pi are satisfied, where p follows from (54); (iii) constitutive

models for, say, the forward rates Rfa .

The class-II model from above is new. In particular, the appearance of the chemical matrix for
the reactive contribution to the interaction forces, as well as the nonlinear and thermodynamically
consistent closure of the chemical reaction rates are, to the best of our knowledge, not present in the
existing literature. Furthermore, our exploitation of the entropy principle based on div vi instead of
div v leads to the simple derivation of partial and cross viscosities in case of viscous fluid mixtures.
Class-II models with partial and cross viscosities, but based on kinetic theory and without chemistry,
can be found in [37] and in [28], [29]. More details concerning related work will be given in Section 12
for models including thermo-diffusion.

11. CROSS-EFFECTS REVISITED

We already considered several cross-effects, namely cross-diffusion and thermo-diffusion. In the
present section we introduce additional couplings in which chemical reactions are involved. Before
doing so, we first show how the cross-diffusion can also be derived as an entropy-invariant mixing
between the individual diffusion mechanisms.

Cross-Diffusion. In Section 7, the symmetry of the phenomenological matrix [τij ] relies on the con-
servation law of barycentric momentum and on an assumption of pairwise interactions. Now we give
a further proof that relies on the method of entropy invariant mixing. To this end we reconsider the
entropy production (78) due to pure diffusion. To simplify the notation we abbreviate Ui = ui − uN
and Fi = Bi + 1

T fi and may write

(125) ζdiff = −
N−1∑
i=1

Ui · Fi .

For illustration of the method we do not use the general abstract setting of Section 6, but introduce
the mixing ”by hand”. For this purpose, we consider four constituents only and have ζdiff = −(U1 ·
F1 +U2 ·F2 +U3 ·F3). Here we introduce new terms without any effect on the entropy production,
viz.

ζdiff = −
(

(U1 + λ12U2 + λ13U3) · F1

+(U2 + λ23U3) · (F2 − λ12F1) + U3 · (F3 − λ13F1 − λ23F2 + λ23λ12F1)
)
.(126)

According to Axiom (IV-ii), a diagonal closure is required. Thus with λ11 ≥ 0, λ22 ≥ 0 and λ33 ≥ 0
we may let

F1 = −λ11(U1 + λ12U2 + λ13U3), F2 − λ12F1 = −λ22(U2 + λ23U3),
F3 − λ13F1 − λ23F2 + λ12λ23F1 = −λ33U3.(127)

This can be rewritten as Fi = −
∑

j τijUj , where the matrix of coefficients is given by

(128) [τij ] =

 λ11 λ11λ12 λ11λ13

λ11λ12 λ22 + λ11λ
2
12 λ11λ12λ13 + λ22λ23

λ11λ13 λ11λ12λ13 + λ22λ23 λ11λ
2
13 + λ22λ

2
23 + λ33


and is symmetric as well as positive definite.
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Volume variation/chemical reaction cross-effect. The volume-variation/chemical reaction cross-
effect refers to a possible coupling between the following binary products in (52):

(129) ζvol = − 1
T

N∑
i=1

Πi div vi and ζchem = − 1
T

NR∑
a=1

RaAa.

The parity of the involved quantities are:

(130) T → +1, Πi → 1, div vi → −1, Ra → −1, Aa → +1.

The mixing inside the parity-classes can most easily be introduced via a zero addition according to

(131) ζchem + ζvol = − 1
T

( NR∑
a=1

(
Ra +

N∑
i=1

laidiv vi
)
Aa +

N∑
i=1

div vi
(
Πi −

NR∑
a=1

laiAa
)
,
)
.

where the cross-coefficients lai have arbitrary signs. For simplicity we here rest content with linear
constitutive laws. Axiom (IV-ii) and the procedure leading to (75) imply a closure with symmetry be-
tween the coefficients, resulting in

(132) Ra +
N∑
i=1

laidiv vi = −
NR∑
b=1

labAb, div vi = −
N∑
j=1

λ−1
ij

(
Πj −

NR∑
a=1

lajAa
)

with positive (semi-)definite and symmetric matrices [lab] and [λ−1
ij ], where we assume the latter to

be invertible with [λ−1
ij ] = [λij ]−1. This finally leads to the closure

(133) Ra = −
NR∑
b=1

labAb −
N∑
i=1

laidiv vi, Πi = −
N∑
j=1

λijdiv vj +
NR∑
a=1

laiAa;

cf. also (162) and (163) below. Evidently, the mismatch between the standard ”flux/driving force”
notion and the parity-classes explains the apparent anti-symmetry of the volume variation/chemical
reaction cross-effect in (133).

Cross-effects between chemical reaction with nonlinear closure. Let us finally show how to in-
troduce cross-effects also between different chemical reactions with the much more appropriate non-
linear closure for the rate functions from (117). The original contribution in the entropy production
corresponding to the chemical reaction rates is ζR = −

∑
aAaRa. After entropy neutral mixing

between the different reactions, this becomes

(134) ζR = −〈UA, U−T R〉 with A = (A1, . . . ,ANR
)T and R = (R1, . . . , RNR

)T.

Splitting R according to

(135) R = Rf −Rb = (Rf1 −R
b
1, . . . , R

f
NR
−RbNR

)T,

we now perform the diagonal but nonlinear closure

(136) (UA)a = − 1
βa

ln
(U−TRf )a
(U−TRb)a

with βa > 0.

In the equations above, U denotes an upper triangular NR × NR-matrix such that Uaa = 1 for all
a = 1, . . . , NR. This leads to the relation

(137) Rf = −UΛU−TRb with Λ = diag {βa exp
(
(UA)a

)
}a=1,...,NR

,

hence

(138) R = Rf −Rb = (I − UΛU−T)Rb,

where the vector of backward rates Rb still is to be modeled based on a micro-theory or on experi-
mental experience.
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12. COMPARISON WITH CLASS-II MODELS FROM THE LITERATURE

As early as in 1868, J. C. Maxwell in his paper [34] ”On the dynamical theory of gases”, building on
and improving his own work, and three years later J. Stefan in the paper [50] ”Über das Gleichgewicht
und die Bewegung, insbesondere die Diffusion von Gasgemengen” were the first to formulate con-
tinuum mechanical partial momentum balances, i.e. they derived the first known class-II models.
Maxwell considered binary gas mixtures and used kinetic theory to obtain the friction force between
two different moving gas species. Since, as Stefan wrote∗, the paper by Maxwell is not easy to digest,
he himself gave a phenomenological derivation of essentially the same equations, but generalized to
the case of N constituents. Written in our notation, his final partial momentum balances read as

(139) ρi(∂tvi + (vi · ∇)vi) = −∇pi + ρibi −
∑
j 6=i

fij(vi − vj).

He also derived a formula for the fij in the binary case and noted that these coefficients are symmet-
ric, depend weakly on the temperature and are otherwise constant for given types of gases. Without
rationale, he also used the symmetry for more than two constituents, thus implicitly assuming binary
interactions. Stefan did not comment on equations of state for the partial pressures, but he suc-
cessfully applied his model, in the stationary case and of course including partial mass balances, to
describe experimental data for binary and also ternary systems which, as Stefan mentions in [50],
had been obtained by Loschmidt and by Wretschko. So, at least for an isothermal mixture of ideal
gases, one can say that J. Stefan in [34] obtained the first closed class-II model for a fluid mixture
composed of N constitutents.

Given these significant early contributions, it is somewhat surprising that further developments on
class-II models for fluid mixtures are rarely found in the literature. Apparently, the next notable and in
a sense very modern contribution was given by C. Truesdell in 1957 in [52]. In this and his later work
[53] and [54], Truesdell made very important progress in uniting the continuum mechanical approach
started by Stefan with thermodynamics, thus enabling a consistent derivation within a single theory.
Moreover, Truesdell showed that the symmetry of fij is a consequence of the conservation of total
momentum combined with binary interactions. This was developed considerably further by I. Müller in
particular in [37]; see also [38]. Except for the momentum production due to chemical reactions, i.e.
the appearance of theCij which is a central part of our model, Müller already obtained the right-hand
side of (123), however, with a different arrangement of terms. At the same time, the phenomenological
coefficients in this work are not related to those that are available from the experimental side. This
might be the reason why this most important line of work, has been largely ignored especially in the
engineering community - unfortunately, even until today. Let us note in passing that in this period
quite some papers on rational thermodynamics of mixtures appeared, but some of those contained
significant misconceptions; cf. the literature survey given in [5].

In the engineering science, more practical mixture models where developed, sometimes including
partial momentum balances. An early example is [48], showing also the main problem in this line of
research: Partial momentum balances are set up in a naive way, by adopting formulas from differ-
ent theories to describe various force contributions and to insert them without a rationale behind. In
particular, the Gibbs-Duhem relations are used in a non rigorous way. There are several more such
contributions, but instead of quoting them individually we only cite the recent paper [9] which contains
a nice overview of the literature on partial momentum balances. Unfortunately, this paper also em-
ploys the Gibbs-Duhem relation for isothermal systems in order to describe the force due to chemical
potential gradients which is then assumed to hold in all situations.

∗ ”Das Studium der Maxwell’schen Abhandlung ist nicht leicht.” From [50], p. 72.
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Still another line of research uses approximate solutions of the Boltzmann equations to obtain
formulas describing the interspecies forces which are then represented in primitive variables of a
continuum mechanical theory in which they are inserted. This approach is especially used for the
derivation of multicomponent diffusion fluxes within a class-I framework and will thus be discussed
further in Section 14 on the Maxwell-Stefan equations. A closed class-II model is derived in this way
by Kerkhof in [28] and [29], where he introduces partial momentum balances of the form

ρi
(
∂tvi + vi · ∇vi

)
=− ci∇Tµmi − cRT

∑
j 6=i

xi xj
−Dij

(vi − vj) + ρibi

− cRT
∑
j 6=i

xi xj
−Dij

(DT
i

ρi
−
DT
j

ρj

)
∇ lnT.

Here µmi denotes the molar-based chemical potentials which satisfy µmi = Miµi, and ∇T de-
notes the ”gradient taken at constant T ”. For a sound comparison, note first that the expression
by Kerkhof is obtained from approximate solutions to the Boltzmann equations. It is well-known
that the multi-species Boltzmann equations are a model for mixture of ideal gases, which repre-
sents a special simple mixture. In particular, if (T, pi) are chosen as independent variables, then
ci∇Tµmi = ρi∇Tµi = ρi

∂µi

∂pi
∇pi = ∇pi. If we further let −Dij = R/(cMiMjfij), then the

first three terms on the right-hand side coincide with those in (104). To compare the thermo-diffusion
term, recall that any function dTi (T, ρ1, . . . , ρN ) with

∑
i d
T
i = 0 is admissible in (103) or (104). In

particular,

dTi = −cRT
∑
j 6=i

xi xj
−Dij

(DT
i

ρi
−
DT
j

ρj

)
is a valid choice, hence the class-II momentum balances of Kerkhof above are consistent to our result,
but specialized to the case of simple mixtures.

If the above form for the dTi is used, the two sums in the partial momentum balance can be
combined and become

−cRT
∑
j 6=i

xi xj
−Dij

(
vi +

DT
i

ρiT
∇T − (vj +

DT
j

ρjT
∇T )

)
.

This form might call for a suggestive interpretation in the framework of a kinetic gas theory: two col-
liding molecules had their last collision at slightly different positions, hence at different temperatures.

Indeed, the term ui+
DT

i
ρi
∇ log T can be viewed as a corrected diffusion velocity in case of an inho-

mogeneous temperature field. But an explanation of thermal diffusion along such a line of arguments
is only possible if the temperature dependence of the collision frequencies is taken into account, i.e.
it is a second-order transport effect. Instead of going into further details, we recommend Chapter 6 in
[15] and the original literature mentioned there. A more thorough derivation via the Boltzmann equa-
tion gives the correct form and also leads to the above structure of the dTi . Note that, at this point and
for the case of a simple mixture of ideal gases, the kinetic theory provides additional information not
available in the pure phenomenological continuum thermodynamics. But also note that the Boltzmann
equation only describes thermal diffusion if sufficiently realistic collision models are employed. The
simple model of so-called Maxwell molecules, a favored choice since it allows for closed form compu-
tations of the collision integrals, does not include these effects, since then dTi = 0. For more details
on the Boltzmann equation we again refer to [15] and, in the case of mixtures, however for Maxwell
molecules, see [42].

One main achievement of the present work is the consistent and coherent derivation of closed
class-II models within a continuum thermodynamical theory, including the proper extension to chemi-
cally reactive fluid mixtures. To the best of our knowledge, up to now no contribution treats the case of
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chemically reacting fluid mixtures in such a way that the momentum change due to chemistry is ap-
propriately accounted for. One of the very few papers which explicitly include a chemical contribution
is [56], where the partial momentum balance reads as

(140) ρi(∂tvi + vi · ∇vi) = ρibi + Si +
N∑
i=1

Pij + ri(vi − vi).

Here Pij are the interaction forces between species Ai and Aj , assuming Pij = −Pji without
rationale, and vi is introduced to be the velocity of species Ai produced by chemical reaction. Later
on, this velocity is not considered anymore. A similar case is [9], where vi is actually assumed to
equal the partial bulk velocity vi such that the effect of chemical reactions is in fact eliminated. Note
the difference to our modeling in which every chemical reaction is considered separately, since the
(continuum averaged) velocity of Ai produced by reaction a depends on a, while for any particular
reaction it is independent of the species!

13. CLASS-II→ CLASS-I MODEL REDUCTION

We introduce a new method for the derivation of the class-I model via reduction of the correspond-
ing class-II versions, avoiding scale-separation arguments which are usually employed; cf. section 14
concerning the latter.

Reduction principle and its exploitation. Recall first that the basic variables of the class-I model
are ρi, v and T . The relevant balance equations of the class-I model rely on (5), (15) and (17). Here
the inner structure of stress, energy density and heat flux are ignored, and they are considered as
primitive quantities in the class-I setting. Exclusively the inner structure of the external body force ρb
and its internal power are taken into account. Thus the relevant balance equations read

(141) ∂tρi + div (ρiv + jI
i) =

NR∑
a=1

Miν
a
i R

I
a,

(142) ρ(∂tv + v · ∇v)− div SI =
N∑
i=1

ρibi,

(143) ∂t(ρeI) + div (ρeIv + qI) = SI : ∇v +
N∑
i=1

jI
i · bi.

Note the difference between (27) and (143). In particular, the external body forces do not explicitly
occur in (27).

The constitutive quantities in the class-I model are

RI
a, pI, Sirr,I = −ΠI I + S◦,I, jI

i, ρeI, qI,

and they must be related in a material dependent manner to the variables.

We now compare the equations (141)–(143) with the relevant equations of balance of the class-II
model, viz.

(144) ∂tρi + div (ρiv + ρiui) =
NR∑
a=1

Miν
a
i Ra,

(145) ρi
(
∂tvi + vi · ∇vi

)
− div Si = fi − rivi + ρibi,

(146) ∂t(ρe) + div (ρev + q) =
∑

i S
irr
i : ∇vi− p div v−

∑
i ui ·

(
fi− rivi−∇pi + ri

2 ui
)
.

The mass balances of the species and the energy balance of the mixture should be same in both
models. Exclusively the partial momentum balances are ignored in class-I, where they are replaced
by the momentum balance of the mixture.
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Comparing the mass balances (141) and (144), we identify

(147) jI
i = ρiui and RI

a = Ra.

To compare the energy balances (143) and (146), we substitute the first term on the right-hand side
of (146) by the identity

(148)
∑
i

Sirr
i : ∇vi =

∑
i

Sirr
i : D + div (

∑
i

ui · Sirr
i )−

∑
i

ui · div (Sirr
i ).

Then we use (19) and (24) and identify energies, heat fluxes and stresses of both models:

(149) ρeI =
∑
i

ρiei, qI =
∑
i

(
qi + (ρiei + pi)ui − ui · Sirr

i

)
, SI =

∑
i

Si.

Observe that SI does not equal the mixture stress S obtained within class-II via Truesdell’s meta-
principle. Next, the equivalence of the energy balances (143) and (146) requires the relation

(150) ρibi = −fi + rivi −
1
2
riui − div Si + ρiλ,

where the Lagrange parameter λ is introduced here to consider the constraints
∑

i fi = 0 and∑
i ri = 0 and is thus given by

(151) ρλ = ρb− 1
2

∑
i

riui + div
∑
i

Si.

We obtain

(152) fi − rivi = −1
2

(riui + yi
∑
k

rkuk)− div Si + yi div (
∑
k

Sk)− ρi(bi − b).

Below, this relation will serve to eliminate the momentum production fi in the class-II constitutive law
(116) which then becomes a constitutive equation for the class-I diffusion flux jI

i.

Now we discuss the status of the class-I momentum balance (142). Recall at first that the mass
balances of the species and the energy balance of the mixture occur in class-II and class-I as well.
The essential difference of the two models concerns the momentum balances. While we consider
the N partial momentum balances of the species in class-II, we only have a single momentum bal-
ance in class-I serving to determine the barycentric velocity of the mixture. It is thus natural to attain
equivalent versions of the partial mass balances and the energy balance in the two models. How-
ever, then the equivalence of the barycentric momentum balance of the class-II model with the class-I
momentum balance can only be reached in an approximative sense. If we were to have the relation
SI =

∑
i(Si − ρiui ⊗ ui), then (142) is a consequence of the class-II partial momentum balances

(145). However, we have attained SI =
∑

i Si from the equivalence of the energy balances. Thus our
reduction class-II→ class-I leads to a class-I momentum balance that is an approximation because
terms of order |u|2 are ignored from the class-II point of view.

Finally, we compare the entropy balances of both model classes. The class-I entropy principle can
be exploited in an analogous manner to the above treatment in the model class-II. In particular, the
class-I entropy balance

(153) ∂t(ρsI) + div (ρsIv + ΦI) = ζ I
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implies

ζ I = div (ΦI − qI

T
+
∑
i

µijI
i

T
)− 1

T

(
ρe− TρsI + p−

∑
i

ρiµi

)
div v

−
∑
i

jI
i ·
(
∇µi
T
− bi
T

)
− 1
T

NR∑
a=1

RI
aAa +

1
T

SI,irr : D + qI · ∇ 1
T
,(154)

corresponding to the first representation of the class-II entropy production in (45). As in the class-II
case, the second term on the right-hand side has to vanish, which again gives rise to the Gibbs-
Duhem relation (50), now in the class-I context. Next, the above identifications according to (149) and
(152) are used to compare with (45). This shows that the identity

(155) ζI − div ΦI = ζII − div ΦII

is valid which implies that the desired final identification of the specific entropies, sI = sII, is con-
sistent with those from above - a very satisfactory result, since it also yields T I = T II as well as
µI
i = µII

i ! Note that we did not use different notations for the latter quantities in the different model
classes, although their identification was not a priori possible.

Now we can start with the model reduction, based on all identifications and on relation (155).
Before we continue, it is important to recall from the remarks on the entropy principle that the repre-
sentation of the entropy production as a sum of binary products in not unique. Correspondingly, the
choice of the entropy flux is not unique and can be modified due to a zero addition to ζ , adding also
new dissipative mechanisms and changing co-factors in binary products which are already present.
Actually, it is precisely this non-uniqueness which allows for improved class-I closure relations build-
ing on the additional knowledge from class-II. Moreover, since the system of axioms from our entropy
principle applies also to the model class-I, the representation ζI = ζII + div

(
ΦI − ΦII

)
, as a con-

sequence of (155), and the fact that the entropy flux ΦI has to be chosen in such a way that ζI is a
sum of binary products, yields the fundamental requirement

(156) ζI ≡ ζII for any thermodynamic process.

Hence the only consistent way for a class-II → class-I model reduction is by means of an entropy
invariant model reduction. Note also that the equality of the class-I and class-II entropy productions in
particular guarantees that the reduced class-I model is thermodynamically consistent, i.e. the class-I
closure relation obtained from the class-II constitutive laws always respect the class-I entropy inequal-
ity - this is by no means a trivial property.

Class-I constitutive model. For later comparison, let us start with a brief recap of the standard clo-
sure relations from classical TIP. Exploitation of (154), applying the axioms from the entropy principle
in the class-I context and assuming as dissipative mechanisms the same as for the class-II model,
except for using only a single viscous mechanism, one obtains the TIP-version of the entropy flux as

(157) ΦTIP =
qI

T
−
∑

i µij
I
i

T
,

and the corresponding entropy production as

(158) ζTIP = −
∑
i

jI
i ·
(
∇µi
T
− 1
T

bi
)
− 1
T

NR∑
a=1

RI
aAa +

1
T

SI,irr : D + qI · ∇ 1
T
.

Based on (158), the simplest closure relations for the constitutive quantities that vanish in equilibrium
are obtained by assuming linear relations between so called fluxes and driving forces in the binary
products of the entropy production. This yields Fourier’s law for the heat flux, Fick’s law for mass
diffusion and Newton’s law for the (deviatoric) stress in viscous fluids. It is known from experimental
observations that cross-effects between the different dissipative mechanisms like the Soret effect
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(thermal diffusion) and the Dufour (diffusion thermo) effect occur, such that–in principle–all possible
couplings should be accounted for. This introduces a large number of so-called phenomenological
coefficients which are often reduced by postulating the famous Onsager reciprocity (i.e. symmetry)
relations (cf. [19]). For example, for isotropic fluid mixtures one has the well-known relations

jTIP
i = Li0∇

1
T
−

N−1∑
j=1

Lij
(
∇(

µj − µN
T

)− bj − bN
T

)
,(159)

qTIP = L00∇
1
T
−

N−1∑
i=1

L0i

(
∇(

µi − µN
T

)− bi − bN
T

)
,(160)

STIP,◦ = ηD◦.(161)

ΠTIP = − l00 div v −
NR∑
a=1

l0aAa,(162)

RTIP
a = − la0 div v −

NR∑
b=1

labAb.(163)

Further couplings are possible like via a term ∇ 1
T · D with D the symmetric part of the velocity

gradient. However, those terms are excluded by assuming linearity between fluxes and driving forces.
In the class-I setting within TIP this restriction is usually referred to as Curie’s principle. The Onsager-
Casimir reciprocity relations for (160)–(161) impose the following symmetry properties:

� symmetry of the mobilities [Lij ], including L0i = Li0

� symmetry of the reaction cross-couplings [lab] for a, b ≥ 1
� anti-symmetry of the volume variation/chemical reaction coupling, i.e. l0a = − la0

The last coupling with its apparently anti-symmetric character has caused quite some confusion, while
this issue is fully clarified in our present theory. Note also that, according to [40], a convincing proof
of the Onsager symmetry relations applied to transport phenomena is missing. Finally, the linear
closure in (163) might be inappropriate for chemically reacting flows due to significant deviations from
chemical equilibrium.

Class-I constitutive model via class-II → class-I reduction. In the next sections we derive the
class-I constitutive equations for the diffusion fluxes, heat fluxes, stresses and reaction rates that
follow from the corresponding class-II equations.

We start with the two representations of the interaction forces fi − rivi. There is the class-
II constitutive equation (116) and we have (152) which is among the conditions guaranteeing the
equivalence of class-I and class-II energy balances. Eliminating fi − rivi yields the constitutive
equations for the diffusion fluxes of class-I. At first we obtain

(164)
N∑
j=1

(Tτij − Cij)(ui − uj) +
1
2
(
riui + yi

N∑
j=1

rjuj
)

= di

with the abbreviation

(165) di := ρiT∇
µi
T
− ρi(bi − b)− TDTi ∇

1
T
− div Sirr

i + yi div (
N∑
j=1

Sirr
j ),
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where DTi := hi + dTi ; recall also that yi = ρi/ρ are the mass fractions. Employing
∑N

j=1 τij = 0
from (86) and setting

(166) γij = −Cij +
N∑
k=1

Cikδij −
1
2
riδij −

1
2
yirj , Fij = Tτij + γij ,

the system (164) simplifies to read

(167) −
N∑
j=1

Fijuj = di.

Now note that
∑N

i=1 di = T
∑N

i=1 Bi = 0 and also
∑N

i=1 Fij = 0 for all j = 1, . . . , N . In
order to obtain the class-I diffusion fluxes jI

i = ρiui, the system (167), together with the constraint∑N
i=1 yiui = 0, has to be solved for ui, given d1, . . . ,dN with

∑N
i=1 di = 0. There are essentially

two ways to proceed: in the first variant, one keeps (167) and studies the linear map F : {y}⊥ →
{1}⊥ induced by the matrix [Fij ], where y = (y1, . . . , yN ) and 1 = (1, . . . , 1) ∈ IRN . The
second variant, which will be employed here and leads to the Fickean form of the diffusion fluxes,
eliminates uN in order to incorporate the constraint. In both approaches it is crucial to know that the
new chemical interaction matrix [γij ] is positive semi-definite on {y}⊥. The latter holds due to the
estimates following equation (115); note that the positive semi-definiteness is only required on {y}⊥
and, on this set, the γij can be replaced by

(168) cij = −Cij +
N∑
k=1

Cikδij −
1
2
riδij .

Inserting the Cij , it follows that
(169)

cij =
NR∑
a=1

(
Rfa(δij

Mjβj +Mjαj
2

− MiβiMjαj∑
kMkαk

) +Rba(δij
Mjβj +Mjαj

2
− MjβjMiαi∑

kMkαk
)
)
,

hence [cij ] is positive semi-definite. Consequently, the matrix [Fij ] is positive definite on {y}⊥, given
that the fij from (116) are strictly positive for all i 6= j. The matrix [Fij ] plays a central role in the
Maxwell-Stefan form of the multicomponent diffusion modeling; further information will be provided in
Section 14 below.

Diffusion fluxes. To calculate the diffusion fluxes jI
i from (164), four steps are taken: (i) we introduce

in (164) jI
i = ρiui and consider the constraint

∑
i j

I
i = 0; (ii) we divide (164) by ρiT ; (iii) we subtract

the N th equation; (iv) we define the inverse mobility matrix as

(170) m−1
ij = F̃ij − F̃Nj − F̃iN + F̃NN with F̃ij =

Fij
Tρiρj

.

Evidently, the matrix [F̃ij ] is positive definite on {y}⊥. Given w ∈ IRN−1 with w 6= 0, a direct
computation shows that

(171)
N−1∑
i,j=1

m−1
ij wiwj =

N∑
i,j=1

F̃ijw̃iw̃j ,

if we let w̃i = wi for i < N and w̃N = −
∑

i<N wi. Since w̃ ⊥ y, the right-hand side in (171) is

non-negative, hence [m−1
ij ] is positive definite on IRN−1. Thus we have for i = 1, ..., N − 1:

(172) jI
i = −

N−1∑
j=1

mij

(
∇µj − µN

T
−bj − bN

T
−(
DTj
ρj
−
DTN
ρN

)∇ 1
T
−

div (Sirr
j )

Tρj
+

div (Sirr
N )

TρN

)
.
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Comparison with the classical result (159) from TIP shows that the class-II→ class-I model reduction
leads to a third driving force, viz. 1

ρj
div (Sirr

j )− 1
ρN

div (Sirr
N ) due to the viscous stresses; cf. the next

section for a comparison to the literature in the context of the Maxwell-Stefan equations. Furthermore,
we may identify

(173) Lij = mij and Li0 =
N−1∑
j=1

mij

(DTj
ρj
−
DTN
ρN

)
.

Now observe that themij are symmetric if and only if the cij are, i.e. precisely if all chemical reactions

are in equilibrium (Rfa = Rba for all a = 1, . . . , NR). In this situation, the Onsager symmetry of Lij ,
which is introduced in the class-I model as a postulate, is implied by the class-II→ class-I reduction.
We will take up this point again below when we discuss thermo-diffusion.

Note that the new driving force leads to a new and intricate PDE structure. Due to the class-II
constitutive equations (121)1,2 for the viscous stresses, div jI

i will appear on the right-hand side of
(172) and thus there is no algebraic representation of the diffusion fluxes. However, this phenomenon
can be avoided by a specific assumption on the partial viscosities. A further, more detailed discussion
will be carried out below.

Heat flux. The determination of the class-I heat flux qI starts from (149)2, where we insert the class-II
constitutive equations (102) for

∑
i qi to arrive at

(174) qI = α∇ 1
T

+
N−1∑
i=1

(DTi
ρi
−
DTN
ρN

+
Sirr
i

ρi
−

Sirr
N

ρN

)
jI
i.

Inserting the diffusion fluxes (172) and rearranging terms, we obtain

qI =
(
α+

N−1∑
i,j=1

mij

(DTi
ρi
−
DTN
ρN

+
Sirr
i

ρi
−

Sirr
N

ρN

)(DTj
ρj
−
DTN
ρN

))
∇ 1
T

−
N−1∑
i,j=1

mij

(DTi
ρi
−
DTN
ρN

+
Sirr
i

ρi
−

Sirr
N

ρN

)(
∇(

µj − µN
T

) +
bj − bN

T

)
(175)

−
N−1∑
i,j=1

mij

(DTi
ρi
−
DTN
ρN

+
Sirr
i

ρi
−

Sirr
N

ρN

)(div Sirr
j

Tρj
−

div Sirr
N

TρN

)
.

Recall that both α and the mij are functions of T and all ρi. If we keep only linear terms of those
quantities that vanish in equilibrium, we finally get

qI =
(
α+

N−1∑
i,j=1

mij

(DTi
ρi
−
DTN
ρN

)(DTj
ρj
−
DTN
ρN

))
∇ 1
T

−
N−1∑
i,j=1

mij

(DTi
ρi
−
DTN
ρN

)(
∇(

µj − µN
T

) +
bj − bN

T

)
(176)

−
N−1∑
i,j=1

mij

(DTi
ρi
−
DTN
ρN

)(div Sirr
j

Tρj
−

div Sirr
N

TρN

)
.

This is the constitutive equation for the class-I heat flux derived by a class-II→ class-I reduction. By
comparing (176) with (160) we again observe the further driving force 1

ρj
div (Sirr

j ) − 1
ρN

div (Sirr
N )

due to the viscous stresses.
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Furthermore, we identify

(177) L00 = α+
∑
i,j

mij(
DTi
ρi
−
DTN
ρN

)(
DTj
ρj
−
DTN
ρN

) and L0i =
∑
j

mji(
DTj
ρj
−
DTN
ρN

).

A comparison with (173) immediately implies that L0i = Li0 only if there is the symmetry of the
mobility matrix [mij ]. Recall its definition by (170) and (166) and observe thatmij = mji only holds if
the chemical contribution to (166) is symmetric, i.e.Cij = Cji. However, according to (112) the latter

symmetry only holds in the case of chemical equilibrium, i.e. Rfa = Rba for all a = 1, . . . , NR. Thus
if there are chemical reactions outside of equilibrium the Onsager reciprocity relations L0i = Li0 do
not hold. Moreover, in this case the cross-effect of thermo-diffusion cannot be introduced by entropy
neutral mixing.

Viscous stress and viscous pressure. We start from the identification of the class-I stress (149)3.
There we insert the class-II results (121) and use vi = v + jI

i/ρi to introduce the diffusion fluxes.
Then we obtain

(178) SI,◦ =
N∑

i,j=1

2 ηij
(
D◦ +

1
2
(
∇

jI
j

ρj
+ (∇

jI
j

ρj
)T
))
, ΠI = −

N∑
i,j=1

λij
(
div v + div

jI
j

ρj

)
with the material parameters ηij and λij from the closure of the class-II model. This result implies a
new and very intricate PDE structure. Due to (172) and (121), at least third-order derivatives of the
velocities appear.

A first simplification of the model is achieved if we consider the special case in which the class-II
viscosities in (121) and, hence, in (178) satisfy the relation

(179) ηij = yi ηj and λij = yi λj .

The point is that this implies

(180) S◦i = yi SI,◦ and Πi = yi ΠI.

Consequently, the new driving force–which originates the intricate structure–simplifies in this case
according to

(181)
1
ρj

div Sirr
j −

1
ρN

div Sirr
N = (

1
ρj
∇yj −

1
ρN
∇yN )Sirr.

Then the diffusion fluxes and the heat flux, (172) and (176), algebraically depend on SI,◦ and the
viscous pressure ΠI. But note that the stresses still depend on div (Sirr

j ).

If the material parameters are further restricted to satisfy

(182) ηij = yi η/N and λij = yi λ/N

with common functions η ≥ 0 and λ ≥ 0, we obtain

(183) S◦ = 2ηD◦− η/N
N∑
j=1

(
∇yj ⊗

jI
j

ρj
+

jI
j

ρj
⊗∇yj

)
, Π = −λ div v +

λ

N
div
( N∑
j=1

jI
j

ρj

)
.

In this case the viscous stresses algebraically depend on the diffusion fluxes. But observe that inser-
tion of these stresses into the class-I momentum balance still leads to a PDE of third order. Here it
is important to note that the PDE-system has a triangular structure, where the mass densities, up to
perturbations of lower order, can be solved prior to insertion into the constitutive stress relation. This
allows to solve the system in a regularity setting, where the mass fluxes in the stress do not give rise
to the leading order terms concerning the existence analysis.
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Finally note that all new terms are formed by binary products of ∇yi, Sirr
i and jI

i, respectively.
Thus when ∇yi = 0 in equilibrium, which typically is the case in the setting of this model, we have
nonlinear terms in driving forces and fluxes. However, those products are usually ignored in class-I
models. In this case we have agrement with TIP and may identify l00 = λ and l0a = 0 according
to (162). There results no cross-coupling with the chemical production rates in the class-II→ class-I
reduction because we have not considered those couplings in the class-II setting.

Entropy flux. Let us finally compare the entropy fluxes. Inspection of (45), (154) and (156) shows
that

(184) ΦI =
qI

T
−
∑

i µij
I
i

T
+
∑

i ui · SI
i

T
,

hence ΦI does not coincide with the entropy flux from TIP, but

(185) ΦI = ΦTIP +
∑

i ui · SI
i

T
.

Note, however, that ΦI = ΦTIP does hold if the partial viscosities are restricted to satisfy (179). In
total and compared to classical TIP, the modifications of the entropy flux and the constitutive relations
obtained from the class-II→ class-I model reduction correspond to the addition of

(186) 0 =
1
T

∑
i

∇ui : Sirr
i +

1
T

∑
i

ui · div Sirr
i +

∑
i

(ui · Sirr
i ) · ∇ 1

T
− div (

∑
i ui · SI

i

T
).

to ζI from (154). This corresponds to the addition of the new dissipative mechanism related to diffu-
sion against partial stresses and this additional entropy producing term modifies the diffusion fluxes,
the heat flux and the entropy flux.

14. THE MAXWELL-STEFAN EQUATIONS FOR REACTIVE FLUID MIXTURES

In the previous section, inversion of the system (167) has led to the Fickean form of the diffusivities
according to (172), sometimes also referred to as the generalized Fick-Onsager form. Let us note that
after insertion of particular forms of the chemical potentials, respectively the choice of a specific free
energy function, the representation from (172) is usually written in terms of the partial mass densities
or, equivalently, the molar concentrations. In simplest cases, this leads to relations of the form

(187) ji = −
∑
j

Dij∇ρj

with so-called Fickean diffusivities Dij . There are two disadvantages of the representation (172),
respectively (187): (i) the symmetry between the different species Ai has been broken by eliminating
one particular flux, namely jN ; (ii) the mobilities mij show complicated dependencies on, especially,
the composition of the mixture. The first point is relevant for a mathematical analysis of the final
PDE-system, where the symmetry of the system (167) in the uj is helpful. Besides binary mixtures,
the Fickean form is appropriate in case the mixture is a solution with one major component (the
solvent AN , say) and several minor constituents (the solutes). Then, if the solution is dilute, i.e. if
yi � 1 for all i 6= N , the fluxes even reduce to the classical form of ji = −Di∇ρi as discovered
by Adolf Fick; cf. [16]. The second point is much more severe, due to the following mathematical
fact. A coupled system of diffusion equations of the form which results if (187) is inserted into the
partial mass balances, say with v = 0 for simplicity (which is irrelevant for the local-in-time existence
properties), the solutions for positive initial values will in general not stay positive in case of constant
diffusivities Dij , even if the diffusion operator is elliptic. This underlines the fact that the diffusivities
must depend on the composition and the form of this dependency is decisive concerning the well-
posedness as well as qualitative properties of the system. Therefore, an alternative description which
includes structural information on the diffusivities such that the final PDE-system becomes solvable



40

is strongly demanded. Of course, if such a description is given, the associated Fickean fluxes can,
in principle, be calculated, since the different representations are equivalent. But let us also note in
passing, that if the final form according to (187) is used, the Dij are in general not even symmetric.

Motivated by the above facts, we provide the Maxwell-Stefan form of the multicomponent diffusion
description which, essentially, corresponds to (164). This representation is, in the absence of chemical
reaction, fully symmetric in the constituents and contains additional structural information which solves
the problem above as will be explained below. Supported by statistical mechanics, it even turns out
that the ”friction coefficients” fij from (90) are only weakly dependent on the mixture composition.
Furthermore, experiments have shown that this weak dependence can often be described via affine
functions; cf. [51] where also further references are given.

Right from the beginning, there where two different derivations of what is now called the Maxwell-
Stefan form. Maxwell in his classical paper [34] used kinetic theory of gases to derive a relation
for the diffusion velocity of a binary mixture of simple gases. In order to be able to provide final
results for the diffusion coefficient by analytical formulas, he assumed the dependence as r−5 of
the intermolecular force fields, thus introducing the nowadays so-called Maxwellian molecules; recall
that there is no thermo-diffusion in this case. Shortly after this, Stefan essentially gave a continuum
mechanical derivation in [50], valid for a system of N constituents. He employed the assumption
that† every particle of a gas, if it is moving, encounters a resistive force by every other gas, being
proportional to the density of that gas and to the relative velocity between the two. As already noted
above, he used this to formulate the partial momentum balance

ρi(∂tvi + (vi · ∇)vi) = −∇pi + ρibi −
∑
j 6=i

fij(vi − vj).

He actually was also aware that, contrary to Maxwell’s derivation, his force balance can be applied to
liquid mixtures as well.

Later on, building on the work by Boltzmann and his famous equation, use of statistical mechan-
ics gave rise to several types of approximate solutions to the multi-species Boltzmann equations.
Hirschfelder, Curtiss, and Bird in particular obtained the so-called generalized driving forces di which
were to replace the partial pressure pi in (139); see [26] and cf. also [4]. These have then been used
to formulate the reduced force balances

(188) −
∑
j 6=i

fijρiρj(ui − uj) = di,

or other equivalent versions thereof like

(189) −
∑
j 6=i

xjJi − xiJj
c−Dij

= di.

The latter form is found in most textbooks on multicomponent diffusion, where c =
∑

i ci with the
molar concentrations ci = ρi/Mi, xi = ci/c are the molar fractions, Ji = ciui the molar mass
diffusion fluxes and −Dij denote the so-called Maxwell-Stefan diffusivities. But neither a rigorous
derivation of (188) by a time-scale separation argument–except for [56]–is given, nor a consistent
derivation of the driving forces; the latter have been transferred to the continuum mechanical force
balance from approximate solutions to the Boltzmann equations. Fortunately, it turned out that the
resulting diffusive fluxes obey the second law of thermodynamics. While in the engineering literature
this is often attributed to [49], it has already been shown much earlier by Truesdell in [53]. In the latter
paper, it has also been shown that the Onsager relations of irreversible thermodynamics are in case
of multicomponent diffusion processes nothing but the symmetry of the fij from above and that the

†”In einem Gemenge erfährt jedes einzelne Theilchen eines Gases, wenn es sich bewegt, von jedem anderen Gase
einen Widerstand proportional der Dichte dieses Gases und der relativen Geschwindigkeit beider.” From [50], p. 64.
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latter rigorously follows in case of binary interactions from the total momentum balance. The system
of type (188) or (189) is nowadays referred to as the Maxwell-Stefan equations.

Recall that the main advantage of the Maxwell-Stefan form (189) is its additional structural in-
formation and the fact that the −Dij turn out to depend only weakly on the composition. For binary
systems, the MS-diffusivity−D12 is actually independent of the composition (x1, x2) of the mixture; cf.
[15]. Hence the same is true for the MS-diffusivities in a dilute mixture, since only binary interactions
between each solute and the solvent occur.

We are now in position to briefly give three different derivations of the Maxwell-Stefan equations.
This is helpful in order to place our new extension of the Maxwell-Stefan equations to the case of
chemically reacting mixtures into the proper context.

Derivation of the Maxwell-Stefan equations within TIP. Once the two above-mentioned alternatives
are present, it is observed that–at least in the isothermal case–one can indeed obtain the Maxwell-
Stefan equations together with a set of thermodynamically consistent driving forces by means of the
”resistance form” of the closure within TIP, as opposed to the standard ”conductivity form”; cf. [30].
To briefly illustrate this, we rewrite the TIP entropy production from (158) for isothermal processes
according to

(190) ζTIP
isotherm = −

∑
i

ui ·
(
ρi∇

µi
T
− ρibi

T
+ yiλ

)
− 1
T

NR∑
a=1

RaAa +
1
T

Sirr : D,

where we dropped the superscript indicating model class-I and introduced a Lagrange parameter λ.
This parameter is now used to obtain

(191) ζTIP
isotherm = − 1

T

∑
i

ui · di −
1
T

NR∑
a=1

RaAa +
1
T

Sirr : D,

such that the driving forces di satisfy
∑

i di = 0. Employing the Gibbs-Duhem relation, the latter
implies

(192) di = ρiT∇
µi
T
− yi∇p− ρi(bi − b).

Incorporating the constraint on the di, the entropy production becomes

(193) ζTIP
isotherm = − 1

T

N−1∑
i=1

(ui − uN ) · di −
1
T

NR∑
a=1

RaAa +
1
T

Sirr : D,

such that we may now repeat precisely the arguments from Section 7 to obtain

(194) di =
N∑
j 6=1

τij(ui − uj),

where the matrix [τij ] has the same properties as the one in our derivation above. Exploiting Trues-
dell’s argument from Section 7 as before, the symmetry of [τij ] follows and the binary interaction
assumption together with the positive definiteness again yields τij = −fijρiρj with fij = fji > 0
for all i 6= j, hence the Maxwell-Stefan form in the isothermal case.

But note that this derivation does not imply anything on the dependence of the fij as functions of
the primitive variables (T, ρ1, . . . , ρN ). It also does not add to the understanding of the underlying
mechanism as being a consequence of partial linear momentum exchange. Moreover, note that this
only leads to the standard Maxwell-Stefan equations in which no information is contained about the
diffusion directly related to momentum transfer during chemical reactions.
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In the general, non-isothermal case, the di from (192) get an additional term yi(ρe + p)T∇ 1
T

if the same derivation is used. This does not coincide with the generalized thermodynamic driving
force from [26], [4], where the additional term is hiT∇ 1

T with the partial enthalpies hi. The latter is
precisely the form which we also get below, either in the diffusional approximation or via the entropy
invariant model reduction. This defect of the above derivation within class-I can only be avoided if the
full thermo-diffusive cross-coupling is employed.

Derivation of the Maxwell-Stefan equations via diffusional approximation. We use a scale-
separation argument, but which is only applicable in the non-reactive case. To this end, we subtract
the mass fraction weighted mixture momentum balance from the closed partial momentum balance
(123) with Cij = 0 in the absence of chemical reactions and, first, with DTi = 0. The resulting
equation is

ρi(∂t + v · ∇)ui + ρi(ui · ∇)vi = yi∇p− ρi∇µi + ρi(bi − b)

+ T (hi − ρiµi)∇ 1
T + div Sirr

i − yi div (
∑

k Sirr
k )− T

∑
j fijρiρj(ui − uj),(195)

and our aim is to show that the terms on the left-hand side are negligible for the description on meso-
and macroscopic time scales. To simplify the presentation, we do not consider the irreversible stress
part in the intermediate computations; note that this term determines the order of the PDE, hence
cannot be neglected anyhow. With this omission, we obtain the dimensionless formulation

U

C

V

C
yi(∂∗t u

∗
i + v∗ · ∇∗u∗i + u∗i · ∇∗v∗i ) = yi

∇∗p∗

ρ∗
− ρ0µ0

p0
yi∇∗µ∗i(196)

−(
h0

p0

h∗i
ρ∗
− ρ0µ0

p0
yiµ
∗
i )∇∗ lnT ∗ +

ρ0BL

p0
yi(b∗i − b∗)− ρ2

0T0f0L

p0
ρ∗T ∗

∑
j

f∗ijyiyj(u
∗
i − u∗j ),

where dimensionless variables are labeled by an asterisk and the following reference quantities have
been employed: reference diffusion velocity U , reference mixture velocity V , reference length L,
reference mixture time scale τ := L/V , reference mixture mass density ρ0, reference pressure
p0, reference chemical potential µ0, reference enthalpy h0, reference temperature T0 and reference
friction coefficient f0. Furthermore, C :=

√
p0/ρ0 is of the same order of magnitude as the sound

speed. In many applications C is much larger than U , usually even significantly larger than V .

To proceed, we need to estimate the size of the thermo-mechanical interaction terms, i.e. the
size of the ”friction” coefficients fij , to obtain a reasonable reference value f0. For this purpose we
first establish a relation between the fij and the so-called Maxwell-Stefan diffusivities −Dij , since
quantitative information for the latter is available in the literature. At this point, consider a binary
system under isobaric (i.e., constant pressure) and isothermal conditions. Neglecting in the above
momentum balance the terms with a factor U V/C2 yields

Tf12(y2 j1 − y1 j2) = Tf12 j1 = −y1∇µ1.

Specializing to a dilute system with y1 � 1, y2 ≈ 1, the chemical potential is given as

µ1 = µ0
1 + RT

M1
lnx1,

hence
Tf12 j1 = − y1RT

M1x1
∇x1 = − cRT

ρ ∇x1.

Using ρ ≈M2c ≡ const with c the total molar concentration, this finally yields

j1 = − R

cM1M2f12
∇ρ1,

which has the form of Fick’s law with the binary diffusivity

−D12 :=
R

cM1M2f12
.
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Due to this relationship we further introduce a reference molar concentration c0 and a reference
diffusivity D. Letting M := ρ0/c0, µ0 := RT0/M and −Dij := R

cMiMjfij
, the final form of the

dimensionless partial momentum balance is

U

C

V

C
yi(∂∗t u

∗
i + v∗ · ∇∗u∗i + u∗i · ∇∗v∗i ) = yi

∇∗p∗

ρ∗
− c0RT0

p0
yi∇∗µ∗i +

ρ0BL

p0
yi(b∗i − b∗)

−(
h0

p0

h∗i
ρ∗
− c0RT0

p0
yiµ
∗
i )∇∗ lnT ∗ − c0RT0

p0

UL

D
ρ∗T ∗

∑
j

yiyj
M∗iM

∗
j−D
∗
ij

(u∗i − u∗j ).(197)

Note that the above definition of −Dij is consistent with the relation between the friction factors fij
and the Maxwell-Stefan diffusivities −Dij which was used in Section 12 for comparison with the en-
gineering literature. Now, for multicomponent fluid mixtures not too far from standard conditions, the
estimate

U
C
V
C = 10−8...10−4

is valid. The other dimensionless coefficients are of order one or above, for instance
c0RT0
p0

= 100...103 (gas to liquid), UL
D = 103..105.

Consequently, the desired simplification mentioned above yields an excellent approximation under
such conditions. The resulting reduced form of the partial momentum balances reads as

−
∑
j 6=i

yjji − yijj
cMiMj−Dij

=
yi
RT
∇µi −

yi
ρRT

∇p− yi
RT

(bi − b)

+
ρiµi − hi
ρR

∇ 1
T

+
1

ρRT

(
div Sirr

i − yi div (
∑
k

Sirr
k )
)
,(198)

where we now also put back the irreversible stress parts. If full thermo-diffusion is added and put into
the form mentioned in Section 12, we obtain

−
∑
j 6=i

yjji − yijj
cMiMj−Dij

−
∑
j 6=i

ρyi yj
cMiMj−Dij

(DT
i

ρi
−
DT
j

ρj

)
∇ lnT =

yi
RT
∇µi −

yi
ρRT

∇p

− yi
RT

(bi − b) +
ρiµi − hi
ρR

∇ 1
T

+
1

ρRT

(
div Sirr

i − yi div (
∑
k

Sirr
k )
)
.(199)

Note that the above diffusional approximation ignores the acceleration of the relative (diffusional)
motion. The cancelation removes sound waves due to diffusional motion, which are related to the so-
called phenomenon of second sound; see, e.g., [39] for the later phenomenon. A somewhat similar
order-of-magnitude analysis of the terms appearing in the partial momentum balances has been
done in [56]. Let us also mention in passing that the appearance of stress induced diffusion has been
investigated in [3] via an extended Chapman-Enskog theory.

In the Engineering literature on multicomponent diffusion, system (198) is often written using molar
based quantities. With xi = ci/c, Ji = ciui and µmi := Miµi, one obtains

(200) −
∑
j 6=i

xjJi − xiJj
c−Dij

=
ci
RT
∇µmi −

yi
RT
∇p+

hi − ciµmi
RT

∇ lnT − ρi
RT

(bi − b),

where we again omitted the irreversible stress part and only consider reduced thermo-diffusion for
brevity. Observe that the Ji do not sum to zero, but satisfy

∑
iMiJi = 0. It is custom to apply the

chain rule to separate different contributions from the gradient of the µi. This requires to fix the set of
independent variables. With the common choice of (T, p, xi, . . . , xN−1), the notation is

∇µmi = ∇p,Tµmi + ∂µm
i

∂p ∇p+ ∂µm
i

∂T ∇T with ∇p,Tµmi :=
∑N−1

j=1
∂µi

∂xj
∇xj .
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We then obtain
(201)

−RT
∑

j 6=i
xjJi−xiJj

c−Dij
= ci∇p,Tµmi −(φi−yi)∇p+(hi−ciµmi +ciT

∂µm
i

∂T )∇ lnT−ρi(bi−b),

where φi denotes the partial molar volume of component Ai. The different contributions on the right-
hand side correspond to, from left to right, concentration driven diffusion, pressure driven diffusion,
thermo-diffusion and forced diffusion. Except for the contribution from the temperature gradient, the
system (201) coincides with the models given in, e.g., [4], [51]. The additional term constitutes a
driving force for thermal diffusion in non-simple mixtures. It is no surprise that this has been missed in
the references cited above, since the standard derivation of the so-called generalized thermodynamic
driving forces, going back to [26] employs approximate solutions to the multicomponent Boltzmann
equations, hence inherently assumes a simple mixture. As explained already above, this contribution
to the driving forces vanishes for simple mixtures.

The reactive extension of the Maxwell-Stefan equations. In the case of reacting mixtures, the
scale reduction argument from above is not applicable, because for reactive flows the term

ρi(∂t + v · ∇)ui + ρi(ui · ∇)vi,

which has been neglected in the non-reactive case, when summed over all constituents gives
∑

i riui.
While this might be small, it can not be neglected as it is crucial for the thermodynamic consistency.
Instead, the Maxwell-Stefan form is derived by the above entropy invariant model reduction and was
already given in a first form by (164) and (165). Brought into the notation of the present section, it
reads

−
N∑
j=1

yjji − yijj
cMiMj−Dij

−
N∑
j=1

γij

( ji
ρi
− jj
ρj

)
−

N∑
j=1

ρyi yj
cMiMj−Dij

(DT
i

ρi
−
DT
j

ρj

)
∇ lnT =

1
ρRT

(
ρi∇µi − yi∇p− ρi(bi − b) + (hi − ρiµi)∇ lnT + div Sirr

i − yi div (
N∑
k=1

Sirr
k )
)(202)

with γij from (166). The second term on the left-hand side is new.

Let us close this section with a few remarks on mathematical properties of the resulting system
of strongly coupled diffusion equations. A closer inspection of the definition of the γij under the

assumption that the forward reaction rates are modeled such that Rfa → 0 if ρi → 0 for any i
for which Ai is a reactand of this reaction, i.e. for which αai > 0, shows that (202) has the overall
structure

(203)
∑
j 6=i

aijyiyj(ui − uj) = Fi,

where the matrix [aij ] is positive definite (but, in general, not symmetric). Given the invertibility, the ui
are bounded functions of the Fi. As a direct consequence of (203), we then also have the relations

(204) ji = ρyiui =
ρ∑

j 6=i aijyj
Fi + yi

1∑
j 6=i aijyj

∑
j 6=i

aijjj .

This shows that the cross-effects vanish in case yi → 0. Therefore, the solution will retain non-
negative values for all ρi if the Fi are quasi-positive, i.e. such that Fi ≥ 0 whenever ρi = 0. An
inspection of the corresponding terms in (202) shows that all of them contain the factor yi, hence
vanish in case ρi = 0, except for div Sirr

i . The latter also becomes harmless concerning positivity of
solutions if Sirr

i contains a factor yi. Recall that a particularly suitable choice was Sirr
i = yi

∑
k Sirr

k
in which case the stress driven diffusion completely disappears.
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For more information on inverting the non-reactive Maxwell-Stefan equations see [7]. Concerning
criteria for the strong well-posedness of strongly coupled reaction-diffusion systems and positivity of
solutions, the reader is referred in particular to [2].

15. SPECIAL FREE ENERGY DENSITIES FOR FLUID MIXTURES

General context. We discuss possible explicit free energy functions so that the various model
schemes of the previous sections finally end up with a system of explicit PDEs for the variables.
Recall that class-I models need to know the free energy function

(205) ρψ = ρψ̃(T, ρ1, ρ2, ..., ρN ).

If this function were known we could calculate the specific energy e, the chemical potentials
(µi)i∈{1,2,...,N} and the pressure p according to

(206) e = −T 2 ∂

∂T
(
ψ̃

T
), µi =

∂ρψ̃

∂ρi
, p = −ρψ̃ +

N∑
i=1

ρiµi.

This is not sufficient for class-II models because here we additionally need to know constitutive func-
tions for the partial specific energies (ei)i∈{1,2,...,N} and the partial pressures (pi)i∈{1,2,...,N}, i.e.

(207) ei = ẽi(T, ρ1, ρ2, ..., ρN ), pi = p̃i(T, ρ1, ρ2, ..., ρN ).

Except in the special case of simple mixtures (cf. [39]), the functions in (207) cannot be derived from
partial free energy densities in general.

Simple mixtures. If the functions in (207) are of the special form

(208) ei = ẽi(T, ρi), pi = p̃i(T, ρi),

they can be calculated from partial free energy densities ψi = ψ̃(T, ρi) and the corresponding
mixture is called simple mixture. In this case we have

(209) ei = −T 2 ∂

∂T
(
ψ̃i
T

), µi =
∂ρiψ̃i
∂ρi

, pi = −ρiψ̃i + ρiµi.

Mixtures of ideal gases. A special case of a simple mixture is a mixture of ideal gases. In the
non-degenerate case ideal gases are characterized by the following constitutive functions for partial
pressures, energies and entropies,

(210) pi = ρi
k

mi
T, ei = zi

k

mi
(T − T R) + eR

i , si = zi
k

mi
ln(

T

T R )− k

mi
ln(

ρi
ρR
i

) + sR
i ,

where zi = 3/2, 5/2 or 3 for 1-atomic, 2-atomic and more-atomic constituents, respectively, the
index R indicates a reference state and k is the Boltzmann constant, while mi denotes the atomic
mass of Ai. Usually, the specific entropy is written with pi as a variable instead of ρi. Using p =∑N

i=1 pi, we may write
(211)

si(T, pi) = (zi + 1)
k

mi
ln

T

T R −
k

mi
ln
pi
pR
i

+ sR
i = si(T, p)−

k

mi
ln
pi
p

= si(T, p)−
k

mi
lnxi.

With ψi = ei − Tsi, the total free energy density ρψ =
∑N

i=1 ρiψi can then be represented by

(212) ρψ =
N∑
i=1

ρiψi(T, p) +
N∑
i=1

kT

mi
ln(xi).

Ideal mixtures. The last expression has been calculated only for ideal gases. However, it was ob-
served that there is a large class of mixtures that are appropriately described by (212)2 with the last
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term as it stands and with ρψ(T, p) taken from data tables. Such mixtures are called ideal mixtures.

Elastic mixtures. We consider a further special fluid mixture that requires a different treatment. The
following may also be considered as preliminary work to introduce the concept of incompressibility in
the context of fluid mixtures.

Often one meets situations where the various contributions to the free energy originate from dif-
ferent sources. Let us describe a typical case. To this end we first transform the variables in the free
energy function (205) from T, ρ1, ρ2, ..., ρN to T, ρ, x1, ..., xN−1. We write

(213) ρψ̃(T, ρ1, ρ2, ..., ρN ) = ρψ̂(T, ρ, x1, ..., xN−1) to calculate p = ρ2∂ψ̂

∂ρ
.

Abbreviating x′ = (x1, x2, ..., xN−1), we now introduce a constitutive function p = p̂(T, ρ, x′)
for the total pressure of the mixture which is a response of variations of the total particle density n
measuring the atomic distances. The available experimental data concern two kinds of variations of
n: (i) variations of n at fixed composition and fixed temperature, that are called elastic deformations
and (ii) non-elastic variations at fixed pressure due to changes of T and x′. To describe the elastic
deformation we start from the state (T, ρ∗, x′) and end up in the state (T, ρ, x′) and define the mass
density ρ∗ by

(214) ρ∗ = ρ̂∗(T, x′) so that p̂(T, ρ∗, x′) = pR for given p = p̂(T, ρ, x′).

A mixture that is characterized by (214) is called elastic mixture (cf. [10]).

In elastic mixtures we decompose the free energy into non-elastic and elastic contributions and
define

(215) ψth = ψ̂(T, ρ∗, x′) and ψel = ψ̂ − ψth,

implying corresponding decompositions of the chemical potentials,

(216) µth
i = µ̂i(T, ρ∗, x′) and µel

i = µ̂i − µth
i .

Thus we have achieved an additive decomposition of the free energy and the chemical potentials into
elastic and non-elastic contributions. The latter are denoted here as thermal contribution.

In order to complete the determination of the free energy, we finally assume that, in addition to
(214), also the thermal parts of the chemical potentials are given:

(217) µth
i = µ̂th

i (T, x′).

Then the procedure to determine the free energy function is as follows:

(i) Calculate

(218) ψth = −p
R

ρ∗
+

N∑
i=1

ρ∗i
ρ∗
µth
i with

ρ∗i
ρ∗

=
mixi∑N
j=1mjxj

.

(ii) Integrate

(219)
∂ψel

∂ρ
=
p(T, ρ, x′)

ρ2
with ψel(T, ρ∗, x′) = 0.

(iii) Form the total free energy density

(220) ρψ = ρψel + ρψth.

(iv) Calculate µi from ρψ

(221) µi =
∂ρψ

∂ρi
(T, ρ1, ρ2, ..., ρN ).
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(v) Calculate

(222) µel
i = µi − µth

i .

16. INCOMPRESSIBILITY IN THE CONTEXT OF FLUID MIXTURES

Definitions of incompressibility. The notion of incompressibility in a single fluid concerns the
constitutive law for the pressure, which we write here as ρ = ρ̂(T, p). A single fluid is called incom-
pressible if we have ∂pρ̂ = 0. There are reasons to prefer another definition: (i) incompressibility is
a statement on atomic distances, which may be characterized by the mass density only in a single
fluid. In a mixture, however, the particle densities are related to the atomic distances but not the total
mass density; (ii) the inequality (69)3, which is a consequence of the concavity postulate, reveals that
the given definition of incompressibility implies ∂T ρ̂ = 0, i.e. the mass density must be a constant
if we only consider the limiting case ∂pρ̂ = 0 (cf. [39], [22]). Therefore we prefer to start with the
compressible case and propose an elastic constitutive law for the pressure containing a bulk modulus
K . After exploitation of the 2nd law of thermodynamics, we let K → ∞. Two examples serve to
illustrate the procedure.

Example 1. We consider the constitutive law

(223) p = pR +K(
n

nR − f(T, x)).

Here nR denotes some reference value of the total particle density of the mixture,K is the bulk mod-
ulus and the function f(T, x) characterizes a volumetric expansion due to a change of temperature
and variations of the mole fractions. The volume expansion is measured at the reference pressure pR

where we have n/nR = f(T, x). To calculate the elastic part of the free energy according to (219),
we write (223) in the form

(224) p = pR +K(
M(xR)
M(x)

ρ

ρR − f(T, x)) with M(x) =
N∑
i=1

Mixi.

Recall that the elastic transition concerns ρ = M(x)n � ρ∗ = M(x)f(T, x)nR. Integration of
(219) leads to the elastic part of the free energy density,

(225) ρψ̂el(T, ρ, x′) = (pR −Kf(T, x))(
ρ

ρ∗(T, x)
− 1) +Kf(T, x)

ρ

ρ∗(T, x)
ln(

ρ

ρ∗(T, x)
).

The exploitation of the above scheme to determine µel
i gives in the limiting case K →∞:

(226)

n = nRf(T, x), ρψel(T, p, x′) = 0 µel
i =

p− pR

minRf(T, x)
(1−

N∑
j=1

∂ ln(f(T, x))
∂xj

(δij − xj)).

In the incompressible limit the particle density is no longer an independent variable because, due
to (226)1, it is now determined by the other variables. However, the number of independent variables
has not changed. In (226)3 the pressure still appears in the chemical potentials and must now be
considered as a variable that substitutes the particle density as a variable.

The incompressible limit implies a constraint on div v that follows from the algebraic relation
ρ = M(x)n = nRM(x)f(T, x). Differentiation with respect to time and application of the total
mass balance yields

(227) div v = −∂t(M(x)f(T, x)) + v · ∇(M(x)f(T, x))
M(x)f(T, x)

,

i.e. the evolution of div v is already given by the evolution of temperature and mole fractions.
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Example 2. Here we discuss an alternative constitutive law for the pressure leading to a different
constraint on div v in the incompressible limit. We consider a solution and indicate the solvent by the
index N and the dissolved substances by i ∈ {1, 2, ..., N − 1}. For simplicity, in this example we
ignore volumetric changes, i.e. we set f = 1. We propose

(228) p = pN +
N−1∑
i=1

pi with pN = pR
N +K(

nN
nR
N

− 1), pi = ρi
k

mi
T.

Thus we describe the solvent by an elastic liquid and the solutes as a mixture of ideal gases.

The determination of the free energy density and the chemical potentials runs along the same
path as in Example 1. The density ρ∗ for which we have p = pR is given by

(229) ρ∗ =
pR − pR

N +K

kT + ( K
nR

N
− kT )xN

M(x).

The elastic part of the free energy density now reads

(230) ρψel = (pR
N −K)(

ρ

ρ∗
− 1) +

(
kT

M(x)
+ (

K

M(x)nR
N

− kT

M(x)
)xN

)
ρ ln(

ρ

ρ∗
).

The further results are exclusively given in the incompressible limit K →∞:

(231) nN = nR
N , ρψel(T, p, x′) = 0, (µel

i )i∈{1,2,...,N−1} = 0, µel
N =

p− pR

mNn
N
N

.

In order to compare the results of Example 2 with those of Example 1 we set f = 1 in (226). In
this case we observe that (226)1,2 agrees with (231)1,2, and the difference of the chemical potentials
are also to be expected, because in Example 1 incompressibility concerns all atomic distances, while
in in Example 2 incompressibility is exclusively related to the distances between the particles of the
solvent.

Accordingly, the resultant constraint refers to div vN and not to div v as in Example 1, because
the partial mass balance of constituent N now reduces to

(232) div vN =
1

mNnR
N

rN .

Thus if there is no mass production of the solvent, which is the usual case, we have the simple
constraint div vN = 0.

Incompressibility as a limiting case. The classical literature frequently considers an incompressible
limit where thermal expansion is still possible. This limiting case leads to two apparent inconsistencies,
(cf. [39], [22]). One concerns the inequality (69)3,

(233) (
∂ρ

∂T
)2 <

cpρ
2

T

∂ρ

∂p
,

and the other is related to the coupled systems of partial differential equations for the variables at
hand. Here, we must show that div v = 0 is compatible with the variation of ρ, which seems to con-
tradict the mass balance. In the following we show that an incompressible limit with thermal expansion
is possible.

It is sufficient to discuss the problem in the context of a single fluid. The variables are then p, v and
T , the viscous stress is given by the Navier-Stokes stress and the heat flux is generated by Fouriers
law. The mass density and the internal energy are calculated from the constitutive laws ρ = ρ(T, p)
and e = e(T, p), respectively. In this case the relevant equations of balance for mass, momentum
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and internal energy can be written as

∂ρ

∂T
Ṫ +

∂ρ

∂p
ṗ+ ρ div v = 0,(234)

ρv̇ +∇p− div Sirr = ρg,(235)

ρcpṪ +
T

ρ

∂ρ

∂T
ṗ+ div q = Sirr : D,(236)

where ψ̇ = ∂tψ + v · ∇ψ indicates the material time derivative. Below, we let g = ||g||.
These equations embody four different phenomena whose importance may be characterized by

four dimensionless numbers which are called Mach number, Reynolds number, Froude number and
Fourier number, respectively. They are defined via

(237) Ma2 =
v2

0ρR

pR
, Re =

ρRL0v0

ηR
, Fr2 =

gt0
v0
, Fo =

κRt0
ρRcR

pL
2
0

.

After rewriting the equations (234)-(236) in a non-dimensional form, these numbers naturally appear.
Let us introduce t = t0t

′, x = L0x
′, p = pRp

′, v = v0v′ with v0 := L0/t0, T = TRT
′,

Sirr = σ0S′ irr with σ0 = ηRv0/L0 and cp = cR
pc
′
p, where the quantities with a prime have no

physical dimension. We set cR
p = pR/ρRTR and, dropping primes, obtain

∂ρ

∂T
Ṫ +

∂ρ

∂p
ṗ+ ρ div v = 0,(238)

ρv̇ +
1

Ma2 ∇p−
1

Re
div Sirr =

1
Fr2

ρ eg,(239)

ρcp Ṫ +
T

ρ

∂ρ

∂T
ṗ+ Fo div q =

Ma2

Re
Sirr : D,(240)

where eg denotes the unit vector in direction of the gravity field g. Our discussion starts with a sim-
plified version of the explicit constitutive law (224) which we write in the form

(241) ρ = 1− βTR(T − 1) +
pR

K
(p− 1),

using the dimensionless variables. We consider water and choose TR = 293 K, ρR = 998 kg/m3

and pR = 105 Pa. In the neighborhood of this state we have a thermal expansion coefficient of
β = 2.07 · 10−4 1/K, a bulk modulus of K = 2.18 · 109 Pa and a specific heat of cp = 4.18 · 103

J/kg/K. Moreover, we have ηR = 10−3Pa s and κR = 0.6 W/K/m. Next, we introduce a small
parameter ε � 1 and two parameter β0, α0 of order 1. In our example: ε = 10−4, β0 = 6.07,
α0 = 0.46. Then (241) reads

(242) ρ = 1− β0(T − 1)
√
ε+ α0(p− 1)ε.

We conclude that the variation of ρ due to compressibility is about two orders of magnitude smaller
than variation due to thermal expansion. In the limiting case ε→∞ the smallness parameter drops
out from the inequality (233) and the remaining inequality reads as

(243) β2
0 < c′p α0.

Note that c′p = 12247 for the example above, hence the inequality (243) is satisfied.

Next we study the behavior of the equations (238)-(240) in the incompressible limit. We assume
finite values of Re, Fo and consider the low Mach number limit Ma =

√
ε with a fixed ratio γ =

Fr2/Ma. In this regime we will obtain a consistent incompressible limit ε→∞.

To this end we formally expand the variables

(244) p = p0 + p1Ma + p2Ma2 + ..., v = v0 + v1Ma + ..., T = T0 + T1Ma + ...
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and correspondingly the constitutive functions. In the highest order, the equations (238)-(240) then
reduce to

(245) div v0 = 0, v̇0 +∇p2 −
1

Re
div Sirr

0 = −β0(T0 − 1), cpṪ0 + Fo div q0 = 0.

Furthermore, we obtain∇p0 = 0 and∇p1 = Ma
Fr2 eg , but these equations are not needed to solve the

coupled system (245). Observe that the higher order pressure p2 becomes the Lagrange multiplier
that guarantees the constraint (245)1. Thus we have established a thermodynamically consistent
limit describing incompressible behavior with thermal expansion. Some of the considerations about
consistency of the incompressible limit above are closely related to those in [22].
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