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Metastability for discontinuous 
dynamical systems under Lévy 
noise: Case study on Amazonian 
Vegetation
Larissa Serdukova1,2,3, Yayun Zheng1,2,4, Jinqiao Duan2,5 & Jürgen Kurths2,6,7

For the tipping elements in the Earth’s climate system, the most important issue to address is how 
stable is the desirable state against random perturbations. Extreme biotic and climatic events pose 
severe hazards to tropical rainforests. Their local effects are extremely stochastic and difficult to 
measure. Moreover, the direction and intensity of the response of forest trees to such perturbations 
are unknown, especially given the lack of efficient dynamical vegetation models to evaluate forest tree 
cover changes over time. In this study, we consider randomness in the mathematical modelling of forest 
trees by incorporating uncertainty through a stochastic differential equation. According to field-based 
evidence, the interactions between fires and droughts are a more direct mechanism that may describe 
sudden forest degradation in the south-eastern Amazon. In modeling the Amazonian vegetation 
system, we include symmetric α-stable Lévy perturbations. We report results of stability analysis of the 
metastable fertile forest state. We conclude that even a very slight threat to the forest state stability 
represents L´evy noise with large jumps of low intensity, that can be interpreted as a fire occurring in 
a non-drought year. During years of severe drought, high-intensity fires significantly accelerate the 
transition between a forest and savanna state.

Tipping elements (TEs) are subsystems of the Earth’s climate system, at least subcontinental in scale, which are 
characterized by a critical control value, called the tipping point, beyond which even small perturbations of the 
system may lead to drastic qualitative changes in the system’s features and behaviour1. The study of these sys-
tems plays a crucial role in interdisciplinary research, particularly because TEs represent a significant part of 
our planet. The smooth functioning of TEs directly depends on its performance and may also have a significant 
impact on humans and their welfare. Thus, it has now become a challenge to quantify the qualitative changes in 
TEs in terms of the impact that they might have on all elements of an ecosystem.

One such tipping elements is the Amazon rainforest. In recent years, the rainforest has attracted substantial 
attention from scientists from different areas. Menck et al. have proposed a conceptual model that describes the 
dynamical behaviour of the forest cover2–4 incorporating non-smooth switches in the growth term. Sternberg  
et al. have developed an accurate forest area model that addresses forest contributions to dry season precipitation 
and the consequential effects on the forest’s own establishment3. Hirota et al. have analysed data on the distribu-
tion of tree cover in Africa, Australia and South America, and have statistically tested their hypothesis describing 
the existence of three distinct attractors in a forest ecosystem: forest, savanna and treeless states4.

However, in the modelling of the Amazon rainforest, there is only a small amount of information5, 6 on an issue 
that deserves attention, given its importance: How robust are desirable, i.e. present, fertile forest states against 
random and even large perturbations2. Global warming-based, droughts, wildfires and similar biotic events pose 
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severe hazards to the tropical forest. However, the direction and intensity of the rainforest’s vegetative response 
to extreme climatic events are uncertain, given the lack of efficient vegetation models to evaluate changes in 
forest tree cover under climatic influence. Some attempts to measure the highly stochastic effects of extreme 
events on forest ecosystems have already been made; e.g., Manso et al.7 have presented an empirical single-tree 
mortality model for multi-species stands that considers competition and extreme event-mediated mortality. The 
latter is included in the model via random effects that considers the stochastic nature of the phenomenon. A 
coupled approach combining dendrochronology and ecophysiology has been used by Bréda et al.8 to illustrate 
how some extreme events affect forest ecosystems and to provide various management guidance in order to 
moderate extreme drought and control selective mortality. Another attempt to clarify this subject has been made 
by Rammig et al.9 and consists in estimating the risk of Amazonian forest dieback by using weighted rainfall pro-
jections from general circulation models to create probability density functions of future forest biomass changes. 
Additionally, Zeng et al.10 have developed an empirical approach, based on the observed climatic spacing of trop-
ical trees, to estimate the maximum potential tropical tree cover with a given climate. Their results emphasize the 
importance of a temperature, precipitation, and atmospheric CO2 in determining tropical tree coverage.

Current approaches used in modelling forest response to extreme events, both mechanistic and empirical, 
have limitations. In particular, they require very precise data, which are not always available, as well as data from 
damage produced by a limited number of extreme events, thus resulting in significant biases in the predictions 
extrapolated by these models. Models from catastrophe theory with bifurcation points proposed for the switch 
between forest cover and the alternative stable state of grassland are deterministic systems, even though the deter-
ministic nature of these systems does not make them predictable, their future behavior is fully determined by 
their parameters and initial conditions, with no random elements involved. However, these extreme events and 
their local effects, are extremely stochastic in nature and are difficult to measure.

Given this background, it is important to consider randomness in the mathematical modelling of forest tree 
cover with uncertainty and to devise a stochastic differential equation for the evolution of forest ecosystems, as 
influenced by extreme climatic and biotic events. Moreover, field-based evidence suggests that the response of 
forest cover to drought-fire interactions will not be smooth but will exhibit sudden transitions11. These abrupt 
increases in fire-induced tree mortality (226 and 462 percent) have been found during the grim drought season, 
on the basis of results of a large-scale, long-term experiment with annual and triennial burn regimes. A Lévy 
process with jumps12, 13 is the best choice among the stochastic processes to model such abrupt pulses given their 
special properties such as heavy-tailed distributions and stochastically continuous sample paths. Therefore, we 
will includ random perturbations of symmetric α-stable Lévy type in the deterministic conceptual Amazonian 
vegetation model and perform a stability analysis of the metastable fertile forest state. In fact, the resulting sto-
chastic model demonstrates the dynamical behaviour called metastability, in which a system explores the state 
space on different time scales: the fast time scale is the transitions that occurs within a single subregion, and the 
slow time scale occurs between different subregions14. Analysing a data set of forest cover to demonstrate Lévy 
flight behaviour, as well as performing a power-law test on Lévy distributions in forest ecosystems15 was outside 
the scope of our study. To our knowledge our research is the first attempt to model forest cover by taking the sto-
chastic nature of forest ecosystems into consideration.

The remainder of the paper is organized as follows. In Model and Methods, we describe the deterministic 
conceptual Amazonian vegetation model. It includes a particular difficulty of a discontinuous vector field, which 
is a known non-smooth dynamical system model. In this section, we raise questions such as the notion of the 
existence and uniqueness of solutions, and we show that our system holds the repulsive sliding mode vector field 
around the switching boundary x = Xcrit, thus suggesting that the initial value problem, with the initial condition 
x0 = Xcrit has three possible solutions. We propose a smooth approximation of the discontinuous vector field per-
formed by using a mollification method to overcome the problem of non-uniqueness. The perturbation type, its 
main characteristics and the stochastic Amazonian vegetation system are also discussed in this section. In Results 
and Discussion, we carry out the stability analysis via a first exit time, an escape probability and a stochastic basin 
of attraction. The results obtained are also presented. Finally, we summarize our findings in the Conclusion.

Model
Conceptual Amazonian vegetation model (AV).  The growth dynamics of the forest cover in 
Amazonian rainforests have been described by Menck et al.2 via the Levins model16, 17, in which a non-smooth 
switch in the growth term that represents the tipping point was incorporated:
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where x is the relative forest cover that grows with the saturating rate G if x > Xcrit and dies with rate D (assuming 
G > D > 0). This model has two equilibria: the forest state = −x 1F

D
G

 and the savanna state xS = 0. xF (resp. xS) 
exists and is stable if xF > Xcrit (resp. Xcrit > 0). Xcrit is the critical forest cover threshold and directly depends on 
aridity. Owing to global warming, aridity has a tendency to increase, thus causing a significant displacement of 
Xcrit and consequently a size decrease in the basin of the forest state, thus contributing to the xF instability before 
the perturbations. When Xcrit reaches the level of xF, the forest state disappears.

In the mathematical literature, this type of dynamical system is known as piecewise-smooth dynamics18, 19 or 
non-smooth dynamical systems, which are described by differential equations with a discontinuous right-hand 
side20, 21. Numerous fundamental questions arise when working with discontinuous dynamical systems. The 
most basic question is the notion of a solution. Many researchers have contributed to the foundation of this 
issue22, including Filippov, Caratheodory, Krasovskii, Euler and Hermes. However, for our purpose we chose the 
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generalized definition of the solution based on the Filippov theory21. Therefore, the AV model can be described 
by a more general n-dimensional nonlinear system with a discontinuous right-hand side20:

= =





∈
∈

+ +

− −
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where the initial condition x(0) = x0. The right-hand side f(t, x) is assumed to be piecewise-continuous and 
smooth on − and + and discontinuous on the hyper-surface Σ, which is called the switching boundary. The 
boundary is defined by a scalar switching boundary function h(x). In our model Σ = {x = Xcrit}; thus, 
h(x) = Xcrit − x. The function f−(t, x) is therefore assumed to be C1 on  ∪ Σ− , and f+(t, x) is assumed to be C1 on 
 ∪ Σ+ . These functions do not agree at the boundary Σ. The system described by (2) does not define f(t, x(t)) if 
x(t) is on Σ. One of the methods to overcome this problem is known as Filippov’s convex method21, which con-
sists of an extension (or convexification) of (2) into the following convex differential inclusion (CDI) (or 
set-valued extension) F(t, x) is the general case and in our model:
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where 
− +co f f[ , ], the convex set with two right-hand side f− and f+, is represented by the following equation:
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The solution concept in the sense of the Filippov method20 (definition 3.3, page 32) guarantees the existence of a 
solution for the system (3) under the assumption that the set-valued function F(t, x) is upper semi-continuous. 
The notion of upper semi-continuity can be found in ref. 20 chapter 2, section 2.2, and the existence of a solution 
of a differential inclusion theorem with a proof is given in ref. 23 (Theorem 3, page 98).

The second fundamental question for this piecewise-smooth dynamical system is the uniqueness of the solu-
tion. Obviously, the solution of the initial valued problem (IVP) equation (3) where ∉ Σx0  is locally unique 
because f−(t, x) and f+(t, x) are smooth. Uniqueness problems of IVP may arise when x0 ∈ Σ or the solution 
crosses the switching boundary Σ. The solution of the differential inclusion (3) with x0 ∈ Σ does not satisfy the 
local uniqueness condition in forward time, as presented in the Methods section. In fact, the type of vector field, 
defined by (3), is around the switching boundary x = Xcrit and is called a repulsive (repelling) sliding mode18 after 
the solutions diverge from x = Xcrit, i.e., a solution that starts close to x = Xcrit will move away from it. However, a 
solution with the initial condition x0 = Xcrit may stay on Xcrit (because 0 ∈ F(Xcrit)) or leave the switching boundary 
by entering either −  or + . The IVP with the initial condition x0 = Xcrit has three possible solutions:
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where ∈C1
1. Varying the parameters D, G and Xcrit (i.e. G > D > 0 and xF > Xcrit) do not lead the system to a 

bifurcation. The system experiences structural instability only when Xcrit reaches the xF level. Thus, considering 
the objectives of our analysis, we assume that D = 0.2, G = 0.85 and Xcrit = 0.3. In this case, the convex differential 
inclusion F(t, x) (3) of the discontinuous AV system (1) is as follows:
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The discontinuous vector field of the Amazonian vegetation model is shown in Fig. 1(a).

Smooth approximation.  To overcome the problem of non-uniqueness of solutions in the non-smooth 
dynamical system, and to be able to apply the stability analysis techniques for the metastable states in the case of 
stochastically perturbed dynamical system, we will achieve a smooth approximation of the discontinuous vector 
fields. Often, smoothing methods are used to address complicated bifurcations19, difficulties in numerical inte-
gration20, 24 or problems with the existence and uniqueness of the solution, which arises in differential inclusions 
with sliding modes. However, this method has some disadvantages, including that it generates stiff differential 
equations which are numerically expensive to solve, and it does not always lead to the approximations that convey 
the physical reality20 in the best way. However, in our case, this approximation is useful, because the smoothness 
of the vector field is a necessary property in our analysis.
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Among the wide variety of smooth approximation methods, the method that stands out is the mollification 
method. This method was chosen because of the large number of benefits that it provides during the regulari-
zation of many ill-posed problems25–29, including efficiency, accuracy, robustness, and reduced costs. A detailed 
explanation of how we carry-out the mollification of (3) is found in the Methods section. Our mollified AV model 
is now described by the following differential equation with a piecewise-smooth continuous vector field (all com-
putations were performed in Matlab):
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In this analysis, we consider three distinct values for the parameter ε, obtaining the following intervals for U and 
Uε:

	 i)	 for ε = 0.08 Uε = [0.177, 0.404] and U = [0.100, 0.495];
	 ii)	 for ε = 0.05 Uε = [0.227, 0.362] and U = [0.170, 0.420];
	iii)	 for ε = 0.025 Uε = [0.264, 0.330] and U = [0.235, 0.360];

Figure 1.  (a) Discontinuous vector field of Amazonian vegetation model (blue line) and respective double well 
potential (red line). (b) Phase portrait for mollified model with ε = 0.08, 0.05, 0.025. (c) Mollified vector field 
f ε(x). Dashed line (ε = 0.08), dotted line (ε = 0.05) and dash-dotted line (ε = 0.025) with support in (0.177, 
0.404), (0.227, 0.362) and (0.264, 0.330), respectively.
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The mollification of the original AV model changes the dynamical behaviour of the system in the neigh-
bourhood of the discontinuity x = Xcrit = 0.3, transforming the repulsive sliding mode in the unstable equilibria 
xA = 0.27 (resp. 0.28, 0.29) for ε = 0.08 (resp. 0.05, 0.025). The vector field f ε(x) and the phase portrait of the mol-
lified AV model are shown in Fig. 1(c,b).

Randomly perturbed Amazonian vegetation system.  Previous research in environmental sciences7, 11  
has provided field-based evidence for the premise that one of the important variables of a landscape, such as 
tree cover, experiences drastic variations or sharp transitions in responding to climate changes and other stress-
ors. High-intensity fires associated with severe drought may accelerate a widespread degradation of Amazonian 
forests by abruptly increasing tree mortality11. When forest fires do occur under average weather conditions, 
they typically move slowly, liberating little energy, and they are short in duration and end at night when relative 
humidity increases. During years of severe drought, the fuel (e.g., leaves, twigs and branches) becomes more 
abundant and drier, thereby increasing the fires intensity and consequently killing a very high percentage of the 
trees. An extreme event acts either as an external disturbance, which forest systems can resist, or as a disturbance 
exceeding the resilience of forest ecosystems and preventing to return to the former dynamical state8, thus indi-
cating the presence of the tipping point. Because the interactions between fires and droughts are a more direct 
mechanism of sudden forest degradation in the south-eastern Amazon11, the dynamical model of forest cover 
evolution goes beyond the typical tipping point, which is modelled via discontinuity in the vector fields; hence, 
the model must contain a stochastic term that fits perturbations such as fires. Recently, to model these abrupt 
pulses, burst-like or extreme events have been given higher priority to Lévy perturbations with jumps12, 13, 30, 
because of their properties, such as heavy-tailed distributions, and noncontinuous sample paths. The probabilistic 
description of the Lévy process is introduced in the Methods section. This description includes a more intuitive 
but concise premise of the concept that should be understandable to a broad audience. In our stochastically 
perturbed AV model we incorporate perturbations of only climatic nature, such as climatic changes31, aridity2, 
precipitations3, 4 and fires11, which the model may response to by exhibiting metastability. In this way, we consider 
the fourth case of perturbations, described in the Methods section, which includes the symmetric α-stable Lévy 
process. The time that the process spends below the value zero is regarded as the hibernation time32 (as exhibited 
by plants adapted to a desert environment), in which the trees that are more robust to the aridity can remain in 
dry state xS = 0 (without dying) for a long time until rain comes.

Following the above discussion, we include random perturbations of αLt  type in system (7) and obtain the 
following SDE in 1,

ψ= + =ε αdX f X dt dL X x( ) , , (9)t t t 0

where f ε is the mollified drift, and ψ is the noise intensity parameter.
According to the existence and uniqueness theorem12 (Theorem 7.26 p.202) and under the Lipschitz and 

growth conditions, the SDE (9) has a unique, adapted, cadlag solution Xt. The solutions of the deterministic AV 
system (7) and the stochastically perturbed system (9) for different initial conditions and values of α and ψ are 
shown in Fig. 2.

The generator A for SDE (9) is

∫ψ ν= ′ + + −ε α
αAg x f x g x g x y g x dy( ) ( ) ( ) [ ( ) ( )] ( )

(10)\{0}1

where ∈g x C( ) ( )2 1 .
For some years, SDEs with discontinuous drift have attracted substantial attention. Different methods and 

techniques have been proposed to address the difficulties arising from the discontinuities in the vector field. 
For instance, in ref. 33 the authors have performed a complete qualitative classification for the isolated singular 
points, i.e., points with deleted neighbourhoods for which the function (1 + |b|)/δ2 (where b-drift and σ-diffusion 
coefficient) is not locally integrable. This classification allows for the description of the behaviour of solutions in 
the neighbourhood of isolated singular points and detects the types of points that disturb the uniqueness of solu-
tions. Stochastic bifurcation analysis has also been studied for different types of models: for smooth and discon-
tinuous oscillators34, and for piecewise-smooth ODEs in two dimensions with additive Gaussian noise35, among 
others. The dynamical behaviour of stochastically perturbed solutions near the switching manifold has been 
studied in refs 36 and 37. Attention has also been paid to the solutions38, 39, to the transition density function40 as 
well as to the noise-induced regularization41, 42 of the SDE with a discontinuous vector field.

Results and Discussion
Stability analysis of the metastable forest state.  The stochastic AV model (9) exhibits the metasta-
bility phenomenon between the two stable states: the savanna xS and the forest xF. Metastability is defined as a 
behavioural phenomenon of the solution of the system, which consists of sudden visits with varying durations 
and frequencies of all domains of attraction30. We are particularly interested in performing a stability analysis 
of the current fertile forest state against stochastic perturbations2. To carry out the stability analysis, we study 
three quantities that provide information on the dynamical behaviour of the system and thus are appropriate for 
this type of analysis. These are meant to be based on the first exit time, escape probability and stochastic basin of 
attraction. More information about these quantities can be found in the Methods section.

In the following section, we present the main results of stability analysis for the metastable fertile forest state 
xF that are based on the Figs 3a–c and 4a–c. By the definitions of the SBA in the case of 1 the basin consists of the 
two intervals, i.e. thick blue segment and the thick red segment of the well-potential curve see Figs 3c and 4c. This 
composition directly relates to the two criteria according to which the basin size is defined14. The blue segment is 
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the set of initial conditions ∩= =D DI i
n

iI1  whose solutions have a “small“ probability, measured by the level m set 
out in Criterion I, of exit from the neighborhood of the fertile forest attractor. In Fig. 3a, that show the escape 
probability from domain D to Dc, the set DI described above remains below the red line (m = 0.5) that is the prob-
ability level established by Criterion I.

Going back to Fig. 3c. the thick red segment is the set of initial conditions ∪= =D DII
c

i
n

iII
c

1  whose solutions 
have a “high“ probability, measured by the level M set out in Criterion II, of return to the vicinity of fertile forest 
attractor. In Fig. 3b, that show the escape (return) probability from domain DI

c to DI, the set DII
c  described above 

remains over the red line (M = 0.7) that is the probability level established by Criterion II. The Fig. 4b,c represent-
ing the graphical results of the stability analysis that is based on the second definition of the SBA43 have the similar 
description as Fig. 3b,c. The exception is the Fig. 4a that reproduces the mean exit time from D, since in this 
definition the Criterion I involves mean exit time to define the size of the thick blue segment that is the set of 
initial conditions DI whose solutions stay longer u(x) ≥ m in the vicinity of the forests attractor.

The maximum probability value of the forest-savanna transition is detected under Lévy noise 
with smaller jumps but with higher frequencies and intensities (α = 1.5, ψ = 1).  Given the initial 
condition x0 = 0.5, the probability that the forest cover, under the noise influence (α = 1.5, ψ = 1), will undergo 
the forest-savannah transition is six times higher than the probability of transitions as a result of noise with the 
parameters α = 0.5 and ψ = 0.1, see Fig. 3a. This result is a clear indication that small noise jumps strongly con-
tribute to xF instability.

The forest cover remains in the fertile forest state longer under Lévy perturbations with smaller 
jumps of lower intensities (α = 1.5, ψ = 0.1).  As the intensity of the noise increases, the mean residence 
time of the forest cover in the xF basin decreases, thus contributing to the instability of the forest state. The size of 
the noise jump inversely influences the mean exit time for various levels of noise intensity: for high noise inten-
sity (say ψ = 1) with the increase of the jump size, which raises the exit time, an enhancement of the forest state 
stability is seen; however, for a low noise intensity (say ψ = 0.1) with the increase of the jump size, which reduces 
the exit time, the forest state becomes more unstable, see Fig. 4a.

The fertile forest state is the largest stability basin under symmetric Lévy process with large 
jumps of low intensity (α = 0.5, α = 1 and ψ = 0.1.  The overall stability results obtained from the two 

Figure 2.  Solutions of deterministic (blue smooth curves) and stochastic mollified (ε = 0.08, red, gray and 
green curves) Amazonian vegetation model with initial conditions X0 = 0.9, 0.6, 0.35, 0.19, 0.1 when (a) 
ψ = 0.01 and α = 1.5, (b) ψ = 0.01 and α = 1, (c) ψ = 0.05 and α = 1.5.
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basins’ definitions are similar. However, these two definitions provide additional information, which is comple-
mentary and provides a complete view of the state stability. In the case of the first SBA definition, which is based 
on the escape probability, the strongest contribution to the size of the basin is due to the set of initial points (0.27, 
+∞) (resp. (0.32, +∞)) for α = 0.5 (resp. α = 1) whose solutions have the decreased escape probability from the 
deterministic basin of attraction. However, the entrance probabilities do not significantly contribute to the size of 
the SBA (see Fig. 3a–c). The smaller basins, i.e. (0.36, +∞) and (0.42, +∞), are obtained for noise with smaller 
jumps (α = 1, 5) independently of the intensity, and therefore are the cause of the strongest state instability.

In the case of the second SBA definition, on the basis of the mean exit time and escape probability, the time 
has the same contribution (due to the choice of the criterion m = AMET average mean exit time) to the length 
of the basin for the different noise parameters α and ψ. What differentiates the length of the basins is the second 
criterion based on the escape probability, see Fig. 4a–c. Consequently from the second SBA definition, the shorter 
basins (0.40, +∞) (resp. (0.43, +∞)) are obtained for noise with higher intensity and larger jumps α = 1, ψ = 1 
(resp. α = 0.5, ψ = 1).

Even very small threats to the forest state stability represents Lévy noise with large jumps of 
low intensity (α = 0.5, α = 1 and ψ = 0.1).  Lévy noise with small jumps (α = 1.5) as well as noise with 
high intensity (ψ = 1) significantly accelerates the transition between the forest and savanna states, thus causing 
high instability of the forest. The size of the SBA of xF does not undergo significant variations with the decrease in 
the values of the mollification parameter ε from the threshold ε = 0.08. This conclusion is confirmed by the results 
in Figure 5, which contains the SBA of the fertile forest state in the mollified Amazonian vegetation model with 
different values for the parameter ε = 0.08, 0.05 and 0.025.

We can explain our results from an ecological point of view, associating Lévy noise with large jumps of low 
intensity (α = 0.5, 1 and ψ = 0.1) to low-intensity fires that occur in non-drought years. However, during years 
of severe drought and high-intensity fires, the Lévy noise with small jumps of high intensity (α = 1.5 and ψ = 1) 
significantly accelerates the transition between the forest and savanna states, thereby causing height instability of 
the forest.

Figure 3.  The first definition of SBA for forest state. (a) Set DI defined by escape probability from D = (0.2676, 
+∞) to Dc = (0, 0.2676). (b) Set DII

c  defined by escape probability from = .D (0, 0 52)I
c , (0, 0.32), (0, 0.27), (0, 

0.29), (0, 0.58), (0, 0.41) to DI = (0.52, +∞), (0.32, +∞), (0.27, +∞), (0.29, +∞), (0.58, +∞), (0.41, +∞).  
(c) Size and location of the SBA by definition I (ε = 0.08) of the fertile forest state. Red part of the well is the set  
DII

c  and blue thick part is the set DI.
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Conclusion
For the tipping elements in the Earth’s climate system the most important issue to address is how stable the desir-
able state is against random, possibly large perturbations. Thus, we performed a stability analysis of the metastable 
fertile forest state in a stochastically perturbed Amazonian vegetation model with a discontinuous right-hand 
side.

Considering that the usual notion of solutions is not suitable for a piecewise-smooth dynamics for our 
research, we used the generalized definition of the solution from Filippov theory. The AV deterministic system 
does not define the vector field f(t, x(t)) if x(t) is on a switching boundary (tipping point x = Xcrit). To over-
come this problem, we extend a discontinuous system into a Fillipov convex differential inclusion. The solution 
concept, in the sense of Filippov theory, guarantees the existence of a solution for this CDI by the assumption 
that the set-valued function F(t, x) is upper semi-continuous. The type of vector field, Amazonian vegetation 
CDI, surrounds the switching boundary x = Xcrit and is called a repulsive (repelling) sliding mode, for which the 
uniqueness of solutions is not guaranteed. In fact, the IVP with the initial condition x0 = Xcrit has three possible 
solutions. To overcome the problem of non-unique solutions in the AV non-smooth dynamical system, and to be 
able to apply stability analysis techniques for the metastable states in the case of stochastically perturbed dynam-
ical systems, we have considered a smooth approximation of the discontinuous vector field. The smooth approx-
imation was been performed by mollification techniques, and we have used the convolution kernel generated by 
Gaussian function as the mollifier. The mollification of the original AV model changes the dynamical behavior of 
the system in the neighborhood of the discontinuity x = Xcrit = 0.3, transforming the repulsive sliding mode into 
the unstable equilibria xA = 0.27 (resp. 0.28, 0.29) for ε = 0.08 (resp. 0.05, 0.025).

Research in the environmental sciences has provided empirical evidence that tree cover experiences dras-
tic variations or sharp transitions in response to climate changes and other stressors. Recently, to model these 
abrupt pulses, burst-like or extreme events have been given higher priority to Lévy perturbations with jumps, 
because their properties, such as heavy-tailed distributions and stochastically continuous sample paths, provide 
the greatest precision to fit the described phenomena. Therefore, in our stochastic AV model, we have considered 
perturbations of symmetric α-stable Lévy type, which under the considered conditions, exhibit metastability 
between the two stable states: savanna xS and forest xF. We have been particularly interested in performing a sta-
bility analysis of the current fertile forest state against stochastic perturbations. To perform the stability analysis, 

Figure 4.  The second definition of SBA for forest state. (a) Set DI defined by mean exit time from D = (0.2676, 
1.2524). (b) Set DII

c  defined by escape probability from = .D (0, 0 46)I
c , (0, 0.48), (0, 0.48), (0, 0.45), (0, 0.46),  

(0, 0.47) to DI = (0.46, 1.14), (0.48, 1.10), (0.48, 1.07), (0.45, 1.18), (0.46, 1.19), (0.47, 1.21). (c) Size and location 
of the SBA by definition II (ε = 0.08) of the fertile forest state. Red part of the well is the set DII

c  and blue thick 
part is the set DI.
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we have calculated the following three quantities: mean first exit time, escape probability and stochastic basin of 
attraction, which provide information about the dynamical behavior of the system and thus are appropriate for 
this type of analysis.

Our main conclusions include the following three points: the maximum probability value of the forest-savanna 
transition is detected under Lévy motion with small jumps of high frequency and intensity (α = 1.5, ψ = 1), the 
forest cover remains in the fertile forest state longer under Lévy perturbations with small jumps of low intensity 
(α = 1.5, ψ = 0.1); and the fertile forest state is the largest stability basin under the symmetric Lévy noise with the 
large jumps of low intensity α = 0.5, ψ = 0.1. The results of our analysis also show that even a small threat to forest 
state stability represents Lévy noise with large jumps of low intensity (α = 0.5, ψ = 0.1). In contrast, a Lévy noise 
with smaller jumps (α = 1.5) as well as noise with higher intensity (ψ = 1) significantly accelerate the transition 
between the forest and savanna states, thereby causing high instability of the forest.

Methods
Condition for local uniqueness of the solution of the differential inclusion.  The solution of the 
differential inclusion (3) with x0 ∈ Σ is locally unique in forward time if

	 (i)	 The projections of the vector field point to the same side of Σ, i.e. the solution exposing a transversal inter-
section to the switching boundary:

⋅ > ∀ ∈ ∂− +n x f t x n x f t x n x h x( ) ( , ) ( ) ( , ) 0, ( ) ( ), (11)
T T

0 0 0 0 0 0

or if
	(ii)	 The projections point to Σ, i.e. the solution being an attractive sliding mode:

> < ∀ ∈ ∂− +n x f t x n x f t x n x h x( ) ( , ) 0 and ( ) ( , ) 0, ( ) ( ), (12)
T T

0 0 0 0 0 0

where the normal n(x) perpendicular to a locally smooth switching boundary Σ is given by the gradient of h(x):

= ∇n x h x( ) ( ), (13)

or if h(x) is non-smooth, by using the generalized differential of h(x) (for more detail see ref. 20, section 2.3):

= ∂n x h x( ) ( ), (14)

where ∂h(x) is assumed to be bounded.

Mollification method.  The general idea of the mollification method is to convolve (i.e. a mathemati-
cal operation on two functions that is defined as the integral of the product of these functions after one is 
reversed and shifted) a discontinuous function with a mollifier (i.e. a smooth function with special prop-
erties) to get the piecewise-smooth continuous function, that still remains close to the original generalized 
function.

Figure 5.  The SBA of the fertile forest state in the mollified Amazonian Vegetation Model with ε = 0.08, 0.05, 
0.025.
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Mollifier were proposed by Friedrichs44 in the study of partial differential equations and is defined as follows:
A real function ηε is called a Friedrichs’ mollifier if

 η
ε

η
ε

η=






 ∈ ∈ε

∞x x C x( ) 1 , ( ), ,
(15)0

with the generator η satisfying the following conditions:

	 (i)	 η(x) ≥ 0, ∈x ;
	(ii)	 η(x) = 0, if |x| > 1;
	(iii)	

∫ η =x dx( ) 1;

Among the possible choices for the generator η we use the Gaussian function η = −
π

x x( ) exp( )1 2 . However, 
the convolution kernel η = −ε ε π ε( )exp x1 2

2
 generated by the Gaussian function does not have a compact support. 

Thus, to be able to use the Gaussian kernel as the mollifier, instead of a compact support, it is required that the 
generator’s moments μk must be finite28, i.e.,


∫µ η= ∈ .x x dx k( ) , for all integers (16)k

k

The convolution operator as well as the mollification are defined as ref. 45:
If →f U:  is locally integrable, then its mollification is represented by

η= ∗ε
ε εf f Uin , (17)

that is,

∫ ∫η η= − = − ∈ε
ε ε ε εf x x y f y dy y f x y dy x U( ) ( ) ( ) ( ) ( ) for ,

(18)U B(0, )

where B(0,ε) is the closed ball with the center 0 and radius ε > 0, ⊂U n is open with the boundary ∂U and

ε= ∈ | ∂ > .εU x U x U{ dist ( , ) } (19)

The mollified function f ε(x) defined in this way possesses the desired properties (proof can be seen in ref. 45):

	 (i)	 f ε ∈ C∞(Uε). The mollified function becomes infinitely differentiable;
	(ii)	 f ε → f a.e. as ε → 0. The mollified function almost everywhere converges to the original one as the parame-

ter ε shrinks;
	(iii)	 If f ∈ C(U), then f ε → f uniformly on the compact subset of U;
	(iv)	 If 1 ≤ p < ∞ and ∈f L U( )loc

p , then f ε → f in L U( )loc
p .

Lévy perturbations.  A brief summary of the main properties of Lévy type stochastic process is useful for 
the understanding of the analysis method and evaluation of the results. The stochastic process that models the 
behavior of the landscape variable tree cover has to be a positive process. Thus, we ponder the following fore cases.

	 i)	 The First case is the Lévy process absorbed at level 0. Let (X, Px) be a initial stable Lévy process starting at 
x > 0 and T = inf{t ≥ 0: Xt ≤ 0} is the first hitting time at negative half-line. The probability measure x is the 
law under Px of the process X( , )x  defined as

≥ .<X t1 , 0 (20)t t T{ }

and it is called killed process or absorbed at level 0. If initial Lévy process (X, Px) has negative jumps it 
crosses the level 0 by jumping46, so X( , )x  vanishes with a jump at 0, i.e. the lifetime of the process is almost 
surely finite.

	 ii)	 If (X, Px) has no negative jumps then X( , )x  vanishes continuously at 0, belonging to the Second case of the 
positive (+-valued) processes.

	iii)	 The Third case is the Lévy process conditioned to stay positive. The following construction of the law ⁎ is 
one of the possible constructions that justifies considering ⁎X( , ) as the Lévy process (X, Px) conditioned 
to stay positive:

 = > > ≥ ∈
→∞

⁎ A P A T t x t A( ) lim ( ), 0, 0, , (21)x
t

x t

where t  is the Borel filtration generated by X, i.e.  δ= ≤X s t( , )t s . The infinitesimal generators for these 
processes were explicitly computed in ref. 46. These three cases of processes can be considered for the AV 
model in the case of the perturbations such as the pests, diseases8, deforestation2, etc. For which, in most of 
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cases, the level X = 0 represents absorbing state.
	iv)	 The Fourth case is the symmetric α-stable Lévy process. A symmetric α-stable scalar Lévy motion αLt  with 

0 < α < 2 is defined in a similar way as a Brownian motion, excepting two following properties: i) station-
ary increments −α αL Lt s  and α

−Lt s have the same symmetric α-stable distribution, i.e. −α
αS t s(( ) ,0,0)
1

 and 
ii) stochastically continuous sample paths, i.e., for every s > 0, →α αL Lt s  in probability, as t → s.

The probability density function for αLt  is defined by

α
− −α αt f t x( ), (22)

1 1

where fα is the probability density function for the standard symmetric α-stable random variable ∼ αX S (1, 0, 0) 
(for more details see ref. 12).

The generating triplet of αLt  is (0, 0, να), with the jump measure, i.e. the expected value of the number of jumps 
of size dy during the unit time, defined as:

ν α= ∈α α α+dy c dy
y

( ) , (0, 2),
(23)1

where cα is the intensity constant. The jump measure controls the intensity and size of the jumps of the process. 
So the α-stable Lévy process has finite variation as well as larger jumps with lower jump frequencies for small 
values of α (0 < α < 1) while it has unbounded variation as well as smaller jumps with higher jump probabilities 
when α ∈ [1, 2).

Mean first exit time.  It is defined as the first exit time from a deterministic domain ⊂D 1 of attraction of 
xF as follows:

τ ω ω= ≥ ∉x t X x D( , ) inf { 0, ( , ) }, (24)t

and the mean exit time or the mean residence time of the process in the forest domain is denoted as 
τ ω ≥u x x( ) ( , ) 0. It has been proven12 that the mean exit time of the stochastic system (9) for an orbit start-

ing at x ∈ D, satisfies the following nonlocal partial differential equation with an external boundary condition

= −
= ∈

Au x
u x x D

( ) 1,
( ) 0, , (25)c

where A is the generator defined in (10) which can be interpreted as =
→

−Au lim
t

u x u
t0

( )t , for every ∈u C ( )2 1 .

Escape probability.  The likelihood that the tree cover process Xt exits firstly from the forest domain of 
attraction D by landing in the set U ∈ Dc belonging to the savanna domain is represented by

= ∈τp x X x U( ) { ( ) } (26)

and solves the following differential-integral equation with Balayage-Dirichlet boundary condition

= ∈

= ∈
∈ .{

Ap x x D

p x x U
x D U

( ) 0, ,

( ) 1, ,
0, \ (27)c

Stochastic basin of attraction.  The third quantity that we will use is the stochastic basin of attraction, 
introduced in refs 14 and 43. The SBA is an important geometric structure that helps to perceive and describe 
the metastable behavior of a system. It is crucial to have an approach for describing the basin of attraction and 
quantifying its shape and size for theoretical and practical reasons14.

By Definition I: SBA of the attractor K with the open deterministic domain of attraction D is the set 
∪ ∪ ∩= = =B m M D D( , ) [ ] [ ]K i

n
iII
c

i
n

iI1 1 , where DiI = {x ∈ D | pi(x) < m}, = ∈ | >D x D p x M{ ( ) }iII
c

iI
c

i , Di are the 
domains of attraction of nearby attractors Ki and p(x) is the escape probability defined in (26).

By Definition II: SBA of the attractor K with the open deterministic domain of attraction D is the set 
∪B m M D D( , )K I II

c , where DI = {x ∈ D | u(x) ≥ m}, = ∈ | ≥D x D p x M{ ( ) }II
c

I
c , u(x) is the mean first exit time 

defined in (24) and p(x) is the escape probability defined in (26).
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