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Abstract. Within the framework of the “Hill Cap Cloud
Thuringia 2010” (HCCT-2010) international cloud experi-
ment, the influence of cloud processing on the activation
properties of ambient aerosol particles was investigated. Par-
ticles were probed upwind and downwind of an orographic
cap cloud on Mt Schmücke, which is part of a large mountain
ridge in Thuringia, Germany. The activation properties of the
particles were investigated by means of size-segregated cloud
condensation nuclei (CCN) measurements at 3 to 4 different
supersaturations. The observed CCN spectra together with
the total particle spectra were used to calculate the hygro-
scopicity parameterκ for the upwind and downwind stations.
The upwind and downwind critical diameters andκ values
were then compared for defined cloud events (FCE) and non-
cloud events (NCE). Cloud processing was found to increase
the hygroscopicity of the aerosol particles significantly, with
an average increase inκ of 50 %. Mass spectrometry analy-
sis and isotopic analysis of the particles suggest that the ob-
served increase in the hygroscopicity of the cloud-processed
particles is due to an enrichment of sulfate and possibly also
nitrate in the particle phase.

1 Introduction

Clouds are a key parameter in climate change prediction, due
to their strong impact on the radiation processes in the at-
mosphere. However, the effect of aerosol particles on cloud
formation, cloud glaciation and precipitation is still insuffi-
ciently quantified, and remains therefore one of the largest
uncertainties in climate change predictions (Lohmann and
Feichter, 2005; IPCC, 2013). Studying the interaction of
aerosol and clouds under natural conditions is challenging
due to the height as well as the spatial and temporal variabil-
ity of clouds. Aside from extensive airplane, balloon or he-
licopter investigations of natural clouds (e.g.Krämer et al.,
2013, p. 337), a well-established method for cloud inves-
tigation is to take advantage of natural clouds reaching the
ground, allowing for ground-based experiments. This exper-
imental design allows, for example, for the investigation of
fog formation (e.g. Po Valley fog experiments;Svennings-
son et al., 1992), advected stratiform clouds (e.g. Kleiner
Feldberg,Wobrock et al., 1994), and also orographically trig-
gered clouds (e.g. Schmücke,Herrmann et al., 2005).

One variation of the ground-based cloud exper-
iments is a Lagrangian-type design. This involves
locating several measurement stations in the predom-
inant flow directions above a ridge, in order to probe
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the air masses before, during and after cloud passage
(e.g.Bower et al., 1999; Herrmann et al., 2005). The use
of hill cap clouds as a natural flow-through reactor was
for example realised successfully on Great Dun Fell (UK)
(Bower et al., 1999; Choularton et al., 1997; Svenningsson
et al., 1997), on the German mountain Kleiner Feldberg
(Wobrock et al., 1994), during the cap cloud experiment
of the 2nd Aerosol Characterisation Experiment (ACE-2
HILLCLOUD) at Teneriffe, Spain (Bower et al., 2000)
and during FEBUKO (Field Investigations of Budgets and
Conversions of Particle Phase Organics in Tropospheric
Cloud Processes) at Mt. Schmücke (Herrmann et al., 2005).

The findings presented here were observed during the
“Hill Cap Cloud Thuringia 2010” (HCCT-2010) cloud ex-
periment, which was also conducted at the low mountain
ridge around Mt Schmücke, where FEBUKO (Herrmann
et al., 2005) took place. HCCT-2010 took place in Septem-
ber/October 2010 and dealt with several aspects of cloud
microphysics and chemistry. An overview of HCCT-2010 is
given in a companion paper in this special issue.

During the previous FEBUKO campaign, particle number
size distribution measurements upwind (ambient) and on the
summit (in-cloud: interstitial and residuals) were used to in-
vestigate the dependence of the scavenged aerosol fraction on
the soluble volume fraction of the observed particles (Mertes
et al., 2005a). In addition, at the upwind site, the hygro-
scopic properties were investigated (Lehmann et al., 2005)
using Hygroscopic Tandem Differential Mobility Analyzer
(HTDMA) measurements. Promising results were achieved
concerning the dependence of the scavenged aerosol frac-
tion on the soluble volume fraction of the particles. How-
ever, directly comparable activation or hygroscopicity mea-
surements before and after the cloud passage were not carried
out during FEBUKO. Aerosol processing was investigated
by model simulation (Tilgner et al., 2005) and by compar-
ing number size distribution upwind and downwind (Mertes
et al., 2005b). Both studies show an effect on the aerosol size
distribution in the size range of the activation diameter and
an increase in aerosol number and mass.

The focus of the work presented here was to investigate
the influence of cloud processing on the activation proper-
ties of aerosol particles. The interaction of particles with wa-
ter can be described theoretically via Köhler theory (Köhler,
1936), which gives the equilibrium vapour pressure over an
aqueous solution droplet. The maximum of the Köhler curve
gives the critical supersaturation necessary for droplet acti-
vation. Classical Köhler theory needs several input parame-
ters (e.g. molar weight of the particle substance, surface ten-
sion of the mixture) which are usually unknown for atmo-
spheric particles. Therefore, one-parameter approximations
were developed (e.g.Petters and Kreidenweis, 2007; Wex
et al., 2007) which are applicable for the description of parti-
cle hygroscopic growth as well as activation properties. One-
parameter approaches are also well suited as a simple mea-
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Figure 1. Sketch of the terrain of the HCCT experiment. For an
approaching flow from the southwest, Goldlauter is the upwind sta-
tion and Gehlberg the downwind station. This was the case for all
defined full cloud events given in Table1.

sure to implement particle activation behaviour in modelling
studies (e.g.Pringle et al., 2009).

The results presented in this study are based on size-
segregated CCN measurements at the upwind and downwind
stations during periods of connected flow. The hygroscop-
icity parameterκ was deduced from the derived activation
diameters. For selected non-precipitating cloud events on
Mt Schmücke, the droplet activation properties at the upwind
and downwind valley stations were compared, and the statis-
tical significance of the findings was tested, in order to mea-
sure the influence of cloud passage on particle hygroscop-
icity. The same comparison between the upwind and down-
wind stations was also done for defined cloud-free periods as
a control experiment.

2 Experimental design and setup

The experiments were conducted as part of the HCCT-
2010 campaign, a Lagrangian-style experiment in which
air parcels were probed at several locations during pas-
sage through an orographic cloud, focusing on the influ-
ence of cloud presence on the physical and chemical prop-
erties of the air parcel of interest (see companion paper for
details). Briefly, measurements of meteorological parame-
ters and physical and chemical aerosol and gas properties
were conducted at three sites along the mountain ridge of
the Thuringian Forest, Germany: one upwind station, the
in-cloud mountain peak station on Mt Schmücke, and one
downwind station (Fig.1).

Time periods with optimal connected flow between the
three stations were chosen by applying several different
methods, e.g. shape of particle number size distribution, wind
direction, wind speed and ozone concentration (Tilgner et al.,
2014). These connected flow regimes were subdivided into
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periods with a cap cloud present on Mt Schmücke and with
the valley sites cloud free, so-called full cloud events (FCE,
cf. Table 1), and cloud-free periods at all three stations,
called non-cloud events (NCE). The FCE and NCE with
CCN measurements available at the Goldlauter and Gehlberg
stations are listed in Table1 together with liquid water con-
tent (LWC), wind direction (wd) and wind speed (ws) on
Mt Schmücke. LWC was measured by applying the Particu-
late Volume Monitor (PVM-100, Gerber Scientific Inc., Re-
ston VA; Gerber, 1991). By coincidence, the FCE time pe-
riods with CCN data available at both valley stations had an
approaching flow from a southwesterly direction, while for
the NCE cases the flow approached from a northeasterly di-
rection. This was taken into account in the data analysis and
does not significantly affect the findings.

2.1 Measurement sites

The size-segregated CCN measurements took place at the
upwind and downwind sites either side of Mt Schmücke,
namely Gehlberg (GB) and Goldlauter (GL).

The Goldlauter (GL; 50◦38′14′′ N, 10◦45′13′′ E) val-
ley station is situated on the southwestern slope of the
Thuringian Forest mountain ridge. For FCE (southwesterly
wind), this was the upwind station. That is, the air parcel
was probed here before entering the cap cloud, and there-
fore represents the “pre-cloud” status of the aerosol. For
NE_NCE (northeasterly wind), Goldlauter was the down-
wind station. All measurement equipment was placed in-
side an air-conditioned container. On top of the container
a PM10 inlet followed by a self-regenerating diffusion drier
was placed (Tuch et al., 2009), maintaining the relative hu-
midity of the aerosol flow below 20 %. Inside the container
– besides other instrumentation – a Mobility Particle Size
Spectrometer (MPSS-type TROPOS; details of this instru-
ment inWiedensohler et al., 2012) was used to determine the
particle number size distributions between 10 and 850 nm,
and a Cloud Condensation Nucleus counter (CCNc, CCN-
100, DMT Boulder,Roberts and Nenes, 2005) in combina-
tion with a differential mobility analyser (DMA) was used to
measure CCN distributions between 25 and 300 nm.

The measurement equipment at the Gehlberg (GB;
50◦40′21′′ N, 10◦47′34′′ E) FCE downwind station was also
placed inside an air-conditioned container. Here the PM10 in-
let was followed by individual drier systems in front of the
instruments instead of the self-regenerating diffusion drier
applied in GL. This was the only difference in the size-
segregated CCN measurement setup between both stations.
Nafion driers (30 cm, TROPOS custom made) were placed in
front of the TROPOS-type mobility particle size spectrome-
ter and the DMA–CCNc, both of which kept the RH stable
below 20 %. The data were corrected for the individual par-
ticle losses due to tubing and driers.

At these two sites and at Mt Schmücke (SM; 50◦39′17′′ N,
10◦46′30′′ E, 916 m a.s.l.), size-resolved (coarse and fine)

particulate matter was collected for sulfur isotope analysis,
with the in-cloud particulate separated into cloud droplet
residual and interstitial fractions. In addition, at the upwind
and downwind stations, SO2 and H2SO4 gas and ultrafine
particulate matter were collected. Combined scanning elec-
tron microscopy (SEM) and nano-scale secondary ion mass
spectrometric (NanoSIMS) measurements were used to de-
termine the isotopic composition of particulate sulfur sam-
ples (δ34S fractionation factors) of the samples. Stable sulfur
isotopes fractionate during reactions, so the isotopic compo-
sition of a product is not equal to the isotopic composition
of the reactant. Using previous measurements of sulfur iso-
tope fractionation factors characteristic of different oxidation
pathways, e.g. oxidation by OH, H2O2 or transition metal ion
catalysis (Harris et al., 2012, 2013a), the isotopic analyses
made during HCCT-2010 allow dominant sulfate production
pathways to be determined and resolved for different particle
types, as described inHarris et al.(2014).

2.2 Size-segregated CCN measurements

The setup for the size-segregated activation measurements
was identical at the upwind and downwind stations (Fig.2),
apart from the different drier types (cf. above). Downstream
of the aerosol inlet and the drier unit, the 1 L min−1 aerosol
flow passed through a neutraliser to achieve the bipolar
charge equilibrium (Wiedensohler, 1988). The DMA ran
with an aerosol to sheath air flow of 1/10 to size-select
aerosol particles based on electrical mobility, in order to
achieve a quasi-monodisperse aerosol distribution. Multi-
ply charged particles with larger sizes were also selected,
for which the size and activation scans had to be cor-
rected using the bipolar charge distribution. Downstream
of the DMA, a flow of 0.5 L min−1 particle-free air was
added to the aerosol flow, and the total flow was divided
between a particle counter (1 L min−1 working flow, CPC
3010, TSI Aachen Germany) and a cloud condensation nu-
cleus counter (0.5 L min−1 working flow, CCNc, CCN-100,
Boulder, USA). Measurements at the Goldlauter station were
taken from 11 September 2010 to 20 October 2010, and
in Gehlberg from 12 September 2010 to 20 October 2010,
which is slightly shorter than the duration of the whole
HCCT-2010 campaign.

The CCNc, a stream-wise thermal gradient cloud conden-
sation nucleus counter (Roberts and Nenes, 2005), was ap-
plied to investigate supersaturation-dependent activation of
the particles. In this instrument, the inlet flow is split into
a particle-free sheath air flow, which is kept particle free
via a filter, and an aerosol flow. The sheath air is humidi-
fied before entering the flow tube, and surrounds the aerosol
at the centre line. The stream-wise temperature gradient ap-
plied in the flow tube determines the supersaturation to which
the particles are exposed. The number of activated particles
(NCCN) is detected at the end of the flow tube with an opti-
cal counter. The ratio between the CCN number and the total
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Table 1.Overview of all defined full cloud events (FCE) and non-cloud events (NE_NCE) for which CCN data are available at both valley
stations.

Start (CEST) End (CEST) LWC wd ws
[g m−3] [◦] [m s−1]

Cloud events

FCE11.2 1 Oct 2010 20:50 2 Oct 2010 03:10 0.37 222.35 3.73
FCE11.3 2 Oct 2010 07:10 3 Oct 2010 00:30 0.35 223.98 6.58
FCE13.3 6 Oct 2010 06:50 7 Oct 2010 01:00 0.32 222.05 4.21
FCE22.0 19 Oct 2010 01:50 19 Oct 2010 09:00 0.29 226.76 5.96
FCE22.1 19 Oct 2010 21:10 20 Oct 2010 02:30 0.31 247.56 4.68

Non-cloud events

NE_NCE0.1 7 Oct 2010 13:00 7 Oct 2010 18:50 – 49.40 1.27
NE_NCE0.2 8 Oct 2010 15:10 8 Oct 2010 18:30 – 59.70 2.24
NE_NCE0.3 9 Oct 2010 14:30 10 Oct 2010 09:30 – 68.88 4.67
NE_NCE0.4 10 Oct 2010 15:50 11 Oct 2010 03:30 – 51.36 5.66
NE_NCE0.5 11 Oct 2010 13:00 12 Oct 2010 04:40 – 51.61 5.72

Fig. 1. Sketch of the terrain of the HCCT experiment. For an approaching flow from southwest, Goldlauter is

the upwind station and Gehlberg the downwind station. This was the case for all defined full cloud events given

in Table 1.
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Figure 2. Setup for the size-segregated CCN measurements. The
experimental setup was identical for the upwind and downwind
sites.

particle number (N ) gives the activated fraction (AF) of the
particles. The CCNc was used to measure diameter scans for
which the saturation is fixed, and the dry particle diameter
is varied. In this study, we ran diameter scans for four fixed
supersaturations (0.07, 0.1, 0.2, and 0.4 %). The critical par-
ticle diameterDc, the diameter at which 50 % of the particles
are activated at a particular supersaturation, is derived from
such a diameter scan.

The supersaturation reached in the CCNc during
the size-segregated CCN measurements was cali-
brated with ammonium sulfate particles. This was done
by atomising an ammonium sulfate–water solution
(0.1 g(NH4)2SO4 (300 mL H2O)−1), passing the result-
ing aerosol through a diffusion dryer, and injecting the
dried particles into the CCN measurement setup (Fig.2).
The calibration procedure followed that described inRose

et al. (2008). In short, diameter scans were run at nominal
supersaturations between 0.07 and 0.7 %, which relate to
a certain temperature gradient in the flow tube of the CCNc.
The AF were fitted by applying a Gaussian error function to
the data:

AF =
a + b

2

[
1+ erf

(
D − Dc

σ
√

2

)]
, (1)

wherea andb are the upper and lower limits for calculat-
ing critical diametersDc at the set-nominal supersaturations.
As (NH4)2SO4 particles were used, the activation diameter
is known, and the set temperature gradient in the instrument
can be related to the effective supersaturation SS reached in
the column. Repeated calibrations show an achievable ac-
curacy in SS of 10 % (relative) at supersaturations above
SS= 0.2%, andδSS≤ 0.02 % (absolute) at lower supersat-
urations (Gysel and Stratmann, 2013).

In the work presented here, we apply the single-parameter
κ Köhler theory (Petters and Kreidenweis, 2007) to describe
the hygroscopicity of the ambient particles. The hygroscop-
icity parameterκ is calculated in the following way (from
Petters and Kreidenweis, 2007):

κ =
4A3

27D3
c ln2SS

, (2)

with

A =
4σs/aMw

RTρw
. (3)

The critical diameter is determined by fitting the AF scans
to the error function (Eq.1) analogously to the calibration
procedure. The calibrated SS and measuredDc are inserted
into Eq. (2) to calculateκ at fixed supersaturations for ambi-
ent particles. The error in the SS setpoint, especially at low
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supersaturations, results in quite a large level of uncertain-
ties in κ values. A critical diameterDc of e.g. 200 nm at
an SS of 0.07%± 0.02% corresponds to aκ range of 0.21
(SS= 0.09%)< 0.35< 0.94 (SS= 0.05%). This is a criti-
cal point in working withκ, and has to be considered in the
interpretation. This will be discussed more in Sect.3.2.

2.3 Particle number size distribution measurements

In parallel to the CCN spectra, the particle number size dis-
tribution in the size range between 10 and 850 nm was mea-
sured at the Goldlauter and Gehlberg stations. The measure-
ments were done with the above-mentioned mobility particle
size spectrometers, which were connected to the same PM10
inlet as described above for the CCN measurements. Particle
losses due to diffusion in the instrument and in the sampling
lines have been corrected according to the method of “equiv-
alent length” as described inWiedensohler et al.(2012).

The CCN spectra have to be corrected for multiply charged
particles, as the fitting of the AF with the error function is
influenced by the appearance of a second step in the CCN
spectra (Rose et al., 2008). This step is triggered by the fact
that multiply charged large particles have the same electrical
mobility diameter as singly charged smaller particles, and
are thus falsely selected in the DMA. In the CCNc, how-
ever, they are activated at a lower supersaturation than the
singly charged particles, and appear in the activated fraction
vs. particle diameter curve as a first activation step at smaller
diameters. How pronounced this first step is depends on the
particle number size distribution, especially on the number
of larger particles. The performed multiply charged correc-
tion is based on the measured number size distribution, and
is described in detail inDeng et al.(2011): in brief, starting
at larger sizes, the number of possible multiply charged parti-
cles at one size is calculated based on the charge equilibrium
(Wiedensohler, 1988), and subtracted from the particle num-
ber at the corresponding smaller sizes. This is done for the
wholeN andNCCN distribution from large to small particles.

3 Results and discussion

Ideally, a fixed time difference of 20 min would be applied to
compare upwind and downwind measurements. That is, the
measurement from the upwind station would be paired with
a measurement from the downwind station, which was taken
20 min later. However, the set supersaturation should be the
same at both stations for comparable measurements. There-
fore, downwind data within 60 min of the upwind time stamp
were included in the analysis. The number of activation mea-
surements (n) per supersaturation (SS) for the matching time
periods is given in Table2.

3.1 Activation diameter and hygroscopicity parameter
κ

The averaged values of the critical diameter (Dc), its stan-
dard deviation (σDc) and the hygroscopicity parameter (κ)
for each SS across all full cloud events (FCE) and non-
cloud events (NCE) are given in Table2. We merged all the
FCE data and all the NCE data respectively in order to have
a better statistical basis. During cloud events,Dc at the up-
wind station was observed to be larger than at the downwind
station, with upwind values between 194.3 (SS= 0.07%)
and 122.9 nm (SS= 0.2%) compared to downwindDc be-
tween 173.9 (SS= 0.07%) and 101.5 nm (SS= 0.2%). Con-
sequently, during cloud events, the calculatedκ values at the
upwind station (0.4, 0.42 and 0.19 for SS of 0.07, 0.1 and
0.2 %) were smaller than after cloud passage, whereκ values
of 0.54, 0.54 and 0.33 at SS of 0.07, 0.1 and 0.2 % were cal-
culated. No significant changes inDc andκ were observed
for non-cloud events (n = 55,p > 0.01).

In Fig. 3a and b, the results are illustrated. The error bars
were calculated by assuming a maximum absolute error in
SS of±0.02 % for SS≤ 0.2%, by assuming a 10 % relative
uncertainty for SS> 0.2% (Gysel and Stratmann, 2013), and
by applying Eq. (2) to calculateκ. Due to the nonlinear re-
lation between SS andκ, the error bars are also asymmetric,
and give the maximum uncertainty inκ. The increase inκ
after the cloud passage in the FCE is obvious, whereas in
the NCE the data fall together on the 1: 1 line. However, the
observed effect is within the measurement uncertainty – es-
pecially for the lower supersaturations. Therefore, we tested
the statistical significance of the change in critical diame-
ters (and thusκ values) between the stations during FCE and
NCE, and re-estimated the uncertainty inκ by modelling the
instrumental error in supersaturation by a Gaussian distribu-
tion.

3.2 Statistical analysis of the critical diameters andκ
uncertainty estimation

We used statistical testing to determine if the change from
upwind critical diametersDc,up to downwind critical diam-
etersDc,down is significantly different between cloud and
non-cloud events. This statistical testing scheme is known
as “between-within” or “mixed” design, and it is analogous
to the statistical experimental design in medicine called the
“pre-post case control study”, in which half of its patients
are given medicine and the other half a placebo, and the pa-
tients are tested before and after the treatment. The exper-
imental design is illustrated in Fig.4. While testing, it is
essential to take into account that the pre-measurement and
post-measurement (upwind and downwind) points during the
same day are paired, which accounts for variability between
days and thus reduces noise. The simplest statistical test for
a mixed design is called change score analysis (Oakes and
Feldman, 2001), which is essentially at test between1FCE
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Table 2. Mean critical diameter (Dc), standard deviation (σDc) and hygroscopicity parameter (κ) for full cloud events (FCE: 11.2, 11.3,
13.3, 22.0 and 22.1) and non-cloud events (NE_NCE: 0.1, 0.2, 0.3, 0.4 and 0.5) at the Goldlauter and Gehlberg stations, separated by
supersaturation (SS).N gives the number of cases where measurements could be compared between Goldlauter and Gehlberg.

Upwind Downwind

Event SS n Dc σDc κ∗ Dc σDc κ

% nm nm nm nm

FCE 0.07 8 194.31 17.45 0.40 173.88 11.95 0.54
FCE 0.10 18 150.58 12.24 0.42 137.98 10.15 0.54
FCE 0.20 16 122.89 10.57 0.19 101.46 6.16 0.33

NCE 0.07 9 194.48 7.64 0.38 196.31 9.62 0.37
NCE 0.10 11 153.61 6.61 0.38 155.41 5.86 0.37
NCE 0.20 23 100.59 10.37 0.36 107.60 12.16 0.29
NCE 0.40 12 69.99 7.11 0.26 72.13 6.38 0.24

∗ Errors inκ are discussed in Sect.3.2.
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Figure 3. Hygroscopicity parameterκ compared for upwind and downwind stations during the full cloud events (FCE, left panel) and during
non-cloud events (NCE, right panel). The error bars represent a maximum absolute error in SS of±0.02 % for SS≤ 0.2%, and a 10 %
relative uncertainty for SS> 0.2% (Gysel and Stratmann, 2013).

and 1NCE where 1 = Dc,up− Dc,down. The null hypothe-
sis was that there is no difference between FCE and NCE
for Dc,down with respect toDc,up. A confidence ofp < 0.01
was needed to reject the null hypothesis. The statistical anal-
ysis showed that for every supersaturation (0.07 %, 0.1 %,
0.2 %), the downwind critical diameters with respect to up-
wind diameters were significantly smaller during FCE than
during NCE, withp values of 2.676× 10−5, 1.404× 10−3

and 3.137×10−5 for the 0.07, 0.1 and 0.2 % supersaturations
respectively. The critical diameter data sets for each super-
saturation were tested separately. 0.4 % supersaturation was
excluded from testing because there were no data for FCE
periods.

We also checked with at test that there is no significant
difference between the FCE and NCE upwind critical diam-

eters, in order to show that the differences in downwind crit-
ical diameters are caused by the cloud processes. As statis-
ticians disagree on the correct statistical tests for mixed de-
signs (Senn, 2006), we also applied the analysis of covari-
ance (ANCOVA), assuming a linear modelDc,down= α +

cloudiness+ Dc,up+ ε, whereα is an intercept term, cloudi-
ness is the parameter defining if the data point was measured
during an FCE or NCE day, andε is a Gaussian noise term.
This test is used to investigate the statistical significance of
the term cloudiness, usingDc,up values as covariates. The re-
sults given by ANCOVA (not shown) are in good agreement
with thep values obtained from the change score analysis.

Next, we estimated the uncertainty distribution ofκ with
Monte Carlo simulations. We have previously observed
that the instrumental supersaturation error of the CCNc is
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Figure 4. Schematic depiction of the experimental mixed design.
The starting and end points of the black lines refer to the critical
diameter data points.

Gaussian, with standard deviations of 0.00714 for 0.07, 0.1
and 0.2 % supersaturations and 0.01429 for 0.4 % super-
saturation. These standard deviations are obtained from re-
peated calibration results showing that with a 95 % con-
fidence level, the absolute uncertainty for supersaturations
≤ 0.2 % is±0.014 %, and for SS= 0.4 % the uncertainty is
0.027 %. The 95 % confidence level corresponds to 1.96σ ,
from which we can derive the aforementioned standard de-
viations. However, due to the nonlinear relationship between
κ and the critical diameter, the uncertainty distribution ofκ

is non-Gaussian. The distribution ofκ is simulated for each
data point separately by drawing 100 000 random samples
from a Gaussian supersaturation distribution (µ = 0.07,σ =

0.00714) and by using Eq. (2). An example of a simulated
κ distribution is presented in Fig.5, showing the 2.5, 25th,
50th, 75th, 97.5 and 100th percentiles. All the analyses were
done using R statistical software (R version 2.15.3, 2013).

By applying this statistical approach to the data, it is possi-
ble to present more realistic error bars. Using the maximum
absolute error is a bad way of representing a Gaussian distri-
bution, and since we know that the error in SS is Gaussian,
the original error bars are a crude approximation. By assum-
ing a Gaussian-distributed SS error, we are able to calculate
the uncertainty distribution ofκ (by Monte Carlo sampling),
and from this distribution it is easy to calculate percentiles
with which to represent error bars at the desired confidence
level. Percentiles, e.g. 95 % confidence intervals, are a more
correct way of representing the uncertainty inκ than the max-
imum absolute error. Figure6a gives singleκ values at the
upwind station compared to theκ at the downwind station
during FCE. The error bars presented in the figure are the
95 % confidence intervals calculated from the Monte Carlo
simulations as explained above. Allκ values derived for the
downwind station are higher than those at the upwind sta-
tion. The same analysis was again done for the NCE periods
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Figure 5. The uncertainty distribution of oneκ measurement, pro-
duced by 100 000 Monte Carlo samples. Red vertical lines from left
to right depict the 2.5, 25th, 50th, 75th, 97.5 and 100th percentiles;
blue horizontal line illustrates the range of the original error bars.

(Fig. 6b). Here, within error bars, the data of all SS fall onto
the 1: 1 line. This leads to the conclusion that we measured
particles in NCE periods with the same hygroscopic prop-
erties at both the upwind and the downwind stations. The
statistical test results support this conclusion. There is still
considerable error in theκ values; however, the rigorous sta-
tistical analysis showed that the decrease in critical diame-
ters due to cloud processing is significant. The results clearly
demonstrate that the particle properties changed between up-
wind and downwind stations only when a hill cap cloud was
present, leading to more hygroscopic aerosol particles down-
wind of the cloud.

3.3 Chemical in-cloud processing of the particles

Our findings can be explained by the enrichment of hygro-
scopic material in the particles during cloud presence. As-
suming a chemical composition similar to the one given in
Wu et al.(2013) for the upwind station, with a mass fraction
of 40 % organic material and 30 % each of ammonium nitrate
and ammonium sulfate, we can model an observedκ of e.g.
0.40 (compare Table2). The measured increase inκ would
during FCE translate to an increase in the mass fraction of
20 % in ammonium nitrate and ammonium sulfate between
the upwind and downwind stations.

This estimate is supported by measurement results from
other groups during HCCT-2010 who focused on the chem-
ical and isotopic signatures of the particle populations; for
example, sulfur isotope analysis of the particulate mate-
rial was used to investigate the in-cloud production of sul-
fate. Combined gas-phase and single-particle measurements
allowed the dominating sulfate production sources to be
identified (Harris et al., 2014). Direct sulfate uptake, through
dissolution of H2SO4 gas and scavenging of ultrafine partic-
ulate, as well as in-cloud aqueous SO2 oxidation by H2O2,

www.atmos-chem-phys.net/14/7859/2014/ Atmos. Chem. Phys., 14, 7859–7868, 2014



7866 S. Henning et al.: Influence of cloud processing on CCN activation behaviour

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00

Probability density function of κ

κ

F
re

qu
en

cy

Fig. 5. The uncertainty distribution of one κ measurement, produced by 100 000 Monte Carlo samples. Red

vertical lines from left to right depict the the 2.5, 25, 50, 75, 97.5 and 100th percentiles; blue horizontal line

illustrates the range of the original error bars.

0.0 0.4 0.8 1.2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.4 0.8 1.2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
(a) FCE

G
eh

lb
er

g
 κκ κκ

 do
w

n

Goldlauter κκκκ 
up

 G
eh

lb
er

g
 κκ κκ

 up

(b) NCE  SS=0.07%
 SS=0.1%
 SS=0.2%
 SS=0.4%
 1:1

Goldlauter κκκκ 
down

Fig. 6. Hygroscopicity parameter κ compared for up- and downwind station during the Full Cloud Events (FCE,

left panel) and Non Cloud Events (NCE, right panel) as given in Fig. 3. However, the error bars are the 2.5 %

and 97.5 % percentile limits for κ, produced by 100 000 Monte Carlo samples, representing a confidence level

of 95 %.

18

Figure 6. Hygroscopicity parameterκ compared for the upwind and downwind stations during the full cloud events (FCE, left panel) and
non-cloud events (NCE, right panel), as given in Fig.3. However, the error bars are the 2.5 and 97.5 % percentile limits forκ, produced by
100 000 Monte Carlo samples, and representing a confidence level of 95 %.

were found to be the most important sources for in-cloud ad-
dition of sulfate to mixed particles (the most common particle
type during HCCT-2010), while in-cloud aqueous oxidation
of SO2 primarily catalysed by transition metal ions (Harris
et al., 2013b) was most important for coarse mineral dust.
The isotopic analyses showed that the sulfate content of par-
ticles increased following cloud processing during HCCT-
2010 by> 10–40 % depending on particle type (cf. Table 5
in Harris et al., 2014).

Consistent with our results of increased hygroscopicity,
both offline (impactor) and online (aerosol mass spectrome-
ter) measurements of the chemical aerosol composition dur-
ing HCCT often indicate an increased mass fraction of sul-
fate in aerosol particles after their passage through a cloud
(van Pinxteren, Poulain, D’Anna, personal communications,
2013, data yet to be published in forthcoming companion pa-
pers of this special issue).

Mass spectrometric analysis of cloud residuals at the
Schmücke in-cloud station showed an enhancement of nitrate
in the cloud residuals compared to particles sampled under
cloud-free conditions (Schneider et al., 2014). Additionally,
a change in the mixing state was observed by single-particle
mass spectrometry (Roth et al., 2014). The cloud residuals
showed a higher fraction of particles mixed internally with
sulfate and nitrate compared to the particles sampled under
cloud-free conditions. These findings can be explained by an
uptake of HNO3 and sulfate production in the cloud droplets,
resulting in an increased hygroscopicity after the cloud pas-
sage.

4 Summary and conclusions

In the ground-based HCCT-2010 cloud experiment, the acti-
vation diameters of aerosol particles were determined before
and after passage across a hill. For cases with a proven con-
nected flow, the activation properties of aerosol particles at
the upwind and downwind stations were compared. For cases
with a cap cloud on Mt Schmücke, a decrease in the critical
diameter and a consequent increase of about 50 % in the hy-
groscopicity parameterκ were observed. In the cases with
a connected flow between the valley stations and no cloud
on the hill top, no change in the activation diameter was
detected. The statistical significance of these findings was
tested rigorously. All theκ values during cloud events were
larger at the downwind station than at the upwind station, and
the critical diameters were significantly smaller than during
non-cloud days. Therefore, we conclude that in-cloud pro-
cesses significantly increased CCN activity during all ob-
served cloud events at HCCT-2010.

A possible explanation for the increasedκ is the enrich-
ment of more hygroscopic material during cloud processing,
such as nitrates and sulfates. Particulate isotope measure-
ments support our observations: dissolution of H2SO4 and
scavenging of ultrafine particulate in the cloud as well as in-
cloud aqueous SO2 oxidation by H2O2 were identified as be-
ing the most important in-cloud sulfate addition processes for
modifying CCN activity in the majority of the particles. Mass
spectrometric measurements also corroborate the enrichment
of soluble material in the particles in clouds: increased nitrate
and a change in the mixing state were found in cloud resid-
uals. Our measurements suggest that after cloud dissipation,
the added hygroscopic material remains in the cloud residual
aerosol particles.
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Our results demonstrate the strong impact of in-cloud pro-
cessing on the hygroscopic properties of potential CCN.
Consideration of our findings in modelling studies will im-
prove cloud representation substantially.
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