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Abstract
We present an electrothermal drift–diffusion model for organic semiconductor devices with Gauss–Fermi statistics and 
positive temperature feedback for the charge carrier mobilities. We apply temperature-dependent Ohmic contact boundary 
conditions for the electrostatic potential and discretize the system by a finite volume based generalized Scharfetter–Gummel 
scheme. Using path-following techniques, we demonstrate that the model exhibits S-shaped current–voltage curves with 
regions of negative differential resistance, which were only recently observed experimentally.
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scheme · Path-following

Mathematics Subject Classification  65M08 · 35J92 · 80M12 · 80A20

1  Introduction

In inorganic high power transistors and lasers, thermal 
effects resulting from strong electric and optical fields and 
from strong recombination processes are of significant 
importance and have to be included into mathematical 
models [1]. However, electrothermal effects are even more 
potent in organic semiconductors where the temperature 
activated hopping transport of charge carriers leads to a 

strong interplay between electric current and heat flow. They 
result in interesting phenomena like S-shaped current–volt-
age relations with regions of negative differential resistance 
in resistors and organic light-emitting diodes (OLEDs) [2, 3] 
and lead to inhomogeneous luminance in large-area OLEDs. 
Moreover, electrothermal effects have a strong impact on 
the performance of organic solar cells and transistors [4–6].

As demonstrated in [3], p-Laplace thermistor models 
are able to capture the positive temperature feedback in 
OLEDs. Particularly, they can reproduce experimentally 
observed S-shaped current–voltage relations (see Fig. 1) 
and inhomogeneous current density and temperature dis-
tributions in large-area OLEDs. The p-Laplace thermistor 
model describes the total current flow and the heat flow in 
a device. As parameters serve a power law exponent p for 
the underlying (isothermal) current–voltage relation, an 
activation energy in an Arrhenius-type temperature law for 
the hopping transport, and reference electrical and thermal 
conductivities (see [3]). However, details such as separate 
electron and hole current flow, space charge regions, genera-
tion–recombination and related heat productions as well as 
energy barriers at material interfaces are neglected.

The aim of the present paper is to investigate the abil-
ity of an electrothermal drift–diffusion model for organic 
semiconductor devices and a suitable numerical approxi-
mation to produce S-shaped current–voltage relations. For 
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simplicity, for this proof of concept we use vertically layered 
device structures. Additionally, we propose a generalization 
of Ohmic contact boundary conditions for the electrostatic 
potential to the non-isothermal case.

2 � Electrothermal drift–diffusion description 
of organic semiconductor devices

2.1 � The PDE system

The electrothermal behavior of organic semiconductor 
devices is described in a drift–diffusion setting by PDEs for 
the electrostatic potential � , the electrochemical potentials 
�n , �p and the temperature T. In the device domain Ω, we 
consider the following stationary coupled system

This system results from the coupling of a generalized van 
Roosbroeck system and a heat flow equation that includes the 
Joule heating HJ and recombination heat HR as heat sources. 
The dielectric permittivity is denoted by � = �0�r , q is the 
elementary charge, C represents the density of the charged 
donors and acceptors, and � is the thermal conductivity.

Additionally, we have to take into account the specialities 
of organic semiconductors: On the one hand, the statistical 
relation between chemical potentials and charge carrier den-
sities is given by Gauss–Fermi integrals leading to bounded 
charge carrier densities. On the other hand, the mobility func-
tions �n, �p depend on temperature, density and electrical 
field strength. The mobility laws are fitted from a numerical 

(1)

− ∇ ⋅ (�∇�) = q(C − n + p),

− ∇ ⋅ jn = −qR, jn = −qn�n∇�n,

∇ ⋅ jp = −qR, jp = −qp�p∇�p,

− ∇ ⋅ (�∇T) = HJ + HR.

solution of the master equation for the hopping transport in a 
disordered energy landscape with a Gaussian density of states 
[7, 8]. Moreover, the generation/recombination term R (see 
[9]), the Joule heat HJ , the recombination heat HR and the 
charge carrier densities n and p in (1) are given by

w h e r e  kB  i s  B o l t z m a n n’s  c o n s t a n t  a n d 
G ∶ ℝ × [0,∞) → (0, 1) is defined by the Gauss–Fermi 
integral

see [10]. The LUMO and HOMO levels are denoted by EL , 
EH , respectively, and �2

n
 , �2

p
 are their variances, Nn0 , Np0 rep-

resent the total densities of transport states. We assume that 
these parameters are only weakly temperature dependent 
such that we neglect this weak temperature dependence in 
our investigations. In Sect. 3, we use the abbreviation

(2)

R = r0(⋅, n, p,T) n p
(
1 − exp

q(�n − �p)

kBT

)
,

HJ = qn�n|∇�n|2 + qp�p|∇�p|2 = −jn ⋅ ∇�n − jp ⋅ ∇�p,

HR = qR(�p − �n),

n = Nn0(T)G
(q(� − �n) − EL(T)

kBT
;
�n(T)

kBT

)
,

p = Np0(T)G
(EH(T) − q(� − �p)

kBT
;
�p(T)

kBT

)
,

G(�, s) ∶=
1

√
2�

∞

∫
−∞

exp

�
−
�2

2

�
1

exp (s� − �) + 1
d�,

(3)
�n =�n(� ,�n, T) ∶=

q(� − �n) − EL

kBT
,

�p =�p(� ,�p, T) ∶=
EH − q(� − �p)

kBT
.

Fig. 1   Left: schematic cross section of the OLED stack simulated in 
[3]. Right: simulated and measured S-shaped current–voltage rela-
tions with regions of negative differential resistance (NDR) for dif-

ferent thermal outcoupling regimes realized by different values of the 
outcoupling coefficients. Both pictures are taken from [3]
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According to [7],  the mobilit ies of electrons 
�n = �n(T , n, |∇�|) and holes �p = �p(T , p, |∇�|) are tem-
perature, density and electrical field strength-dependent 
functions of the form

with

with the average hopping distance a. The system (1), (2) is 
closed by mixed boundary conditions on �Ω for the station-
ary drift–diffusion system combined with Robin boundary 
conditions for the heat flow equation approximating a heat 
sink with ambient temperature Ta.

Here, ΓD and ΓN denote the Dirichlet and Neumann bound-
ary parts, respectively, and � denotes the outer unit nor-
mal vector on �Ω . In [11], the solvability of (1), (2) and 
(5) (weak solutions of continuity equations and Pois-
son equation, entropy solution of the heat flow equation) 
is established, where the Dirichlet data for the potentials 
are given by H1(Ω) ∩ L∞(Ω)-functions. For mathematical 
results concerning the isothermal drift–diffusion model with 
Gauss–Fermi statistics and field strength-dependent mobil-
ity, we refer to [12, 13].

We remark that in our model, as well as in [14] for classi-
cal semiconductors, additional thermoelectric effects (Peltier, 
Thomson and Seebeck) are neglected. In [6, Sect. II.D], it is 
argued that in the case of organic semiconductors, such effects 
are negligible as the thermal voltages are small compared to 
the applied voltage. In our simplified model frame, the recom-
bination heat HR is given by the rate of entropy production 
due to recombination–generation processes, as in [15], mul-
tiplied by temperature. For fully thermodynamically consist-
ent energy models for inorganic semiconductors including all 
these effects, we refer, e.g., to [15–17], where [17] also deals 
with the numerical approximation of the model.

(4)�n(T , n,F) = �n0(T) × g1(n, T) × g2(F, T)

�n0(T) = �n0c1 exp
{
−c2s

2
n

}
, sn =

�n

kBT
,

g1(n, T) = exp
{
1

2
(s2

n
− sn)(2na

3)�
}
, � = 2

ln(s2
n
− sn) − ln(ln 4)

s2
n

,

g2(F, T) = exp
{
0.44(s3∕2

n
− 2.2)

(
√

1 + 0.8
(Fqa

�n

)2

− 1
)}

(5)

� = �D, �n = �D
n
, �p = �D

p
on ΓD,

�∇� ⋅ � = jn ⋅ � = jp ⋅ � = 0 on ΓN,

�∇T ⋅ � + �(T − Ta) = 0 on �Ω.

2.2 � Thermodynamic equilibrium and discussion 
of boundary conditions

In [11], the consistency of the model with thermodynamic 
equilibrium is proven. Thermodynamic equilibrium is a physi-
cal state with vanishing generation/recombination rate, and 
vanishing current and heat flow,

where we can set �0 = 0 without loss of generality. In this 
situation, the system (1), (2) and (5) reduces to the nonlinear 
Poisson equation

In the isothermal case following, e.g. [9], semiconduc-
tor–metal contacts, such as Ohmic contacts, are usually 
modeled by Dirichlet boundary conditions on ΓD = ∪I

i=1
ΓDi

,

where Vi denotes the constant externally applied voltage at 
the ith contact. The potential �0i is determined a priori from 
the condition of local charge neutrality at the contact ΓDi

 
with no applied voltage at ambient temperature Ta:

Keeping Ta in (7) also in the non-isothermal case cor-
responds to the unphysical assumption that the influence 
of temperature increase at the electrical contacts can be 
neglected for the determination of the equilibrium carrier 
densities. For the test structure described in the caption 
of Fig. 2, the simulation using (7) leads to extremely high 
carrier densities compared to the doping near to the con-
tacts (top left) and to a pinning of the chemical potential 
vp = �p − � at both contacts (bottom left).

We argue that in the non-isothermal case, the modeling 
of (ideal) Ohmic contacts requires local charge neutrality at 
the contact also at the actual temperature-dependent state 
(� ,�n,�p, T) which leads to the nonlinear relation at the con-
tacts ΓDi

 for the prescribed value �0i = � − Vi:

jn = jp = 0, T = const = Ta, �0 ∶= �n = �p = const,

−∇ ⋅ (�∇�) =q
(
C − Nn0G

(q� − EL

kBTa
;
�n

kBTa

)

+ Np0G
(EH − q�

kBTa
;
�p

kBTa

))
.

(6)� = �0i + Vi, �n = Vi, �p = Vi on ΓDi
,

(7)
C − Nn0G

(q�0i − EL

kBTa
;
�n

kBTa

)

+ Np0G
(EH − q�0i

kBTa
;
�p

kBTa

)
= 0.

(8)
CDi

(� ;Vi, T) ∶=C − Nn0G
(q(� − Vi) − EL

kBT
;
�n

kBT

)

+ Np0G
(EH − q(� − Vi)

kBT
;
�p

kBT

)
= 0.
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As a result, the simulated hole densities in Fig. 2 (upper 
right) are not artificially increased near to the contacts. A 
straightforward generalization of the standard computational 
approach for the isothermal case would result in the neces-
sity to update �0i for each modification of the temperature T, 
leading to an additional iterative loop for the determination 
of each bias solution. In order to avoid this iteration, we use 
(8) directly as a nonlinear Dirichlet boundary condition for 
the electrostatic potential � depending on T and treat it with 
the nonlinear solver along with all other nonlinearities. Note 
that (7) and (8) coincide in the isothermal case.

3 � Discretization scheme

We use a finite volume discretization method based on parti-
tioning the computational domain Ω by a Voronoi mesh with 
m Voronoi cells {Vl}l=1,…,m and accompanying collocation 

points {xl} . The potentials � , �n , �p and the temperature 
T are evaluated at each node {xl} . The discretized system 
corresponding to (1) is derived by integrating the equations 
over each Voronoi cell Vl , applying Gauss’s theorem to get

(9)

∫
�Vl

−�∇� ⋅ � dΓ = ∫
Vl

q(C − n + p) dx,

∫
�Vl

−jn ⋅ � dΓ = ∫
Vl

−qR dx,

∫
�Vl

jp ⋅ � dΓ = ∫
Vl

−qR dx,

∫
�Vl

−�∇T ⋅ � dΓ = ∫
Vl

(HJ + HR) dx

Fig. 2   Simulation of a 200-nm-thick structure of three (50  nm, 
100  nm, 50  nm) pip-doped layers for different applied voltages. 
The p-doped layers are doped by 1018 cm−3 , the intrinsic region by 
10

10
cm

−3 . Upper row: hole density. Lower row: chemical potential 

v
p
= �

p
− � . The plots in the left column have been obtained with 

the boundary conditions resulting from (7) and show unphysical 
increased hole densities in the p-doped regions. This is avoided by the 
contact description using (8) in the right column
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and then approximating these integrals suitably. Here, N
(
Vl

)
 

stands for the set of Voronoi cells Vr which are adjacent to 
the Voronoi cell Vl . We also add the subscript l in all quanti-
ties such as potentials, doping density, recombination–gen-
eration rate, temperature and recombination heat to denote 
their corresponding numerical values at the node xl . In the 
following, we will assume that all material parameters such 
as the permittivity � , the reference mobilities �i0 , the densi-
ties of state Ni0 and the heat conductivity � are constant; 
otherwise, suitable averages have to be used.

The surface integrals in (9) are split into two parts: integrals 
over interfaces between two adjacent Voronoi cells and inte-
grals over boundary parts of the device, as follows

∫
�Vl

−�∇� ⋅ � dΓ =
∑

Vr∈N(Vl)
∫

�Vl∩�Vr

−�∇� ⋅ � dΓ + ∫
�Vl∩�Ω

−�∇� ⋅ � dΓ,

∫
�Vl

−jn ⋅ � dΓ =
∑

Vr∈N(Vl)
∫

�Vl∩�Vr

−jn ⋅ � dΓ + ∫
�Vl∩�Ω

−jn ⋅ � dΓ,

∫
�Vl

jp ⋅ � dΓ =
∑

Vr∈N(Vl)
∫

�Vl∩�Vr

jp ⋅ � dΓ + ∫
�Vl∩�Ω

jp ⋅ � dΓ,

∫
�Vl

−�∇T ⋅ � dΓ =
∑

Vr∈N(Vl)
∫

�Vl∩�Vr

−�∇T ⋅ � dΓ + ∫
�Vl∩�Ω

−�∇T ⋅ � dΓ.

where mes(K) denotes the measure of a set K. Meanwhile, 
the corresponding integrals in the continuity equations are 
approximated with some extra effort

where the numerical fluxes Jl;r
n

 and Jl;r
p

 are determined by a 
modification of the Scharfetter–Gummel scheme based on 
averaging of inverse activity coefficients introduced in [18] 
and discussed with respect to degenerate semiconductors in 
[9, 19]. We introduce some notation to define the expres-
sions for Jl;r

n
 and Jl;r

p
 in (12), (13). Let

where �n and �p are defined in (3). Note that according to (4), 
the mobility over a surface �Vl ∩ �Vr depends on the modu-
lus of the gradient |∇�| . The finite difference approximation 
behind the two point flux finite volume ansatz (10) gives 
only the normal component of the gradient with respect to 
�Vl ∩ �Vr and misses the tangential contribution, allow-
ing for weak convergence at best if scaled with the space 
dimension [20]. Therefore, we compute the approximation 
of |∇�|2 on �Vl ∩ �Vr as the average squared norms of the 
gradients of the P1 finite element reconstruction �� over the 
set Tl,r of all simplices � (triangles in 2D) in the underlying 
Delaunay triangulation adjacent to the edge xlxr [21]:

(10)

∫
�Vr∩�Vl

−�∇� ⋅ � dΓ ≈
mes

(
�Vr ∩ �Vl

)

||xl − xr
||

�
(
�l − �r

)
,

∫
�Vr∩�Vl

−�∇T ⋅ � dΓ ≈
mes

(
�Vr ∩ �Vl

)

||xl − xr
||

�
(
Tl − Tr

)
,

∫
�Vr∩�Vl

jn ⋅ � dΓ ≈
mes

(
�Vr ∩ �Vl

)

||xl − xr
||

Jl;r
n
,

∫
�Vr∩�Vl

jp ⋅ � dΓ ≈
mes

(
�Vr ∩ �Vl

)

||xl − xr
||

Jl;r
p
,

�l,r ∶=
�l + �r

2
, �n;l,r ∶=

�n;l + �n;r

2
, �p;l,r ∶=

�p;l + �p;r

2
, Tl,r ∶=

Tl + Tr

2
,

�n;l ∶=�n
(
�l,�n;l, Tl,r

)
, �n;r ∶= �n

(
�r,�n;r, Tl,r

)
, �

l,r

n
∶= �n

(
�l,r,�n;l,r, Tl,r

)
,

�p;l ∶=�p
(
�l,�p;l, Tl,r

)
, �p;r ∶= �p

(
�r,�p;r, Tl,r

)
, �

l,r

p
∶= �p

(
�l,r,�p;l,r, Tl,r

)
,

U
l,r

T
∶=

kBTl,r

q
, sl,r

n
∶=

�n

kBTl,r
, sl,r

p
∶=

�p

kBTl,r
,

nl,r ∶=Nn0G
(
�
l,r

n
;sl,r
n

)
, pl,r ∶= Np0G

(
�
l,r

p
;sl,r
p

)
,

�l,r
n

∶=�n

(
Tl,r, n

l,r,Fl,r
)
, �l,r

p
∶= �p

(
Tl,r, p

l,r,Fl,r
)
,

The integrals over interfaces �Vl ∩ �Vr must be treated spe-
cifically in order to maintain the consistency of the numeri-
cal solution (see Sect. 3.1), whereas the surface integrals 
over �Vl ∩ �Ω are evaluated by quadrature rules after replac-
ing the normal flux in the integrand by the corresponding 
boundary condition (see Sect. 3.2).

3.1 � Numerical fluxes through interfaces 
between Voronoi cells @V

l
∩ @V

r

The integrals of −�∇� ⋅ � and −�∇T ⋅ � over the interface 
�Vr ∩ �Vl are approximated by the conventional finite differ-
ence approximations
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With the above definitions, the numerical fluxes Jl;r
n

 and Jl;r
p

 
have the form

Here, B denotes the Bernoulli function, B(x) = x

exp (x)−1
.

3.2 � Numerical treatment of the boundary 
conditions on @V

l
∩ @Ä

The realization of no flux and Robin boundary conditions is 
based on the evaluation of the corresponding surface inte-
grals by a midpoint quadrature rule.

Among several possibilities to implement Dirichlet 
boundary conditions (e.g., direct elimination, matrix modi-
fication), we choose the penalty method for its flexibility and 
ease of implementation: We replace the Dirichlet boundary 
conditions for �n,�p by

and treat them like Robin boundary conditions. The penalty 
parameter Π is a large number which results in marginalizing 
the normal flux contributions in (14) in the floating point 
representation, thus giving an accurate implementation of 
this boundary condition.

In order to approximate the nonlinear Dirichlet boundary 
condition (8), we use a similar idea. We replace (8) by

and treat the resulting boundary condition as a nonlinear 
Robin boundary condition. Using this approach, the non-
linearity (8) can be treated without any additional iteration 
along with all the other nonlinearities in the resulting sys-
tem of equations by the general Newton solver coupled to a 
parameter embedding scheme.

(11)��∇���
2��Vl∩�Vr

≈

∑
�∈Tl,r

mes(�)�∇�� �2
∑

�∈Tl,r
mes(�)

=∶ (Fl,r)2.

(12)Jl;r
n

= − qNn0�
l,r
n
U

l,r

T

G
(
�
l,r

n
;sl,r
n

)

exp
(
�
l,r

n

)

[
exp

(
�n;l

)
B

(
�l − �r

U
l,r

T

)
− exp

(
�n;r

)
B

(
−
�l − �r

U
l,r

T

)]
,

(13)Jl;r
p

=qNp0�
l,r
p
U

l,r

T

G
(
�
l,r

p
;sl,r
p

)

exp
(
�
l,r

p

)

[
exp

(
�p;l

)
B

(
−
�l − �r

U
l,r

T

)
− exp

(
�p;r

)
B

(
�l − �r

U
l,r

T

)]
.

(14)jn ⋅ � + Π(�n − V) = 0, jp ⋅ � + Π(�p − V) = 0

(15)−�∇� ⋅ � + ΠCDi
(� ;V , T) = 0

3.3 � Volume integrals

The integrals of the charge density C − n + p , the recom-
bination–generation rate R and the reaction heat HR are 
approximated by the midpoint rule,

The integral of the Joule heat is approximated by using the 
numerical fluxes Jl;r

n
 and Jl;r

p
,

where dim(Ω) denotes the spatial dimension of Ω . Here, we 
followed the idea proposed in [22] and exploited in [21] 
allowing to evaluate the Joule heating approximation for 
electrons and holes by edge contributions.

3.4 � Path‑following technique for the calculation 
of S‑shaped current–voltage curves

As discussed in the introduction, organic semiconduc-
tors show a pronounced electrothermal feedback that can 
lead to S-shaped current–voltage relations. For such situ-
ations, a voltage-controlled simulation is unable to cover 
the full characteristic, since at the lower turning point 
of the S-curve, one would not find a point on the curve 
with increased voltage and only slightly increased cur-
rent and related temperature, see Fig. 1. For such voltage 
values, only points on the upper branch of the S-curve are 

∫
Vl

(C − n + p) dx ≈ mes
(
Vl

)
(Cl − nl + pl),

∫
Vl

R dx ≈ mes
(
Vl

)
Rl,

∫
Vl

HR dx ≈ mes
(
Vl

)
Rl(�p;l − �n;l).

(16)

∫
Vl

H
J
dx ≈

∑

Vr∈N(Vl)

mes
(
�Vl ∩ �Vr

)

2dim(Ω)

(
Jl;r
n

(
�n;l − �n;r

)
+ Jl;r

p

(
�p;l − �p;r

))
,
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available, related to very different current and tempera-
ture values. In other words, for increasing voltage, if at 
all the method would converge, one could only jump to 
the upper part of the S-curve and the (unstable) region of 
negative differential resistance of the S-curve is impos-
sible to resolve.

Formally, a current-controlled simulation would be able 
to establish this S-shaped relationship. Attempts to per-
form such simulations failed due to severe convergence 
problems of the solver (which possibly could be miti-
gated by a careful embedding strategy). However, there is 
a deeper reason to choose a voltage-controlled approach: 
It reasonably can be assumed that in the two- and three-
dimensional case, the contact voltage is constant at a 
given metal contact. However, this is not generally true 
for the current density, and one needs to implement an 
integral boundary condition for the current which would 
result in an additional layer of iterations. An alternative 
to this approach is the implementation of a path-following 
method to trace the S-curve under voltage-controlled con-
ditions, which we describe in the sequel. We adapt the 
technique described in [21] which was used in [3] to simu-
late S-shaped current–voltage relations for organic LEDs 
resulting from an electrothermal modeling by p-Laplace 
thermistor models to the drift–diffusion setting.

We consider an organic semiconductor device with 
two Dirichlet boundary parts ΓD1

 and ΓD2
 . On ΓD2

, the 
potential is set to zero and on ΓD1

 to the (spatially con-
stant) externally applied voltage V. We determine the cur-
rent–voltage relation of the organic device by calculating 
the current over ΓD1

 . With the equations for the approxi-
mation of (9) for all Voronoi cells {Vl}, we arrive at a 
system of 4m coupled nonlinear algebraic equations for 
u = (�l,�n;l,�p;l, Tl)l=1,…,m of the form

To trace a solution branch, starting from a solution (u0,V0) 
of F(u,V) = 0 we use a predictor–corrector method [23] 
adapted to PDE calculations implemented in [24] as pro-
posed in [25]. For a recent description of this type of 
methods (based on a different implementation), see [26]. 
The prediction is obtained by moving a step forward 
along the tangent vector t to the branch. First, we solve 
Fu,V (u0,V0)t = 0 , t ∈ ℝ

4m+1 , where Fu,V (u0,V0) stands for 
the Jacobian of F at (u0,V0) . To ensure that t points in the 
forward direction with respect to the tangent vector t0 of the 
last point, we demand t0 ⋅ t > 0 . In other words, we have to 
solve

F(u,V) = 0, F ∶ ℝ
4m ×ℝ → ℝ

4m.

(
Fu,V (u0,V0)

t⊤
0

)
t =

(
0

1

)
.

Next, we normalize t such that ‖t‖ = 1 . The predictor (u∗,V∗) 
now is obtained by

ensures that a step along the branch gives similar proportion 
to the unknowns and to the parameter, and, by construc-
tion, ‖u∗ − u0,V

∗ − V0‖∗ = ΔL . The corrector step solves 
the nonlinear system

by Newton’s method with the starting value (u∗,V∗) . If New-
ton’s method does not converge since the predictor (u∗,V∗) is 
too far from the desired solution, the step size ΔL (related to 
the arc length parameter) is locally reduced until the method 
converges. The convergent Newton procedure yields the next 
point (u1,V1) on the solution branch with a distance of ΔL 
to (u0,V0).

4 � Simulation results

The finite volume method has been implemented in the pro-
totype semiconductor device simulator ddfermi [27] which 
is based on the PDE solution toolbox pdelib [24].

We provide results of a first investigation intended to be a 
proof of concept that electrothermal drift–diffusion models 
from Sect. 2 can exhibit S-shaped current–voltage relations. 
For simplicity, we restrict our simulations to the unipolar 
electronic case of a uniformly n-doped layer. Moreover, 
in the mobility function (4) we only take into account the 
temperature-dependent factor �n0(T) , describing the posi-
tive feedback, but we ignore the density and field dependent 
factors g1 and g2 and set them to 1 to avoid parameter fitting.

We consider a uniformly n-doped, 340-nm-thick organic 
semiconductor material that is contacted by two metal layers 
and perform a quasi-1D simulation. Due to the high con-
ductivity of the metal layers, we assume that the potential is 

�
u∗

V∗

�
=

�
u0
V0

�
+

ΔL

‖t‖∗
t, where‖t‖2

∗
=

1

4m

4m�

i=1

t2
i
+ t2

4m+1

�
F(u,V)

‖u − u0,V − V0‖2∗ − (ΔL)2

�
= 0

Table 1   Simulation parameters

Parameter Value Parameter Value

� 4.0 �
0

�
n0 0.1… 0.8 cm

2
V

−1
s
−1

� 0.4W m
−1

K
−1 c

1
1.0

T
a

220K c
2

0.4
� 10

3 … 10
5
W m

−2
K

−1 a 1.5 nm

E
H

0.0 eV N
n0 10

21
cm

−3

�
n

0.05… 0.08 eV Doping 5 × 10
18
cm

−3

Thickness 340 nm
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constant here and neglect the metal layer entirely. Instead, 
we prescribe Dirichlet boundary conditions on the parts ΓD1

 
and ΓD2

 . On ΓD2
, the potential is set to zero and on ΓD1

 to 
the (spatially constant) externally applied voltage V. We 
determine the current–voltage relation of the organic device 
(which can be S-shaped) by calculating the current over ΓD1

 . 
The aim of the simulation work in this paper was to find 
a parameter range leading to a pronounced occurrence of 
S-shaped current–voltage relations. The resulting essential 
parameters for the simulation are collected in Table 1.

For the study of the phenomenon of S-shaped cur-
rent–voltage relations and their appearance in dependence 
on physical parameters, we performed three types of param-
eter variations.

In Fig. 3, we investigated the influence of the disorder 
parameter �n on the electrothermal interaction in the device. 
The resulting current–voltage relations are depicted in the 
left picture, and the right one shows the maximal device 
temperature over the applied voltage. We remark that due to 
the small size of the device, for a given bias voltage, the tem-
perature difference within the device is very small. Whereas 
for �n = 0.05 eV no S-shaped current–voltage relation with 
region of negative differential resistance occurs, such behav-
ior evolves for higher �n . With increasing �n, the first turning 
point of the curve moves to a higher applied voltage, but the 
related current density decreases, and the ‘S’ becomes more 
pronounced.

In Fig. 4, we varied the reference mobility �n0 . The result-
ing current–voltage relations are depicted in the left picture, 

Fig. 3   Simulated current–voltage characteristics using the electrothermal drift–diffusion model for different disorder parameters �
n
 (left), the 

right figure shows the resulting maximal temperature in the device. We choose �
n0

= 0.8 cm2/(Vs), � = 10
4 W/(m2 K)

Fig. 4   Simulated current–voltage characteristics using the electrothermal drift–diffusion model for different reference mobilities �
n0

 and 
� = 10

4 W/(m2 K), �
n
= 0.08 eV. The right figure shows the maximal temperature in the device
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and the right one shows the maximal device temperature 
over the applied voltage. Lower mobilities enforce a more 
pronounced S-shape which is additionally shifted to the 
right. Higher mobilities lead to a stronger increase in the 
current density.

Finally, Fig. 5 contains a variation of the thermal outcou-
pling factor � corresponding to the Robin boundary condi-
tions �∇T ⋅ � + �(T − Ta) = 0 on �Ω . (left: current–voltage 
relations, right: the maximal device temperature over the 
applied voltage). Better cooling broadens the ‘S’; for the 
two turning points, the applied voltage as well as the current 
density increase.

For all presented calculations, temperatures above ≈ 400 K 
appear to be out of range for real devices, as the organic semi-
conductor material would be thermally destroyed.

The exemplary variations of physical parameters show 
that the complex nonlinear interplay leads to strong vari-
ations in the shape of the current–voltage characteristics 
as well as temperature–voltage relations. In this paper, we 
were especially looking for parameter constellations leading 
to complicated characteristics. The simulation of realistic 
organic semiconductor devices with more adequate physical 
parameters is planned in future work.

5 � Conclusion and remarks

We presented a discretization scheme for the electrother-
mal drift–diffusion model (1) for organic semiconductor 
devices. We formulated temperature-dependent nonlinear 
Dirichlet boundary conditions for the electrostatic poten-
tial (8) at Ohmic contacts, which take into account the 
shift of the equilibrium potential due to changing device 
temperature.

We used a finite volume-based generalized Schar-
fetter–Gummel scheme implemented in the prototype 

semiconductor device simulator ddfermi [27] on top of the 
PDE solver toolbox pdelib [24]. Implementing a path-fol-
lowing technique, we demonstrated that the model and its 
discretization for certain parameters exhibit the phenom-
enon of an S-shaped current–voltage relation with regions 
of negative differential resistance. To our knowledge, this 
is the first simulation tool for drift–diffusion-type models 
mastering this challenge. S-shaped current–voltage rela-
tions have been observed experimentally [3] and need to 
be properly modeled in order to understand and optimize 
the device behavior.

Besides the characteristics, our model and its discretiza-
tion are capable to describe spatially resolved the electro-
thermal behavior of real 3D organic semiconductor devices 
in terms of charge carrier densities, current densities, poten-
tials, temperature distributions. This in combination with a 
comparison to measurements has to be done in future work. 
As a first result, Fig. 6 stems from a 2D simulation for an 

Fig. 5   Simulated current–voltage characteristics (left) and maximum temperature (right) using the electrothermal drift–diffusion model for dif-
ferent thermal outcoupling factors � , �

n0
= 0.8 cm2/(Vs) and �

n
= 0.08 eV

Fig. 6   Simulated Joule heat density [W/cm3 ] in an organic thin-film 
transistor using the numerical approximation of the electrothermal 
drift–diffusion model (1)
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organic thin-film transistor. It shows the produced Joule heat 
by using the numerical approximation of the electrother-
mal drift–diffusion model in Sect. 2 with the temperature-
dependent Ohmic contact boundary conditions for the elec-
trostatic potential (8).

In addition, future simulations by means of the model for 
real organic device structures and realistic physical param-
eters may help to estimate the region of a stable working 
regime guaranteeing the absence of material destruction 
due to overheating. Furthermore, the description of the 
spatially resolved electrothermal behavior of real devices 
is very important for understanding the effect of thermal 
switching, device degradation, device breakdown and local 
heating (hot spots) in large-area devices. Temperature acti-
vated ionic conductivity is observed in solid oxide materials 
like yttria-stabilized zirconia [28]. It would be interesting to 
apply the methodology developed in this paper to recently 
derived drift–diffusion models for this type of materials 
[29].
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