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Abstract

By solving numerically the extended nonlinear Schrodinger equation we
investigate the influence of higher-order dispersion effects on the propagation
of optical pulses in highly nonlinear fibers. In the anomalous dispersion regime
third-order dispersion can, in general, induce soliton fission and yields asym-
metric spectra, whereas modulation instability can be slightly suppressed. In
the normal dispersion regime we demonstrate pulse splitting by third-order
dispersion, as well as its later suppression by fourth-order dispersion.

Key words: modulation instability, nonlinear fibers, pulse splitting, third-order
dispersion

1 Introduction

The propagation of a pulse through a nonlinear, dispersive optical medium can re-
sult in considerable changes to its temporal and spectral properties, due to interplay
of different physical effects acting on the pulse. For example the supercontinuum
generation in nonlinear fibers has been a subject of numerous investigations for
years, see e.g. the review [1|, both because of many applications of supercontin-
uum sources, as well as of the interesting nonlinear physics that is involved in the
spectral broadening process. There is a variety of effects modifying the shape of a
pulse and its spectrum, like soliton fission (SF), associated with the generation of
dispersive waves [3|, modulation instability (MI) [2], Raman scattering, and other
four-wave-mixing processes. This situation makes it particularly difficult to iden-
tify the impact of each physical process in a specific physical experiment. However,
in the anomalous dispersion regime SF and MI, which are described solely by the
fundamental nonlinear Schrédinger equation (NLSE) with some perturbation, turn
out to be the basic mechanisms. This reflects how inherent properties of the NLSE
are of primary importance for the propagation dynamics, even for ultrashort pulse
propagation in photonic-crystal fibers (PCF) with extremely high nonlinearity.

To avoid the influence of MI and soliton effects such as SF and self-frequency shift,
the pump pulse can be injected within the normal dispersion regime, far from the
zero-dispersion wavelength (ZDW). This enables one to investigate the effects of
Raman-scattering. In addition, the normal dispersion regime provides parameter
regions where the efficiency of four-wave mixing is reduced and the signature of a
discrete Raman cascade can be clearly identified. Also the role of cross-phase modu-
lation and parametric four-wave-mixing can be investigated [4, 5]. But fundamental



propagation properties described by the NLSE are suppressed or superimposed by
higher-order effects, so that it becomes difficult to isolate the relative contributions
of the involved physical parameters.
To investigate the effect of dispersion on the propagation dynamics, we have solved
numerically the one-dimensional nonlinear Schrédinger equation for the slowly vary-
ing complex envelope A(z,7) of a pulse which propagates along the z-axis within a
retarded time frame 7 = ¢ — z/v, with the group velocity v,:
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with third-order dispersion (TOD) ~ 5 and fourth-order dispersion (FOD) ~ (3, in
addition. We exclude in our numerical investigations any contribution from phase-
matched parametric four-wave mixing and from higher-order nonlinearities as Ra-
man scattering or self-steepening. This corresponds to the situation of a highly
nonlinear fiber (HNLF), with pulse durations exceeding several picoseconds and
small input powers so that the spectral bandwidth is much smaller than the Ra-
man frequency shift in fused silica, hence the pump pulses do not suffer significantly
from intrapulse Raman scattering as in the femtosecond case. Our technique for
solving Eq. (1) is based on a standard de-aliased pseudospectral method in which
the dispersion parts are calculated in the frequency domain and the nonlinearity is
calculated as a product in the time domain. The integration is performed for the
whole equation in the frequency domain with an eigth-order Runge-Kutta integra-
tion scheme with adaptive stepsize control [6].

Based on that, we demonstrate how strongly even small dispersive effects can af-
fect the propagation dynamics in both the anomalous and in the normal dispersion
regime. In the anomalous dispersion regime we show how higher-order dispersion
influences the MI and the propagation of higher-order solitons. In particular we
demonstrate that the TOD can not be neglected for the pulse-MI (c.f. [8]), that it
leads to an asymmetry of the spectrum and later on to a subsequent suppression
of the MI. The asymmetric perturbation of a higher-order soliton by the TOD does
not lead inevitably to its fission. Depending on a critical value of TOD a bound
higher-order soliton can still exist and propagate with a modified velocity.

In the normal dispersion regime the impact of TOD is even stronger, because the
dispersion profile can merge with the anomalous dispersion regime. Then, already a
small TOD can lead to a pulse-breakup above a critical pulse power. The splitting
is followed by an expansion of the spectrum towards longer wavelengths with the
evolution of a broad Stokes component and without any impact of Raman scatter-
ing. The Stokes frequency depends strongly on the third-order dispersion coefficient,
which enables the transfer of energy to a broad range of longer wavelengths.

2 Anomalous dispersion regime

Propagation of pulses in the anomalous dispersion regime is mainly determined by
soliton effects and the modulation instability [8]. An input pulse with a hyperbolic-

2



secant shape, which we use throughout this paper:
A(0, 1) = Agsech(T /1),

where 7y corresponds to the width of the pulse and the pulse peak power P, satifies
Py = |Ap|?, together with the fiber parameters for the NLSE imply the formation of
a higher-order soliton of order N:

YPy1d
| Gs

The propagation of a bounded higher-order soliton N > 1 is periodic in z with the
period zg = 773 /(2|52]). Accordingly, the soliton period is independent of the peak
power and proportional to the dispersion length. However, depending on the width
of the input pulse, one observes different behaviors for the same soliton number.
Especially the impact of the MI becomes increasingly important with increasing F,
or a decreasing || [2].

N2

2.1 Higher-order dispersion and modulation instability

The MI refers to a process in which a weak perturbation of a continuous wave (cw)
grows exponentially in the form of amplitude modulation. Following the perturba-
tion analysis in |7] the dispersion relation for the modulation wave number K and
modulation wave frequency €2 is given as

1
3560 B B (B2 Bu 2
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leading to a MI gain
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For 3, = 0, in the anomalous regime, K becomes complex for frequencies {2 <
Q. = 2N/7y. Because the MI bandwidth increases as | ;| decreases, the effect of MI
becomes very strong in the vicinity of ZDW or for high input powers. Compared to
cw the case of a pump-pulse is more complicated, because the MI is superimposed
by the the evolution of a soliton, which is usually of higher-order [8, 2]. The main
difference between the cw MI and the pulse MI is that the shape of the pump pulse
plays an important role in the generation of the modulation ripples. The modulation
wavelength of the MI ripples has to be much smaller than the pulse width, so that
the center of the pump pulse can be regarded as a relatively flat plateau and the
perturbation in form of amplitude modulation can grow at the center. For short
pulse widths the MI can be suppressed. But an increase of the pump pulse leads to
a decrease of the modulation wavelength and the MI can affect the propagation of
the pulse even for extremely short pulses [2].
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Figure 1: Spectra for the propagation of an input pulse with Fy, = 0.4kW and
70 = bps along a fiber with 3y = —1ps?/km, v = 10.5W " tkm™! after z = 6m
(black), z = 7m (red) and z = 8m (blue) and increasing TOD: a) 5 = 0, b)
B3 = 0.01ps3/km, ¢) B3 = 0.05ps®/km and d) B3 = 0.1ps®/km.

Another important fact of the pulse MI is that TOD (via f3) has now to be taken
into account, which is often neglected. The parameter 33 has no influence on the
modulation frequency in the presence of MI-gain (Eq. 3), but the shape of the
pulse is affected by (3 and therefore also the effect of the MI on the propagation
dynamics. Fig. 1 shows the evolution of pulse-spectra experiencing MI along z for
increasing values of 3, indicating that the MI is suppressed with increasing TOD.
The spectral evolution without (3 is shown in Fig. 1a) for comparison. The MI leads
to the generation of a Stokes and an anti-Stokes component at 2. at z = 5m (black
line), which is accompanied by the emerge of secondary sidebands at z = 6m (red
line). Phase-matched four-wave mixing excites further new frequencies (z = 7m,
blue line). With 83 = 0.01ps®/km a small asymmetry is induced, apparent by the
emerge of the tertiary sidebands in Fig. 1b) (red line). For higher values of 5 the
formation of the spectral sidebands is deferred to higher peak powers or for longer
propagation distances and the asymmetry between the red and the blue sidebands
grows. The sign of 33 determines the asymmetry with respect to the red or blue
side of the spectrum. A further increase of (33 leads to a stronger suppression of the



MI, so that the propagation dynamics is overtaken by soliton effects |2].

-100

-200

Intensity [a.u.]

-100-

-200

Intensity [a.u.]

A I L L I L L
1200 1400 1600 1800 2000 1200 1400 1600 1800 2000
Wavelength [nm] Wavelength [nm]

Figure 2: Spectra for the propagation of an input pulse with Fy = 0.4kW and
70 = bps in a HNLF with v = 10.5W~'km™" and 83 = 0 after z = 5m (black),
z = 6m (red) and z = 7m (blue) for a) By = —1ps*/km, B, = 0, b) B =0, B4 =
—6x 1074pst/km, c) By = —1ps®/km, B4 = 6 x 10~*ps*/km and d) By = —1ps?/km,
By = —6 x 10~*pst /km.

Contrary to the TOD the shape of a pulse is to a lesser extent affected by FOD,
but the critical MI frequency tunes with ;. Fig. 2 illustrates the evolution of the
MI side bands in four different regimes. The emerge and evolution of the side bands
is strongest for the case without (3, (Fig. 2a). For 8y = 0 one obtains the critical

modulation frequency as €. = [487P0/|ﬁ4|]i, showing that the MI is not only a
mechanism which appears in the anomalous dispersion regime (Fig. 2b). Especially
in the normal dispersion regime MI gain can appear, which has been demonstrated in
[9], and which would be impossible without higher-order dispersion. Beside a change
of the position of the sidebands for 3y = —1ps*/km in addition with a positive or a
negative value of (34, the evolution of the secondary side-lobes by four-wave mixing
is dimished (Fig. 2c,d).



2.2 Impact of TOD on soliton propagation

The behavior of a fundamental N = 1 soliton under the influence of small TOD
term is well known. In first order the soliton phase and velocity are modified, but its
shape, amplitude, and width are unchanged. This is accompanied by the excitation
of nonsolitonic dispersive radiation at a frequency which is inversely proportional to
B5 [10]. The amplitude of this radiation is exponentially small such that the soliton
remains relatively robust [11].

Higher-order solitons are regarded to be less robust with respect to perturbations,
such that the propagation is influenced by TOD more strongly. Higher-order solitons
are solutions of the NLSE consisting of two or more of the usual fundamental solitons.
They are bound when all component solitons propagate with the same velocity and
center position. In the presence of perturbations it is believed, that the original
bound-state soliton splits always into fundamental solitons and into non-solitonic
radiation [1, 12]. Fig. 3 represents the propagation of a bound soliton of order
N = 2.2 perturbed by the third-order dispersion. For a perturbations with (3 =
0.01ps®/km we observe the propagation of a bounded soliton (Fig. 3a) without a
breakup into the constituent fundamental solitons. Like in the case 3 = 0 for the
pure NLSE the pulse is compressed to a fraction of its initial width in the first step
of the propagation, followed by an expansion to a pulse with two peaks at z/2.
At the end of the soliton period z; the pulse contracts back to the initial shape.
This pattern periodically repeats after each section of length z,. However, due to
the presence of 33 the shape of the pulse becomes asymmetric and the velocity of
the bounded soliton is modified. Depending on the sign of 33 the bounded soliton
can propagate slower or faster than the group velocity. The latter is similar to
the case of a fundamental soliton and results in a change of the velocity of the
whole higher-order soliton. Fig. 3b) shows the corresponding periodic oscillation of
the spectrum and the excitation of the resonant radiation frequency. The radiation
frequency is located in the normal dispersion regime and is separated from the soliton
spectrum. But the periodic oscillation of the spectral width leads to a resonant
power transfer to non-solitonic radiation, every time when the soliton spectrum
overlaps the resonant frequency of the dispersive wave. By increasing TOD to
a value B3 = 0.03ps®/km we then observe the well known soliton fission process
(Fig. 3 ¢,d). In the first stage of the propagation the pulse is compressed due to
the first step of higher-order soliton dynamics, as explained above. The strong
temporal contraction belongs to the maximum expansion of the soliton spectrum.
The broadened spectrum in this region touches the resonant radiation frequency of
a dispersive wave on the blue side, now located closer to the pump wavelength. At
this point a nonsolitonic dispersive wave is generated, which propagates further on
with a delayed group velocity. Further propagation now leads to a subsequent break-
up of the higher-order soliton into fundamental solitons, which propagate now at
different but constant velocities. With increasing N the threshold value of 35 for SF
decreases. This can lead to complicated propagation dynamics as has been observed
in supercontinuum generation processes [1]. There, the high-order soliton breaks up
into several bounded higher-order solitons having lower values of N, but which are
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Figure 3: Temporal and spectral propagation of a N = 2.2 soliton under the influence
of TOD: a,b) Slowing down of a bounded higher-order soliton with 83 = 0.01ps3/km,
¢,d) Soliton fission with 33 = 0.03ps®/km. In both cases the propagation is asso-
ciated by the generation of nonsolitonic dispersive radiation. Note the different
scaling.

stable for the given value of (33.

3 Normal dispersion regime

We draw now our attention to the normal dispersion regime (8 > 0), where we
do not expect solitonic effects. Fig. 4 represents the simulated pulse shapes and
spectra for an injected sech-pulse with 79 = 1.8ps and Py, = 16W in a HNLF with
By = 0.2ps?/km, B3 = 0.01ps®/km. The pulse shapes show that pulse splitting
at the leading edge sets in at z = 445m. This pulse-breakup phenomenon in the
normal dispersion regime is described in [13, 14|. The TOD leads to an asymmetric
temporal development with an enhanced transfer of power from the trailing portion
of the pulse to the leading one. A narrow peak builds up and an increase of the
peak intensity at the front of the pulse can be observed. The spectrum develops
with a small asymmetric broadening towards the blue side. Further propagation as
well as a higher peak power leads to a sharp increase of the peak intensity at the
front of the pulse, which is halted by temporal pulse splitting. After the splitting a
small pedestal on the red side of the spectrum appears. The most important con-
tribution of the TOD in the normal dispersion regime comes from the fact, that the
dispersion profile f(w) merges to the anomalous dispersion regime. Thereby soliton
effects add, once the spectrum of the pulse touches the anomalous dispersion regime.
Fig. 5 contrasts the propagation in the pure normal dispersion regime 35 = 0.2ps?/km
a),b) with the propagation in addition with 35 = 0.01ps®/km c¢),d) and a re-
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Figure 4: Pulse shapes a) and spectra b) for injected sech?-pulses with 79 = 1.8ps
and Py = 16W in a fiber with 3y = 0.2ps®’/km, B3 = 0.01ps®/km and ~ =
10.5W ~tkm~! after = = 445m (blue) and z = 545m (black). The dashed black
lines represent the simulation for the NLSE without TOD.

duced overlap with the anomalous dispersion regime with 35 = 0.01ps®/km and
By = 2x107*ps*/km, c.f. Fig. 6a. In Fig. 5a,b) the pulse evolves first into a parabolic
shape and broadens with further propagation nearly to a rectangular shape, thereby
exhibiting optical wave breaking. In this case the spectrum is mainly broadened by
self-phase modulation. Introducing TOD (Fig. 5¢,d) for the same input pulse leads
to the pulse splitting phenomenon. The spectrum is asymmetrically pronounced on
the blue side, but also exhibits a broad pedestal on the red side. After the splitting
of the pulse the spectrum touches the anomalous dispersion regime (c.f. black curve
in Fig. 6a) and the small pedestal on the red side of the spectrum increases with
further propagation. This means that more energy is transferred into the anomalous
dispersion region, such that soliton effects come into the play, besides the generation
of a Stokes component. The further propagation is now additionally determined by
soliton fission and by the generation of resonant dispersive waves, leading to a blue
shift in the spectrum [3, 2|. To reduce the soliton effects and to suppress the spectral
extension on the blue side we narrow the bandwidth of the anomalous dispersion
region by switching on a small value of 84(= 2 x 107%ps*/km) (c.f. blue curve in
Fig. 6a). The overall observed behavior (Fig. 5e,f) corresponds to the case 8, = 0
described above, up to the point, where the pulse splitting phenomenon occurs.
However, now the pulse does not split into fundamental solitons like in Fig. 5c).
Also its spectrum extends less to the blue side than in Fig. 5d), but is now more
pronounced to the red side. The spectral width saturates after a certain propaga-
tion distance and remains in a well bounded domain with a fixed Stokes wavelength,
which is located in the anomalous dispersion region. The final spectrum of the pulse
is asymmetric with a pronounced red tail and the spectral shape exhibits a depleted
region around the ZDW.

Solitons can form only at frequencies within the anomalous dispersion regime, the
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Figure 5: Temporal (left) and spectral (right) evolution of a pulse with 75 = 1.8ps
and Py = 16W along 1km HNLF with 8, = 0.2ps®/km a,b) 85 = 0, 84 = 0, c,d)
B3 = 0.01ps®/km, By = 0 and e,f) B3 = 0.01ps®/km, By = 2 x 107 *ps* /km.

bandwidth of which we can reduce by increasing 3;. Fig. 6 represents the behavior
by a narrowing of the anomalous regime. Fig. 6a) shows the dispersion profiles for
By =2 x 107*ps*/km and By = 3 x 10~* in comparison to the case without 3,. In-
creasing Py leads to a pulse splitting after shorter propagation distances, because the
pulse spectrum overlaps earlier with the anomalous dispersion regime, but broadens
less to the red side.

Contrary to Raman scattering, where the Stokes component in fused silica is sep-
arated by ~ 13T Hz from the pump frequency, the Stokes component here can be
adjusted to an arbitrary wavelength on the red side with an appropriate dispersion
profile design.
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Figure 6: a) Dispersion profiles for 35 = 0.2ps®/km, 33 = 0.01ps®/km, without
B4 (black line) and with small values of 34: (B4 = 2 x 107*ps?/km (blue line),
B = 3 x 107*ps*/km (red line). b) Spectra at z = 158m and Py, = 64W for
dispersion with 8; = 2 x 107 (blue line) and 3, = 3 x 107 (red line).

4 Conclusion

By numerically solving the extended nonlinear Schrodinger equation (NLSE) we
have investigated the impact of higher-order dispersion on the propagation of optical
pulses along highly nonlinear fibers. In the anomalous dispersion regime the mod-
ulation instability (MI) and soliton fission (SF) basically modify high-order soliton
pulses and their spectra. Third-order dispersion (TOD) can induce SF accompanied
by nonsolitonic radiation and yields asymmetric spectra in general, whereas MI is
slightly suppressed by TOD in this regime. In the normal dispersion regime the ini-
tial spectral broadening of a pulse is dominated by self-phase modulation, whereas
its further evolution depends sensitively on the underlying dispersion profile, either
allowing for solitonic effects or not. Under presence of TOD pulse splitting has been
demonstrated, as well as its suppression later by fourth-order dispersion.
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