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Abstract

The double layer capacity is one of the central quantities in theoretical and
experimental electrochemistry of metal/electrolyte interfaces. It turns out that
the capacity is related to two central thermodynamic quantities, i.e. the partial
molar volume of an ionic constituent and the partial molar area of the respective
adsorbate. Since ions in solution (or on the surface) accumulated solvent molecules
in their solvation shell, the partial molar volume and area are effected by this
phenomena. In this work we discuss several aspects of the relationship between the
molar volume and area of an ion, the solvation number and the charge number.
In addition, we account for partial charge transfer on the metal surface which
explains naturally the difference of the capacity maxima between F~ and ClO,
on silver. We provide simple yet validated analytical expressions for the partial
molar volume and area of multi-valent ions and parameter values for aqueous
solutions.
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Figure 1: Sketch of the metal-electrolyte interface. The Stern-layer and the diffuse layer
is self-consistently incorporated within the model. Solvent molecules are assumed to form
a solvation shell around each ion, in the volume and on the surface.

1 Introduction

The partial molar volume v% of a solvated ion A in solution and the partial molar area
al of an ionic adsorbate éa are key parameters for the thermodynamic behavior of an

electrochemical interface. Especially the electrochemical double layer electrolyte [1-3] is
crucially influenced by these quantities.

A fingerprint of the double layer is the differential capacity C', which is in general a
non-linear function of the measured cell voltage F (c.f. Fig. 2b). We derived recently
a continuum thermodynamic model in [4] which is capable to predict qualitatively and
quantitatively the capacity for various electrolytes and metal electrodes in a broad poten-
tial range (c.f. Fig. 2). The interfacial capacity Cg actually spreads in a boundary layer
contribution CE", and a surface capacity QE' with Cg = CE- —I—QE, where gE vanishes of
no adsorption of ionic constituents occurs. We find that the maximum of the boundary
layer capacity Cy is non-linearly dependent on the value of the partial molar volume v
(Fig. 3a) while the maximum of the surface capacity is determined by a? (Fig. 3b).
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given in [4]. reprinted with permission from Elsevier)

Figure 2: Comparison of the computed capacity (a) and the measured capacity (b) of
the Ag(110)| NaClO, interface for concentrations of (0.005 — 0.1)M.

For non-adsorbing ionic solutions, e.g. KPF; vs Ag [5], the capacity maximum is
in the order of 50 — 60 uF cm™2, which requires that v2 of K™ and PFy is about
30 — 50 times larger than the partial molar volume v of the solvent and equal for the
anion and the cation. For adsorbing ions on Ag , e.g. F~ or ClOj , we find find that
the partial molar area is necessarily 5 — 30 times larger that al' of the solvent, however,
with different values of F'~ and ClO; .

Within this work we discuss these aspects in detail and provide some insight on the
required values. First we briefly summarize the thermodynamic modeling procedure and
the derivation of the charge/current relation. This leads to the structural decomposition
of the double layer charge in an electrolytic boundary layer contribution, which is mainly
determined by the partial molar volume, and an electrolytic surface charge contribution,
which is dependent on the partial molar area.

We discuss then the partial molar volume and some structural effects due to packing
densities. Further discussion on multi-valent ions is followed, leading to some relations
between solvation number, partial molar volume, and ionic charge. For the adsorbed
ionic species we introduce the concept of partial charge transfer within our modeling
framework and discuss its impact on the partial molar area. Validation and interpretation
is based on representative examples of capacity measurements and computations.
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Figure 3: Maxima of the differential capacity contributions Cy; and (s] for a variation of

the partial molar volume and area. The computations are based on the model of [4] for
a 0.01M solution AC with an adsorbing anion.

2 Thermodynamic modeling

We consider a metal €2y in contact with an electrolytic solution (g, sharing the common

surface Y. For this study we consider the approximation of a flat metal surface ¥ posi-

tioned at x = x and a homogenous distribution on the surface, i.e. a 1-D approximation.
S

Discontinuities at X of a quantity u are again denoted by u|_ — u‘+ = [u] and the
bulk values in the metal and the electrolyte are uy = ul,, and ug = ul,,, respectively.
The framework of continuum thermo-electrodynamics for volumes and surfaces serves
as basis for the modeling procedure [6—11]. It relies on general balance equations for the
continuous field variables of mass, energy, and momentum as well as the electromagnetic
field. The material specific modeling is carried out by constitutive equations of the free
energy density p) and 1. Since the metal surface is explicitly taken into account as in-

dependent thermodynamic quantity, we require balance equations and thermodynamics
of singular surfaces [7, 10-12].

2.1 Constituents and Balance equations

The electrolyte Qg is considered as a mixture of constituents A, ,a =0,1,..., Ng with
molar mass m, and charge eyz,, where Ay denotes the solvent (zy = 0). For each
constituent we have a (volume) density n,(x,t) /molm™ which satisfies the global



balance equation (in the 1-D approximation)
with niL::/nadx, a=0,1,...,Ng, (1)
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S
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where j, is the molar flux of A, in positive z-direction. The total mass density of
the electrolyte is pg = Zgio maNa, the charge density ¢z = eg Zgil ZaNg, and the
electrolyitc boundary layer charge

&= / g dr )

El

We consider the metal ) as mixture of metal ions A, (with charge number z,,) and
valance electrons A, in terms of species (volume) densities n,(x,%) /molm™3 and the
corresponding global balance equations are similar to (1).

On the metal surface 3 we consider adsorption of all constituents from the metal and the
electrolyte phase in terms of species densities n,(x,%) / molm~2, satisfying the global
S S

surface balance equations

d .
%?a:]axzx—i_ga Oé:O,l,...,NE, (3)
with surface reaction rate . Since these adsorbates may react further on the surface, we
S
have in addition A, = Ng.1,..., Ng exclusive surface species which satisfy the balance
S
equations
d
7 =Ta a=Ng+1,...,Ng . (4)

The surface charge density ¢ is thus

Ns
¢=qu+gz with qu=eo(zmuny —ne) and ge=¢€ Y 2aNa , (5)
s s s s s s s s a—l s 8

where Za denotes the surface charge number of the respective species.

2.2 Surface Reactions
We consider in general the following reactions:

B Adsorption

corresponds to the diffusion or jump process from a point z — x5 onto the surface
3.

Aa:éa’_l, Oé:07...,NE (6)

The charge number z,, mass m, and solvation number x, remain equal. Note
that we abbreviate the adsorbed solvent also by éO-

5



B Partial charge transfer and de-solvation
describes the restructuring and release of solvent molecules of the ions after the ad-
sorption process occurred. This process could occur simultaneously with the trans-
fer of a partial charge from some valence electrons. We denote by (1;11,0, o ,élNE,o)

the reaction products of this process and write the general reactions as
éa,—l_‘_ Sgn(za)/\a,o g_ S 1;{04,0 + ("ia - Ka,O) A’é() , a=1,..., Ng, (7)

where \, o denotes the partial charge transfer coefficient and R, s the reaction
S

rate. Correspondingly, the charge of the constituent éa,o IS 20,0 = Za —SEN(Za)Aa0

and the solvation number k.. Hence, the species zélap are partially solvated,

adsorbed ions. Note that A, could also be zero. The last term in (7) accounts
for the shrinking of the solvation shell and thus the release of solvent molecules
A on the surface.

S

B Subsequent partial electron transfer
models the transfer of electrons from the metal onto the reaction products of
(7). The first (partial) electron is transferred from (or to) a partially solvated ion
fslomOv producing a species ff;la,l with charge number 2,1 = 24,0 — sgn(24) Aa,1 and
solvation number &, ;. This species éa,l could further react with a partial electron
to produce a constituent élmg, and so forth. The general scheme is thus

Aap1F580(2a)Aap e = Aapt(Ka,8-1— Fas)Ao (8)

for =1,...,|2a|l, «=1,..., Ng with reaction rate R, s. The species A, s has
S S

then a charge number z, 5 = 2, — sgn(z,) Zfzo Ao,y solvation number £, g.
S

In some sense, the de-solvation and the electron transfer reaction smear to one type of
surface reaction. Further,

/\fé::E:/\cw B=1,... ]z, a=1,..., Ng (9)

corresponds to the effective charge transfer number due to the (3 electron transfer reac-
tions. If only integers of electrons are transferred we have \2 = f3.

2.3 Current-charge relation

The current density I which flows out of the the metal, i.e. through the boundary 02y,
is denoted by

I =eo(zmiv — Je) (10)

T=xy



Insertion of the global balance equations for the electrons and the metal ions of the
volume (1) and the surface (3), as well as the global electroneutrality condition

%%L‘FQM‘FQE‘FQEL =0 (11)

gives

d
I=-2 (qEL +qE) +eoTe (12)

where 7. denotes the production/annihilation of surface electrons. Since these electrons
S
are involved in the (partial) electron transfer reactions (7) and (8), we habe

Ng 2ol

Te = — Z Z sgn(za))\aﬂgaﬁ ) (13)

a=1 =0

Each adsorbate A, 4 is involved in two surface reactions, whereby the surface production
S

density 7, 5 is represented by

ras = (Ras — Rapt1) (14)
with R, |2, 141 = 0. We can thus write
Ra,ﬁ = Ta,|za| + Ta,|za|—1 + 4+ Ta,|za|-8 - (15)
which leads after some rearrangement to
Nt |zal N |2al ana,,@
== Y () Nras = -2 Y s (19)
a=1 B:O a=1 BZO
We obtain thus finally
dQ : BL _ Eff Eff & el
I:E with Q=—g" —¢g" and ¢ =e€o Y 20 Y Nas - (17)
s s a—1 B=——1

Here, ¢B* corresponds to the boundary layer charge of the electrolytic solution while gE

S
corresponds to the effective surface charge of electrolytic adsorbates on the metal. The
term effective is used to emphasize that the pseudo-charge

Ng |zal

csjgs = Z Z Sgn(Za))\ggba,ﬁ (18)

Oéil 5:0

of the partial charge transfer reactions is also incorporated in ¢E, i.e. ¢Ef = ¢E5 + ¢g.
S S S S

Note that the partial charge transfer coefficients A, 3 do not arise anymore in (17). The
pre-factor of nq g in (17) is z, and not z, 5 A2 This is a crucial aspect of the partial
S

charge transfer since it shows that one is not able to directly measure A\?, which is in
accordance to the finding of Schmickler and others [13, 14].

However, A2 certainly has an impact on some thermodynamic parameters of the adsor-
bates Aq g, which are incorporated in the respective chemical potentials.

7



2.4 Chemical potentials

The chemical potentials of some constituent A, are derived based on some explicit free
energy functions. Within the theory of coupled volume and surface thermodynamics,
independent free energy densities of the volume, i.e. p1, and the surface, 1, arise. The

S
derivation of these free energy functions is not scope of this work, and the detailed
derivation is given in [4]. The chemical potentials of some constituent A,, in the volume
and on the surface are

o
Ha = Tna and /:Sta = aTSLa .

(19)

For the electrolyte phase we rely on the free energy density pi)® given in [4] which covers
the entropy of mixing, solvation effects as well as the incompressibility of the liquid
mixture. The chemical potentials of the respective constituents are

_ Opy®
Ha = ong

where g2 denotes the reference partial molar Gibbs energy, y, = e the mole fraction,
n = YN n, the number density of mixing particles’, v the partial molar volume,
and p is the pressure. Note that the incompressibility of the liquid mixture implies the
constraint

= g + kT Iny, + 08 (p — p°) a=0,1,...,Ng (20)

1

=N 5 _ -
Za:[] Ugya

n = (21)

The metal is modeled as Thomas—Fermi electron gas with free energy density py™ of [4]
with representations

opy* R | R R OpyE B2 7/ 3\: 2

_ Ot _ - d pe=TE = (2 i, (@

My =g =g+ vy (v —pyy) and on. ~am \&r) " (22)

where vt denotes the partial molar volume of the metal ions, p); the metal ion partial

pressure, g% the reference Gibbs energy and p¥, the bulk pressure. The incompressibility
implies v = 1/nyy,.

On the surface we consider a surface free energy density 1) which covers surface solvation

S
effects, surface incompressibility, entropy of mixing, and reference contributions [4]. With
the explicit representation of 1) given in [4] we obtain the surface chemical potentials
S

@Df—i—ijTlnya—wakBTlnyV fora=0,1,...,Ng

o
o = 5 s} Yl +wykpT Inyy — alyq® fora =M™ (23)
s Na S S $

I = const. fora =e".
S

INote that due to the solvation effect not all solvent molecules participate in the entropy of mixing.
Since each ion binds k. solvent molecules, ng actually denotes the free solvent molecules, while né =

ng + ZaNzl KaMNe denotes the total number density of solvent in the mixture.

8
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Figure 4: Sketch of the mixing particles on the metal surface. Note that the number of

mixing particles is actually smaller than the actual number of molecules on the surface,

since a solvated adsorbate counts entropically as one particle.

The respective quantities are

B the number of surface vacancies
Ng
ny = wyny — ) 24
A MM Eo alla s (24)
o=

where @, denotes the number of adsorption sites of A,
S

B the number of mixing particles

Ng
n=ny+ Y N, (25)
a=0
B the surface fractions
%
yazs_ 7a:0717"'7NS7V7 (26)
S n

B the adsorbate surface tension £,
B the partial molar area of the metal surface aﬁ,

B and the constant electron surface chemical potential ¥
S

The surface incompressibility implies quite similar to (21) the constraint

1 &
ny=-5 < affny+Y aln,=1 (27)
s ayy s =0 s



with the partial molar areas

1 w,
R _ R R_WYa r __ R
ay = —ay, and a) = ——ay; = Waay - (28)

Wnpm Wapr

Note that we can thus either consider the number of adsorption sites @, or the molar

areas a? as model parameter. Our discussion in section 4 is based on a® which turns

out to be more convenient.

2.5 Equilibrium conditions
In the thermodynamic equilibrium, the following conditions hold [4]
B Diffusional equilibrium

Vite + €024V =0 a=0,1,..., Vg (29)

B Adsorption equilibrium at

Polf =ta1  a=1,.. . Ng and palg=p. a=eM  (30)

»

B Electrical equilibrium
odiv (1 + X)E = ¢" and eo[(1+ x)E] =¢ (31)

with E = —V.

B Mechanical equilibrium in Q*

1 _
Vp=—¢"Ve and ] =q- (VoS - Vely) (32)
B Surface reaction equilibrium on X
/;La,ﬁfl —+ Sgn(za))\aﬁ/je = l';l/a“ﬁ + (K/a,ﬁfl - HOz?ﬁ)/jO ) (33)

for 6=0,1,...,|za|l, «=1,..., Ng.

Throughout this work we consider only equilibrium situations. Note that a combination
of diffusional and adsorption equilibrium leads to

PE 4+ eozaUR = pg 1 a=0,1,..., Ng. (34)

with Ug = @] — ¢F. We abbreviate the electrochemical potential as fiq := fia + €020l

10



2.6 Boundary layer charge representation

In [4] we derived in detail the representation of the boundary layer charge ¢& in terms of
the electrolytic boundary layer drop UE. Briefly summarized we obtain from the electrical
equilibrium (31) and the mechanical equilibrium (32) the representation

& = sen(U%)|/220(1 + V(0[] — 17) (35)

+
where p‘z denotes the material pressure at the interface x = 0*. From the diffusional
equilibrium (29) we obtain representations

€, UR
Yo = 1E - o 7o (P(@) =9%)— g (p(2) —p%) (36)

which form together with the constraint

Ng
Z Ya = 1 (37)
a=0

an implicit equation system

g(p

Ng
ToEy + _
E,U)_.C;ya\z—uo (38)

This allows us to deduce an implicit solution

p|, = B(U) (39)

and thus a representation

g8 = sgn(UP)\/220(1 + x) (P(UE) — pB) = GE-(U"). (40)

2.7 Effective surface charge representation

The equilibrium condition (33) of the reactions (7) and (8) (together with the adsorption
and diffusional equilibrium in the electrolyte) can be summarized as

,ui + eozaUE + Sgn(za))‘gﬂe = Ha,p + (’%a,ﬂ - ’%a)ug s (41)

for = —1,0,1,...,|24], @« = 1,..., Ng. With the representation (23) of the surface
chemical potential 1, 3 we obtain the representations (5 = —1,0,1,...,|z,|)

A R
A
9o, _ ZaeQ E+aa,,3 E

Yo, 8 = yg(yg)(”“ﬁ’”a)e_ kgT — kBT kpT 7 a=1,..., Ng, (42)

11



with adsorption energy
Agas = Adas + rasAGy (43)
and  Ajos = U, — 08— ez e . A= (W —gl) . (44)

Note that the functional representation (42) of y, s is exactly the same as the one
S

obtained for integer charge transfer reactions [4]
/;104,6—1+ Sgn(za) A’;le = féa76+(/{a,ﬁ—1_ /{a,ﬁ)éo . (45)

The pre-factor of U® in the representation (42) is z,, and not Zaf = Za — sgn(2q) A2,
Hence, the only difference between adsorbates with partial and integer charge on the
surface can be parametrically with respect to the

B partial molar area a, s (or the the surface solvation number x, g),

B and the adsorption energy Agy ;.

Quite similar to the volume we have on the surface the implicit equation system

Ng  |zal

g(ny, UF) = %" + Z Z Yapg—1=0 (46)

a=0p=—1"%

with the representations (42) for y, s and

yv =e "Bls (47)

which determines v® = 4%(UF). Together with (27) and (42) we obtain thus for the
effective surface charge a representation
Eff €0 ZaNil Z‘Bzitl Za Ya,p

~E(T7E
9 = o =q(U") . (48)
s afyy + 30F, ZL}:LI ag,,@ Yo, %

2.8 Measured cell potential

We consider the metal-electrolyte interface in contact to some reference electrode R,
where the two metals are connected in an outer circuit to a potentiostat/voltmeter
which measures the voltage E. Due to the continuity of electrochemical potential ji. of
the electrons we have [4]

1
E:—(ﬁg—ﬁf)ZUE~I—UR with UR:_go(l;f—/;g)—UR’E (49)

where URE = ! — ¢F denotes the potential difference between bulk electrolyte and
S

surface potential of the reference electrode. The reference electrode is considered as

ideally non-polarizable (reference) electrode [15], which states U™* = const. We have

thus an explicit relation between the measurable cell potential £ and the electrolyte
potential drop U®. Note further that we can consider U® as parameter instead of .
S

12



2.9 Capacity

The capacity of the electrochemical interface is obtained from a quasi-stationary ther-
modynamic process, i.e. E = E(t), such that the thermodynamic equilibrium conditions
(29) - (32) hold for each time-step. The equilibrium representations of the boundary
layer and surface charge, i.e.

Q=@ (E-U") —gg"(E=U") = Q(E-U"), (50)
thus lead to
[:ngc-ig with C' = Cg-+ CE" (51)
Co = _dag and CEf = —dg—gﬁ : (52)
Bt dE s E dE

We call C'/F m~2 differential capacity of the interface and accordingly CE" boundary
layer capacity and gEfF effective surface capacity. The functional representation of CE

is given in A.1 and of CE" in A.2.

We performed already a validation study of this model in [4], which showed a broad
qualitative and quantitative agreement to experimental data. Here, however, we want to
discuss certain aspects of the necessary model parameters.

3 Partial molar volume

The solvation effect [16-22], i.e. the binding of solvent molecules to the central ion due
to microscopic electrostatic interactions, is a key feature for the thermodynamic behavior
of an electrolytic mixture. Due to this effect, the partial molar volume vf of an ionic
constituent A incorporates the volume of k, solvent molecules A,. The most simple
relationship between these two quantities is [4, 23]

vl = (14 ko) vl (53)
which assumes a constant density upon solvation. Based on the relation (53) one could
then estimate the solvation number k., for a given value of v%. We find that the solvation
number has to be in the order of? k, & 25 — 60 (for mono-valent ions) in order to agree
with capacity measurments of some non-adsorbing salt (c.f. Fig. 5 in comparison to Fig.
7). Such large values might seem disappointing, even though they account for the first
and second solvation shell. But predictions on solvation numbers are still in discussion
[24] and various values can be found in the literature [18].

Requisitioning the relation (53) in terms of a microscopic structure model shows that

the model perception v = (1+k,) vft actually neglects packing effects in the solvation

2The capacity maximum depends also on the chosen value for the electrolytic susceptibility y& .

13
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Figure 5: Computed capacity for a non-adsorbing salt AC with bulk concentration
0.01 /molL™".

shell [25, 26]. Since the packing fraction p ranges from 0.42 for a octahedral geometry
down to 0.33 for a hexagonal bi-pyramide, it dramatically reduces the number of solvent
molecules in the solvation shell for a given volume v’

o
Consider the case of an octahedral molecular geometry S1 for a solvated ion (see Fig.
6). The solvent molecules form a structural solvation shell (i.e. the first solvation shell)
around the central ion. The radius of the solvent sphere in the solvation shell is 7y and
in the range of 1 — 2A. An approximate value of 7 can be determined from the partial
molar volume of the solvent, i.e.

J 3 1 L
?Ozrgzsﬂvé%%lQZ/A with vgf:ﬁ/m. (54)

Presumably the radius 7y within the dipolar bond of the solvation shell is smaller than the
molar radius 7. However, for the introduction of the packing fraction the approximation
To & ¢ is quite sufficient.

From the structure model S1 we can determine the radius of the circumscribed sphere
as res = (14 v/2) 1o, leading to the volume Vs = 47(1 4+ v/2)%r§. The packing factor
p is then the number of molecules within the circumscribed sphere, times the volume
of the solvent sphere Vj, divided by volume of the circumscribed sphere. Note that we
assume here that the radius of the central ion is smaller than the radius of the solvent
spheres. Since the number of solvent molecules is actually the solvation number &, we
have for the octahedral structure model a packing factor of

1+ ko)W
p= IHEVo _ oo (55)
Ves
Since the fraction % is equal to the fraction of the partial molar volumes, Z—Oi (for

14



S1: octahedral solvation shell geometry (x, = 6) circumscribed sphere

_4 3~3
top view side view x-z / y-z 3d image Ves = 577(1 +v2)% g

&) QJ packing factor
7
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5 X L2 > p= (JFV& = 04975
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partial molar volume

7o € [L—2]A To €24 — 4.8 A 7,§=M7,§ ~ 14l
P

Figure 6: Octahedral molecular geometry with an anion in the centre and k, = 6
solvent molecules on the coordination sites. The partial molar volume of the solvated
ion computes as v2 ~ 14.07 v{* and is thus much large than predicted by equation (53).

To & 1), we obtain

r 1+Ekq

Vy =

vl = 14.07 - vf. (56)

A comparison to the introductory relation (53) clearly shows the origin of the overesti-
mating solvation number. For a given value of v we would obtain from (53) a solvation
number of k¢9(33) = 13, while the octahedral structure model (56) has a value of , = 6.

The packing factor can, of course, also be dependent on the actual ionic species AL,
and many structure models are imaginable with various solvation numbers are imagin-
able. Common is, however, that a reinterpretation of the solvation number based on
the equation (53) might be misleading and that the central parameter for the capacity
maximum is the partial molar volume.

Capacity measurements of the KPF, and KBF, [5, 27, 28] (c.f. Fig 7) show that
the capacity maxima of the anodic and the cathodic branch are equal. Since neither of
the constituents K™, PF; , BF, adsorbs on silver, the capacity maxima of each
branch is exclusively determined from the respective partial molar volume. The measured
maxima are almost equal, which suggests v, ~ vffFG_ ~ ngZ. This finding also holds
for many other small ionic species, like HY, OH™, Na™, C1~,ClO,,1".

From a first perspective this seems rather surprisingly. But the following discussion on
the second solvation shell shows that it is indeed very like that the partial molar volumes
are almost equal of many small ions.

Consider the structure model S2 given in Fig. 8. The first solvation shell with k! = 6
solvent molecules is similar to the structure model S1. Around the first shell, a second
one forms with 8 solvent molecules in the horizontal plane (top view). Above is another
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Figure 7: Capacity Fig 3. of [5] (Reprinted with permission of Elsevier).

ring of 4 solvent molecules is with an additional one on top. In both side views, this gives
again a ring of 8 solvent molecules. This is a dense packed, highly symmetric structure
model with /ii = 18 solvent molecules in the second solvation shell. In total, the solva-
tion number is k. + k2 = 24. The radius of the circumscribed sphere is r, = 7o, +4 - 7,
where 7, is (again) the radius of the central ion itself, and 7y the radius of a solvent

sphere. We obtain hence a packing factor p = (1+/€é+/€§)/(%+4}3 which is below 0.39.

Assuming now for the central ion a radius of 7, = 1 A, and for 7, again the molar radius
ro = 1.92 A leads to v/t = 91 - v}, which seems to be a rather large value. However,
as already mentioned above, the solvent radius 7 in the solvation shell is presumably
smaller than the molar radius 7 [29]. Using the radius of the water molecule itself, which
is about 7y = 1.5 A, leads to Uf =48. v(lf. This value is in remarkable agreement to our
findings based on capacity maxima. A reinterpretation of v/t = 48 - v in terms of eq.
(53) would suggest 47 solvent molecules in the solvation shell since eq. (53) neglects the
packing factor p < 0.39. But the structure model S2 proposes k, = 24, with k1 = 6 in
the first shell and x2 = 18 in the second shell, which gives due to the packing factor a
reasonable relation of v = 48 - vfl.

Of course, many more structure models are considerable, which lead to various solvation
numbers and packing densities. Common to all is, however, the formation of two solvation
shells which determine mainly the radius r, of the solvated ion A and thus the partial
molar volume v = 3773, Due to packing and symmetry reasons, the radius is at least
479, which already gives v, = 30-v{ for 7y = 1.5A and v, = 63-vt for 7y = 1.92A. The
inner solvation shell captures k! = 4 — 8 solvent molecules and the outer 2 = 14 — 20,
which leads to packing fractions of p = [0.28 — 0.44]. Since the solvent radius in the

solvation shell, 7%, and molar radius, 7, are presumably different (i.e. 7y < ), we have
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Figure 8: Structure model S2 of a solvated anion with first and second solvation shell.

the general relation

1 1 2 ~ o\ 3 1 o
ot = +ff;:+/<a> (2) .Ugf:;ef’f ol = Y (57)

The effective packing fraction pe covers the packing factor of the structure model as

well as the influence of the reduced solvent radius in the solvation shell. The central
remaining parameter is actually w,, which we call ionic volume scaling factor with
respect to the solvent. For the representative structure model S2 we have pE™ ~ 0.52
and k., = 24, which leads to w, = 48. We can also compute the partial molar radius r,
of an ion based on the relation

i 3
dm
which is in agreement to the findings of others, e.g. Freise [2]. We emphasize, however,

that the interpretation of a molar radius r,, and its connection to a the solvation number
ke is difficile.

To = vEx TA (58)

3.1 Relationship to the ionic charge number

Since the microscopic origin of the solvation effect is actually the charge ez, of the cen-
tral ion Af, it is expectably that the solvation number k., and the partial molar volume
vl depend on the charge number z, [30, 31]. The microscopic origin of this relation
is of course rather complex and not scope of this work. We rather seek a quantitative

relationship between v and z, in the light of the general relation (57), i.e. v2 = w, vl

Consider completely dissociated solutions of AC , A,C , and A;C with equivalent
concentration 0.01M. It is illustrative to consider three simple, representative models of
the ionic volume scaling factor w,, i.e.

M we =wp , My : wo = |2a] -wo and Mz :w, = (24)* - wo , (59)
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Figure 9: Computed double layer capacity and charge of 0.01IM AC , 0.006M AC, ,
0.0033M AC, aqueous solutions based on the thermodynamic model of section 2 and
the solvation shell models (59) with wy = 45.

where wy is a solvent specific quantity, and discuss their impact on the boundary layer
capacity. Fig. 9a displays a computation of the capacity for the respective examples. It
shows the complex interplay between charge number z, of the anion and the partial
molar volume of the respective models (59). Fig. 9b shows the corresponding double
layer charge.

For M;(wa = wp) we find that the capacity maxima increase extremely (compared to
the AC example) and that much more charge can be stored in the double layer (c.f.
Fig. 9b). Since the partial molar volume of A~ , A%~ and A3 remains equal for
this example, this is expectably as much more charge can be stored at a given amount
of volume.

The model My(w, = |24] - wo) shows a more intuitive behavior. The capacity maxima
increases due to the increased charge number of the AC, and AC; anion. However,
the capacity saturation Cy *° at E — +o0o remains in the order of the AC value
since the actual amount of charge stored in the double layer remains similar. This can
be seen more clearly when one computes the charge density gz(z), where x is the 1-D
space variable normal to the metal surface, based on the equilibrium equation system
(31),(32) and(36). Note that the canonical unit of gg(z) is actually uCcm—?nm~! and
remember that for a non-adsorbing salt () = — fOIE ge dx.

Figure 10 displays the numerical solutions of gz(z), i.e. the space charge layer in the
electrolyte, for the examples given above. The example AC can again be considered as
reference since it was validated in [4] against experimental data of mono-valent salts.

For the model My we find that the charge density in the Stern layer, i.e. the locally
saturated anionic solution [1], remains almost equal for AC, AC, and AC, . This
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can also be understood by the representation of ¢, i.e.
Zgio Za " Ya
0N R
Eaio Uo}} *Ya

If we have (local) saturation of the anion A(72737) je. yx — 1 for E — oo and thus

Ya — 0 for all other species, we obtain gz° — eoZ%. Hence, for the model My this is
A

e = € (60)

essentially a constant, namely ¢2° — ¢ sgn(zA)W. This explains why the saturation
0

capacity Cg *° almost coincide for AC, AC, and AC; for My. The slight deviation
arises from the slightly different Stern layer widths, c.f. Fig 10.

The model M3(w, = (24)* - wp) leads to almost equal capacity maxima for AC ,
AC, and AC, , while the saturation capacity Cg > decreases (see Fig. 9a). This is
in accordance with Fig. 9b, which shows that less charge is stored in the double layer
compared to the AC example. Fig. 10 shows that for M3 the Stern layer widnes,
however, storing less charge than the AC example.

Overall we conclude that a constant ionic volume scaling factor w,, with respect to the
charge number z, underestimates the saturation capacity C *°, while a quadratic relation
overestimates the value. For the relation w, = | |24] | - wo we obtain equal values for the
saturation capacity Cg ™ for 0.01M AC , 0.005M AC, and 0.00333M AC; . Quite
surprisingly, D. Grahame observed this behavior alread in 1951 on a series of metallic
chlorides dissolved in water [32] The capacity measurements were performed on mercury
electrodes based on the experimental method explained in [33]. It is to emphasize that
the adsorption of Cl™ can hide the capacity minimum of Fig. 9a, as well as differences
in measurements to single crystal observations nowadays exist [34]. We focus here on the
fact that the limiting values of the capacity, i.e. Cz ™, is almost equal for the aqueous
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solutions of 0.01IM NaCl , CsCl, 0.006M MgCl, , BaCl, , and 0.033M AICl, .
LaCly . This is in accordance Fig. 9a with w, = |24| - wy. Thus justifies our proposed
relationship

o = Jal w0 o (61)
where wy is a solvent specific quantity. According to (57)2, i.e.

14+ kg
peft = |za] - wo , (62)

the solvation number &, is thus also dependent on z,. However, in order to actually
determine the value of ., one would require a structure model for the multi-valent ions.
If the effective packing density pef remains almost equal, i.e. p ~ 0.5, we observe that
the solvation number k, increases linearly with the charge number z,, i.e. from 24 for
%o = £1 to 48 for z, = +48. This additional 24 solvent probably form a 3" solvation
layer around the central ion. Note, however, that the packing density does not necessarily

remain constant upon increasing the number of solvation shells.

Summarizing, we suggest thus for multi valent ion constitunes A, with charge number
Z, the relationship

vl = |z,| - wo - vt with  wy =48 (63)
and
1
Ra = 5 |Za| wo - (64)

4 Partial molar area

On the metal surface we consider adsorbates A, s in terms of surface species densities
Mo, originating from the adsorption, de-solvation and partial charge transfer reactions
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(6)—(8), i.e. the net reactions

B
Aa + Z sgn(fza))\a,'y e = éa,ﬁ + (Ha - E’a,ﬁ)AO ﬁ = 07 17 cey ’Zoz| : (65)

¥=0
For each adsorbate we have in the thermodynamic equilibrium essentially two thermo-
dynamic parameters which determine the amount of constituents on the surface, i.e.

. . R
W its partial molar area a4

B and the adsorption energy Ag&“ﬂ :

In addition, the partial molar area of the metal surface a’}; and the number of adsorp-
tion sites W), each surface atom provides arise as model parameters. This encodes the
different surface orientations, e.g. (111), (110), (100) or the liquid state.

For solid metal surfaces af; is straight forward computed from the crystallographic struc-

ture of the considered surface orientation, e.g. for a fcc crystal with lattice distance ¢,
we have

R \/§ R R \/5

1
Apran) = §(€M)2 3 Arr(100) = §<£M)2 and Arr(110) = T(KM)2 . (66)

If each surface metal atom (or surface unit cell) provides one adsorption site (or vacancy)
for all considered surface orientations (abc) we have Wy = 1 whereby aff ) = ¥ (44
(case a). Note, however, that different surface orientations (abc) can potentially also
offer different amounts wys(aie) of adsorption sites. It thus possible that atl is equal for
different surface orientations (abc), which implies that the metal partial molar area and
. . . . . . . R o R
the number of adsorption sites increase in a similar way, i.e. ay} = Ta1 (aney UM (abo) (case
b). These two model perceptions become more clearly when the partial molar area of
the adsorbates is discussed (see Fig. 12).

The specific molar area of the solvent is computed from

2 5/ 3
~R 2 : 3 R
ay = —(2r with 79 = ] —ug", 67
0 \/g( 0) 0 4 0 ( )
which corresponds to a layer of densely packed spheres. For water this leads to a value
of &I}}ZO = 10.33 - 108 % The radius ry = 1.92 A of the water molecule, or the
packing density on the surface, can also be slightly different for the adsorbed state,

which has accordingly an impact on 6{}20. Parsons et. al [35] introduce a value of

ag,o = 740723 - 108 fﬂlj which originates from this circumstance. Both values are in
the same range and we proceed our discussion with ELEZO .

However, even more crucial is the question wether the thermodynamic parameter, i.e.
the partial molar area af, is influenced by the lattice structure on which the constituent

is adsorbed. Two extreme cases are imaginable:
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Figure 12: Different number of adsorption sites on different metal surfaces can lead to
the same partial molar area aff of an adsorbate.

B the partial molar area al’ remains equal for different surface orientations (case a),

B and each surface atom provides one adsorption site (case b).

Figure 12 sketches the different model perceptions. Whether case a or b is physically
meaningful cannot be directly answer from continuum thermodynamics itself. Both cases
are thermodynamically consistent. However, we expect the surface density p Moo
of the solvent to remain equal for different surface structures. This is corresponds to
case a, whereby the partial molar area aff = alf is equal for different metal surfaces,

orientations and states.

Next we discuss the partial molar area a’? o Of the ionic speC|es on the surface. Expectably,
the preceding discussion on the part|a| molar volume v% and the impact of the solvation
effect holds in a similar way for aaﬁ. i.e. two- d|menS|ona| surface solvation [36, 37].
Hence, in order to relate the solvation numbers ’;”3;[3 and /giﬁ of the first and second

(surface) solvation shell to the partial molar area, some structure model for adsorbed
ions is required. It is not the scope of this work to actually predict different structure
models. We rather discuss some aspects of representative structure models and their
impact on the thermodynamic parameter afwg.

Summarizing, this means that we have a relationship

1+ Ra,B
R ’ R R
g = g "y = LT (68)
fa,ﬂ

where Ka,3 = H B—l—/i s denotes the surface solvation number, pEfF the effective packing

den5|ty, and w, g the ionic area scaling factor with respect to the solvent. The ionic area
S
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Figure 13: Comparison of computed and experimental capacity curves.

scaling factor is expectably also related to the charge number of the central ion, i.e.

Lfsja7ﬁ =

%a,ﬁ’ : C';}O ; (69)

where wy is again a solvent specific quantity. Note, however, that w, g =
S

Za,8| wo would
S S
imply afﬁ — 0 for an uncharged adsorbate z, g — 0, which is certainly not correct. We
) S
would rather expect aff ; — aff for zo 3 — 0, where af is the partial molar area of the
’ s
(uncharged) central ion itself. We expect thus that the relation (69) holds up to some

lower limit, employed here as

fa,ﬁ‘ >0.2.

Remember that the charge number of A, s could be fractional, i.e. 2,5 = 2z, —
S S

Egzo sgn(za)Aa,y, due to the partial charge transfer reaction (65). The partial charge
transfer coefficients A, ., assume fractional values between —1 and 1. Consequently the
partial molar area of an ionic adsorbate is related to \? = 25:0 Aay-

We discuss the impact of partial charge transfer on the double layer capacity for some
aqueous ionic solution AC. The mono-valent anion A~ is assumed to adsorb on the
metal surface, which is accompanied by a partial charge transfer and some restructuring
of the solvation shell, i.e.

A_ — /\Ae_ ;\ é_ —|— (IiAf — I§A17)\)H20 . (70)

The contribution of A™ for values of Ay~ € [0,0.6] based on the model (69) on the
capacity is displayed in Fig. 13a
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Figure 14: Computation of the surface capacity with aff_ = 30 - aff and a parameter
variation of Aga-.

Consider KPF as reference of a non-adsorbing salt and NaClO,, NaF as examples
with adsorbing anions. The measurement of Valette shows that the surface capacity
contribution of C10*~ smaller than F~. From a thermodynamic point of view, the only
parameter which determines the surface capacity maximum is actually the partial molar
area a® of the respective adsorbate. Since both ions have an equal solvation shell in the
volume, c.f. the prior discussion, one would a priori assume that a similar behavior also
holds at the surface. But this obviously not the case, and Fig. 3a is the experimental
evidence that the molar area of F~ is smaller than C10*".

What is the origin of this shrinking? Note that thermodynamically a statement like
F~ binds stronger on the metal surface than ClO, " actually only has an impact on
AgG2, which shifts the (surface) capacity maximum to the left or right (see Fig. 14), but
does not influence the value of the maximum. Thus, “a stronger binding” cannot be the
origin.

If one assumes, however, that the partial molar area is related to the charge Za- =
Za- + Aa- an adsorbate A™ actually carries, i.e. relation (69), the effect of a shrinking
molar area is naturally explained by some partial charge transfer! Due the charge trans-
ference, the dipole interaction between the outer solvent molecules decreases and the
ion strips of a part of the solvation shell whereby it shrinks. We can thus understand the
difference between F~ and ClO*~ in terms of different amounts of partially transferred
charge on the adsorbed ions.

However, in comparison to measured data of G. Valette [5] we find that the concept
of partial charge transfer explains quite well the increasing (surface) capacity, and we
finalize the discussion with a representative structure model.
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Figure 15: Sketches of two different ionic surface structure models with different solvation
numbers and molar radii.

Of course, our modeling procedure does not pretend to predict any structures of the ad-
sorbed ions. We provide rather a thermodynamically consistent interpretation (or mech-
anism) why the partial molar areas of two adsorbed ions can be different. The interaction
between the central ion and solvent molecules on a surface can be far more complex,
since electrostatic interactions in 2D are inherently different from 3D. But any surface
thermodynamic theory requires explicit values for the partial molar area of ionic ad-
sorbates. The most simple approach is to assume that an ionic adsorbate for which no
partial charge is transferred has a similar molar radius than the respective ion in solution,
i.e. r, ~ TA. If we compute now the partial molar area based on the relation

al! = 4mr? =~ 36 - all (71)

we find actually an ionic scaling factor of w, = 36 (for mono-valent ions). This value is
S

in surprisingly good agreement to surface capacity data of G. Valette [5] on NaClO,

, in the sense that our model predicts capacity maxima which are almost equal to the

measured data. However, in order to determine the actual solvation number based on the

relation (68), one requires a packing density and thus a structure model. If we consider

the solvated ion as one once slice to the structure model S2 (top view), we obtain a

solvation number of k = 8 +4 = 12 and thus an effective packing density of pE™ ~ 0.36
S

(c.f. Fig. 15a). Compared to the effective packing density p, ~ 0.52 this means that
adsorbed ions haven an even lesser dense packed solvation shell.

However, we employ thus a value of wy = 36 for the solvent specific ionic scaling fac-
S

tor together with the model perception Wo =

Za| - Wo for adsorbed, solvated, partially

charged ions.

For a transferred charge of A\o- = 0.4 we obtain hence a value of Wa- = 0.6-36 = 21.6,

or, retranslated in terms of a molar radius, a value of r, =~ 5.42A. If the effective

packing density p&T remains almost equal for the partially charged ion (which is not

necessarily the case), we obtain a solvation number of k- ~ 8. This value is probably a
little bit bigger since the packing density increases for smaller solvation shells. However,
the resulting values are quite meaningful for adsorbed F~ , and the concept of partial
charge transfer in combination with the molar area explains naturally the increasing
surface capacity of NaF compared to NaClO,.
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5 Summary

Based on the general framework of non-equilibrium thermodynamics for volumes and
surfaces we derived representations of the boundary layer CE- and the surface capacity
CE, which form together the measureable double layer capacity Cr = CE* +C’E It turns

out that the crucial parameters for CE" is the partlal molar volume v% of the ionic
constituents, while for CE the partial molar area o is the dominant parameter. Both
values determine the respectlve capacity maximum.

Due to the solvation effect, i.e. the binding of k., K, solvent molecules to the central
S

ion, the molar volume and area of an ionic constituent A increase, where the most
simple relations are

=(1+kKe) vl and af=(1+ ’ja) -af, (72)

with v{*/all being the molar volume/area of the solvent. However, it turns out that
these S|mp|e relations have quite some shortcomings and lead to a misinterpretation of
the actual values for k, /K. It is thus more illustrative to consider initially relations
S
R

R _ R _ R
Uy =Wa -y and  ay = we - ag), (73)

where wa/cga are the Jionic scaling factors. Measurement of the double layer capacity
on single crystal silver electrodes suggest values of w, € [40 — 50] and wa € [10 —
40] [4]. Obviously, these values seem to overestimate the solvation numbers based on
the relations (72). Requisitioning the relations (72) actually shows that these neglect
packing effects. While the important thermodynamic parameters for the double layer
capacities are actually w, and Wa which certainly incorporate the solvation numbers
of the respective ion, the determination of actual values for k. and k, requires some
structure models for mono-valent ions. For representative structure rrs10de| we showed

that a more realistic relation between the partial molar volume/area and the solvation
numbers is

1 o (1+ Kla)
vl = (+ #a) ;E: ) ol and o = 7]0'5“ -ag, (74)

where pEff /pEfF are the effective packing densities of the solvation shell. For spherical

ions in the vqume this value is about pE™ ~ 0.52, while on the surface the solvation

shell is lesser dense packed with pEff ~ 0.36 . For both, volumetric and surface solvated

ions, we can compute the partial molar radius, i.e.

To = —vf ~ \/aa , (75)

for which we obtain reasonable values of r, &~ TA.
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When multi-valent ions are discussed, the question arises how the partial molar volume
is related to charge number of the ion. Our discussion suggests relations

vl = |24l wo -0 and af =

(';}0 : a(])% ’ (76)

ZOC
S

where wy and wq are solvent specific ionic scaling factors. Based on a comparison to
S
experimental date we obtain for water as solvent wy = 48 and wo = 36 (which leads
S

to 7o = 7A for mono-valent ions). This linear relationship between the partial molar
volume v’ and the charge number z, predicts almost equivalent values for the capacity
limit Cg(E — —oo) for equivalent solutions of AC, A,C and A;C. This finding is
underpinned by experimental data of Grahame on a series of metallic chlorides, namely
0.0IM NaCl, CsCl, 0.006M MgCl, , BaCl, , and 0.033M AICl; . LaCly , which
show exactly this behavior: The double layer capacity is almost equal for all solutions (in
range of experimental error).

Finally, when an ion A~ adsorbs on a metal surface, the question arises if this ad-
sorption process is, or could be, accompanied with some partial charge transfer, i.e.
A=+ Xy -e” = A" | It turns out that neither the equilibrium representation of
the surfactants nor the measurable effective surface charge density depend on the par-
tial charge transfer coefficient Ay. However, in the light of the relation (76) the sur-
face capacity becomes naturally (mathematically: parametric) dependent on A4, since
A = 2Za — Aa sgn(za). The relation (76) actually states that the partial molar area
decreases when the charge of the central ion decreases. Origin of this is the shrinking
solvation shell is thus the partial charge transfer. This mechanism explains very well the
difference in capacity values of NaClO, and NakF' , and attributes this difference to the
partial charge transfer and the shrinking partial molar area.
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A Explicit capacity representations

A.1 Boundary layer capacity

Reconsider the definition of ¢&", i.e.

DL
Tg

@ = /qE dx . (77)

x
s

Within the boundary layer we have the representation [4]

Oztp = —sgn(yp — SOE)\/éfo(li—XE) (p— pe) (78)

one obtains

2= sgn(UEVzeo(l ) (p], — pe). (79)

S
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where p‘ = p(Ug) is obtained from the implicit equation system

s

g(U,p) =Y yale,p) —1=0. (80)

a€lg

with representations 36 of y,. The functional representation of the pressure p satisfies

dp
@ = —Qqe ; (81)
leading to
BL E go(1 + xe) A
CE = —Sgn — A—‘EUE, UE — pE) . 82
gn(y w)J%(UE)_pE) ¢(Us, H(Ue)) (p — 1¥) (82)

A.2 Surface capacity

Here we provide a semi-explicit representation of the surface capacity C'. First of all note
S
that the surface charge ¢ has the representation
S

N N |z
> a1 Za€0la T 2at1 2o50 1 Za€0Ya,b
S S

q= (83)

afyv + PO afya+ e kel 0 5Yas
With the representations (42) for y,, ya 5 and yy we obtain an expression of ¢ in terms
of (p — ¢F) and (v — v), i.e. ¢ = G(p — ¢F,v — v®). The surface charge is thus a

S S S S
function of ¢ and the surface tension «y. The surface fractions y, s obey the constraint

NE NE ‘Zﬂt|
W=7+ vale ==+ 30 D vasle— v —7") —1=0, (84)
s a=0S S a=0p——1°% s

which is an implicit relationship between U and v —~®. Hence, we may use the implicit
function theorem to deduce a solution v = 4(Ug) from equation (84), which satisfies
d4/d(Ug) = q. The surface capacity g is thus

A dg dq dq
=~ (aUEJr?'a(w—yR))' (85)
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With the (dimensionless) abbreviations

Ne  |zal
fl = Zzaya—keo Z Z zaya@
a=18=——1
Ne  |zal
f2 7= yv +woyo + Z Walfa + >y Wa,5Ya.
a=1 a=1p=-1
Ng  |zal

Zzaya+z Z ayaﬁ

a=1p=-1 ¢

Neg  |zal
fi=eo Z Za Wa Yo+ € > Z Za Wt Yo
a=1 =
Nt  |zal
f5 = yv +woyo + Z Wala + Y D wi 5Yeus
a=1 % a=1p=-1

we obtain for the surface capacity the expression

2 (ffimfafe ffifom i fs

C« —_ s s + 5
s kpTai} (f2)? f2 (f2)?
Note that the term " 673 7 indeed has units 2 and that all functions fk, =1,...

are dependent on Ug and v —~E.
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