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Abstract

The double layer capacity is one of the central quantities in theoretical and
experimental electrochemistry of metal/electrolyte interfaces. It turns out that
the capacity is related to two central thermodynamic quantities, i.e. the partial
molar volume of an ionic constituent and the partial molar area of the respective
adsorbate. Since ions in solution (or on the surface) accumulated solvent molecules
in their solvation shell, the partial molar volume and area are effected by this
phenomena. In this work we discuss several aspects of the relationship between the
molar volume and area of an ion, the solvation number and the charge number.
In addition, we account for partial charge transfer on the metal surface which
explains naturally the difference of the capacity maxima between F− and ClO−4
on silver. We provide simple yet validated analytical expressions for the partial
molar volume and area of multi-valent ions and parameter values for aqueous
solutions.
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Figure 1: Sketch of the metal-electrolyte interface. The Stern-layer and the diffuse layer
is self-consistently incorporated within the model. Solvent molecules are assumed to form
a solvation shell around each ion, in the volume and on the surface.

1 Introduction

The partial molar volume vRα of a solvated ion Aα in solution and the partial molar area
aRα of an ionic adsorbate A

s
α are key parameters for the thermodynamic behavior of an

electrochemical interface. Especially the electrochemical double layer electrolyte [1–3] is
crucially influenced by these quantities.
A fingerprint of the double layer is the differential capacity C, which is in general a
non-linear function of the measured cell voltage E (c.f. Fig. 2b). We derived recently
a continuum thermodynamic model in [4] which is capable to predict qualitatively and
quantitatively the capacity for various electrolytes and metal electrodes in a broad poten-
tial range (c.f. Fig. 2). The interfacial capacity CE actually spreads in a boundary layer
contribution CBL

E , and a surface capacity C
s

E, with CE = CBL
E +C

s
E, where C

s
E vanishes of

no adsorption of ionic constituents occurs. We find that the maximum of the boundary
layer capacity CBL is non-linearly dependent on the value of the partial molar volume vRα
(Fig. 3a) while the maximum of the surface capacity is determined by aRα (Fig. 3b).
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(a) Computed capacity based on the model
given in [4].

287 

quency effects have been observed with the other electrolytes. 
The curves in Fig. 2 show the concentrat ion effect on C in F-  (a) and CLOY, 

(b) solutions. The diffuse layer contr ibut ion is easily verified by the well- 
pronounced minimum. For both electrolytes, the minimum potential  Em is 
dependent  on concentrat ion.  In the concentrat ion range from 0.005 to 0.1 M 
the shifts AEm are equal to +18 and +32 mV for NaC104 and NaF (Table 1); 
they characterize an anionic specific adsorption, and a stronger specific adsorp- 
tion of F- than that  of ClOy, may be asserted. On mercury the inverse order 
is given [ 5], but  on gold [6], the same order as found here is observed. An 
a t tempt  to explain the different behaviour between mercury and solid surfaces 
is given in the discussion section. 

An interesting observation may be made on Fig. 2, if the C values of the 
two maxima sm~ounding the minimum axe compared.  At the negative maxi- 
mum the height is identical for F- and CLOY,, and no specific adsorption can be 
assumed. At the positive maximum C is higher with F-;  this can be explained 
by the assumption that  there is weak anionic specific adsorption in this poten- 
tial range and that  F- is more strongly adsorbed than CLOY,. The total capacity 
is given by [7] 
( C )  - 1  = (c i )  -1 + ( c d )  - 1  (1 + 0oi/()O) (1) 

where C, C i and C d are the capacities of the double layer, inner layer and dif- 
fuse layer, and a and o i are the electrode charge and that  of the specifically 
adsorbed ions. 

As specific adsorption becomes stronger, 30 i/ao decreases from zero, and the 
factor multiplying (C d)-~ decreases, so C increases and tends towards C i, at a 
given electrode charge. On the other hand, o d remains opposite to a, because 
]oi l< o, and C d decreases as the anion becomes more strongly adsorbed, 

therefore the total capacity is expected to decrease. Since C increases from 
C10?~ to F-,  the influence of (1 + 3oi/3o) would be greater than that  of C d. It 
is assumed here that  the inner-layer capacity C i is weakly dependent  on the 
nature of the anions as found for C1- and F- [8]. 
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Fig. 2. C(E) curves for a (110) silver electrode. Concentration dependence in (a) NaF, and 
(b) NaC104 solutions. 
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(b) Measured capacity (Fig 2.b from [5],
reprinted with permission from Elsevier)

Figure 2: Comparison of the computed capacity (a) and the measured capacity (b) of
the Ag(110)| NaClO4 interface for concentrations of (0.005− 0.1)M.

For non-adsorbing ionic solutions, e.g. KPF6 vs Ag [5], the capacity maximum is
in the order of 50 − 60µF cm−2, which requires that vRα of K+ and PF−6 is about
30− 50 times larger than the partial molar volume vR0 of the solvent and equal for the
anion and the cation. For adsorbing ions on Ag , e.g. F− or ClO−4 , we find find that
the partial molar area is necessarily 5− 30 times larger that aR0 of the solvent, however,
with different values of F− and ClO−4 .

Within this work we discuss these aspects in detail and provide some insight on the
required values. First we briefly summarize the thermodynamic modeling procedure and
the derivation of the charge/current relation. This leads to the structural decomposition
of the double layer charge in an electrolytic boundary layer contribution, which is mainly
determined by the partial molar volume, and an electrolytic surface charge contribution,
which is dependent on the partial molar area.

We discuss then the partial molar volume and some structural effects due to packing
densities. Further discussion on multi-valent ions is followed, leading to some relations
between solvation number, partial molar volume, and ionic charge. For the adsorbed
ionic species we introduce the concept of partial charge transfer within our modeling
framework and discuss its impact on the partial molar area. Validation and interpretation
is based on representative examples of capacity measurements and computations.
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Figure 3: Maxima of the differential capacity contributions CBL and C
s
for a variation of

the partial molar volume and area. The computations are based on the model of [4] for
a 0.01M solution AC with an adsorbing anion.

2 Thermodynamic modeling

We consider a metal ΩM in contact with an electrolytic solution ΩE, sharing the common
surface Σ. For this study we consider the approximation of a flat metal surface Σ posi-
tioned at x = x

s
and a homogenous distribution on the surface, i.e. a 1-D approximation.

Discontinuities at Σ of a quantity u are again denoted by u
∣∣∣
− − u

∣∣∣
+

= [[u]] and the
bulk values in the metal and the electrolyte are uM = u|xM and uE = u|xE , respectively.
The framework of continuum thermo-electrodynamics for volumes and surfaces serves
as basis for the modeling procedure [6–11]. It relies on general balance equations for the
continuous field variables of mass, energy, and momentum as well as the electromagnetic
field. The material specific modeling is carried out by constitutive equations of the free
energy density ρψ and ψ

s
. Since the metal surface is explicitly taken into account as in-

dependent thermodynamic quantity, we require balance equations and thermodynamics
of singular surfaces [7, 10–12].

2.1 Constituents and Balance equations

The electrolyte ΩE is considered as a mixture of constituents Aα , α = 0, 1, . . . , NE with
molar mass mα and charge e0zα, where A0 denotes the solvent (z0 = 0). For each
constituent we have a (volume) density nα(x, t) /molm−3 which satisfies the global

4



balance equation (in the 1-D approximation)

d

dt
nBL
α = −jα

∣∣∣
x=x

s

+ jα
∣∣∣
x=xE

with nBL
α :=

xEˆ
x
s

nα dx, α = 0, 1, . . . , NE , (1)

where jα is the molar flux of Aα in positive x-direction. The total mass density of
the electrolyte is ρE = ∑NE

α=0mαnα, the charge density qE = e0
∑NE
α=1 zαnα, and the

electrolyitc boundary layer charge

qBL
E =

ˆ xE

x
s

qE dx . (2)

We consider the metal ΩM as mixture of metal ions AM (with charge number zM) and
valance electrons Ae in terms of species (volume) densities nα(x, t) /molm−3 and the
corresponding global balance equations are similar to (1).
On the metal surface Σ we consider adsorption of all constituents from the metal and the
electrolyte phase in terms of species densities n

s
α(x

s
, t) /molm−2 , satisfying the global

surface balance equations
d

dt
n
s
α = jα

∣∣∣
x=x

s

+ r
s
α α = 0, 1, . . . , NE , (3)

with surface reaction rate r
s
α. Since these adsorbates may react further on the surface, we

have in addition A
s
α = NE+1, . . . , NS exclusive surface species which satisfy the balance

equations
d

dt
n
s
α = r

s
α α = NE + 1, . . . , NS . (4)

The surface charge density q
s
is thus

q
s

= q
s

M + q
s

E with q
s

M = e0(z
s
Mn
s
M − n

s
e) and q

s
E = e0

NS∑

α=1
z
s
αn
s
α , (5)

where z
s
α denotes the surface charge number of the respective species.

2.2 Surface Reactions

We consider in general the following reactions:

� Adsorption
corresponds to the diffusion or jump process from a point x→ xS onto the surface
Σ.

Aα −−⇀↽−− A
s
α,−1 , α = 0, . . . , NE (6)

The charge number zα, mass mα and solvation number κα remain equal. Note
that we abbreviate the adsorbed solvent also by A

s
0.
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� Partial charge transfer and de-solvation
describes the restructuring and release of solvent molecules of the ions after the ad-
sorption process occurred. This process could occur simultaneously with the trans-
fer of a partial charge from some valence electrons. We denote by (A

s
1,0, . . . , A

s
NE,0)

the reaction products of this process and write the general reactions as

A
s
α,−1+ sgn(zα)λα,0 e

s

− −−⇀↽−− A
s
α,0 + (κα − κα,0)A

s
0 , α = 1, . . . , NE, (7)

where λα,0 denotes the partial charge transfer coefficient and R
s
α,β the reaction

rate. Correspondingly, the charge of the constituent A
s
α,0 is zα,0 = zα−sgn(zα)λα,0

and the solvation number κα,0. Hence, the species A
s
α,0 are partially solvated,

adsorbed ions. Note that λα,0 could also be zero. The last term in (7) accounts
for the shrinking of the solvation shell and thus the release of solvent molecules
A
s

0 on the surface.

� Subsequent partial electron transfer
models the transfer of electrons from the metal onto the reaction products of
(7). The first (partial) electron is transferred from (or to) a partially solvated ion
A
s
α,0, producing a species A

s
α,1 with charge number zα,1 = zα,0− sgn(zα)λα,1 and

solvation number κα,1. This species A
s
α,1 could further react with a partial electron

to produce a constituent A
s
α,2, and so forth. The general scheme is thus

A
s
α,β−1+ sgn(zα)λα,β e

s

− 
 A
s
α,β+(κα,β−1− κα,β)A

s
0 (8)

for β = 1, . . . , |zα|, α = 1, . . . , NE with reaction rate R
s
α,β. The species A

s
α,β has

then a charge number z
s
α,β = zα − sgn(zα)∑β

γ=0 λα,γ solvation number κα,β.

In some sense, the de-solvation and the electron transfer reaction smear to one type of
surface reaction. Further,

λβα :=
β∑

γ=0
λα,γ β = 1, . . . , |zα|, α = 1, . . . , NE (9)

corresponds to the effective charge transfer number due to the β electron transfer reac-
tions. If only integers of electrons are transferred we have λβα = β.

2.3 Current-charge relation

The current density I which flows out of the the metal, i.e. through the boundary ∂ΩM,
is denoted by

I = e0(zMjM − je)
∣∣∣
x=xM

(10)
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Insertion of the global balance equations for the electrons and the metal ions of the
volume (1) and the surface (3), as well as the global electroneutrality condition

qBL
M + q

s
M + q

s
E + qBL

E = 0 (11)

gives

I = − d

dt

(
qBL

E + q
s

E

)
+ e0 r

s
e , (12)

where r
s
e denotes the production/annihilation of surface electrons. Since these electrons

are involved in the (partial) electron transfer reactions (7) and (8), we habe

re = −
NE∑

α=1

|zα|∑

β=0
sgn(zα)λα,βR

s
α,β . (13)

Each adsorbate A
s
α,β is involved in two surface reactions, whereby the surface production

density rα,β is represented by

rα,β = (Rα,β −Rα,β+1) (14)

with Rα,|zα|+1 = 0. We can thus write

Rα,β = rα,|zα| + rα,|zα|−1 + · · ·+ rα,|zα|−β . (15)

which leads after some rearrangement to

re = −
NE∑

α=1

|zα|∑

β=0
sgn(zα)λβα rα,β = −

NE∑

α=1

|zα|∑

β=0
sgn(zα)λβα

∂n
s
α,β

∂t
. (16)

We obtain thus finally

I = dQ

dt
with Q = −qBL

E − q
s

Eff
E and q

s

Eff
E = e0

NE∑

α=1
zα

|zα|∑

β=−1
n
s
α,β . (17)

Here, qBL
E corresponds to the boundary layer charge of the electrolytic solution while q

s

Eff
E

corresponds to the effective surface charge of electrolytic adsorbates on the metal. The
term effective is used to emphasize that the pseudo-charge

q
s

PS
E :=

NE∑

α=1

|zα|∑

β=0
sgn(zα)λβαns α,β (18)

of the partial charge transfer reactions is also incorporated in q
s

Eff
E , i.e. q

s

Eff
E = q

s

PS
E + q

s
E.

Note that the partial charge transfer coefficients λα,β do not arise anymore in (17). The
pre-factor of n

s
α,β in (17) is zα and not z

s
α,β ∝ λβα. This is a crucial aspect of the partial

charge transfer since it shows that one is not able to directly measure λβα, which is in
accordance to the finding of Schmickler and others [13, 14].

However, λβα certainly has an impact on some thermodynamic parameters of the adsor-
bates A

s
α,β, which are incorporated in the respective chemical potentials.
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2.4 Chemical potentials

The chemical potentials of some constituent Aα are derived based on some explicit free
energy functions. Within the theory of coupled volume and surface thermodynamics,
independent free energy densities of the volume, i.e. ρψ, and the surface, ψ

s
, arise. The

derivation of these free energy functions is not scope of this work, and the detailed
derivation is given in [4]. The chemical potentials of some constituent Aα in the volume
and on the surface are

µα = ∂ρψ

∂nα
and µ

s
α =

∂ψ
s

∂n
s
α

. (19)

For the electrolyte phase we rely on the free energy density ρψE given in [4] which covers
the entropy of mixing, solvation effects as well as the incompressibility of the liquid
mixture. The chemical potentials of the respective constituents are

µα = ∂ρψE

∂nα
= gRα + kBT ln yα + vRα (p− pE) α = 0, 1, . . . , NE, (20)

where gRα denotes the reference partial molar Gibbs energy, yα = nα
n

the mole fraction,
n = ∑N

α=0 nα the number density of mixing particles1, vRα the partial molar volume,
and p is the pressure. Note that the incompressibility of the liquid mixture implies the
constraint

n = 1
∑N
α=0 v

R
α yα

. (21)

The metal is modeled as Thomas–Fermi electron gas with free energy density ρψM of [4]
with representations

µM = ∂ρψM

∂nM
= gRM + vRM(pM − pRM) and µe = ∂ρψE

∂ne
= h2

2me

( 3
8π

) 2
3
n

2
3
e , (22)

where vRM denotes the partial molar volume of the metal ions, pM the metal ion partial
pressure, gRM the reference Gibbs energy and pRM the bulk pressure. The incompressibility
implies vRM = 1/nM .

On the surface we consider a surface free energy density ψ
s
which covers surface solvation

effects, surface incompressibility, entropy of mixing, and reference contributions [4]. With
the explicit representation of ψ

s
given in [4] we obtain the surface chemical potentials

µ
s
α =

∂ψ
s

∂n
s
α

=





ψ
s

R
α + kBT ln y

s
α − ωαkBT ln y

s
V for α = 0, 1, . . . , NS

ψ
s

R
M + ωMkBT ln y

s
V − aRMγ

s

E for α = M+

ψ
s

R
e = const. for α = e−.

(23)

1Note that due to the solvation effect not all solvent molecules participate in the entropy of mixing.
Since each ion binds κα solvent molecules, n0 actually denotes the free solvent molecules, while nt0 =
n0 +

∑N
α=1 καnα denotes the total number density of solvent in the mixture.
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Bound  
solvent solecules

Solvated anion

Cation

Free solvent 
molecules

Reaction products A,C

A≠ ≠ e≠ ⌦ A
C+ + e≠ ⌦ C

Vacancy 
(free metal)

allowed permutation

prohibited permutation

entropic permutation

non-entropic permutation

Figure 4: Sketch of the mixing particles on the metal surface. Note that the number of
mixing particles is actually smaller than the actual number of molecules on the surface,
since a solvated adsorbate counts entropically as one particle.

The respective quantities are

� the number of surface vacancies

n
s
V = ωMn

s
M −

NS∑

α=0
ωαn

s
α , (24)

where ωα denotes the number of adsorption sites of A
s
α,

� the number of mixing particles

n
s

= n
s
V +

NS∑

α=0
n
s
α , (25)

� the surface fractions

y
s
α =

n
s
α

n
s

, α = 0, 1, . . . , NS, V , (26)

� the adsorbate surface tension γE,

� the partial molar area of the metal surface aRM ,

� and the constant electron surface chemical potential ψ
s

R
e .

The surface incompressibility implies quite similar to (21) the constraint

n
s
M = 1

aRM
⇔ aRV ns V +

NS∑

α=0
aRαns α = 1 (27)
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with the partial molar areas

aRV = 1
ωM

aR
M and aRα = ωα

ωM
aR
M = ωαa

R
V . (28)

Note that we can thus either consider the number of adsorption sites ωα or the molar
areas aRα as model parameter. Our discussion in section 4 is based on aRα which turns
out to be more convenient.

2.5 Equilibrium conditions

In the thermodynamic equilibrium, the following conditions hold [4]

� Diffusional equilibrium

∇µα + e0zα∇ϕ = 0 α = 0, 1, . . . , NE (29)

� Adsorption equilibrium at Σ

µα|+S = µ
s
α,−1 α = 1, . . . , NE and µα|−S = µ

s
α α = e,M. (30)

� Electrical equilibrium

ε0div (1 + χ)E = qF and ε0[[(1 + χ)E]] = q
s

(31)

with E = −∇ϕ.

� Mechanical equilibrium in Ω±

∇p = −qF∇ϕ and [[p]] = q
s
· 1

2(∇ϕ|+Σ −∇ϕ|−Σ) (32)

� Surface reaction equilibrium on Σ

µ
s
α,β−1 + sgn(zα)λα,βµ

s
e = µ

s
α,β + (κα,β−1 − κα, β)µ

s
0 , (33)

for β = 0, 1, . . . , |zα| , α = 1, . . . , NE .

Throughout this work we consider only equilibrium situations. Note that a combination
of diffusional and adsorption equilibrium leads to

µE
α + e0zαU

E = µ
s
α,−1 α = 0, 1, . . . , NE. (34)

with UE = ϕ|+Σ −ϕE. We abbreviate the electrochemical potential as µ̃α := µα + e0zαϕ.
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2.6 Boundary layer charge representation

In [4] we derived in detail the representation of the boundary layer charge qBL
E in terms of

the electrolytic boundary layer drop UE. Briefly summarized we obtain from the electrical
equilibrium (31) and the mechanical equilibrium (32) the representation

qBL
E = sgn(UE)

√
2ε0(1 + χ)(p

∣∣∣
+

Σ
− pE) (35)

where p
∣∣∣
+

Σ
denotes the material pressure at the interface x = 0+. From the diffusional

equilibrium (29) we obtain representations

yα = yE
α · e

−zα e0
kBT

(ϕ(x)−ϕE)− vRα
kBT

(p(x)−pE)
. (36)

which form together with the constraint

NE∑

α=0
yα = 1 (37)

an implicit equation system

g(p
∣∣∣
+

Σ
, UE) =:

NE∑

α=0
yα
∣∣∣
+

Σ
− 1 = 0 (38)

This allows us to deduce an implicit solution

p
∣∣∣
+

Σ
= p̂(UE) (39)

and thus a representation

qBL
E = sgn(UE)

√
2ε0(1 + χ)(p̂(UE)− pE) = q̂BL

E (UE). (40)

2.7 Effective surface charge representation

The equilibrium condition (33) of the reactions (7) and (8) (together with the adsorption
and diffusional equilibrium in the electrolyte) can be summarized as

µE
α + e0zαU

E + sgn(zα)λβαµ
s
e = µ

s
α,β + (κα,β − κα)µE

0 , (41)

for β = −1, 0, 1, . . . , |zα| , α = 1, . . . , NE. With the representation (23) of the surface
chemical potential µ

s
α,β we obtain the representations (β = −1, 0, 1, . . . , |zα|)

y
s
α,β = yE

α(yE
0)(κα,β−κα)e−

∆gA
α,β

kBT
− zαe0
kBT

UE+
aR
α,β
kBT

γE
α = 1, . . . , NE, (42)
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with adsorption energy
∆gAα,β = ∆g̃Rα,β + κα,β∆g̃R0 (43)
and ∆g̃α,β = ψ̃

s

R
α,β − g̃

s

R
α − sgn(zα)λβα · µ

s
e , ∆g̃0 = (ψR0 − gR0 ) . (44)

Note that the functional representation (42) of y
s
α,β is exactly the same as the one

obtained for integer charge transfer reactions [4]
A
s
α,β−1+ sgn(zα)A

s
e 
 A

s
α,β+(κα,β−1− κα,β)A

s
0 . (45)

The pre-factor of UE in the representation (42) is zα, and not z
s
α,β = zα − sgn(zα)λβα.

Hence, the only difference between adsorbates with partial and integer charge on the
surface can be parametrically with respect to the

� partial molar area aα,β (or the the surface solvation number κα,β),

� and the adsorption energy ∆g̃Aα,β.

Quite similar to the volume we have on the surface the implicit equation system

g
s
(γE, UE) := y

s
V +

NE∑

α=0

|zα|∑

β=−1
y
s
α,β − 1 = 0 (46)

with the representations (42) for y
s
α,β and

y
s
V = e

− aR
M

kBT
γ
s

E

, (47)

which determines γE = γ̂E(UE). Together with (27) and (42) we obtain thus for the
effective surface charge a representation

q
s

Eff
E =

e0
∑NE
α=1

∑|zα|
β=−1 zα yα,β

aRMyV +∑NE
α=0

∑|zα|
β=−1 a

R
α,β yα,β

= q̂
s

E(UE) . (48)

2.8 Measured cell potential

We consider the metal-electrolyte interface in contact to some reference electrode R,
where the two metals are connected in an outer circuit to a potentiostat/voltmeter
which measures the voltage E. Due to the continuity of electrochemical potential µ̃e of
the electrons we have [4]

E = −(µ̃R
e − µ̃M

e) = UE + UR with UR = − 1
e0

(µ
s

M
e − µ

s

R
e)− UR,E (49)

where UR,E = ϕ
s

R − ϕE denotes the potential difference between bulk electrolyte and
surface potential of the reference electrode. The reference electrode is considered as
ideally non-polarizable (reference) electrode [15], which states UR,E = const. We have
thus an explicit relation between the measurable cell potential E and the electrolyte
potential drop UE. Note further that we can consider UR as parameter instead of µ

s

M
e.
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2.9 Capacity

The capacity of the electrochemical interface is obtained from a quasi-stationary ther-
modynamic process, i.e. E = E(t), such that the thermodynamic equilibrium conditions
(29) - (32) hold for each time-step. The equilibrium representations of the boundary
layer and surface charge, i.e.

Q = −q̂BL
E (E − UR)− q

s

Eff
E (E − UR) = Q̂(E − UR) , (50)

thus lead to

I = dQ

dt
= C · dE

dt
with C = CBL

E + C
s

Eff
E , (51)

CE
BL = −dq

BL
E

dE
and C

s

Eff
E = −

dq
s

Eff
E

dE
. (52)

We call C /F m−2 differential capacity of the interface and accordingly CBL
E boundary

layer capacity and C
s

Eff
E effective surface capacity. The functional representation of CBL

E

is given in A.1 and of C
s

Eff
E in A.2.

We performed already a validation study of this model in [4], which showed a broad
qualitative and quantitative agreement to experimental data. Here, however, we want to
discuss certain aspects of the necessary model parameters.

3 Partial molar volume

The solvation effect [16–22], i.e. the binding of solvent molecules to the central ion due
to microscopic electrostatic interactions, is a key feature for the thermodynamic behavior
of an electrolytic mixture. Due to this effect, the partial molar volume vRα of an ionic
constituent Aα incorporates the volume of κα solvent molecules A0. The most simple
relationship between these two quantities is [4, 23]

vRα = (1 + κα) vR0 , (53)

which assumes a constant density upon solvation. Based on the relation (53) one could
then estimate the solvation number κα for a given value of vRα . We find that the solvation
number has to be in the order of2 κα ≈ 25− 60 (for mono-valent ions) in order to agree
with capacity measurments of some non-adsorbing salt (c.f. Fig. 5 in comparison to Fig.
7). Such large values might seem disappointing, even though they account for the first
and second solvation shell. But predictions on solvation numbers are still in discussion
[24] and various values can be found in the literature [18].
Requisitioning the relation (53) in terms of a microscopic structure model shows that
the model perception vRα = (1+κα) vR0 actually neglects packing effects in the solvation

2The capacity maximum depends also on the chosen value for the electrolytic susceptibility χE .
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Figure 5: Computed capacity for a non-adsorbing salt AC with bulk concentration
0.01 /mol L−1 .

shell [25, 26]. Since the packing fraction p ranges from 0.42 for a octahedral geometry
down to 0.33 for a hexagonal bi-pyramide, it dramatically reduces the number of solvent
molecules in the solvation shell for a given volume vRα .
Consider the case of an octahedral molecular geometry S1 for a solvated ion (see Fig.
6). The solvent molecules form a structural solvation shell (i.e. the first solvation shell)
around the central ion. The radius of the solvent sphere in the solvation shell is r̃0 and
in the range of 1− 2Å. An approximate value of r̃0 can be determined from the partial
molar volume of the solvent, i.e.

r̃0 ≈ r0 = 3

√
3

4πv
R
0 ≈ 1.92 /Å with vR0 = 1

55.5 /
L
mol . (54)

Presumably the radius r̃0 within the dipolar bond of the solvation shell is smaller than the
molar radius r0. However, for the introduction of the packing fraction the approximation
r̃0 ≈ r0 is quite sufficient.

From the structure model S1 we can determine the radius of the circumscribed sphere
as rcs = (1 +

√
2) r0, leading to the volume Vcs = 4

3π(1 +
√

2)3r3
0. The packing factor

p is then the number of molecules within the circumscribed sphere, times the volume
of the solvent sphere V0, divided by volume of the circumscribed sphere. Note that we
assume here that the radius of the central ion is smaller than the radius of the solvent
spheres. Since the number of solvent molecules is actually the solvation number κα, we
have for the octahedral structure model a packing factor of

p = (1 + κα)V0

Vcs
= 0.4975 . (55)

Since the fraction V0
Vcs

is equal to the fraction of the partial molar volumes, vR0
vRα

(for
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Figure 6: Octahedral molecular geometry with an anion in the centre and κα = 6
solvent molecules on the coordination sites. The partial molar volume of the solvated
ion computes as vRα ≈ 14.07 vR0 and is thus much large than predicted by equation (53).

r̃0 ≈ r0), we obtain

vRα = 1 + κα
p

vR0 = 14.07 · vR0 . (56)

A comparison to the introductory relation (53) clearly shows the origin of the overesti-
mating solvation number. For a given value of vRα we would obtain from (53) a solvation
number of κeq.(53)α = 13, while the octahedral structure model (56) has a value of κα = 6.

The packing factor can, of course, also be dependent on the actual ionic species A±α ,
and many structure models are imaginable with various solvation numbers are imagin-
able. Common is, however, that a reinterpretation of the solvation number based on
the equation (53) might be misleading and that the central parameter for the capacity
maximum is the partial molar volume.

Capacity measurements of the KPF6 and KBF4 [5, 27, 28] (c.f. Fig 7) show that
the capacity maxima of the anodic and the cathodic branch are equal. Since neither of
the constituents K+ , PF−6 , BF−4 adsorbs on silver, the capacity maxima of each
branch is exclusively determined from the respective partial molar volume. The measured
maxima are almost equal, which suggests vRK+ ≈ vRPF−

6
≈ vRBF−

4
. This finding also holds

for many other small ionic species, like H+,OH−,Na+,Cl−,ClO−4 , I−.

From a first perspective this seems rather surprisingly. But the following discussion on
the second solvation shell shows that it is indeed very like that the partial molar volumes
are almost equal of many small ions.

Consider the structure model S2 given in Fig. 8. The first solvation shell with κ1
α = 6

solvent molecules is similar to the structure model S1. Around the first shell, a second
one forms with 8 solvent molecules in the horizontal plane (top view). Above is another
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TABLE 1 

Potent ia l  values (SCE) in mV of the capacity min imum for a (110)  silver e lectrode in NaF, 
NaC104 and KPF 0 solut ions 

Anion Co ncen t ra t ion /M 

0.1 0.04 0.02 0.01 0.005 

F -  - -1007  - -988 - -982 - -978 - -975 
C107~ - -993  - -983  - -980 - -977 - -975 
PF~ - -980  - -975  - -975 - -975 - -975 

Figure 3 shows the concentrat ion effect on C(E) curves in KPF6 (a) and 
KBF4 (b) solutions. With KPF6, for which the concentrat ion range is suffi- 
ciently extended,  the capaci ty  minimum potential  Em is independent  of 
concentration,  with an accuracy of +3 mV (Table 1); then, no specific adsorp- 
tion or a quite negligible one is inferred. In this case alone, Em is identifiable 
with the pzc, so the (110) silver electrode pzc is --0.975 + 0.005 V (SCE). As a 
consequence of this absence of specific adsorption, the capacity is lower at the 
positive maximum with respect to NaF or NaC104; the behaviour of PFg and 
BF7~ should be identical. From Table 1 it can be seen that  for the 0.005 M solu- 
tion E m is independent  of the nature of the anion. With low concentrations, 
o i for F- and CIOY, are small (O i < <  1 #C cm -2) and Em is not  experimentally 
sensitive to this phenomenon within the limits of accuracy. With each electro- 
lyte the E~ dependence on concentrat ion seems to become significant above 
O.O4 M. 

From Parsons and Zobel graphs [9], straight lines are obtained for all elec- 
trolytes~ their inverse slopes are equal to 1.22 (NaF), 1.17 (NaC104) and 1.10 
(KPF6). Since the weaker the specific adsorption the lower is the inverse slope, 
only for KPF6 is the roughness coefficient R value actually approached, so 1 < 
R < 1.10 + 0.05. 
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Fig. 3. C(E) curves for a (110) silver electrode.  Concent ra t ion  dependence  in (a) KPF6, and 
(b) KBF6 solutions.  
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Figure 7: Capacity Fig 3. of [5] (Reprinted with permission of Elsevier).

ring of 4 solvent molecules is with an additional one on top. In both side views, this gives
again a ring of 8 solvent molecules. This is a dense packed, highly symmetric structure
model with κ2

α = 18 solvent molecules in the second solvation shell. In total, the solva-
tion number is κ1

α +κ2
α = 24. The radius of the circumscribed sphere is rα = r̃α + 4 · r̃0,

where r̃α is (again) the radius of the central ion itself, and r̃0 the radius of a solvent
sphere. We obtain hence a packing factor p = (1+κ1

α+κ2
α)/( r̃α

r̃0
+4)3 which is below 0.39.

Assuming now for the central ion a radius of r̃α = 1 Å, and for r̃0 again the molar radius
r0 = 1.92 Å leads to vRα = 91 · vR0 , which seems to be a rather large value. However,
as already mentioned above, the solvent radius r̃0 in the solvation shell is presumably
smaller than the molar radius r0 [29]. Using the radius of the water molecule itself, which
is about r̃0 = 1.5 Å, leads to vRα = 48 · vR0 . This value is in remarkable agreement to our
findings based on capacity maxima. A reinterpretation of vRα = 48 · vR0 in terms of eq.
(53) would suggest 47 solvent molecules in the solvation shell since eq. (53) neglects the
packing factor p < 0.39. But the structure model S2 proposes κα = 24, with κ1

α = 6 in
the first shell and κ2

α = 18 in the second shell, which gives due to the packing factor a
reasonable relation of vRα = 48 · vR0 .

Of course, many more structure models are considerable, which lead to various solvation
numbers and packing densities. Common to all is, however, the formation of two solvation
shells which determine mainly the radius rα of the solvated ion A±α and thus the partial
molar volume vRα = 4

3πr
3
α. Due to packing and symmetry reasons, the radius is at least

4·r̃0, which already gives vα = 30·vR0 for r̃0 = 1.5Å and vα = 63·vR0 for r̃0 = 1.92Å. The
inner solvation shell captures κ1

α = 4− 8 solvent molecules and the outer κ2
α = 14− 20,

which leads to packing fractions of p = [0.28 − 0.44]. Since the solvent radius in the
solvation shell, r̃0, and molar radius, r0, are presumably different (i.e. r̃0 < r0), we have
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Figure 8: Structure model S2 of a solvated anion with first and second solvation shell.

the general relation

vRα = (1 + κ1
α + κ2

α)
pα

(
r̃0

r0

)3
· vR0 = 1 + κα

peffα
· vR0 = ωα · vR0 . (57)

The effective packing fraction peffα covers the packing factor of the structure model as
well as the influence of the reduced solvent radius in the solvation shell. The central
remaining parameter is actually ωα, which we call ionic volume scaling factor with
respect to the solvent. For the representative structure model S2 we have pEffα ≈ 0.52
and κα = 24, which leads to ωα = 48. We can also compute the partial molar radius rα
of an ion based on the relation

rα = 3

√
3

4πv
R
α ≈ 7 Å , (58)

which is in agreement to the findings of others, e.g. Freise [2]. We emphasize, however,
that the interpretation of a molar radius rα and its connection to a the solvation number
κα is difficile.

3.1 Relationship to the ionic charge number

Since the microscopic origin of the solvation effect is actually the charge e0zα of the cen-
tral ion A±α , it is expectably that the solvation number κα and the partial molar volume
vRα depend on the charge number zα [30, 31]. The microscopic origin of this relation
is of course rather complex and not scope of this work. We rather seek a quantitative
relationship between vRα and zα in the light of the general relation (57), i.e. vRα = ωα ·vR0 .

Consider completely dissociated solutions of AC , A2C , and A3C with equivalent
concentration 0.01M. It is illustrative to consider three simple, representative models of
the ionic volume scaling factor ωα, i.e.

M1 : ωα = ω0 , M2 : ωα = |zα| · ω0 and M3 : ωα = (zα)2 · ω0 , (59)
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Figure 9: Computed double layer capacity and charge of 0.01M AC , 0.005M AC2 ,
0.0033M AC3 aqueous solutions based on the thermodynamic model of section 2 and
the solvation shell models (59) with ω0 = 45.

where ω0 is a solvent specific quantity, and discuss their impact on the boundary layer
capacity. Fig. 9a displays a computation of the capacity for the respective examples. It
shows the complex interplay between charge number zα of the anion and the partial
molar volume of the respective models (59). Fig. 9b shows the corresponding double
layer charge.
For M1(ωα = ω0) we find that the capacity maxima increase extremely (compared to
the AC example) and that much more charge can be stored in the double layer (c.f.
Fig. 9b). Since the partial molar volume of A− , A2− , and A3− remains equal for
this example, this is expectably as much more charge can be stored at a given amount
of volume.
The model M2(ωα = |zα| · ω0) shows a more intuitive behavior. The capacity maxima
increases due to the increased charge number of the AC2 and AC3 anion. However,
the capacity saturation C−∞E at E → +∞ remains in the order of the AC value
since the actual amount of charge stored in the double layer remains similar. This can
be seen more clearly when one computes the charge density qE(x), where x is the 1-D
space variable normal to the metal surface, based on the equilibrium equation system
(31),(32) and(36). Note that the canonical unit of qE(x) is actually µC cm−2nm−1 and
remember that for a non-adsorbing salt Q = −

´ xE
0 qE dx.

Figure 10 displays the numerical solutions of qE(x), i.e. the space charge layer in the
electrolyte, for the examples given above. The example AC can again be considered as
reference since it was validated in [4] against experimental data of mono-valent salts.

For the model M2 we find that the charge density in the Stern layer, i.e. the locally
saturated anionic solution [1], remains almost equal for AC , AC2 and AC3 . This
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Figure 10: Space charge layer of 0.01M AC , 0.005M AC2 , 0.0033M AC3 aqueous
solutions based on the thermodynamic model of section 2 and the solvation shell models
(59) with κ0 = 45.

can also be understood by the representation of qE, i.e.

qE = e0

∑NE
α=0 zα · yα∑NE
α=0 v

R
α · yα

. (60)

If we have (local) saturation of the anion A(−,2−,3−), i.e. yA → 1 for E →∞ and thus
yα → 0 for all other species, we obtain q∞E → e0

zA
vRA
. Hence, for the model M2 this is

essentially a constant, namely q∞E → e0 sgn(zA) 1
ω0 vR0

. This explains why the saturation
capacity C−∞E almost coincide for AC , AC2 and AC3 for M2. The slight deviation
arises from the slightly different Stern layer widths, c.f. Fig 10.

The model M3(ωα = (zα)2 · ω0) leads to almost equal capacity maxima for AC ,
AC2 and AC3 , while the saturation capacity C−∞E decreases (see Fig. 9a). This is
in accordance with Fig. 9b, which shows that less charge is stored in the double layer
compared to the AC example. Fig. 10 shows that for M3 the Stern layer widnes,
however, storing less charge than the AC example.
Overall we conclude that a constant ionic volume scaling factor ωα with respect to the
charge number zα underestimates the saturation capacity C−∞E , while a quadratic relation
overestimates the value. For the relation ωα = | |zα| | ·ω0 we obtain equal values for the
saturation capacity C−∞E for 0.01M AC , 0.005M AC2 and 0.00333M AC3 . Quite
surprisingly, D. Grahame observed this behavior alread in 1951 on a series of metallic
chlorides dissolved in water [32]The capacity measurements were performed on mercury
electrodes based on the experimental method explained in [33]. It is to emphasize that
the adsorption of Cl− can hide the capacity minimum of Fig. 9a, as well as differences
in measurements to single crystal observations nowadays exist [34]. We focus here on the
fact that the limiting values of the capacity, i.e. C−∞E , is almost equal for the aqueous
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solutions of 0.01M NaCl , CsCl , 0.005M MgCl2 , BaCl2 , and 0.033M AlCl3 .
LaCl3 . This is in accordance Fig. 9a with ωα = |zα| · ω0. Thus justifies our proposed
relationship

vRα = |zα| · ω0 · vR0 , (61)

where ω0 is a solvent specific quantity. According to (57)2, i.e.
1 + κα
peffα

= |zα| · ω0 , (62)

the solvation number κα is thus also dependent on zα. However, in order to actually
determine the value of κα one would require a structure model for the multi-valent ions.
If the effective packing density peffα remains almost equal, i.e. peffα ≈ 0.5, we observe that
the solvation number κα increases linearly with the charge number zα, i.e. from 24 for
zα = ±1 to 48 for zα = ±48. This additional 24 solvent probably form a 3rd solvation
layer around the central ion. Note, however, that the packing density does not necessarily
remain constant upon increasing the number of solvation shells.
Summarizing, we suggest thus for multi valent ion constitunes Aα with charge number
zα the relationship

vRα = |zα| · ω0 · vR0 with ω0 = 48 (63)

and

κα = 1
2 |zα|ω0 . (64)

4 Partial molar area

On the metal surface we consider adsorbates A
s
α,β in terms of surface species densities

n
s
α,β, originating from the adsorption, de-solvation and partial charge transfer reactions
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(6)–(8), i.e. the net reactions

Aα +
β∑

γ=0
sgn(zα)λα,γ · e− −−⇀↽−− A

s
α,β + (κα − κ

s
α,β)A0 β = 0, 1, . . . , |zα| . (65)

For each adsorbate we have in the thermodynamic equilibrium essentially two thermo-
dynamic parameters which determine the amount of constituents on the surface, i.e.

� its partial molar area aRα,β

� and the adsorption energy ∆g̃Aα,β .

In addition, the partial molar area of the metal surface aRM and the number of adsorp-
tion sites ωM each surface atom provides arise as model parameters. This encodes the
different surface orientations, e.g. (111), (110), (100) or the liquid state.

For solid metal surfaces aRM is straight forward computed from the crystallographic struc-
ture of the considered surface orientation, e.g. for a fcc crystal with lattice distance `M
we have

aRM(111) =
√

3
8 (`M)2 , aRM(100) = 1

2(`M)2 and aRM(110) =
√

2
2 (`M)2 . (66)

If each surface metal atom (or surface unit cell) provides one adsorption site (or vacancy)
for all considered surface orientations (abc) we have ωM = 1 whereby aRV (abc) = aRV (abc)
(case a). Note, however, that different surface orientations (abc) can potentially also
offer different amounts ωM(abc) of adsorption sites. It thus possible that aRV is equal for
different surface orientations (abc), which implies that the metal partial molar area and
the number of adsorption sites increase in a similar way, i.e. aRV = 1

ωM(abc)
aRM(abc) (case

b). These two model perceptions become more clearly when the partial molar area of
the adsorbates is discussed (see Fig. 12).
The specific molar area of the solvent is computed from

ãR0 = 2√
3

(2 r0)2 with r0 = 3

√
3π
4 vR0 , (67)

which corresponds to a layer of densely packed spheres. For water this leads to a value
of ãRH2O = 10.33 · 108 cm2

mol . The radius r0 = 1.92 Å of the water molecule, or the
packing density on the surface, can also be slightly different for the adsorbed state,
which has accordingly an impact on ãRH2O. Parsons et. al [35] introduce a value of
âRH2O = 7.40723 · 108 cm2

mol which originates from this circumstance. Both values are in
the same range and we proceed our discussion with ãRH2O .
However, even more crucial is the question wether the thermodynamic parameter, i.e.
the partial molar area aR0 , is influenced by the lattice structure on which the constituent
is adsorbed. Two extreme cases are imaginable:
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� the partial molar area aR0 remains equal for different surface orientations (case a),

� and each surface atom provides one adsorption site (case b).

Figure 12 sketches the different model perceptions. Whether case a or b is physically
meaningful cannot be directly answer from continuum thermodynamics itself. Both cases
are thermodynamically consistent. However, we expect the surface density ρ

s
≈ m0n

s
0

of the solvent to remain equal for different surface structures. This is corresponds to
case a, whereby the partial molar area aR0 = ãR0 is equal for different metal surfaces,
orientations and states.

Next we discuss the partial molar area aRα,β of the ionic species on the surface. Expectably,
the preceding discussion on the partial molar volume vRα and the impact of the solvation
effect holds in a similar way for aRα,β. i.e. two-dimensional surface solvation [36, 37].
Hence, in order to relate the solvation numbers κ

s

1
α,β and κ

s

2
α,β of the first and second

(surface) solvation shell to the partial molar area, some structure model for adsorbed
ions is required. It is not the scope of this work to actually predict different structure
models. We rather discuss some aspects of representative structure models and their
impact on the thermodynamic parameter aRα,β.

Summarizing, this means that we have a relationship

aRα,β =
1 + κ

s
α,β

p
s

Eff
α,β

· aR0 = ω
s
α,β · aR0 , (68)

where κ
s
α,β = κ

s

1
α,β+κ

s

2
α,β denotes the surface solvation number, p

s

Eff
α,β the effective packing

density, and ω
s
α,β the ionic area scaling factor with respect to the solvent. The ionic area
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quency effects have been observed with the other electrolytes. 
The curves in Fig. 2 show the concentrat ion effect on C in F-  (a) and CLOY, 

(b) solutions. The diffuse layer contr ibut ion is easily verified by the well- 
pronounced minimum. For both electrolytes, the minimum potential  Em is 
dependent  on concentrat ion.  In the concentrat ion range from 0.005 to 0.1 M 
the shifts AEm are equal to +18 and +32 mV for NaC104 and NaF (Table 1); 
they characterize an anionic specific adsorption, and a stronger specific adsorp- 
tion of F- than that  of ClOy, may be asserted. On mercury the inverse order 
is given [ 5], but  on gold [6], the same order as found here is observed. An 
a t tempt  to explain the different behaviour between mercury and solid surfaces 
is given in the discussion section. 

An interesting observation may be made on Fig. 2, if the C values of the 
two maxima sm~ounding the minimum axe compared.  At the negative maxi- 
mum the height is identical for F- and CLOY,, and no specific adsorption can be 
assumed. At the positive maximum C is higher with F-;  this can be explained 
by the assumption that  there is weak anionic specific adsorption in this poten- 
tial range and that  F- is more strongly adsorbed than CLOY,. The total capacity 
is given by [7] 
( C )  - 1  = (c i )  -1 + ( c d )  - 1  (1 + 0oi/()O) (1) 

where C, C i and C d are the capacities of the double layer, inner layer and dif- 
fuse layer, and a and o i are the electrode charge and that  of the specifically 
adsorbed ions. 

As specific adsorption becomes stronger, 30 i/ao decreases from zero, and the 
factor multiplying (C d)-~ decreases, so C increases and tends towards C i, at a 
given electrode charge. On the other hand, o d remains opposite to a, because 
]oi l< o, and C d decreases as the anion becomes more strongly adsorbed, 

therefore the total capacity is expected to decrease. Since C increases from 
C10?~ to F-,  the influence of (1 + 3oi/3o) would be greater than that  of C d. It 
is assumed here that  the inner-layer capacity C i is weakly dependent  on the 
nature of the anions as found for C1- and F- [8]. 
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Fig. 2. C(E) curves for a (110) silver electrode. Concentration dependence in (a) NaF, and 
(b) NaC104 solutions. 
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(b) Measured capacitance (Fig 2.b from [22], reprinted with
permission from Elsevier)

Figure 14: Comparison of the computed capacitance (a) and the measured capacitance (b) of the Ag(110)|NaClO4

interface for concentrations of (0.005 � 0.1)M.

face model to compute the structure of the space charge
layer.

Note that this approach is physically rigorous since we
use the same set of equations4 to compute the capacitance
and the space charge layer.

11.1 Validation

The fluoride ion F– is considered to adsorb on the metal
surface. Two central parameter arise then in our model,
the adsorption energy �g̃A

F� and the surface solvation

number 
s
F� . All other parameters are kept equal to the

examples before.
In the volume, the solvation shell is considered as the

whole cloud of solvent molecules which are bound to the
central ion in either the first, second or even third solvation
shell, without further distinction. The first shell which
covers 4 � 8 solvent molecules and is dependent on the
actual chemical constituent[43]. However, the second shell
covers far more solvent molecules is mainly determined by
the charge of the central ion. This lead to the assumption
that all monovalent ionic species have an equal solvation
number in the electrolyte phase.

4Actually the equation system for the capacitance is the first in-
tegral of the PDE system that determines the space charge layer
structure.

On the surface, however, this assumption might not
hold. Since solvated ions strip o↵ a part of their total sol-
vation shell, the element specific first solvation shell can
be more dominant on the surface. Hence we consider dif-
ferent solvation numbers for the adsorbates. In Section
10 we already assumed a solvation number of 

sClO�
4

= 15

for the adsorbed perchlorate ion. Fluoride is assumed to
bind even less solvent molecules on the surface, and we
employ 

s
F� = 8. The adsorption energy for F– is chosen

as �g̃A
F� = �0.16 eV, whereby adsorption near the po-

tential of zero charge occurs (see Figure 20 of the surface
coverage).

We obtain then the capacitance spectrum shown in Fig-
ure 15a for the Ag(110)|NaF interface. Note that similar
to the examples before we vary only the bulk salt con-
centration of NaF, i.e. nE

F� = nE
Na+ = cNaF. Figure 15b

displays the measured data of Valette.

The overall agreement of the capacitance spectrum is
quite remarkable. Reconsider that we essentially employed
an ideal, incompressible mixtures in the volume and a lat-
tice based ideal mixture on the surface. Both models ac-
count entropically and mechanically for the solvation ef-
fect. However, the thermodynamic consistent coupling of
mechanics and electrostatics in the volume and on the sur-
face gives obviously a broad accordance to measured data.

29

dissociation energies are equal we observe a width beyond
1 V. It seems thus necessary that �

s
gD
H2O

⌧ �gD
H2O

and

Fig. 10 shows the impact of �
s
gD
H2O

= 0, . . . , 1 eV on the

surface capacity.

In the following we assume �
s
gD
H2O

= 0.10 eV whereby

the surface capacity width '
s

4 � '
s

3 is in the order of the

boundary layer capacity width '
s

2 � '
s

1 (c.f. Fig. 6 ). We

emphasize that a broadly conceived parameter study will
be published in a subsequent paper.

9.3 Total capacitance and validation
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Figure 11: Implicit plot
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Finally we provide computations of the total capacitance
C = CBL+C

s
. In Figure 11 we display the capacitance C as

a function of the charge Q. The locations of the extrema
correspond to

�
Qi, Ci

�
=
�
Q̂('

s

i � 'E), Ĉ('
s

i � 'E)
�
, i =

0, 1, 2. The (implicit) (Q, C) plots are quite illustrative
since they are independent of the actual electrostatic po-
tential scale.

For the comparison of our theory to experimental data
we rely on the relation (145) between E and '

s
� 'E,

E = '
s
� 'E+UR

Ag(110) with UR
Ag(110) = �0.97 V. (174)

Note that this relation between E and '
s
� 'E corre-

sponds to a constant space charge layer at the reference
electrode-electrolyte interface.

In Figure 12a we display the computed capacitance
Ĉ(�E � UR

Ag(110)) with respect to E for various concen-
trations of KPF6. Figure 12b shows the measured capac-
itance of G. Valette for Ag(110)|KPF6, Figure 3.a from
[22].

Note that there is no parameter variation except the
bulk concentration of KPF6, i.e. nE

K+ = nE

PF�
6

= cKPF6
.

We obtain a broad qualitative and quantitative agreement
of the whole capacitance spectrum, i.e. with respect to the
measured potential E and the salt concentration cKPF6

.
This is, in the view of the very simplistic free energy mod-
els that we employed in Section 4, astonishing.
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TABLE 1 

Potent ia l  values (SCE) in mV of the capacity min imum for a (110)  silver e lectrode in NaF, 
NaC104 and KPF 0 solut ions 

Anion Co ncen t ra t ion /M 

0.1 0.04 0.02 0.01 0.005 

F -  - -1007  - -988 - -982 - -978 - -975 
C107~ - -993  - -983  - -980 - -977 - -975 
PF~ - -980  - -975  - -975 - -975 - -975 

Figure 3 shows the concentrat ion effect on C(E) curves in KPF6 (a) and 
KBF4 (b) solutions. With KPF6, for which the concentrat ion range is suffi- 
ciently extended,  the capaci ty  minimum potential  Em is independent  of 
concentration,  with an accuracy of +3 mV (Table 1); then, no specific adsorp- 
tion or a quite negligible one is inferred. In this case alone, Em is identifiable 
with the pzc, so the (110) silver electrode pzc is --0.975 + 0.005 V (SCE). As a 
consequence of this absence of specific adsorption, the capacity is lower at the 
positive maximum with respect to NaF or NaC104; the behaviour of PFg and 
BF7~ should be identical. From Table 1 it can be seen that  for the 0.005 M solu- 
tion E m is independent  of the nature of the anion. With low concentrations, 
o i for F- and CIOY, are small (O i < <  1 #C cm -2) and Em is not  experimentally 
sensitive to this phenomenon within the limits of accuracy. With each electro- 
lyte the E~ dependence on concentrat ion seems to become significant above 
O.O4 M. 

From Parsons and Zobel graphs [9], straight lines are obtained for all elec- 
trolytes~ their inverse slopes are equal to 1.22 (NaF), 1.17 (NaC104) and 1.10 
(KPF6). Since the weaker the specific adsorption the lower is the inverse slope, 
only for KPF6 is the roughness coefficient R value actually approached, so 1 < 
R < 1.10 + 0.05. 
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Fig. 3. C(E) curves for a (110) silver electrode.  Concent ra t ion  dependence  in (a) KPF6, and 
(b) KBF6 solutions.  
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(b) Measured capacitance (Fig 3.a from [22], reprinted with
permission from Elsevier)

Figure 12: Comparison of the computed capacitance (a)
and the measured capacitance (b) of the Ag(110)|KPF6

interface for concentrations of (0.0025 � 0.1)M.

10. Ag(abc)|(Na,K)ClO4 - comparison to multiple
experimental data

In this example we briefly compare measured ca-
pacitance data of Ag(110), Ag(100) and Ag(111) from
di↵erent research groups to our new model. We rely
exemplarily on the data of Schmickler and Beltramo
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quency effects have been observed with the other electrolytes. 
The curves in Fig. 2 show the concentrat ion effect on C in F-  (a) and CLOY, 

(b) solutions. The diffuse layer contr ibut ion is easily verified by the well- 
pronounced minimum. For both electrolytes, the minimum potential  Em is 
dependent  on concentrat ion.  In the concentrat ion range from 0.005 to 0.1 M 
the shifts AEm are equal to +18 and +32 mV for NaC104 and NaF (Table 1); 
they characterize an anionic specific adsorption, and a stronger specific adsorp- 
tion of F- than that  of ClOy, may be asserted. On mercury the inverse order 
is given [ 5], but  on gold [6], the same order as found here is observed. An 
a t tempt  to explain the different behaviour between mercury and solid surfaces 
is given in the discussion section. 

An interesting observation may be made on Fig. 2, if the C values of the 
two maxima sm~ounding the minimum axe compared.  At the negative maxi- 
mum the height is identical for F- and CLOY,, and no specific adsorption can be 
assumed. At the positive maximum C is higher with F-;  this can be explained 
by the assumption that  there is weak anionic specific adsorption in this poten- 
tial range and that  F- is more strongly adsorbed than CLOY,. The total capacity 
is given by [7] 
( C )  - 1  = (c i )  -1 + ( c d )  - 1  (1 + 0oi/()O) (1) 

where C, C i and C d are the capacities of the double layer, inner layer and dif- 
fuse layer, and a and o i are the electrode charge and that  of the specifically 
adsorbed ions. 

As specific adsorption becomes stronger, 30 i/ao decreases from zero, and the 
factor multiplying (C d)-~ decreases, so C increases and tends towards C i, at a 
given electrode charge. On the other hand, o d remains opposite to a, because 
]oi l< o, and C d decreases as the anion becomes more strongly adsorbed, 

therefore the total capacity is expected to decrease. Since C increases from 
C10?~ to F-,  the influence of (1 + 3oi/3o) would be greater than that  of C d. It 
is assumed here that  the inner-layer capacity C i is weakly dependent  on the 
nature of the anions as found for C1- and F- [8]. 
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(b) Measured capacitance (Fig 2.a from [22], reprinted with
permission from Elsevier)

Figure 15: Comparison of the computed capacitance (a) and the measured capacitance (b) of the Ag(110)|NaF interface
for concentrations of (0.005 � 0.1)M.

Employing more sophisticated free energy models ⇢ M, ⇢ E

and '
s

as well as a concentration dependent susceptibility

�E seems promising for modeling electrochemical interfaces
in an even wider potential range and allows for more mate-
rial specific surface e↵ects, e.g. surface reconstruction[65].

However, for the sake of this work the comparison of Fig-
ure 15 is su�cient to validate our theory in the potential
range E = [�1.5,�0.5] V.

11.2 Structure of the double layer

After validating our theory and the considered parame-
ters we use the metal-electrolyte interface model to com-
pute the structure of the space charge layer. By structure
we mean the space dependent solutions of all molar den-
sities n↵(x) in the metal and the electrolyte phase, the
surface concentrations n

s
↵, and the electrostatic potential

'(x). We employ 'M = E as boundary condition and com-
pute '

s
and 'E accordingly. We discuss the structure of the

space charge layer exemplarily for three potential values,
i.e. E = {�0.6,�0.9,�1.4}V vs (SCE) and a bulk salt
concentration of cNaF = 0.1 mol L�1.

Figure 16 displays the computed structure of the space
charge layer for E = �0.9V, which corresponds to '

s
�'E =

0.07V.

The metal surface is positioned at xS = 0, with the
metal domain to its left and the electrolyte to its right.
Scales are in absolute values as computed from our the-
ory. The solid lines display the numerical solutions n↵

for the electrolyte and the metal species, respectively. On
the surface S, the right bar chart denotes the coverage
aR
↵ · n

s
↵ of adsorbates and surface vacancies. Note that

PNS

↵ aR
↵n

s
↵ = 1 according to (77). The left bar shows the

ratio between surface electrons n
s

e and surface metal ions

n
s

M , i.e. n
s

e/(n
s

M + n
s

e) and n
s

M/(n
s

M + n
s

e). The black

dashed line corresponds to the space dependent, continu-
ous electrostatic potential '.

We observe a space charge layer within the metal which
originates from a decrease of the electron density ne near
the surface. Origin of this decease is the necessary condi-
tion 'M�'

s
= �(µ

s
e�µM

e) = �0.972V. The space dependent

profile of the electron density ne is obtained from a solu-
tion of the Poisson equation (92) as ne(x) = n̂e('(x)).

The charge QM =
xSR

xM

nFdx, which is accordingly stored in

30

(b) Data of Valette [5], for 0.01M solutions
of NaF , KPF6 , and NaClO4 (reprinted
with permission from Elsevier)

Figure 13: Comparison of computed and experimental capacity curves.

scaling factor is expectably also related to the charge number of the central ion, i.e.

ω
s
α,β =

∣∣∣∣zsα,β
∣∣∣∣ · ωs 0 , (69)

where ω0 is again a solvent specific quantity. Note, however, that ω
s
α,β =

∣∣∣∣zsα,β
∣∣∣∣·ωs 0 would

imply aRα,β → 0 for an uncharged adsorbate z
s
α,β → 0, which is certainly not correct. We

would rather expect aRα,β → ãRα for z
s
α,β → 0, where ãRα is the partial molar area of the

(uncharged) central ion itself. We expect thus that the relation (69) holds up to some
lower limit, employed here as

∣∣∣∣zsα,β
∣∣∣∣ > 0.2 .

Remember that the charge number of A
s
α,β could be fractional, i.e. z

s
α,β = zα −

∑β
γ=0 sgn(zα)λα,γ, due to the partial charge transfer reaction (65). The partial charge

transfer coefficients λα,γ assume fractional values between −1 and 1. Consequently the
partial molar area of an ionic adsorbate is related to λβα = ∑β

γ=0 λα,γ.

We discuss the impact of partial charge transfer on the double layer capacity for some
aqueous ionic solution AC. The mono-valent anion A− is assumed to adsorb on the
metal surface, which is accompanied by a partial charge transfer and some restructuring
of the solvation shell, i.e.

A− − λAe− −−⇀↽−− A
s

− + (κA− − κ
sA1−λ)H2O . (70)

The contribution of A
s

− for values of λA− ∈ [0, 0.6] based on the model (69) on the
capacity is displayed in Fig. 13a
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Figure 14: Computation of the surface capacity with aRA− = 30 · aR0 and a parameter
variation of ∆gA− .

Consider KPF6 as reference of a non-adsorbing salt and NaClO4, NaF as examples
with adsorbing anions. The measurement of Valette shows that the surface capacity
contribution of ClO4− smaller than F−. From a thermodynamic point of view, the only
parameter which determines the surface capacity maximum is actually the partial molar
area aRα of the respective adsorbate. Since both ions have an equal solvation shell in the
volume, c.f. the prior discussion, one would a priori assume that a similar behavior also
holds at the surface. But this obviously not the case, and Fig. 3a is the experimental
evidence that the molar area of F− is smaller than ClO4−.
What is the origin of this shrinking? Note that thermodynamically a statement like “
F− binds stronger on the metal surface than ClO−4 ” actually only has an impact on
∆g̃Aα , which shifts the (surface) capacity maximum to the left or right (see Fig. 14), but
does not influence the value of the maximum. Thus, “a stronger binding” cannot be the
origin.
If one assumes, however, that the partial molar area is related to the charge z

s
A− =

zA− + λA− an adsorbate A
s

− actually carries, i.e. relation (69), the effect of a shrinking
molar area is naturally explained by some partial charge transfer! Due the charge trans-
ference, the dipole interaction between the outer solvent molecules decreases and the
ion strips of a part of the solvation shell whereby it shrinks. We can thus understand the
difference between F− and ClO4− in terms of different amounts of partially transferred
charge on the adsorbed ions.

However, in comparison to measured data of G. Valette [5] we find that the concept
of partial charge transfer explains quite well the increasing (surface) capacity, and we
finalize the discussion with a representative structure model.
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(a) Slice of the structure model S2 as surface
structure model.

(b) Sketch of an adsorbed ion with smaller
solvation shell.

Figure 15: Sketches of two different ionic surface structure models with different solvation
numbers and molar radii.

Of course, our modeling procedure does not pretend to predict any structures of the ad-
sorbed ions. We provide rather a thermodynamically consistent interpretation (or mech-
anism) why the partial molar areas of two adsorbed ions can be different. The interaction
between the central ion and solvent molecules on a surface can be far more complex,
since electrostatic interactions in 2D are inherently different from 3D. But any surface
thermodynamic theory requires explicit values for the partial molar area of ionic ad-
sorbates. The most simple approach is to assume that an ionic adsorbate for which no
partial charge is transferred has a similar molar radius than the respective ion in solution,
i.e. rα ≈ 7 Å. If we compute now the partial molar area based on the relation

aRα = 4πr2
α ≈ 36 · aR0 , (71)

we find actually an ionic scaling factor of ω
s
α = 36 (for mono-valent ions). This value is

in surprisingly good agreement to surface capacity data of G. Valette [5] on NaClO4
, in the sense that our model predicts capacity maxima which are almost equal to the
measured data. However, in order to determine the actual solvation number based on the
relation (68), one requires a packing density and thus a structure model. If we consider
the solvated ion as one once slice to the structure model S2 (top view), we obtain a
solvation number of κ = 8 + 4 = 12 and thus an effective packing density of p

s

Eff
α ≈ 0.36

(c.f. Fig. 15a). Compared to the effective packing density pα ≈ 0.52 this means that
adsorbed ions haven an even lesser dense packed solvation shell.
However, we employ thus a value of ω

s
0 = 36 for the solvent specific ionic scaling fac-

tor together with the model perception ω
s
α =

∣∣∣∣zsα
∣∣∣∣ · ωs 0 for adsorbed, solvated, partially

charged ions.

For a transferred charge of λA− = 0.4 we obtain hence a value of ω
s

A− = 0.6 ·36 = 21.6,
or, retranslated in terms of a molar radius, a value of rα ≈ 5.42A. If the effective
packing density p

s

Eff
A− remains almost equal for the partially charged ion (which is not

necessarily the case), we obtain a solvation number of κA− ≈ 8. This value is probably a
little bit bigger since the packing density increases for smaller solvation shells. However,
the resulting values are quite meaningful for adsorbed F− , and the concept of partial
charge transfer in combination with the molar area explains naturally the increasing
surface capacity of NaF compared to NaClO4.
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5 Summary

Based on the general framework of non-equilibrium thermodynamics for volumes and
surfaces we derived representations of the boundary layer CBL

E and the surface capacity
C
s

E, which form together the measureable double layer capacity CE = CBL
E +C

s
E. It turns

out that the crucial parameters for CBL
E is the partial molar volume vRα of the ionic

constituents, while for C
s

E the partial molar area aRα is the dominant parameter. Both
values determine the respective capacity maximum.
Due to the solvation effect, i.e. the binding of κα, κ

s
α solvent molecules to the central

ion, the molar volume and area of an ionic constituent Aα increase, where the most
simple relations are

vRα = (1 + κα) · vR0 and aRα = (1 + κ
s
α) · aR0 , (72)

with vR0 /aR0 being the molar volume/area of the solvent. However, it turns out that
these simple relations have quite some shortcomings and lead to a misinterpretation of
the actual values for κα/κ

s
α. It is thus more illustrative to consider initially relations

vRα = ωα · vR0 and aRα = ω
s
α · aR0 , (73)

where ωα/ω
s
α are the ionic scaling factors. Measurement of the double layer capacity

on single crystal silver electrodes suggest values of ωα ∈ [40 − 50] and ω
s
α ∈ [10 −

40] [4]. Obviously, these values seem to overestimate the solvation numbers based on
the relations (72). Requisitioning the relations (72) actually shows that these neglect
packing effects. While the important thermodynamic parameters for the double layer
capacities are actually ωα and ω

s
α, which certainly incorporate the solvation numbers

of the respective ion, the determination of actual values for κα and κ
s
α requires some

structure models for mono-valent ions. For representative structure model we showed
that a more realistic relation between the partial molar volume/area and the solvation
numbers is

vRα = (1 + κα)
pEffα

· vR0 and aRα =
(1 + κ

s
α)

p
s

Eff
α

· aR0 , (74)

where pEffα /p
s

Eff
α are the effective packing densities of the solvation shell. For spherical

ions in the volume this value is about pEffα ≈ 0.52, while on the surface the solvation
shell is lesser dense packed with p

s

Eff
α ≈ 0.36 . For both, volumetric and surface solvated

ions, we can compute the partial molar radius, i.e.

rα = 3

√
3

4πv
R
α ≈

√
1

4πa
R
α , (75)

for which we obtain reasonable values of rα ≈ 7Å.
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When multi-valent ions are discussed, the question arises how the partial molar volume
is related to charge number of the ion. Our discussion suggests relations

vRα = |zα| ω0 · vR0 and aRα =
∣∣∣∣zsα
∣∣∣∣ ωs 0 · aR0 , (76)

where ω0 and ω
s

0 are solvent specific ionic scaling factors. Based on a comparison to
experimental date we obtain for water as solvent ω0 = 48 and ω

s
0 = 36 (which leads

to rα = 7 Å for mono-valent ions). This linear relationship between the partial molar
volume vRα and the charge number zα predicts almost equivalent values for the capacity
limit CE(E → −∞) for equivalent solutions of AC, A2C and A3C. This finding is
underpinned by experimental data of Grahame on a series of metallic chlorides, namely
0.01M NaCl , CsCl , 0.005M MgCl2 , BaCl2 , and 0.033M AlCl3 . LaCl3 , which
show exactly this behavior: The double layer capacity is almost equal for all solutions (in
range of experimental error).
Finally, when an ion A− adsorbs on a metal surface, the question arises if this ad-
sorption process is, or could be, accompanied with some partial charge transfer, i.e.
A− + λA · e− −−⇀↽−− A1−λ . It turns out that neither the equilibrium representation of
the surfactants nor the measurable effective surface charge density depend on the par-
tial charge transfer coefficient λA. However, in the light of the relation (76) the sur-
face capacity becomes naturally (mathematically: parametric) dependent on λA, since
z
s

A = zA − λA sgn(zA). The relation (76) actually states that the partial molar area
decreases when the charge of the central ion decreases. Origin of this is the shrinking
solvation shell is thus the partial charge transfer. This mechanism explains very well the
difference in capacity values of NaClO4 and NaF , and attributes this difference to the
partial charge transfer and the shrinking partial molar area.
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A Explicit capacity representations

A.1 Boundary layer capacity

Reconsider the definition of qBL
E , i.e.

qBL
E =

xDL
Eˆ

x
s

qE dx . (77)

Within the boundary layer we have the representation [4]

∂xϕ = − sgn(ϕ− ϕE)
√

2
ε0(1 + χE)

(
p− pE

)
(78)

one obtains

qBL
E = − sgn(UE)

√
2ε0(1 + χE)

(
p
∣∣∣
x
s

− pE

)
, (79)
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where p
∣∣∣
x
s

= p̂(UE) is obtained from the implicit equation system

g(U, p) =
∑

α∈IE

yα(ϕ, p)− 1 = 0 . (80)

with representations 36 of yα. The functional representation of the pressure p satisfies

dp̂

dϕ
= −qE , (81)

leading to

CBL
E = − sgn(ϕ− ϕE)

√√√√ ε0(1 + χE)
2
(
(̂UE)− pE

) · qE(UE, p̂(UE))
(
p− pE

)
. (82)

A.2 Surface capacity

Here we provide a semi-explicit representation of the surface capacity C
s
. First of all note

that the surface charge q
s
has the representation

q
s

= −
∑NE
α=1 zαe0y

s
α +∑NE

α=1
∑|zα|
β=−1 zαe0y

s
α,β

aRV y
s
V +∑NE

α=0 a
R
αy
s
α +∑NE

α=0
∑|zα|
β=−1 a

R
α,βy

s
α,β

. (83)

With the representations (42) for y
s
α, y

s
α,β and y

s
V we obtain an expression of q

s
in terms

of (ϕ
s
− ϕE) and (γ − γR), i.e. q

s
= q̂

s
(ϕ
s
− ϕE, γ − γR). The surface charge is thus a

function of ϕ
s
and the surface tension γ. The surface fractions y

s
α,β obey the constraint

y
s
V (γ − γR) +

NE∑

α=0
y
s
α(ϕ

s
− ϕE, γ − γR) +

NE∑

α=0

|zα|∑

β=−1
y
s
α,β(ϕ

s
− ϕE, γ − γR)− 1 = 0 , (84)

which is an implicit relationship between UE and γ− γR. Hence, we may use the implicit
function theorem to deduce a solution γ = γ̂(UE) from equation (84), which satisfies
dγ̂/d(UE) = q

s
. The surface capacity C

s
is thus

Ĉ
s

=
dq̂
s

dUE
=
( ∂q

s

∂UE
+ q

s
·

∂q
s

∂(γ − γR)

)
. (85)
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With the (dimensionless) abbreviations

f
s

1 :=
NE∑

α=1
zαy

s
α + e0

NE∑

α=1

|zα|∑

β=−1
zαy

s
α,β (86)

f
s

2 := y
s
V + ω0y

s
0 +

NE∑

α=1
ωαy

s
α +

NE∑

α=1

|zα|∑

β=−1
ωα,βy

s
α,β (87)

f
s

3 =
NE∑

α=1
z2
αy
s
α +

NE∑

α=1

|zα|∑

β=−1
z2
αy
s
α,β (88)

f
s

4 = e0

NE∑

α=1
zα ωα y

s
α + e0

NE∑

α=1

|zα|∑

β=−1
zα ωα,β y

s
α,β (89)

f
s

5 = y
s
V + ω0y

s
0 +

NE∑

α=1
ωαy

s
α +

NE∑

α=1

|zα|∑

β=−1
ω2
α,βy

s
α,β (90)

we obtain for the surface capacity the expression

Ĉ
s

= − e2
0

kBTaRV



f
s

1 · f
s

4 − f
s

3 · f
s

2

(f
s

2)2 +
f
s

1

f
s

2

f
s

4 · f
s

2 − f
s

1 · f
s

5

(f
s

2)2


 . (91)

Note that the term e20
kBTa

R
V

indeed has units F
m2 and that all functions f

s
k, k = 1, . . . , 5,

are dependent on UE and γ − γR.

31


