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Abstract

In this paper we investigate linear elliptic, second-order boundary value prob-

lems with mixed boundary conditions. Assuming only boundedness/ellipticity

on the coefficient function and very mild conditions on the geometry of the

domain – including a very weak compatibility condition between the Dirichlet

boundary part and its complement – we prove first Hölder continuity of the so-

lution. Secondly, Gaussian Hölder estimates for the corresponding heat kernel

are derived. The essential instruments are De Giorgi and Morrey-Campanato

estimates.

1 Introduction

Hölder continuity is one of the classical features in the theory of elliptic and parabolic

equations. Based on the pioneering ideas of De Giorgi, Nash, Stampacchia and Morrey,

the Dirichlet problem for second-order divergence operators with real coefficients was elab-

orated in clarity and beauty: under general and traceable conditions, Hölder continuity

of the solution is proved, see [KS, Chapter II.B.4] or [LU, Chapter III.14], as long as the

boundary condition is pure Dirichlet. Since in recent years it became manifest that the

appearance of mixed boundary conditions is not an exception when modelling real world

problems (see e.g. [Sel] or [HMRR]) one should, of course, also treat this case. Here the sit-

uation is less satisfactory: on the one hand, there is the fundamental paper of Stampacchia

[Sta1], where under very general conditions also Hölder continuity is proved. Unfortu-

nately, the conditions of the main theorem are very implicit and extremely difficult to

control in examples if the geometry of the underlying domain becomes complicated. On

the other hand, there are several articles ([CV], [Ibr], [Nov], [Fio], [Lie1], [HMRS]) where

Hölder continuity for the solution is proved under different assumptions on the geometry

of the domain and the Dirichlet boundary part, if mixed boundary conditions are imposed.

In this paper, the conditions on the domain Ω and the Dirichlet boundary part are purely

geometric in nature, so that one can decide ‘at a glance’ whether a concrete setting falls

into this class or not. In particular, the Dirichlet points are subject to the outer volume

condition (see e.g. [KS, Chapter II Theorem B.4]) as is classical in the pure Dirichlet case.

Our second basic assumption demands bi-Lipschitz charts around points in the closure

of the Neumann boundary part. Finally, for boundary points from the border between

the Dirichlet and Neumann boundary part we replace the geometrical condition in [Grö]

(compare also [HMRS, Chapter 5]) by a measure theoretic one (see Theorem 1.1 below).

Roughly speaking, this states that, in balls around such points, the set of inner points from

the Dirichlet boundary part is not rare (in a certain quantitative sense) with respect to
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the boundary measure, see (1) below. This is, not accidentally, again in correspondence

with the fact that Hölder continuity for the Dirichlet problem also needs only a certain

measure theoretic requirement. The resulting framework is then much broader, it is easy to

verify in examples and it should cover nearly everything what is needed for the treatment

of real-world problems – as long as the domain does not include cracks or things like that.

In particular, the Dirichlet boundary part need not be (part of) a continuous boundary in

the sense of [Gri, Definition 1.2.1.1], i.e. the domain is not forced to ‘lie on one side of the

Dirichlet boundary part’ so that, among others, the following example is included.

Figure 1: A geometric non-Lipschitz setting which fulfills our assumptions, if the grey apex

and the three shaded circles carry the Dirichlet condition.

The first main result of this paper is that Hölder continuity for the solution of the

mixed boundary value problem can be obtained even within this extremely wide concept,

cf. Theorem 1.1 below. We emphasize that also unbounded domains are admissible, see

Theorem 6.8. The initial instrument in the derivation of the Hölder properties are De Giorgi

estimates. These are afterwards transferred into Morrey–Campanato estimates, which are

a common instrument for deriving Hölder estimates, compare [Cam], [Gia], [Lie2] and

references therein. The second main result are Gaussian Hölder estimates for the heat

kernel of the corresponding semigroup, cf. Theorem 1.3. We use and extend techniques

developed in [Aus], [AT], [ERo1], [Sta2] and [ERo2]. We emphasize that the principal

coefficients of the elliptic operator are real bounded and merely measurable, whilst the

lower-order coefficients can be complex measurable and bounded.

It is well-known that Hölder continuity is often the decisive instrument for the appli-

cation of Schauder’s fixed point theorem within the investigation of nonlinear equations,

since it provides the required compactness.

In order to present the main results of this paper we introduce some notation and

definitions. Fix d ∈ {2, 3, . . .}. Throughout this paper the field is C, although in Section 2

we mainly work with real valued functions.

Let Ω ⊂ Rd be open and let Γ be an open subset of the boundary ∂Ω (with relative

topology). We define

C∞Γ (Ω) := {w|Ω : w ∈ C∞c (Rd) and suppw ∩ (∂Ω \ Γ) = ∅}.

Note that if Γ = ∅, then C∞c (Ω) = C∞∅ (Ω). Moreover, for all p ∈ [1,∞), we denote the

closure of C∞Γ (Ω) in W 1,p(Ω) by W 1,p
Γ (Ω). If Γ = ∅, then we write, as usual, W 1,p

0 (Ω) =

W 1,p
∅ (Ω). If p ∈ (1,∞] then the space W−1,p

Γ (Ω) is the anti-dual of W 1,p′
Γ (Ω) in Lp(Ω). We

denote the anti-dual of W 1,p′
0 (Ω) by W−1,p(Ω). Here and in the remainder of this paper p′
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is the conjugate index for p, so 1
p

+ 1
p′ = 1. Obviously, if Γ1 ⊂ Γ2, then C∞Γ1

(Ω) ⊂ C∞Γ2
(Ω).

Hence W 1,p
Γ1

(Ω) ⊂ W 1,p
Γ2

(Ω) and consequently W−1,p
Γ2

(Ω) ⊂ W−1,p
Γ1

(Ω). If f0 ∈ L2(Ω) and

f ∈ L2(Ω)d, then define f0 − div f ∈ W−1,2
Γ (Ω) by

〈f0 − div f, v〉 =

∫

Ω

f0 v +
d∑

i=1

∫

Ω

fi ∂iv

for all v ∈ W 1,2
Γ (Ω).

Let Ω ⊂ Rd be open and let µ,M > 0. Define A(Ω, µ,M) to be the set of all measurable

A : Ω→ Cd×d such that

Re
d∑

i,j=1

aij(x) ςi ςj ≥ µ |ς|2

and

‖A(x)‖ ≤M

for almost all x ∈ Ω and ς ∈ Cd. Here and in the sequel aij(x) is the appropriate matrix

coefficient of A(x) and ‖ · ‖ is the norm on L(Cd), where Cd has the Euclidean norm. Let

Ar(Ω, µ,M) = {A ∈ A(Ω, µ,M) : A(x) ∈ Rd×d for all x ∈ Ω}

be the subset with real coefficients. Further, set A(Ω) =
⋃
µ,M>0A(Ω, µ,M) and Ar(Ω) =⋃

µ,M>0Ar(Ω, µ,M)

If A ∈ A(Ω), then define the form lA : W 1,2(Ω)×W 1,2(Ω)→ C by

lA(u, v) =

∫

Ω

d∑

i,j=1

aij (∂iu) (∂jv).

Then lA is a closed sectorial form. Let LA be the associated operator. If no confusion

is possible then we drop the subscript A and write l = lA(u, v) and L = LA. If Γ is a

(relatively) open subset of ∂Ω, then we denote by lA,Γ the restriction of lA to the space

W 1,2
Γ (Ω)×W 1,2

Γ (Ω). Then again lA,Γ is a closed sectorial form. Let LA,Γ be the associated

m-sectorial operator in L2(Ω).

Next, define LA,Γ : W 1,2
Γ (Ω)→ W−1,2

Γ (Ω) by

〈LA,Γu, v〉 = lA,Γ(u, v)

for all v ∈ W 1,2
Γ (Ω). It follows from the Lax–Milgram theorem that for all f ∈ W−1,2

Γ (Ω)

there exists a unique u ∈ W 1,2
Γ (Ω) such that (LA,Γ + I)u = f .

If Ω satisfies suitable regularity conditions, then one obtains an operator LA for which

the elements u of its domain satisfy the conditions u|∂Ω\Γ = 0 in the sense of traces and

ν ·(A∇u) = 0 on Γ in a generalized sense, where ν is the outward unit normal of Ω, compare

[Cia, Chapter 1.2] or [GGZ, Chapter II.2]). Thus the operator LA,Γ can be understood as

one with mixed boundary conditions – as announced in the title. In general we consider Γ

as the Neumann part and ∂Ω \ Γ as the Dirichlet part of the boundary.

We also need various balls and cylinders on Rd and Rd−1. For any x ∈ Rd and r ∈
(0,∞), we denote by B(x, r) the ball in Rd with radius r and centre x. We denote by

E = {x = (x̃, xd) : −1 < xd < 1 and ‖x̃‖Rd−1 < 1}
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the open cylinder in Rd, its lower half E− = {x ∈ E : xd < 0} and its midplate

P = E ∩ {x ∈ Rd : xd = 0}.

Further, B̃r(x̃) denotes the ball in Rd−1 with radius r and centre x̃. We denote the volume

of a measurable subset A ⊂ Rd by |A| and the volume of a measurable subset A ⊂ Rd−1

by mesd−1(A). Let ωd denote the volume of the unit ball in Rd.

If M ⊂ Rd is non-empty and x ∈ Rd then we denote by

dist(x,M) := inf
z∈M
‖x− z‖

the distance between x and M .

Let Ω ⊂ Rd be open, Υ ⊂ ∂Ω and α ∈ (0, 1]. Then, following Definition II.C.1 in [KS]

and Section 1.1 in [LU], we say that Υ is of class (Aα) if

|B(x, r) \ Ω| ≥ α |B(x, r)|

for all r ∈ (0, 1] and x ∈ Υ. It is not hard to see that the boundary of any Lipschitz

domain is of class (Aα) for a suitable α > 0.

The first result is a global Hölder estimate in case of bounded domains and mixed

boundary conditions. Note that Condition (III) below imposes a comparably simple, purely

geometrical condition for the points from the border between Dirichlet and Neumann

boundary part which may be viewed as a certain, extremely weak compatibility condition

between Dirichlet and Neumann part of the boundary.

Theorem 1.1. Let Ω ⊂ Rd be a bounded open set and Γ a relatively open subset of the

boundary ∂Ω. Moreover, let A ∈ Ar(Ω) and consider the operator LA,Γ. Assume the

following conditions.

(I) For all x ∈ Γ there is an open neighbourhood U and a bi-Lipschitz map φ from an

neighbourhood of U onto an open subset of Rd, such that φ(U) = E, φ(Ω∩U) = E−,

φ(∂Ω ∩ U) = P and φ(x) = 0.

(II) There is an α > 0 such that the set ∂Ω \ Γ is of class (Aα).

(III) For all x ∈ ∂Γ there are c0 ∈ (0, 1) and c1 > 0 such that

mesd−1{z̃ ∈ B̃s(ỹ) : dist(z̃, φ(Γ ∩ U)) > c0 s} ≥ c1 s
d−1 (1)

for all s ∈ (0, 1] and ỹ ∈ Rd−1 with (ỹ, 0) ∈ φ(∂Γ ∩ U), where U and φ are as in

Condition (I). (Here and in the sequel, the set ∂Γ denotes the boundary of Γ where

Γ is viewed as a subset of the topological space ∂Ω.)

Then for all q ∈ (d,∞) there exists a κ > 0 such that for all f ∈ W−1,q
Γ (Ω) the (unique)

solution u ∈ W 1,2
Γ (Ω) of the equation

(LA,Γ + I)u = f

belongs to the Hölder space Cκ(Ω). Moreover, the map f 7→ u from W−1,q
Γ (Ω) into Cκ(Ω)

is continuous.
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We shall prove Theorem 1.1 at the end of Section 6. Moreover, we provide in Theo-

rem 6.8 a quantitative version of Theorem 1.1 which allows Ω to be unbounded.

Condition (I) of the above theorem implies the (essential) boundedness of the solution u,

and, in addition, the continuity of the map W−1,q
Γ (Ω) 3 f 7→ u ∈ L∞(Ω). This was proved

in case the coefficients are symmetric in [ERe] and if the coefficients are not symmetric,

then it follows from a variation of the techniques in that paper. In general the condition

q > d is already necessary for the boundedness of the solution, see [LU, Section I.2].

Special cases of Theorem 1.1 are the pure Dirichlet case if Γ = ∅ (see [KS, Section II.C])

and the pure Neumann case if Γ = ∂Ω (see [Nit]).

Our geometrical concept excludes cracks (or other lacking lower dimensional objects):

assume that a crack is included in Ω in form of a lacking hypersurface. Of course, all points

of the crack are then boundary points of Ω. But no point x can be a Dirichlet point, due

to our requirement that the set ∂Ω \ Γ is of class (Aα) On the other hand, around x there

is no chart which satisfies the requirements in Condition (I) in Theorem 1.1.

The reader should carefully notice that the conditions in Theorem 1.1 are not symmetric

with respect to the Dirichlet and the Neumann boundary part. Interchanging for example

in Figure 1 the role of Dirichlet and Neumann boundary part, then the new version does

neither satisfy Condition (I) nor Condition (III).

Condition (III) implies the ‘lower bound’ in the Ahlfors–David condition (see also [JW,

Chapter II]), that is, there is a č1 > 0 such that

Hd−1((Ω \ Γ) ∩B(x, r) ≥ č1r
d−1

for all x ∈ ∂Ω \Γ and r ∈ (0, 1], where Hd−1 is the (d− 1)-dimensional Hausdorff measure.

This may be concluded from Lemma 5.4.

It is known from the Nash and De Giorgi theory that the solution u is Hölder continuous

on every subset with positive distance to the boundary of Ω, cf. [LU, Section III.14], [GT,

Section 8.9] and [KS, Section II.C]. Obviously, u is then continuous on Ω.

A principal tool in the proof of Theorem 1.1 is a rephrasement of a result of Ladyshen-

skaya–Ural’zeva. In Theorem 3.14.1 in [LU] Hölder continuity for weak solutions on sub-

domains which have a positive distance to the complement of the Dirichlet part of the

boundary was proved, but with Hölder continuity understood as a suitable boundedness of

the oscillation only over the connected components of the intersection of the domain with

balls. In this paper, however, we consider the usual Hölder spaces. Hence we prove here

that the solution indeed is Hölder continuous in the classical sense. The precise statement

is given in the next theorem.

Before we can state the theorem, we need one more definition. Let A ∈ A(Ω), f ∈
L2(Ω)d, f0 ∈ L2(Ω), u ∈ W 1,2(Ω) and V ⊂ Ω open. Then we say that Lu = f0 − div f

weakly on V if

lA(u, v) = 〈f0 − div f, v〉 (2)

for all v ∈ C∞c (V ). Note that this notion is independent of Γ. Then by density (2) is valid

for all v ∈ W 1,2
0 (V ). If q ∈ [1,∞] and f ∈ Lq(Ω)d then set ‖f‖Lq(Ω)d =

∑d
i=1 ‖fi‖Lq(Ω).

Our version of Theorem 3.14.1 in [LU] with ‘normal’ Hölder spaces is as follows. Note

that we do not require Ω to be bounded in Theorem 1.2.
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Theorem 1.2. For all µ,M, α, ζ > 0, q ∈ (d,∞) and q0 ∈ (d
2
,∞) with q0 ≥ 2 there exist

κ ∈ (0, 1) and c > 0 such that the following is valid.

Let Ω ⊂ Rd be open, Γ ⊂ ∂Ω relatively open and Υ ⊂ Ω open. Suppose d(Γ,Υ) ≥ ζ

and {z ∈ ∂Ω : d(z,Υ) < ζ} is of class (Aα). Let A ∈ Ar(Ω, µ,M), f ∈ Lq(Ω)d ∩ L2(Ω)d,

f0 ∈ Lq0(Ω) ∩ L2(Ω) and u ∈ W 1,2
Γ (Ω). Suppose that Lu = f0 − div f weakly on Ω. Then

u is bounded on Υ and

|u(x)| ≤ c
(
‖u‖W 1,2(Ω) + ‖f0‖Lq0 (Ω) + ‖f‖Lq(Ω)d

)

for all x ∈ Υ. Moreover, the restriction u|Υ is Hölder continuous of order κ and

|u(x)− u(y)| ≤ c |x− y|κ
(
‖∇u‖L2(Ω) + ‖f0‖Lq0 (Ω) + ‖f‖Lq(Ω)d

)
(3)

for all x, y ∈ Υ with |x− y| ≤ ζ
2
.

Our last main theorem is that the kernel of the semigroup generated by −LA,Γ satisfies

Gaussian Hölder bounds.

Theorem 1.3. Adopt the assumptions of Theorem 1.1. Then there exist κ ∈ (0, 1) and

b, c, ω > 0 such that

|Kt(x, y)−Kt(x
′, y′)| ≤ c t−d/2

( |x− x′|+ |y − y′|
t1/2

)κ
e−b

|x−y|2
t eωt

for all x, x′, y, y′ ∈ Ω and t > 0 with |x − x′| + |y − y′| ≤ t1/2, where (Kt)t>0 is the kernel

of the semigroup generated by −LA,Γ.

We prove Theorem 1.3 in Section 7, where we also provide a version for unbounded

Ω and operators with complex lower-order terms (see Theorem 7.5). For pure Dirichlet

boundary conditions Theorem 7.5 has the following special case. Note that LA,∅ is the

operator with Dirichlet boundary conditions.

Corollary 1.4. For all α, µ,M > 0 there exist κ ∈ (0, 1) and b, c, ω > 0 such that the

following is valid.

Let Ω ⊂ Rd be an open set, A ∈ Ar(Ω, µ,M) and (Kt)t>0 the kernel of the semigroup

generated by −LA,∅. Then

|Kt(x, y)−Kt(x
′, y′)| ≤ c t−d/2

( |x− x′|+ |y − y′|
t1/2

)κ
e−b

|x−y|2
t eωt

for all x, x′, y, y′ ∈ Ω and t > 0 with |x− x′|+ |y − y′| ≤ t1/2.

The proofs of Theorems 1.2 and 1.3 involve Morrey and Campanato spaces, together

with De Giorgi estimates. The important estimates near the Dirichlet part of the boundary

are a variation on the estimates obtained by Stampacchia [Sta2]. (See also the appendix

to Chapter 2 in the book of Kinderlehrer–Stampacchia [KS].) This then gives De Giorgi

estimates on all points in Ω which have positive distance to the complement of the Dirichlet

part of the boundary. Using localization, a bi-Lipschitz transformation and a reflection

argument we deduce Hölder continuity near the Neumann part Γ of the boundary. Then

Theorem 1.1 follows since Hölder continuity is a local property.
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The outline of the paper is as follows: In Section 2 we prove De Giorgi estimates

near the Dirichlet part of the boundary. In Section 3 we revisit the classical Ladyshen-

skaya/Ural’zeva result on Hölder continuity and prove Theorem 1.2. In Section 4 we investi-

gate how De Giorgi estimates behave under bi-Lipschitz transformations of the domain and

afterwards establish a reflection principle in this context, while in Section 5 consequences

of this are drawn with respect to points near the Neumann part of the boundary. The

Hölder continuity for the solution of the elliptic equation is proved in Section 6. Section 7

contains the Hölder bounds for the heat kernel of the corresponding semigroup.

It is well known that certain Morrey and Campanato spaces coincide, with equivalent

norms if the domain satisfies an inner volume condition. Moreover, a Neumann type

Poincaré inequality gives an estimate for the Campanato norm of a function in terms of

the Morrey norm of the gradient of that function. Then a regularity theorem enables

to bootstrap along the scale of Morrey–Campanato spaces to obtain Hölder regularity of

the solution. Unfortunately, our boundary conditions do not give the required Neumann

type Poincaré inequality on the full domain Ω. The way around this, is to introduce

pointwise Morrey and Campanato type seminorms. For points near the Dirichlet boundary

we obtain (pointwise) the estimates for the Campanato seminorm on Rd in terms of the

Morrey seminorm for the gradient on Ω, cf. Lemma 3.4. Luckily, the already mentioned

equivalence of the norms on the Morrey and Campanato spaces allows a similar pointwise

estimate for the seminorms, see Lemma 3.1. For the convenience of the reader we give a

proof of Lemma 3.1 in the appendix, with explicit constants.

2 De Giorgi estimates for weak solutions

In this section we prove De Giorgi estimates for weak solutions away from the Neumann

part of the boundary.

Let Ω ⊂ Rd be open, A ∈ A(Ω) and write L = LA. Let u ∈ W 1,2(Ω) and V ⊂ Ω open.

Recall that we say that Lu = 0 weakly on V if

lA(u, v) = 0 (4)

for all v ∈ C∞c (V ). Then by density (4) is valid for all v ∈ W 1,2
0 (V ).

Let Ω ⊂ Rd be open, Γ a relatively open subset of ∂Ω, A ∈ A(Ω), κ0 ∈ (0, 1), cDG > 0

and Υ ⊂ Ω a set. Then we say that LA,Γ satisfies (κ0, cDG)-De Giorgi estimates on Υ

if ∫

Ω(x,r)

|∇u|2 ≤ cDG

( r
R

)d−2+2κ0
∫

Ω(x,R)

|∇u|2

for all x ∈ Υ, 0 < r ≤ R ≤ 1 and u ∈ W 1,2
Γ (Ω) satisfying Lu = 0 weakly on Ω(x,R).

Here and in the sequel we set Ω(x, r) = Ω ∩ B(x, r) for all x ∈ Rd and r > 0. Note the

dependence on Γ, since we require that u ∈ W 1,2
Γ (Ω).

The main aim of this section is to prove the following estimates.

Proposition 2.1. For all µ,M, α, ζ > 0 there exist κ0 ∈ (0, 1) and cDG > 0 such that for

every open set Ω ⊂ Rd, relatively open Γ ⊂ ∂Ω and subset Υ ⊂ Ω satisfying d(Γ,Υ) ≥ ζ

and {z ∈ ∂Ω : d(z,Υ) < ζ} is of class (Aα) it follows that LA,Γ satisfies (κ0, cDG)-De

Giorgi estimates on Υ for all A ∈ Ar(Ω, µ,M).
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The proof of the proposition needs several nontrivial prerequisites and at the end of

this section we prove Proposition 2.1.

In all what follows we exploit repeatedly (without further comment) the following topo-

logical fact: If U, V are open sets in a metric space, then

(∂U ∩ V ) ∪ (U ∩ ∂V ) ⊂ ∂(U ∩ V ) ⊂ ∂U ∪ ∂V.

Generally, we frequently need the following lemma.

Lemma 2.2. Let p ∈ (1,∞), let Ω ⊂ Rd be open and let Γ be a relatively open subset of

∂Ω. Moreover, let u ∈ W 1,p
Γ (Ω).

(a) If u is real valued and k ∈ [0,∞), then (u − k)+ ∈ W 1,p
Γ (Ω). If δ ≥ 0, then u ∧ δ ∈

W 1,p
Γ (Ω).

(b) Let x0 ∈ Ω and R > 0. Suppose that B(x0, R) ∩ Γ = ∅. Define ũ : B(x0, R)→ C by

(ũ)(x) =

{
u(x) if x ∈ Ω(x0, R),

0 if x ∈ B(x0, R) \ Ω.
(5)

Then ũ ∈ W 1,p(B(x0, R)).

(c) Let x0 ∈ ∂Ω and R > 0. Suppose that B(x0, R) ∩ Γ = ∅. Let η ∈ C∞c (B(x0, R)).

Then η u ∈ W 1,p
0 (Ω(x0, R)).

(d) Let U ⊂ Rd be open and define Λ := Ω ∩ U . Set ∆ := (∂Ω \ Γ) ∩ U . Then ∆ ⊂ ∂Λ

and ∆ ∩ Γ = ∅. Moreover, u|Λ ∈ W 1,p
∂Λ\∆(Λ).

(e) Let x0 ∈ ∂Ω and R > 0. Suppose that B(x0, R) ∩ Γ = ∅ and |B(x0, R) \ Ω| > 0.

Then ess infΩ(x0,R) |u| = 0.

Proof. ‘(a)’. Let k ∈ [0,∞). Let w ∈ C∞c (R,R) and suppose that suppw ∩ (∂Ω \ Γ) = ∅.
Then (w − k)+ ∈ W 1,p(Ω) and supp((w − k)+) ∩ (∂Ω \ Γ) = ∅. Let τ ∈ C∞c (Ω,R) and

suppose that
∫
τ = 1. For all n ∈ N define τn ∈ C∞c (Rd) by τn(x) = nd τ(nx). Then

lim τn ∗ ((w − k)+) = (w − k)+ in W 1,p(Rd). But (τn ∗ ((w − k)+))|Ω ∈ C∞Γ (Ω) if n ∈ N
is large enough. So (w|Ω − k)+ ∈ W 1,p

Γ (Ω). Hence (u − k)+ ∈ W 1,p
Γ (Ω) for all real valued

u ∈ C∞Γ (Ω). Finally, it follows from [MM] that the map u 7→ (u − k)+ is continuous

from W 1,p(Ω,R) into W 1,p(Ω) and the first Statement of (a) follows. If δ ∈ [0,∞) then

u ∧ δ = u− (u− δ)+ ∈ W 1,2
Γ (Ω).

‘(b)’. Let w ∈ C∞c (Rd) be such that suppw ∩ (∂Ω \ Γ) = ∅ and consider u = w|Ω.

Since B(x0, R) ∩ Γ = ∅ it follows that suppw ∩ ∂Ω ∩ B(x0, R) = ∅. Hence there exists

an open U ⊂ Rd such that ∂Ω ∩ B(x0, R) ⊂ U and suppw ∩ U = ∅. Then ũ(x) = w(x)

for all x ∈ B(x0, R) ∩ U . In particular ũ ∈ C∞(B(x0, R)) and obviously ‖ũ‖W 1,p(B(x0,R)) =

‖u‖W 1,p(Ω(x0,R)). The rest follows by density.

‘(c)’. Let w ∈ C∞c (Rd) and suppose that suppw ∩ (∂Ω \ Γ) = ∅. Then η (w|Ω) =

(η w)|Ω(x0,R). Since

∂Ω(x0, R) ⊂ ∂B(x0, R) ∪
(
B(x0, R) ∩ ∂Ω

)
⊂ ∂B(x0, R) ∪ (∂Ω \ Γ)
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it follows that (η w)|Ω(x0,R) ∈ C∞c (Ω(x0, R)) ⊂ W 1,p
0 (Ω(x0, R)). So η u ∈ W 1,p

0 (Ω(x0, R))

for all u ∈ C∞Γ (Ω). Then the statement follows by continuity of the map u 7→ η u from

W 1,p(Ω) into W 1,p(Ω(x0, R)).

‘(d)’. Observe that (∂Ω\Γ)∩U ⊂ ∂Ω∩U ⊂ ∂Λ. Since ∂Λ is closed, this gives ∆ ⊂ ∂Λ.

On the other hand,

∆ = (∂Ω \ Γ) ∩ U ⊂ ∂Ω \ Γ = ∂Ω \ Γ,

since ∂Ω \Γ is closed. Hence if u ∈ C∞Γ (Ω), then the restriction u|Λ ∈ C∞∂Λ\∆(Λ). Thus the

restriction operator from Ω to Λ is continuous from W 1,p
Γ (Ω) into W 1,p

∂Λ\∆(Λ).

‘(e)’. We may assume that u is real valued. Let δ = ess infx∈Ω(x0,R) |u(x)|. Set v = |u|∧δ.
Then v ∈ W 1,p

Γ (Ω) by Statement (a). Let ṽ be the extension of v to B(x0, R) which is given

by (5). Since |B(x0, R) \ Ω| > 0 by assumption, there exists by Theorem 4.4.2 in [Zie] a

c > 0 such that ‖v‖Lp(B(x0,R)) ≤ c ‖∇v‖Lp(B(x0,R)). Hence

δ |Ω(x0, R)|1/p ≤ ‖v‖Lp(Ω(x0,R)) = ‖v‖Lp(B(x0,R)) ≤ c ‖∇v‖Lp(B(x0,R)) = ‖∇v‖Lp(Ω(x0,R)) = 0.

So δ = 0.

We continue with Caccioppoli inequalities.

Lemma 2.3. Let Ω ⊂ Rd be open and let Γ be a relatively open subset of ∂Ω. Let µ,M > 0

and A ∈ A(Ω, µ,M). Then

∫

Ω(x0,r)

|∇((u− k)+)|2 ≤ b1

(R− r)2

∫

Ω(x0,R)

|(u− k)+|2

for all x0 ∈ ∂Ω, 0 < r < R < ∞, k ∈ [0,∞) and real valued u ∈ W 1,2
Γ (Ω) such that

B(x0, R) ∩ Γ = ∅ and Lu = 0 weakly on Ω(x0, R), where b1 = 16M2 µ−2.

Proof. Let η ∈ C∞c (Rd) be such that 0 ≤ η ≤ 1, η|B(x0,r) = 1, supp η ⊂ B(x0, R)

and ‖∇η‖∞ ≤ 2
R−r . Then v = η2 (u − k)+ ∈ W 1,2

0 (Ω(x0, R)) by Lemma 2.2. Note that

∂l((u− k)+) = 1[u>k] ∂lu for all l ∈ {1, . . . , d}. Therefore

0 =

∫

Ω(x0,R)

∑
aij (∂iu) ∂jv

=

∫

Ω(x0,R)

∑
aij (∂iu) η2 ∂j((u− k)+) + 2

∫

Ω(x0,R)

∑
aij (η ∂iu) (u− k)+ ∂jη

=

∫

Ω(x0,R)

∑
aij (∂i((u− k)+)) η2 ∂j((u− k)+)

+ 2

∫

Ω(x0,R)

∑
aij (η ∂i((u− k)+)) (u− k)+ ∂jη.
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So

µ

∫

Ω(x0,R)

|η∇((u− k)+)|2

≤ Re

∫

Ω(x0,R)

∑
aij (∂i((u− k)+)) η2 ∂j((u− k)+)

≤ 2
∣∣∣
∫

Ω(x0,R)

∑
aij (η ∂i((u− k)+) (u− k)+ ∂jη

∣∣∣

≤ 2M
(∫

Ω(x0,R)

|η∇((u− k)+)|2
)1/2(∫

Ω(x0,R)

|(u− k)+∇η|2
)1/2

.

Hence
∫

Ω(x0,r)

|∇((u− k)+)|2 ≤
∫

Ω(x0,R)

|η∇((u− k)+)|2

≤ 4M2

µ2

∫

Ω(x0,R)

|(u− k)+∇η|2

≤ 16M2

µ2

1

(R− r)2

∫

Ω(x0,R)\Ω(x0,r)

|(u− k)+|2

as required.

Set θ = 1
2

+ (1
4

+ 2
d
)1/2 > 1. Then θ2− θ− 2

d
= 0. If u ∈ W 1,2(Ω) is real valued, x0 ∈ Ω,

k ∈ [0,∞) and R ∈ (0,∞), then we define

A(k,R) = {x ∈ Ω(x0, R) : u(x) > k}.

In the notation of A(k,R) we deleted the dependence of the function u and the point x0,

since it will not give any confusion.

Proposition 2.4. For all M,µ > 0 there exists a b2 > 0 such that

ess sup
x∈Ω(x0,R/2)

u(x) ≤ k + b2

(
R−d

∫

A(k,R)

|u− k|2
)1/2(

R−d|A(k,R)|
)(θ−1)/2

uniformly for every open set Ω ⊂ Rd, relatively open subset Γ of ∂Ω, A ∈ Ar(Ω, µ,M),

x0 ∈ ∂Ω, R ∈ (0, 1], k ∈ [0,∞) and real-valued u ∈ W 1,2
Γ (Ω) such that B(x0, R) ∩ Γ = ∅

and Lu = 0 weakly on Ω(x0, R).

Proof. The proof is almost the same as the proof of Lemma 8.12 and Proposition 8.13 in

[GM05].

For all 0 < r < R < ∞ there exists an ηr,R ∈ C∞c (Rd) such that 0 ≤ ηr,R ≤ 1,

ηr,R|B(x0,r) = 1, supp ηr,R ⊂ B(x0, R) and ‖∇ηr,R‖∞ ≤ 2
R−r . Let b1 be as in Lemma 2.3.

Let A ∈ Ar(Ω, µ,M), Γ a relatively open subset of ∂Ω, S ∈ (0, 1] and u ∈ W 1,2
Γ (Ω) be a

real-valued function such that B(x0, S) ∩ Γ = ∅ and Lu = 0 weakly on Ω(x0, S). Then
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for all 0 < r < R ≤ S and k ∈ [0,∞) one deduces from the Caccioppoli inequality of

Lemma 2.3 that∫

Ω(x0,(r+R)/2)

|∇(ηr,(r+R)/2(u− k)+)|2 ≤ 2

∫

Ω(x0,(r+R)/2)

|∇ηr,(r+R)/2|2 |(u− k)+)|2

+ 2

∫

Ω(x0,(r+R)/2)

|ηr,(r+R)/2|2 |∇((u− k)+)|2

≤ 32 + 8b1

(R− r)2

∫

Ω(x0,R)

|(u− k)+|2.

Next, by the Sobolev inequality there exists a b > 0 such that
(∫

Rd
|v|2d/(d−2)

)(d−2)/d

≤ b

∫

Rd
|∇v|2 + b

∫

Rd
|v|2 (6)

uniformly for all v ∈ W 1,2(Rd). It is a consequence of Lemma 2.2 that ηr,(r+R)/2 (u− k)+ ∈
W 1,2

0 (Ω(x0, R)). Let v be the extension by 0 of the function ηr,(r+R)/2 (u − k)+ to Rd and

use (6). Then
(∫

Ω(x0,r)

|(u− k)+|2d/(d−2)

)(d−2)/d

≤
(∫

Ω(x0,(r+R)/2)

|ηr,(r+R)/2(u− k)+|2d/(d−2)

)(d−2)/d

≤ b

∫

Rd
|∇v|2 + b

∫

Rd
|v|2

= b

∫

Ω(x0,(r+R)/2)

|∇(ηr,(r+R)/2(u− k)+)|2 + b

∫

Ω(x0,(r+R)/2)

|ηr,(r+R)/2(u− k)+|2

≤ b
32 + 8b1 + 1

(R− r)2

∫

Ω(x0,R)

|(u− k)+|2.

The Hölder inequality gives

∫

Ω(x0,r)

|(u− k)+|2 ≤
(∫

Ω(x0,r)

|(u− k)+|2d/(d−2)

)(d−2)/d

|A(k,R)|2/d.

Hence∫

A(k,r)

|u− k|2 =

∫

Ω(x0,r)

|(u− k)+|2 ≤ b
32 + 8b1 + 1

(R− r)2
|A(k,R)|2/d

∫

A(k,R)

|u− k|2.

This inequality can be iterated as in the proof of Proposition 8.13 in [GM05] and the

proposition follows with b2 = 2dθ/22(dθ+2)θ/(2θ−2) (b (32 + 8b1 + 1))dθ/4.

Corollary 2.5. For all µ,M > 0 there exists a b3 > 0 such that

ess sup
x∈Ω(x0,R/2)

|u(x)| ≤ b3

(
R−d

∫

Ω(x0,R)

|u|2
)1/2

uniformly for every open set Ω ⊂ Rd, relatively open subset Γ of ∂Ω, A ∈ Ar(Ω, µ,M),

x0 ∈ ∂Ω, R ∈ (0, 1] and real-valued u ∈ W 1,2
Γ (Ω) such that B(x0, R) ∩ Γ = ∅ and Lu = 0

weakly on Ω(x0, R).
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Proof. Let b2 be as in Proposition 2.4. Then it follows from Proposition 2.4 applied with

k = 0 that

ess sup
x∈Ω(x0,R/2)

u(x) ≤ b2

(
R−d

∫

Ω(x0,R)

|u|2
)1/2(

R−d |B(x0, R)|
)(θ−1)/2

≤ b2 ω
(θ−1)/2
d

(
R−d

∫

Ω(x0,R)

|u|2
)1/2

.

The same estimate is valid for −u instead of u and the corollary follows.

We next need a Dirichlet-type Poincaré inequality and a Poincaré–Sobolev inequality.

In both cases we need that a relevant part of the boundary of Ω is of class (Aα).

Proposition 2.6. Let α > 0. Then there exist cD, cS > 0 such that

∫

Ω(x0,r)

|u|2 ≤ cD r
2

∫

Ω(x0,r)

|∇u|2 and r−d
∫

Ω(x0,r)

|u|p ≤ cS

(
r−d

∫

Ω(x0,r)

r |∇u|
)p

for every open set Ω ⊂ Rd and relatively open subset Γ of ∂Ω, all r ∈ (0, 1], x0 ∈ ∂Ω and

u ∈ W 1,2
Γ (Ω) such that B(x0, r) ∩ Γ = ∅ and {x0} is of class (Aα), where 1 = 1

p
+ 1

d
.

Proof. Without loss of generality we may assume x0 = 0. By the Sobolev embedding

theorem one has W 1,1(B(0, 1)) ⊂ Lp(B(0, 1)) and the inclusion map is continuous. Let

c1 > 0 be such that ‖v‖Lp(B(0,1)) ≤ c1 ‖v‖W 1,1(B(0,1)) for all v ∈ W 1,1(B(0, 1)). By the

Poincaré inequality in [Zie] Theorem 4.4.2 there exists a c2 > 0 such that ‖v‖L1(B(0,1)) ≤
c2 ‖∇v‖L1(B(0,1)) for all v ∈ W 1,1(B(0, 1)) such that there exists a measurable E ⊂ B(0, 1)

with |E| ≥ α |B(0, 1)| and
∫
E
v = 0. Then

‖v‖pLp(B(0,1)) ≤ cp1 ‖v‖pW 1,1(B(0,1)) ≤ cp1 (1 + c2)p ‖∇v‖pL1(B(0,1))

for all such v. Hence by scaling

r−d ‖v‖pLp(B(0,r)) ≤ cp1 (1 + c2)p
(
r−d ‖r∇v‖L1(B(0,r))

)p

for all r ∈ (0,∞) and v ∈ W 1,1(B(0, r)) such that there exists a measurable E ⊂ B(0, r)

with |E| ≥ α |B(0, r)| and
∫
E
v = 0. Finally, let r ∈ (0, 1], u ∈ W 1,2

Γ (Ω) and suppose that

B(0, r) ∩ Γ = ∅. Let v be the extension by zero of u|Ω(0,r) to an element of W 1,p(B(0, r)),

which exists by Lemma 2.2(b). Let E = B(0, r) \ Ω(0, r). Then
∫
E
v = 0 and |E| ≥

α |B(0, r)|. So

r−d ‖u‖pLp(Ω(0,r)) = r−d ‖v‖pLp(B(0,r)) ≤ cp1 (1 + c2)p
(
r−d ‖r∇v‖L1(B(0,r))

)p

= cp1 (1 + c2)p
(
r−d ‖r∇u‖L1(Ω(0,r))

)p
.

This gives the second inequality.

The first inequality can be proved by the same scaling argument and again an applica-

tion of Poincaré’s inequality.
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Lemma 2.7. There exists a β > 0 such that for all µ,M, α > 0 there exists a b4 > 0 such

that

R−d |A(kn, R)| ≤ b4 n
−β

uniformly for all open Ω ⊂ Rd and relatively open subset Γ of ∂Ω, all A ∈ Ar(Ω, µ,M),

x0 ∈ ∂Ω, R ∈ (0, 1/4], n ∈ N0 and real-valued u ∈ W 1,2
Γ (Ω) such that B(x0, 4R) ∩ Γ = ∅,

the set {x0} is of class (Aα) and Lu = 0 weakly on Ω(x0, 4R), where

kn = ess sup
y∈Ω(x0,2R)

u(y)− 2−(n+1)
(

ess sup
y∈Ω(x0,2R)

u(y)− ess inf
y∈Ω(x0,2R)

u(y)
)
.

Proof. First note that the essential suprema and infima are finite by Corollary 2.5. Sec-

ondly, if ess supy∈B(x0,2R) u(y) = ess infy∈B(x0,2R) u(y) then |A(kn, R)| = 0 and the lemma is

trivial. So we may assume that ess supy∈B(x0,2R) u(y) 6= ess infy∈B(x0,2R) u(y).

Let h > k ≥ k0. Set v = u ∧ h − u ∧ k. Then v = (u − k)+ − (u − h)+ ∈ W 1,2
Γ (Ω) by

Lemma 2.2(a).

Fix p ∈ (1,∞) such that 1 = 1
p

+ 1
d
. Let cS > 0 be as in Proposition 2.6. Using the

definition of v one then deduces that

|h− k|pR−d |A(h,R)|

= R−d
∫

A(h,R)

|v|p ≤ R−d
∫

Ω(x0,R)

|v|p

≤ cS

(
R−d

∫

Ω(x0,R)

R |∇v|
)p

= cS

(
R−d

∫

A(k,R)\A(h,R)

(R |∇u|)
)p

≤ cS

((
R−d |A(k,R)\A(h,R)|

)1/2(
R−d

∫

A(k,R)\A(h,R)

(R |∇u|)2
)1/2

)p

≤ cS

(
R−d |A(k,R)\A(h,R)|

)p/2(
R−d

∫

A(k,R)

R2|∇u|2
)p/2

, (7)

where we have used the Cauchy–Schwarz inequality. But by the Caccioppoli inequality,

Lemma 2.3, one estimates

R−d
∫

A(k,R)

R2 |∇u|2 = R−d
∫

Ω(x0,R)

R2 |∇((u− k)+)|2

≤ b1R
−d
∫

Ω(x0,2R)

|(u− k)+|2

≤ b1R
−d
∫

Ω(x0,2R)

|(M(2R)− k)+|2 ≤ b1 ωd 2d(M(2R)− k)2,

where M(2R) = ess supy∈Ω(x0,2R) u(y) and b1 is as in Lemma 2.3. Together with (7) this

gives

|h− k|2
(
R−d |A(ki, R)|

)γ
≤ b′R−d |A(k,R)\A(h,R)|

∣∣M(2R)− k
∣∣2,

where γ = 2/p and b′ = 2dcγS b1 ωd. Next apply these estimates with h = ki and k = ki−1,

where i ∈ N. Then
(
R−d |A(ki, R)|

)γ
≤ 4b′R−d

(
|A(ki−1, R)| − |A(ki, R)|

)
,
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where we used that ess supy∈B(x0,2R) u(y) 6= ess infy∈B(x0,2R) u(y). Thus one obtains

n
(
R−d |A(kn, R)|

)γ
≤

n∑

i=1

(
R−d |A(ki, R)|

)γ

≤ 4b′R−d
(
|A(k0, R)| − |A(kn, R)|

)

≤ 4b′R−d |A(k0, R)| ≤ 4b′ ωd

for all n ∈ N, where we have used |A(k0, R)| ≤ |B(x0, R)| ≤ ωdR
d. Therefore

R−d |A(kn, R)| ≤ (4b′ ωd)
β n−β

with β = 1/γ and the proof of the lemma is complete.

If x0 ∈ Ω, r > 0 and u : Ω(x0, r) → R is a bounded function, then we define the

oscillation of u on Ω(x0, r) by

oscu,x0(r) = ess sup
y∈Ω(x0,r)

u(y)− ess inf
y∈Ω(x0,r)

u(y).

Note that one always has oscu,x0(r) ≤ 2 ess supΩ(x0,r) |u|. In case of B(x0, r) ∩ Γ = ∅
and |B(x0, r) \ Ω| > 0 one can easily deduce from Lemma 2.2(e) that ess supΩ(x0,r) |u| ≤
oscu,x0(r), which we need in the proof of Proposition 2.9.

Proposition 2.8. For all µ,M, α > 0 there exists a κ0 ∈ (0, 1) such that

oscu,x0(r) ≤ 4
( r
R

)κ0

oscu,x0(R/2)

uniformly for every open set Ω ⊂ Rd and relatively open subset Γ of ∂Ω, all A ∈ Ar(Ω, µ,M),

x0 ∈ ∂Ω, R ∈ (0, 1], r ∈ (0, R/2] and real valued u ∈ W 1,2
Γ (Ω) such that B(x0, R) ∩ Γ = ∅,

the set {x0} is of class (Aα) and Lu = 0 weakly on Ω(x0, R).

Proof. Let b2, b4 and β be as in Proposition 2.4 and Lemma 2.7. For all r ∈ (0, R/2] define

m(r) = ess inf
y∈Ω(x0,r)

u(y) and M(r) = ess sup
y∈Ω(x0,r)

u(y).

Now suppose r ∈ (0, R/4]. Set k0 = 1
2

(
M(2r)+m(2r)

)
. Replacing u by −u if necessary, we

may assume that k0 ≥ 0. Next, for all n ∈ N we set kn = M(2r)−2−(n+1)
(
M(2r)−m(2r)

)
.

Then it follows from Proposition 2.4 that

M(r/2) ≤ kn + b2

(
r−d

∫

A(kn,r)

|M(r)− kn|2
)1/2(

r−d |A(kn, r)|
)(θ−1)/2

≤ kn + b2 ω
1/2
d

(
M(2r)− kn

)
(b4 n

−β)(θ−1)/2

uniformly for all n ∈ N, where Lemma 2.7 is used in the last inequality. Next fix N ∈ N
such that

b2 ω
1/2
d (b4N

−β)(θ−1)/2 ≤ 1
2
.
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Note that N depends only on µ, M and α. Then

M(r/2) ≤M(2r)− 2−(N+1)
(
M(2r)−m(2r)

)
+ 2−(N+2)

(
M(2r)−m(2r)

)

= M(2r)− 2−(N+2)
(
M(2r)−m(2r)

)
.

Hence

M(r/2)−m(r/2) ≤M(2r)−m(2r)− 2−(N+2)
(
M(2r)−m(2r)

)

= (1− 2−(N+2))
(
M(2r)−m(2r)

)
.

This is valid for all r ∈ (0, R/4]. Therefore one deduces by induction that

M(2−(2n+1)r)−m(2−(2n+1)r) ≤ (1− 2−(N+2))n
(
M(r/2)−m(r/2)

)

for all n ∈ N0 and

M(r)−m(r) ≤ 4κ0

( r
R

)κ0
(
M(R/2)−m(R/2)

)

for all r ∈ (0, R/2], where κ0 = −(2 log 2)−1 log(1− 2−(N+2)) > 0.

Another consequence of Proposition 2.8 are De Giorgi estimates.

Proposition 2.9. For all µ,M, α, ζ > 0 there exist κ0 ∈ (0, 1) and cDG > 0 such that

∫

Ω(x0,r)

|∇u|2 ≤ cDG

( r
R

)d−2+2κ0
∫

Ω(x0,R)

|∇u|2

uniformly for every open set Ω ⊂ Rd and relatively open subset Γ of ∂Ω, all A ∈ Ar(Ω, µ,M),

x0 ∈ ∂Ω, 0 < r ≤ R ≤ 1 and u ∈ W 1,2
Γ (Ω) such that B(x0, ζ) ∩ Γ = ∅, the set {x0} is of

class (Aα) and Lu = 0 weakly on Ω(x0, R).

Proof. Let b1 and b3 be as in Lemma 2.3 and Corollary 2.5. Let κ0 ∈ (0, 1) be as in

Proposition 2.8.

Without loss of generality we may assume that ζ ≤ 1. Fix u ∈ W 1,2
Γ (Ω) and x0 ∈ ∂Ω.

Suppose that B(x0, ζ)∩Γ = ∅, the set {x0} is of class (Aα) and Lu = 0 weakly on Ω(x0, ζ).

Since A is a real operator, it suffices to prove the inequality for real-valued u.

It follows from Lemma 2.2(e) that m(r) ≤ 0 ≤ M(r) for all r ∈ (0, ζ] and hence

|u(y)| ≤ |M(r)−m(r)| for almost all y ∈ Ω(x0, r). Let R ∈ (0, ζ] and r ∈ (0, R/4]. Apply
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Lemma 2.3 to the function u and −u. Then
∫

Ω(x0,r)

|∇u|2 ≤ b1 r
−2

∫

Ω(x0,2r)

|u|2

≤ b1 r
−2

∫

Ω(x0,2r)

|oscu,x0(2r)|2

≤ 16b1 ωd (2r)d−2
(2r

R

)2κ0
(

oscu,x0(R/2)
)2

≤ 16b1 ωd (2r)d+2κ0−2R−2κ0

(
2 ess sup
y∈Ω(x0,R/2)

|u(y)|
)2

≤ 64b1 b
2
3 ωd (2r)d+2κ0−2R−(d+2κ0)

∫

Ω(x0,R)

|u|2

≤ 64b1 b
2
3 ωd cD 2d+2κ0−2

( r
R

)d+2κ0−2
∫

Ω(x0,R)

|∇u|2,

where we have used the Dirichlet-type Poincaré inequality of Proposition 2.6 in the last

step.

Corollary 2.10. For all µ,M, α, ζ > 0 there exist κ0 ∈ (0, 1) and cDG > 0 such that

∫

Ω(x0,r)

|∇u|2 ≤ cDG

( r
R

)d−2+2κ0
∫

Ω(x0,R)

|∇u|2

uniformly for every open set Ω ⊂ Rd and relatively open subset Γ of ∂Ω, every subset

Υ ⊂ ∂Ω satisfying d(Γ,Υ) ≥ ζ and the set Υ is of class (Aα), all A ∈ Ar(Ω, µ,M),

x0 ∈ Υ, 0 < r ≤ R ≤ 1 and u ∈ W 1,2
Γ (Ω) such that Lu = 0 weakly on Ω(x0, R).

We also need interior De Giorgi estimates.

Proposition 2.11. For all µ,M > 0 there exist κ0 ∈ (0, 1) and cDG > 0 such that

∫

Ω(x,r)

|∇u|2 ≤ cDG

( r
R

)d−2+2κ0
∫

Ω(x,R)

|∇u|2 (8)

uniformly for every open set Ω ⊂ Rd, A ∈ Ar(Ω, µ,M), x ∈ Ω, 0 < r ≤ R ≤ 1 and

u ∈ W 1,2(B(x,R)) such that B(x,R) ⊂ Ω and Lu = 0 weakly on B(x,R).

Proof. This is the basic inequality of De Giorgi. See for example (8.12) in [GM05].

Knowing De Giorgi estimates for points on Υ ⊂ ∂Ω one can deduce De Giorgi estimates

for interior points away from ∂Ω \Υ. The next proof is inspired by Step 4 in the proof of

Theorem 5.19 in [GM05].

Proof of Proposition 2.1. Without loss of generality we may assume that ζ ≤ 1. Let

Υ0 = {z ∈ ∂Ω : d(z,Υ) < ζ
2
}.

Then d(Γ,Υ0) ≥ ζ
2

and the set Υ0 is of class (Aα).
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By Corollary 2.10 there exist cDG ≥ 1 and κ0 ∈ (0, 1) such that LA,Γ satisfies (κ0, cDG)-

De Giorgi estimates on Υ0 for all A ∈ Ar(Ω, µ,M). Without loss of generality we may

assume that (8) is valid for all A ∈ Ar(Ω, µ,M), x ∈ Ω, 0 < r ≤ R ≤ 1 and u ∈
W 1,2(B(x,R)) such that B(x,R) ⊂ Ω and Lu = 0 weakly on B(x,R).

Let x ∈ Υ, 0 < r ≤ R ≤ 1 and A ∈ Ar(Ω, µ,M). First assume that 4r ≤ R ≤ 2ζ. Let

u ∈ W 1,2
Γ (Ω) and suppose that Lu = 0 weakly on Ω(x,R). Set ρ = d(x, ∂Ω).

Case 1. Suppose R/4 ≤ ρ.

Then B(x,R/4) ⊂ Ω and
∫

Ω(x,r)

|∇u|2 ≤ cDG

( r

R/4

)d−2+2κ0
∫

Ω(x,R/4)

|∇u|2 ≤ 4d cDG

( r
R

)d−2+2κ0
∫

Ω(x,R)

|∇u|2

by (8).

Case 2. Suppose r ≤ ρ ≤ R/4.

Let x0 ∈ ∂Ω be such that |x − x0| = ρ. Then |x − x0| = ρ ≤ R/4 < ζ
2
. Since x ∈ Υ it

follows that x0 ∈ Υ0. Moreover, B(x, ρ) ⊂ Ω(x0, 2ρ). Hence by Corollary 2.10 applied to

Υ0 it follows that
∫

Ω(x,r)

|∇u|2 ≤ cDG

(r
ρ

)d−2+2κ0
∫

Ω(x,ρ)

|∇u|2

≤ cDG

(r
ρ

)d−2+2κ0
∫

Ω(x0,2ρ)

|∇u|2

≤ c2
DG

(r
ρ

)d−2+2κ0
( 2ρ

R/2

)d−2+2κ0
∫

Ω(x0,R/2)

|∇u|2

≤ 4d c2
DG

( r
R

)d−2+2κ0
∫

Ω(x,R)

|∇u|2

as required.

Case 3. Suppose ρ ≤ r ≤ R/4.

As in Case 2, there exists an x0 ∈ Υ0 such that |x−x0| = ρ. Then Ω(x, r) ⊂ Ω(x0, 2r) and
∫

Ω(x,r)

|∇u|2 ≤
∫

Ω(x0,2r)

|∇u|2

≤ cDG

( 2r

R/2

)d−2+2κ0
∫

Ω(x0,R/2)

|∇u|2

≤ 4d cDG

( r
R

)d−2+2κ0
∫

Ω(x,R)

|∇u|2

as required.

So LA,Γ satisfies (κ0, c
′
DG)-De Giorgi estimates on Υ, where c′DG = 8dc2

DG ζ
−d.

The De Giorgi estimates will be used in the proof of every theorem in this paper.

3 Ladyshenskaya–Ural’zeva revisited

The aim in this section is to provide a proof of the Ladyshenskaya–Ural’zeva theorem,

Theorem 3.14.1 in [LU], with the classical Hölder spaces, that is Theorem 1.2. For good
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Hölder estimates we use a variation of Morrey and Campanato spaces. We modify the

definition of Morrey and Campanato space from [Gia] in two ways. First, we change the

range of the radius for the balls from diam(Ω) to a to be determined endpoint Re, where

Re ∈ (0, 1]. Secondly, we consider pointwise estimates and are not interested in the global

spaces.

For all γ ∈ [0, d], Re ∈ (0, 1] and x ∈ Ω define ‖ · ‖M,γ,x,Ω,Re : L2(Ω)→ [0,∞] by

‖u‖M,γ,x,Ω,Re = sup
r∈(0,Re]

(
r−γ

∫

Ω(x,r)

|u|2
)1/2

.

Then the Morrey space Mγ(Ω) is defined by Mγ(Ω) = {u ∈ L2(Ω) : supx∈Ω ‖u‖M,γ,x,Ω,1 <

∞}. The space Mγ(Ω) is a Banach space under the natural norm.

Next, for all γ ∈ [0, d+ 2], Re ∈ (0, 1] and x ∈ Ω define ||| · |||M,γ,x,Ω,Re : L2(Ω)→ [0,∞]

by

|||u|||M,γ,x,Ω,Re = sup
r∈(0,Re]

(
r−γ

∫

Ω(x,r)

|u− 〈u〉Ω(x,r)|2
)1/2

,

where for an L2 function v we denote by 〈v〉D = 1
|D|
∫
D
v the average of v over a bounded

measurable subset D of the domain of u with |D| > 0. Define the Campanato space

Mγ(Ω) by Mγ(Ω) = {u ∈ L2(Ω) : supx∈Ω |||u|||M,γ,x,Ω,1 < ∞}. Then Mγ(Ω) is a Banach

space with the norm u 7→
(
‖u‖2

L2(Ω) + supx∈Ω |||u|||2M,γ,x,Ω,1

)1/2

. If no confusion is possible,

then we drop the dependence of Ω and write ‖u‖M,γ,x,Re = ‖u‖M,γ,x,Ω,Re and |||u|||M,γ,x,Re =

|||u|||M,γ,x,Ω,Re .

For all κ ∈ (0, 1) define ||| · |||Cκ(Ω) : C(Ω)→ [0,∞] by

|||u|||Cκ(Ω) = sup
x,y∈Ω

0<|x−y|≤1

|u(x)− u(y)|
|x− y|κ .

Let Cκ(Ω) = {u ∈ C(Ω) : |||u|||Cκ(Ω) <∞}.
It follows from [Gia] Proposition III.1.2 and Theorem III.1.2 thatMγ(Ω) = Mγ(Ω) for

all γ ∈ [0, d) andMγ(Ω) = C(γ−d)/2(Ω)∩L2(Ω) for all γ ∈ (d, d+2) if Ω satisfies a uniform

interior volume estimate. Moreover, then also the norms on the spaces are equivalent. The

proofs give pointwise estimates, which we need in the sequel. In fact, we do not need the

(global) spaces Mγ(Ω) and Mγ(Ω) at all. Explicitly, one has the following estimates.

Lemma 3.1.

(a) For all γ ∈ [0, d), c̃ > 0 and Re ∈ (0, 1] there exist c1, c2 > 0 such that

‖u‖2
M,γ,x,Re ≤ ‖u‖2

M,γ,x,Re ≤ c1 ‖u‖2
M,γ,x,Re + c2

∫

Ω(x,Re)

|u|2

for all open Ω ⊂ Rd, x ∈ Ω, Re ∈ (0, 1] and u ∈ L2(Ω) such that |Ω(x, r)| ≥ c̃ rd for

all r ∈ (0, Re].

(b) Let Ω ⊂ Rd be open, γ ∈ (d, d+2), c̃ > 0, x ∈ Ω, u ∈ L2(Ω) and Re ∈ (0, 1]. Assume

that ‖u‖M,γ,x,Re < ∞ and |Ω(x, r)| ≥ c̃ rd for all r ∈ (0, Re]. Then limR↓0〈u〉Ω(x,R)

exists. Write û(x) = limR↓0〈u〉Ω(x,R). Then

|〈u〉Ω(x,R) − û(x)| ≤ 21+d/2

√
c̃(1− 2−(γ−d)/2)

R(γ−d)/2 ‖u‖M,γ,x,Re
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for all R ∈ (0, Re].

(c) Let γ ∈ (d, d+ 2) and c̃ > 0. Then there exists a c > 0 such that

|û(x)− û(y)| ≤ c (‖u‖M,γ,x,Re + ‖u‖M,γ,y,Re) |x− y|(γ−d)/2

for all open Ω ⊂ Rd, x, y ∈ Ω, Re ∈ (0, 1] and u ∈ L2(Ω) such that ‖u‖M,γ,x,Re <∞,

‖u‖M,γ,y,Re <∞, |x− y| ≤ Re
2

and, in addition, |Ω(x, r)| ≥ c̃ rd and |Ω(y, r)| ≥ c̃ rd

for all r ∈ (0, Re], where û(x) and û(y) are as in (b).

Proof. The proof is as in the proof of [Gia] Proposition III.1.2 and Theorem III.1.2. For

the convenience of the reader we included the details in the appendix.

Note that û(x) = u(x) if u is continuous.

The next proposition is stated in more generality than that we currently need, so that

it can be used again in Section 7 to prove semigroup kernel bounds. The proposition is

a modification of a proposition which appears at many places in the literature ([Mor],

[GM05] Theorem 5.13, [Aus] Theorem 3.6, [AT] Lemma 1.12, [ERo1] Proposition 4.2,

[DER] Proposition A.3.1.)

Proposition 3.2. For all µ,M, α > 0 and ζ ∈ (0, 1] there exists a κ0 ∈ (0, 1) such that

for all γ ∈ [0, d) and δ ∈ (0, 2] with γ + δ < d − 2 + 2κ0 there exists an a1 > 0, such that

the following is valid.

Let Ω ⊂ Rd be open, let Γ be a relatively open subset of ∂Ω, let Υ ⊂ Ω and suppose

that d(Γ,Υ) ≥ ζ and {z ∈ ∂Ω : d(z,Υ) < ζ} is of class (Aα). Let A ∈ Ar(Ω, µ,M),

u ∈ W 1,2
Γ (Ω) and ξ, ξ1, . . . , ξd ∈ L2(Ω) be such that

lA,Γ(u, v) = (ξ, v)L2(Ω) −
d∑

i=1

(ξi, ∂i v)L2(Ω) (9)

for all v ∈ W 1,2
0 (Ω). Then

‖∇u‖M,γ+δ,x,Ω,ζ ≤ a1

(
ε2−δ‖ξ‖M,γ,x,Ω,ζ +

d∑

i=1

‖ξi‖M,γ+δ,x,Ω,ζ + ε−(γ+δ)‖∇u‖L2(Ω)

)

for all ε ∈ (0, 1] and x ∈ Υ.

Proof. By Proposition 2.1 there are cDG > 0 and κ0 ∈ (0, 1) such that LA,Γ satisfies

(κ0, cDG)-De Giorgi estimates on Υ for all A ∈ Ar(Ω, µ,M).

Let A ∈ Ar(Ω, µ,M), u ∈ W 1,2
Γ (Ω) and ξ, ξ1, . . . , ξd ∈ L2(Ω). Suppose that (9) is valid

for all v ∈ W 1,2
0 (Ω). Let 0 < r ≤ R ≤ ζ and x ∈ Υ. By the Lax–Milgram theorem there

exists a unique v ∈ W 1,2
0 (Ω(x,R)) such that

d∑

i,j=1

∫

Ω(x,R)

aij (∂iv) ∂jϕ =
d∑

i,j=1

∫

Ω(x,R)

aij (∂iu) ∂jϕ (10)

for all ϕ ∈ W 1,2
0 (Ω(x,R)). Extend v by zero to a function ṽ : Ω → C. Then ṽ ∈ W 1,2

0 (Ω).

Set w = u− ṽ. Then w ∈ W 1,2
Γ (Ω). Moreover,

d∑

i,j=1

∫

Ω(x,R)

aij (∂iw) ∂jϕ = 0
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for all ϕ ∈ W 1,2
0 (Ω(x,R)). The De Giorgi inequalities applied to the function w imply

∫

Ω(x,r)

|∇u|2 ≤ 2

∫

Ω(x,r)

|∇w|2 + 2

∫

Ω(x,r)

|∇v|2

≤ 2cDG

( r
R

)d−2+2κ0
∫

Ω(x,R)

|∇w|2 + 2

∫

Ω(x,r)

|∇v|2

≤ 4cDG

( r
R

)d−2+2κ0
∫

Ω(x,R)

|∇u|2 + (2 + 4cDG)

∫

Ω(x,R)

|∇v|2. (11)

Choose ϕ = v in (10). Then

d∑

i,j=1

∫

Ω(x,R)

aij (∂iv) ∂jv =
d∑

i,j=1

∫

Ω(x,R)

aij (∂iu) ∂jv

=
d∑

i,j=1

∫

Ω

aij (∂iu) ∂j ṽ

= lA,Γ(u, ṽ) = (ξ, ṽ)L2(Ω) −
d∑

i=1

(ξi, ∂iṽ)L2(Ω).

Hence, by ellipticity and the Cauchy–Schwarz inequality, one estimates

µ

∫

Ω(x,R)

|∇v|2 ≤
(∫

Ω(x,R)

|ξ|2
)1/2(∫

Ω(x,R)

|v|2
)1/2

+
d∑

i=1

(∫

Ω(x,R)

|ξi|2
)1/2(∫

Ω(x,R)

|∂iv|2
)1/2

≤ ‖ξ‖M,γ,x,Ω,ζR
γ/2

(∫

Ω(x,R)

|v|2
)1/2

+
d∑

i=1

‖ξi‖M,γ+δ,x,Ω,ζR
(γ+δ)/2

(∫

Ω(x,R)

|∇v|2
)1/2

.

Then the Dirichlet type Poincaré inequality in Theorem V.3.22 in [EE] gives
∫

Ω(x,R)

|v|2 ≤ 4R2

∫

Ω(x,R)

|∇v|2.

So ∫

Ω(x,R)

|∇v|2 ≤ µ−2
(

2R(2−δ)/2‖ξ‖M,γ,x,Ω,ζ +
d∑

i=1

‖ξi‖M,γ+δ,x,Ω,ζ

)2

Rγ+δ.

Now we can combine these bounds with (11) to obtain
∫

Ω(x,r)

|∇u|2 ≤ 4cDG

( r
R

)d−2+2κ0
∫

Ω(x,R)

|∇u|2

+ a0

(
2R(2−δ)/2‖ξ‖M,γ,x,Ω,ζ +

d∑

i=1

‖ξi‖M,γ+δ,x,Ω,ζ

)2

Rγ+δ
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uniformly for all 0 < r ≤ R ≤ ζ, where a0 = µ−2(2 + 4cDG). These bounds can be

improved immediately by use of Lemma III.2.1 of [Gia]. It follows that there exists an

a > 0, depending only on cDG, γ + δ and κ0, such that

∫

Ω(x,r)

|∇u|2 ≤ a
(( r

R

)γ+δ
∫

Ω(x,R)

|∇u|2

+ a0

(
2ε2−δ‖ξ‖M,γ,x,Ω,ζ +

d∑

i=1

‖ξi‖M,γ+δ,x,Ω,ζ

)2

rγ+δ
)

uniformly for all x ∈ Υ, ε ∈ (0, 1] and 0 < r ≤ R ≤ ζ ε2. Choosing R = ζ ε2 it follows that

∫

Ω(x,r)

|∇u|2 ≤ a
(
ζ−(γ+δ) (ε−(γ+δ) ‖∇u‖L2(Ω))

2

+ a0

(
2ε2−δ‖ξ‖M,γ,x,Ω,ζ +

d∑

i=1

‖ξi‖M,γ+δ,x,Ω,ζ

)2)
rγ+δ

for all x ∈ Υ and 0 < r ≤ ζ ε2. Alternatively, if ζ ε2 ≤ r ≤ ζ then

∫

Ω(x,r)

|∇u|2 ≤ ζ−(γ+δ) (ε−(γ+δ)‖∇u‖L2(Ω))
2 rγ+δ

and a combination of the last two inequalities completes the proof of the proposition.

By the Neumann type Poincaré inequality there exists a cN > 0 such that

∫

B(x,R)

|v − 〈v〉B(x,R)|2 ≤ cN R
2

∫

B(x,R)

|∇v|2 (12)

uniformly for all x ∈ Rd, R ∈ (0,∞) and v ∈ W 1,2(B(x,R)). The next lemma is a

Neumann type Poincaré inequality for truncated balls away from Γ. Note that the integral

on the left hand side is over a ball in Rd, whilst the integral on the right hand side it is

over a (truncated) ball in Ω.

Lemma 3.3. Let cN > 0 be as in (12). Let Ω ⊂ Rd be open and Γ a relatively open subset

of ∂Ω. Then

∫

B(x,R)

|ũ− 〈ũ〉B(x,R)|2 ≤ cN R
2

∫

Ω(x,R)

|∇u|2 (13)

for every x ∈ Ω, R ∈ (0,∞) and u ∈ W 1,2
Γ (Ω) such that B(x,R) ∩ Γ = ∅, where

ũ : B(x,R)→ C is the extension of u with zero.

Proof. Let x ∈ Ω, R ∈ (0,∞), u ∈ W 1,2
Γ (Ω) and suppose that B(x,R) ∩ Γ = ∅. Then

ũ ∈ W 1,2(B(x,R)) by Lemma 2.2(b). Hence

∫

B(x,R)

|ũ− 〈ũ〉B(x,R)|2 ≤ cN R
2

∫

B(x,R)

|∇ũ|2 = cN R
2

∫

Ω(x,R)

|∇u|2

as required.
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This inequality can be used to deduce a kind of Sobolev embedding for Morrey–

Campanato spaces. We emphasize that the Campanato seminorm in the next lemma

is with respect to Rd, thus not with Ω.

Lemma 3.4. Let Ω ⊂ Rd be open, Γ a relatively open subset of ∂Ω, u ∈ W 1,2
Γ (Ω), x ∈ Ω,

Re ∈ (0, 1] and γ ∈ [0, d). Suppose B(x,Re) ∩ Γ = ∅. Then

‖ũ‖M,γ+2,x,Rd,Re ≤
√
cN ‖∇u‖M,γ,x,Ω,Re ,

where cN is as in (12) and ũ : Rd → C is the extension by zero of u.

Proof. This follows from (13).

Now we have enough preparation to prove the Ladyshenskaya–Ural’zeva type result of

Theorem 1.2.

Proof of Theorem 1.2. Without loss of generality we may assume that ζ ≤ 1. It follows

from the Hölder inequality that

‖g‖M,d− 2d
p
,x,Ω,Re

≤ √ωd ‖g‖Lp(Ω)

for all p ∈ [2,∞) and g ∈ Lp(Ω), x ∈ Ω and Re ∈ (0, 1]. Let κ0 ∈ (0, 1) be as in

Proposition 3.2. We distinguish two cases.

Case 1. Suppose that d ≥ 4.

Observe that d− 2d
q
> d− 2 and d− 2d

q0
> d− 4. Choose

κ = 1
2

min
(
d− 2d

q
− (d− 2), d− 2d

q0

− (d− 4), 1
2
κ0

)
.

Then κ ∈ (0, 1). Choose δ = 2 and γ = d− 4 + 2κ. Note that γ ∈ [0, d) since d ≥ 4. Then

γ + δ = d− 2 + 2κ ≤ d− 2d
q

and ‖f0‖M,γ,x,Ω,ζ ≤ ‖f0‖M,d− 2d
q0
,x,Ω,ζ ≤

√
ωd ‖f0‖Lq0 (Ω).

Case 2. Suppose that d ∈ {2, 3}.
Since q > d, there exists a κ ∈ (0, κ0) such that d− 2 + 2κ ≤ d− 2d

q
and κ < 1

2
. Moreover,

d − 2d
q0
≥ 0. Choose γ = 0 and δ = d − 2 + 2κ. Then δ ∈ (0, 2], γ + δ = d − 2 + 2κ and

‖f0‖M,γ,x,Ω,ζ ≤ ‖f0‖M,d− 2d
q0
,x,Ω,ζ ≤

√
ωd ‖f0‖Lq0 (Ω).

In both cases, let a1 > 0 be as in Proposition 3.2 and choose ε = 1. Let u ∈ W 1,2
Γ (Ω)

and suppose that Lu = f0 − div f weakly on Ω. Let x ∈ Υ. Then

‖∇u‖M,d−2+2κ,x,Ω,ζ ≤ a1

(
‖f0‖M,γ,x,Ω,ζ +

d∑

i=1

‖fi‖M,d−2+2κ,x,Ω,ζ + ‖∇u‖L2(Ω)

)

≤ a1

√
ωd

(
‖f0‖Lq0 (Ω) + ‖f‖Lq(Ω)d + ‖∇u‖L2(Ω)

)

by Proposition 3.2. So

‖ũ‖M,d+2κ,x,Rd,ζ ≤ a1

√
cN ωd

(
‖f0‖Lq0 (Ω) + ‖f‖Lq(Ω)d + ‖∇u‖L2(Ω)

)
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by Lemma 3.4, where ũ : Rd → C is the extension by zero of u. Hence

|u(x)| ≤ 1√
ωd

21+d/2

1− 2−κ
ζκ ‖ũ‖M,d+2κ,x,Rd,ζ + |〈ũ〉B(x,ζ)|

≤ 21+d/2

1− 2−κ
a1

√
cN

(
‖f0‖Lq0 (Ω) + ‖f‖Lq(Ω)d + ‖∇u‖L2(Ω)

)
+ (ωd ζ

d)−1/2 ‖u‖L2(Ω)

by Lemma 3.1(b) and u|Υ is bounded. Finally, let y ∈ Υ and suppose that |x− y| < ζ
2
. By

Lemma 3.1(c) there exists a c > 0, depending only on κ (and d) such that

|u(x)− u(y)| ≤ c (‖ũ‖M,d+2κ,x,Rd,ζ + ‖ũ‖M,d+2κ,y,Rd,ζ) |x− y|κ

≤ 2a1 c
√
cN ωd

(
‖f0‖Lq0 (Ω) + ‖f‖Lq(Ω)d + ‖∇u‖L2(Ω)

)
|x− y|κ.

The proof of Theorem 1.2 is complete.

4 Transformations

In this section we prove two transformation lemmas for Sobolev spaces and second-order

differential equations with boundary conditions. The first is the transformation under a

bi-Lipschitz map, the second is an even reflection. We will use them to transfer De Giorgi

estimates near the Dirichlet part of the boundary to another type of De Giorgi estimates

near the Neumann part of the boundary. We first introduce the appropriate version of De

Giorgi estimates near the Neumann part of the boundary.

The space W 1,2
Γ (Ω) is defined relative to the Neumann part Γ of the boundary. It is

convenient to have a counter part with respect to the Dirichlet part, in order to avoid many

complements. Let Ω ⊂ Rd be open and ∆ a closed subset of ∂Ω. Then define

W̃ 1,2
∆ (Ω) = W 1,2

∂Ω\∆(Ω).

Let Ω ⊂ Rd be open, Γ a relatively open subset of ∂Ω, ∆ a closed subset of ∂Ω, A ∈ A(Ω),

κ0 ∈ (0, 1), cDG > 0 and Υ ⊂ Ω a set. Then we say that LA satisfies (κ0, cDG)-De Giorgi

estimates on Υ for functions vanishing on ∆ and Neumann boundary conditions

on Γ if ∫

Ω(x,r)

|∇u|2 ≤ cDG

( r
R

)d−2+2κ0
∫

Ω(x,R)

|∇u|2

for all x ∈ Υ, 0 < r ≤ R ≤ 1 and u ∈ W̃ 1,2
∆ (Ω) satisfying

d∑

i,j=1

∫

Ω(x,R)

aij (∂iu) ∂jv = 0 (14)

for all v ∈ W 1,2
Γ(x,R)(Ω(x,R)). Here (and below) we write Γ(x,R) = Γ ∩B(x,R).

Remark 4.1.

(a) The phrase ‘vanishing on ∆’ is related to the condition u ∈ W̃ 1,2
∆ (Ω), which implies

u|∆ = 0 in the sense of trace (if the latter exists).
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(b) The phrase ‘Neumann conditions’ is motivated by the fact that the right hand side in

(14) is zero, and hence an element of L2. Therefore a (generalized) Gauss’ theorem

provides ν · A∇u = 0 on Γ(x,R). This gives a (generalized) Neumann condition on

the corresponding part of Γ, cf. [Cia, Chapter 1.2] or [GGZ, Chapter II.2]).

(c) The cases ∆ = ∅ and/or Γ = ∅ are explicitly allowed (and will appear in the sequel).

We rephrase Proposition 2.1.

Proposition 4.2. For all µ,M, α, ζ > 0 there exist κ0 ∈ (0, 1) and cDG > 0 such that for

every open set Ω and subset Υ ⊂ Ω satisfying ∆ := {z ∈ ∂Ω : d(z,Υ) ≤ ζ} is of class

(Aα) it follows that for all A ∈ Ar(Ω, µ,M) the operator LA satisfies (κ0, cDG)-De Giorgi

estimates on Υ for functions vanishing on ∆ and Neumann boundary conditions on ∅.

Proof. Apply Proposition 2.1 with ζ replaced by ζ
2

and Γ = {z ∈ ∂Ω : d(z,Υ) > ζ
2
}

Our first transformation is for bi-Lipschitz maps.

Proposition 4.3. Let Ω1 and Ω2 be two open subsets of Rd and φ : Ω1 → Ω2 a bi-Lipschitz

map. Let K ≥ 1 be such that K is larger than both the Lipschitz constant for φ and φ−1.

Assume that φ admits an extension, also denoted by φ, to an open neighbourhood of Ω1

that is again bi-Lipschitz. Let Γ1 ⊂ ∂Ω1 be a relatively open set and define Γ2 = φ(Γ1)

Finally, for every measurable u : Ω1 → C define Φu : Ω2 → C by Φu = u ◦ φ−1. Then the

following is valid.

(a) If p ∈ (1,∞), then the restriction of Φ to the space W 1,p
Γ1

(Ω1) induces a linear,

topological isomorphism from W 1,p
Γ1

(Ω1) onto W 1,p
Γ2

(Ω2).

(b) Let µ,M > 0 and A ∈ A(Ω1, µ,M). Define Aφ : Ω2 → Cd×d by

Aφ(y) =
1∣∣ det(Dφ)(φ−1(y))

∣∣ (Dφ)(φ−1(y)) A(φ−1(y))
(
Dφ
)T

(φ−1(y)), (15)

where Dφ denotes the derivative of φ and det(Dφ) the corresponding determinant.

Then Aφ ∈ A(Ω2, (d!Kd+2)−1µ, d!Kd+2M). In addition, one has

lA(u, v) = lAφ(Φu,Φv) (16)

for all u, v ∈ W 1,2
Γ1

(Ω1).

(c) Let ∆1 ⊂ ∂Ω1 be a closed set. Let Υ1 ⊂ Ω1 be a set and define ∆2 = φ(∆1) and

Υ2 = φ(Υ1). Moreover, let A ∈ A(Ω1), κ0 ∈ (0, 1) and cDG > 0. Suppose that the

operator LA satisfies (κ0, cDG)-De Giorgi estimates on Υ1 for functions vanishing

on ∆1 and Neumann boundary conditions on Γ1. Then the operator LAφ satisfies

(κ0, c
′
DG)-De Giorgi estimates on Υ2 for functions vanishing on ∆2 and Neumann

boundary conditions on Γ2, where c′DG = d!2K4d+4 cDG + cDGK
2d.

Proof. The proof of (a) is contained in [GGKR, Theorem 2.10)]. Statement (b) is well

known, see [HKR] Proposition 16 for an explicit verification or [AT, Section 0.8]. For the

bi-Lipschitz φ the derivative Dφ and its inverse (Dφ)−1 are essentially bounded by K (see

[EG, Section 3.1]).
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For the proof of Statement (c) first note that K−1 |x− y| ≤ |φ(x)− φ(y)| ≤ K |x− y|
for all x, y ∈ Ω1. Hence

Ω2(φ(x), K−1 r) ⊂ φ(Ω1(x, r)) ⊂ Ω2(φ(x), K r)

for all x ∈ Ω1 and r > 0.

If V ⊂ Ω1 is an open set, then it follows by a change of variables that

∫

V

|∇(w ◦ φ)|2 ≤ (d!Kd)K2

∫

φ(V )

|∇w|2

for all w ∈ C∞c (Rd). Hence by density

∫

V

|∇(u ◦ φ)|2 ≤ (d!Kd)K2

∫

φ(V )

|∇u|2

for all u ∈ W̃ 1,2
∆2

(Ω2).

Let y ∈ Υ2, R ∈ (0, 1] and u ∈ W̃ 1,2
∆2

(Ω2). Suppose that

d∑

i,j=1

∫

Ω2(y,R)

(Aφ)ij (∂iu) ∂jv = 0

for all v ∈ W 1,2
Γ2(y,R)(Ω2(y,R)). Then u ◦ φ ∈ W̃ 1,2

∆1
(Ω1) and

d∑

i,j=1

∫

Ω1(φ−1(y),K−1 R)

aij (∂i(u ◦ φ) ∂jv = 0

for all v ∈ W 1,2
Γ1(φ−1(y),K−1R)(Ω1(φ−1(y), K−1R)) by (16). So if r ∈ (0, R] then

∫

Ω1(φ−1(y),K−1 r)

|∇(u ◦ φ)|2 ≤ cDG

( r
R

)d−2+2κ0
∫

Ω1(φ−1(y),K−1R)

|∇(u ◦ φ)|2.

Therefore
∫

Ω2(y,K−2 r)

|∇u|2 ≤ d!Kd+2

∫

Ω1(φ−1(y),K−1 r)

|∇(u ◦ φ)|2

≤ d! cDGK
d+2
( r
R

)d−2+2κ0
∫

Ω1(φ−1(y),K−1 R)

|∇(u ◦ φ)|2

≤ (d!Kd+2)2 cDG

( r
R

)d−2+2κ0
∫

Ω2(y,R)

|∇u|2.

Now Statement (c) follows easily.

We next need a simple mirror argument. Let πd : Rd → R be the projection onto the

last coordinate.

Proposition 4.4. Define the linear map φ : Rd → Rd by φ(y1, . . . , yd) = (y1, . . . , yd−1,−yd).

Let Ω ⊂ {x ∈ Rd : πd(x) < 0} be open. Let Σ ⊂ ∂Ω∩{x ∈ Rd : πd(x) = 0} be a non-empty
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set which is open in ∂Ω. Let ∆ ⊂ ∂Ω \ Σ be a closed set and define ∆̂ = ∆ ∪ φ(∆).

Moreover, set

Ω̂ = Ω ∪ Σ ∪ φ(Ω).

For every u ∈ W 1,2(Ω) define û : Ω̂→ R by

û(y) =





u(y) if y ∈ Ω,

(Tru)(y) if y ∈ Σ,

u(φ(y)) if φ(y) ∈ Ω.

Further, for all A : Ω→ Cd×d define Â : Ω̂→ Cd×d by

Â(y) =





A(y) if y ∈ Ω,

I if y ∈ Σ,

φA(φ(y))φ if y ∈ φ(Ω).

(Note that φ is a linear, symmetric, idempotent map.)

Then one has the following.

(a) The set Ω̂ is open. In particular, the points in Σ are inner points of Ω̂.

(b) ∆̂ is closed.

(c) If µ,M > 0 and A ∈ A(Ω, µ,M), then Â ∈ A(Ω̂, µ,M).

(d) If u ∈ W 1,2(Ω), then û ∈ W 1,2(Ω̂) and ‖û‖W 1,2(bΩ) = 2‖u‖W 1,2(Ω).

(e) If u ∈ W̃ 1,2
∆ (Ω), then û ∈ W̃ 1,2

b∆ (Ω̂).

(f) Let x ∈ Ω, R > 0 and u ∈ W 1,2
0 (Ω̂(x,R)). Extend u by zero to an element ũ ∈

W 1,2(Rd). Then u|Ω(x,R) ∈ W 1,2
Σ(x,R)(Ω(x,R)) and ũ|φ(Ω(x,R)) ∈ W 1,2

Σ(x,R)(φ(Ω(x,R))).

(g) Let A ∈ A(Ω), κ0 ∈ (0, 1) and cDG > 0. Let Υ ⊂ Ω̂ be a set. Suppose the operator

L bA satisfies (κ0, cDG)-De Giorgi estimates on Υ for functions vanishing on ∆̂ and

Neumann boundary conditions on ∅. Then the operator LA satisfies (κ0, 2cDG)-De

Giorgi estimates on Υ ∩ Ω for functions vanishing on ∆ and Neumann boundary

conditions on Σ.

Proof. ‘(a)’. Let x0 ∈ Σ. Since Σ is open in ∂Ω there exists an r > 0 such that B(x0, r)∩
∂Ω ⊂ Σ. Then the connected set B(x0, r) ∩ [πd < 0] is the disjoint union of the open sets

B(x0, r) ∩ [πd < 0] ∩ Ω and B(x0, r) ∩ [πd < 0] ∩ Ω
c
. So B(x0, r) ∩ [πd < 0] ⊂ Ω. Then

B(x0, r) ∩ [πd = 0] ⊂ Ω \ Ω = ∂Ω. So B(x0, r) ∩ [πd = 0] ⊂ B(x0, r) ∩ ∂Ω ⊂ Σ. Now it is

easy to see that B(x0, r) ⊂ Ω̂.

Statements (b) and (c) are trivial.

‘(d)’. Primarily, one has to show the weak differentiability of the extended function.

This is a local property and is, hence, achieved by the classical reflection argument [Giu,

Lemma 3.4]. The equality ‖û‖W 1,2(bΩ) = 2‖u‖W 1,2(Ω) is obvious.

‘(e)’. Let w ∈ C∞c (Rd). Define the function w̌ by

w̌(y) :=

{
w(y) if yd ≤ 0,

w(φ(y)) if yd > 0.
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Suppose suppw ∩∆ = ∅ and set u := w|Ω. Then, on the one hand, û = w̌|bΩ. On the other

hand, suppw ∩∆ = ∅ implies supp w̌ ∩ ∆̂ = ∅. Hence, for all ε > 0, one finds a suitable

mollifier χ such that supp(χ ∗ w̌) ∩ ∆̂ = ∅ and, in addition, ‖w̌ − χ ∗ w̌‖W 1,2(Rd) ≤ ε. This

gives ‖û − (χ ∗ w̌)|bΩ‖W 1,2(Ω̂) ≤ ‖w̌ − χ ∗ w̌‖W 1,2(Rd) ≤ ε. Now the statement follows from

(d).

‘(f)’. Consider first u ∈ C∞c (Ω̂(x,R)). Extending such u by zero to all of Rd, one obtains

a function ũ ∈ C∞c (Rd). Moreover, simple geometric considerations show that supp ũ ⊂
Ω̂(x,R), where Ω̂(x,R) = Ω(x,R) ∪ φ(Ω(x,R)) ∪ Σ((x,R). Therefore the restriction w :=

ũ|
Ω̂(x,R)

∈ C∞c (Ω̂(x,R)). Hence, the claim for u ∈ C∞c (Ω̂(x,R)) is proved if we can show

that w ∈ C∞c (Ω̂(x,R)) implies

w|Ω(x,R) ∈ W 1,2
Σ(x,R)(Ω(x,R)) and w|φ(Ω(x,R)) ∈ W 1,2

Σ(x,R)(φ(Ω(x,R))). (17)

In order to prove the first statement in (17) it suffices to show

suppw ∩ ∂(Ω(x,R)) ⊂ Σ(x,R); (18)

namely this implies

suppw ∩ ∂(Ω(x,R)) \ Σ(x,R) = ∅,
therefore w|Ω(x,R) ∈ C∞Σ(x,R)(Ω(x,R)) ⊂ W 1,2

Σ(x,R)(Ω(x,R)). Let us show (18). One clearly

has

Ω(x,R) = Ω̂(x,R) ∩ [πd < 0]

and, consequently,

∂(Ω(x,R)) ⊂
(
∂Ω̂(x,R) ∩ [πd < 0]

)
∪ [πd = 0] =

(
∂Ω̂(x,R) ∩ [πd < 0]

)
∪ [πd = 0].

But suppw ∩
(
∂Ω̂(x,R) ∩ [πd < 0]

)
= ∅ and suppw ∩ [πd = 0] ⊂ Σ(x,R), what proves

(18). In order to show the second statement in (17), one considers the function w ◦ φ and

proceeds as before. For general u ∈ W 1,2
0 (Ω̂(x,R)) the statement follows by density.

‘(g)’. Let x ∈ Υ ∩ Ω, 0 < r ≤ R ≤ 1, u ∈ W̃ 1,2
∆ (Ω) and suppose that

d∑

i,j=1

∫

Ω(x,R)

aij (∂iu) ∂jv = 0 (19)

for all v ∈ W 1,2
Σ(x,R)(Ω(x,R)). Then û ∈ W̃ 1,2

b∆ (Ω̂), thanks to Statement (e).

Let v ∈ W 1,2
0 (Ω̂(x,R)). Then v|Ω(x,R) ∈ W 1,2

Σ(x,R)(Ω(x,R)) by Statement (f), so

d∑

i,j=1

∫

Ω(x,R)∩[πd<0]

âij (∂iû) ∂jv = 0 (20)

by (19). Extend v by zero to an element ṽ ∈ W 1,2(Rd). Then Statement (f) implies that also

ṽ|φ(Ω(x,R)) ∈ W 1,2
Σ(x,R)(φ(Ω(x,R))). So (ṽ◦φ)|Ω(x,R) ∈ W 1,2

Σ(x,R)(Ω(x,R)) by Proposition 4.3(a).

Hence
d∑

i,j=1

∫

Ω(x,R)

aij (∂iu) ∂j(ṽ ◦ φ) = 0
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by (19). Then (16) and the inclusions supp(ṽ ◦ φ) ∩ [πd < 0] ⊂ φ(Ω̂(x,R)) ∩ [πd < 0] ⊂
Ω(x,R) give

d∑

i,j=1

∫

Ω(x,R)∩[πd>0]

âij (∂iû) ∂jv =
d∑

i,j=1

∫

φ(Ω(x,R))∩[πd<0]

aij (∂iu) ∂j(ṽ ◦ φ)

=
d∑

i,j=1

∫

Ω(x,R)

aij (∂iu) ∂j(ṽ ◦ φ) = 0 (21)

Adding (20) and (21) gives

d∑

i,j=1

∫

bΩ(x,R)

âij (∂iû) ∂jv = 0.

So ∫

bΩ(x,r)

|∇û|2 ≤ cDG

( r
R

)d−2+2κ0
∫

bΩ(x,R)

|∇û|2.

Therefore
∫

Ω(x,r)

|∇u|2 ≤
∫

bΩ(x,r)

|∇û|2 ≤ cDG

( r
R

)d−2+2κ0
∫

bΩ(x,R)

|∇û|2

≤ 2cDG

( r
R

)d−2+2κ0
∫

Ω(x,R)

|∇u|2

and the proposition follows.

5 De Giorgi estimates near the Neumann part of the

boundary

Proposition 2.1 provides De Giorgi estimates for boundary points away from the Neumann

part Γ under the assumption of Theorem 1.1 The aim of this section is to obtain De Giorgi

estimates at any point in 1
2
E− after a bi-Lipschitz transformation as in Theorem 1.1.

If Ω, U ⊂ Rd are open and φ is a bi-Lipschitz map from an open neighbourhood of U

onto an open subset of Rd such that φ(U) = E and φ(Ω∩U) = E−, then for all A ∈ A(Ω)

define Aφ : E− → Cd×d by

(Aφ)(y) =
1∣∣ det(Dφ)(φ−1(y))

∣∣ (Dφ)(φ−1(y)) A(φ−1(y))
(
Dφ
)T

(φ−1(y)).

(Cf. (15).)

We first consider a quantitive version of the case ∂Ω∩U ⊂ Γ in Theorem 1.1. Note that

in the next lemma the functions are vanishing on φ((∂Ω \ Γ)∩U) and there are Neumann

boundary conditions on φ(Γ ∩ U).

Lemma 5.1. For all K ≥ 1 and µ,M > 0 there exist cDG > 0 and κ0 ∈ (0, 1) such that

the following is valid.
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Let Ω, U ⊂ Rd be open, Γ ⊂ ∂Ω relatively open, A ∈ Ar(Ω, µ,M) and φ a bi-Lipschitz

map from an open neighbourhood of U onto an open subset of Rd such that φ(U) = E, φ(Ω∩
U) = E−, ∂Ω∩U ⊂ Γ and φ(∂Ω∩U) = P , and with K larger than the Lipschitz constant

for φ|Ω∩U and φ−1|E−. Then the operator LAφ satisfies (κ0, cDG)-De Giorgi estimates on
1
2
E− for functions vanishing on ∅ with Neumann boundary conditions on P .

Proof. It follows from Proposition 4.2 that there exist κ0 ∈ (0, 1) and cDG > 0 such that

for all A ∈ Ar(E, (d!Kd)−1µ, d!Kd+2M) the operator LA satisfies (κ0, cDG)-De Giorgi es-

timates on 1
2
E− for functions vanishing on ∅ and Neumann boundary conditions on ∅, cf.

Remark 4.1(c). Now let A ∈ Ar(Ω, µ,M). Then Âφ ∈ Ar(E, (d!Kd+2)−1µ, d!Kd+2 M) by

a combination of Propositions 4.3(b) and 4.4(c), where we use the notation as in Propo-

sition 4.4. Hence the operator LcAφ satisfies (κ0, cDG)-De Giorgi estimates on 1
2
E− for

functions vanishing on ∅ and Neumann boundary conditions on ∅. Therefore by Proposi-

tion 4.4(g) with Σ = P , the operator LAφ satisfies (κ0, 2cDG)-De Giorgi estimates on 1
2
E−

for functions vanishing on ∅ with Neumann boundary conditions on P .

If φ−1(0) ∈ Γ then the condition ∂Ω∩U ⊂ Γ in Lemma 5.1 can be arranged by a simple

scaling. We state this in the next lemma in order to obtain uniformity of the constants.

Lemma 5.2. Let Ω, U ⊂ Rd be open and Γ ⊂ ∂Ω relatively open. Let φ be a bi-Lipschitz

map from an open neighbourhood of U onto an open subset of Rd such that φ(U) = E,

φ(Ω ∩ U) = E− and φ(∂Ω ∩ U) = P . Let K ≥ 1 be larger than the Lipschitz constant

for φ|Ω∩U and φ−1|E−. Let x0 = φ−1(0). Suppose that x0 ∈ Γ and U ∩ (∂Ω \ Γ) 6= ∅.
Let λ = d(x0, ∂Γ) ∧ 1. Define V = {x ∈ U : K

λ
φ(x) ∈ E} and define φ̌ : V → E by

φ̌(x) = K
λ
φ(x). Then φ̌ is a bi-Lipschitz map from an open neighbourhood of V onto an

open subset of Rd such that φ̌(V ) = E, φ̌(Ω ∩ V ) = E− and φ̌(∂Ω ∩ V ) = P . Moreover,

∂Ω ∩ V ⊂ Γ and K2

λ
is larger than the Lipschitz constant for φ̌|Ω∩V and φ̌−1|E−.

Proof. Easy.

In Theorem 6.8 we will use Lemmas 5.1 and 5.2 to cover the case x ∈ Γ in Theorem 1.1.

The next aim is to have a similar result if x ∈ ∂Γ. Recall that we write ∂Γ for the boundary

of Γ in ∂Ω. This requires delicate estimates.

Proposition 5.3. For all K,µ,M, c1 > 0 and c0 ∈ (0, 1) there are κ0 ∈ (0, 1) and cDG > 0

such that the following is valid.

Let Ω, U ⊂ Rd be open, Γ ⊂ ∂Ω relatively open, φ a bi-Lipschitz map from an open

neighbourhood of U onto an open subset of Rd such that φ(U) = E, φ(Ω ∩ U) = E−,

φ(∂Ω ∩ U) = P and φ−1(0) ∈ (∂Γ) ∩ U . Moreover, let A ∈ Ar(Ω, µ,M). Suppose that K

is larger than the Lipschitz constant for φ|Ω∩U and φ−1|E−, and

mesd−1{z̃ ∈ B̃s(ỹ) : dist((z̃, 0), φ(Γ ∩ U)) > c0 s} ≥ c1 s
d−1 (22)

for all s ∈ (0, 1] and ỹ ∈ Rd−1 with (ỹ, 0) ∈ φ((∂Γ) ∩ U). Then the operator LAφ satisfies

(κ0, cDG)-De Giorgi estimates on 1
2
E− for functions vanishing on φ((∂Ω \ Γ) ∩ U) and

Neumann boundary conditions on φ(Γ ∩ U).
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For the proof of the proposition we need a couple of lemmas. Adopt the assumptions

and notation of Proposition 5.3. In the sequel all bars over sets denote the closure in Rd.

Define ∆ = (∂Ω \ Γ) ∩ U = (∂Ω ∩ U) \ (Γ ∩ U). Then ∆ ∩ Γ = ∅ by Lemma 2.2(d). Since

∂Ω is closed in Rd it follows that the closure of Γ in ∂Ω is equal to Γ, the closure of Γ

in Rd. Recall that we write ∂Γ for the boundary of Γ in ∂Ω. Then ∂Γ = Γ \ Γ. Clearly

Γ ∩ U is open in ∂Ω, hence also in ∂Ω ∩ U . Since U is open, it follows that Γ ∩ U is

the closure of Γ ∩ U in ∂Ω ∩ U . Therefore the boundary of Γ ∩ U in ∂Ω ∩ U is the set

(Γ ∩ U) \ (Γ ∩ U) = (Γ \ Γ) ∩ U = (∂Γ) ∩ U .

Next we apply the transformation φ. Write

Σ = φ(Γ ∩ U) and ∆1 = φ(∆).

Then Σ is open in P and hence Σ is open in ∂E−. Moreover, ∆1 ∩ Σ = ∅ and since

φ(∂Ω ∩ U) = P , it follows that Σ ⊂ P and ∆1 ⊂ P and ∆1 is closed in P . Also, since φ

is a homeomorphism, it follows that the boundary of Σ = φ(Γ ∩ U) in P = φ(∂Ω ∩ U) is

equal to φ((∂Γ) ∩ U).

Condition (22) is valid for all ỹ ∈ Rd−1 with (ỹ, 0) is an element of the boundary of Σ

in P . We next show that Condition (22) carries over to all ỹ ∈ Rd−1 with (ỹ, 0) ∈ P \Σ. It

is in essence this subsequent lemma which allows us to formulate (22) merely for boundary

points of Γ and not for all points in the transformed Dirichlet part.

Lemma 5.4. If (ỹ, 0) ∈ P \ Σ and s ∈ (0, 1], then

mesd−1{z̃ ∈ B̃s(ỹ) : dist((z̃, 0),Σ) > ĉ0 s} ≥ ĉ1s
d−1, (23)

where ĉ0 := min{1
4
, c0

2
} and ĉ1 := min{ωd−1

4d−1 ,
c1

2d−1}. Here c0 and c1 are the constants in (22).

Proof. Obviously if (ỹ, 0) is an element of the boundary of Σ in P , then the estimate (23)

immediately follows from (22).

Note that Σ∩P is the closure of Σ in P , so Σ∩P = Σ∪ (∂Σ). Next fix (ỹ, 0) ∈ P \Σ.

Then

ε := dist((ỹ, 0),Σ) = dist((ỹ, 0),Σ) > 0.

We distinguish the three cases 0 < s ≤ ε/2, ε/2 < s ≤ 2ε and 2ε < s ≤ 1.

Case 1. Suppose 0 < s ≤ ε/2.

Since

{z̃ ∈ B̃s(ỹ) : dist((z̃, 0),Σ) > s} = B̃s(ỹ)

it follows that

mesd−1{z̃ ∈ B̃s(ỹ) : dist((z̃, 0),Σ) > s} = mesd−1 B̃s(ỹ) = ωd−1 s
d−1

as required.

Case 2. Suppose ε/2 < s ≤ 2ε.

Since s/4 ≤ ε/2, we infer from the first case

mesd−1{z̃ ∈ B̃s(ỹ) : dist((z̃, 0),Σ) >
s

4
} ≥ mesd−1{z̃ ∈ B̃ s

4
(ỹ) : dist((z̃, 0),Σ) >

s

4
}

≥ ωd−1
sd−1

4d−1
.
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Case 3. Suppose 2ε < s ≤ 1.

Because P is convex there exists an element ỹ∗ of the boundary of Σ in P such that

ε ≤ ‖ỹ − ỹ∗‖ < s
2
. Since B̃ s

2
(ỹ∗) ⊂ B̃s(ỹ), this yields

mesd−1{z̃ ∈ B̃s(ỹ) : dist((z̃, 0),Σ) >
c0

2
s} ≥ mesd−1{z̃ ∈ B̃ s

2
(ỹ∗) : dist((z̃, 0),Σ) >

c0

2
s}

≥ c1

(s
2

)d−1

as required

This completes the proof of the lemma.

Unfortunately, both Σ and ∆1 are in the same hyperplane through P . Reflection in Σ

as in the proof of Lemma 5.1 then gives problems with ∆1, where Dirichlet conditions are

assumed. Therefore we apply a second transformation to shift down the points in ∆1. For

all τ ∈ R define ψτ : Rd → Rd by

ψτ (x̃, xd) := (x̃, xd − τ dist((x̃, 0),Σ)).

In order to justify the application of ψτ , we need a lemma.

Lemma 5.5. Let τ ∈ R.

(a) The function (x̃, xd) 7→ dist((x̃, 0),Σ) from Rd = Rd−1 ×R into R is Lipschitz with

Lipschitz constant 1.

(b) The function ψτ is Lipschitz with Lipschitz constant 1 + |τ |. Its inverse is ψ−τ , so

ψτ is bi-Lipschitz.

(c) The function ψτ is volume preserving.

Proof. ‘(a)’. If x = (x̃, xd) ∈ Rd and y = (ỹ, yd) ∈ Rd then

| dist((x̃, 0),Σ)− dist((ỹ, 0),Σ)| ≤ ‖x̃− ỹ‖ ≤ ‖x− y‖.

‘(b)’. The first assertion follows from Statement (a). The second is straightforward to

verify.

‘(c)’. It is clear that the Jacobian of ψτ is identical 1, thus the assertion follows from

Theorem 3.3.3.2 in [EG].

We emphasize that the transformation ψτ only modifies the last component of a point

y = (ỹ, yd), but keeps ỹ fixed.

Let ĉ0, ĉ1 be as in Lemma 5.4. Choose τ := 3
ĉ0

and abbreviate ψ := ψτ . Set Λ := ψ(E−)

and observe that Σ remains invariant under ψ. Moreover, set ∆2 = ψ(∆1). Then ∆2∩Σ =

∅.
Finally, we reflect Λ across Σ, using Proposition 4.4. We end up with the open set Λ̂

and a closed set ∆̂2, where we use the notation as in Proposition 4.4.

Lemma 5.6. The set ψ(1
2
E−) has a distance to ∂Λ̂ \ ∆̂2 of at least 1

2
√

1+τ2 .

Proof. This is an elementary geometric exercise.
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Lemma 5.7. The set ∆̂2, viewed as a subset of the boundary of Λ̂, belongs to a class (Aβ),

where β = min
(

1
2(1+τ)d

, ĉ1
dωd

((
1
2

) d
2 −

(
1
2

)d))
.

Proof. We show that the set ψ(P \ Σ) belongs to the class (Aβ). The proof for the the

reflected part follows by the fact that Λ̂ is invariant under the map (ỹ, yd) 7→ (ỹ,−yd).
Let x ∈ ψ(P \ Σ). Let ỹ ∈ Rd−1 be such that x = ψ(ỹ, 0) and (ỹ, 0) ∈ P . Then

x = (ỹ,−τ dist((ỹ, 0),Σ)).

Let r ∈ (0, 1] and let B(x, r) be the corresponding ball around x. We distinguish two cases.

Case 1. Suppose r < τ dist((ỹ, 0),Σ).

Then B(x, r) ⊂ {z ∈ Rd : zd < 0}. This gives

B(x, r) \ Λ̂ = B(x, r) \ Λ = B(x, r) \ ψ(E−).

Apply ψ−1 and note that ψ−1 is volume preserving by Lemma 5.5(c). It follows that
∣∣B(x, r) \ Λ̂

∣∣ =
∣∣∣ψ−1

(
B(x, r)

)
\ E−

∣∣∣ ≥
∣∣∣ψ−1

(
B(x, r)

)
∩ {z : zd > 0}

∣∣∣.

But ψ−1
(
B(x, r)

)
contains the ball B((ỹ, 0), r

L
), where L = 1 + τ is the Lipschitz constant

of ψ. Thus, ∣∣B(x, r) \ Λ̂
∣∣ ≥ 1

2

1

Ld
ωd r

d,

as required.

Case 2. Suppose r ≥ τ dist((ỹ, 0),Σ).

Define

B−(x, r) = {z ∈ B(x, r) : zd ≤ −τ dist((ỹ, 0),Σ)}.
By construction of Λ̂, one has

B(x, r) \ Λ̂ ⊃ B−(x, r) \ Λ̂ = B−(x, r) \ Λ. (24)

It is clear that Λ ⊂ {(z̃, zd) ∈ Rd : zd < −τ dist((z̃, 0),Σ)}. Therefore

B−(x, r) \ Λ ⊃ B−(x, r) \ {(z̃, zd) : zd < −τ dist((z̃, 0),Σ)}

= B−(x, r) ∩ {(z̃, zd) : zd ≥ −τ dist((z̃, 0),Σ)}. (25)

For all s ∈ (0, r] let Hs be the hyperplane Hs := {z : zd + τ dist((ỹ, 0),Σ) = −s}. If

z ∈ B(x, r) then |zd + τ dist((ỹ, 0),Σ)| < r. So if z ∈ B−(x, r) then

−r < zd + τ dist((ỹ, 0),Σ) ≤ 0.

Hence (24) and (25) give

B(x, r) \ Λ̂ ⊃ B−(x, r) ∩ {(z̃, zd) : zd ≥ −τ dist((z̃, 0),Σ)}

= B−(x, r) ∩
( ⋃

s∈[0,r]

Hs

)
∩ {(z̃, zd) ∈ Rd : zd ≥ −τ dist((z̃, 0),Σ)}

=
⋃

s∈[0,r]

B−(x, r) ∩Hs ∩ {(z̃, zd) ∈ Rd : zd ≥ −τ dist((z̃, 0),Σ)}
)

=
⋃

s∈[0,r]

{(z̃, zd) ∈ Rd : zd = −τ dist((ỹ, 0),Σ)− s, ‖ỹ − z̃‖Rd−1 <
√
r2 − s2

and τ dist((z̃, 0),Σ) ≥ τ dist((ỹ, 0),Σ) + s}.
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Recall that B̃r(ỹ) = {z̃ ∈ Rd−1 : ‖ỹ− z̃‖ < r}. An application of Cavalieri’s principle yields

∣∣B(x, r) \ Λ̂
∣∣ ≥

∫ r

0

mesd−1{z̃ ∈ Rd−1 : ‖ỹ − z̃‖Rd−1 <
√
r2 − s2 and (26)

τ dist((z̃, 0),Σ) ≥ τ dist((ỹ, 0),Σ) + s} ds

=

∫ r

0

mesd−1{z̃ ∈ B̃√r2−s2(ỹ) : τ dist((z̃, 0),Σ) ≥ τ dist(ỹ,Σ) + s} ds

≥
∫ r√

2

r
2

mesd−1{z̃ ∈ B̃√r2−s2(ỹ) : τ dist((z̃, 0),Σ) ≥ τ dist((ỹ, 0),Σ) + s} ds

If s ∈ (0, r√
2
] then B̃s(ỹ) ⊂ B̃√r2−s2(ỹ). Recall that by assumption r ≥ τ dist((ỹ, 0),Σ).

Hence if s ≥ r
2
, then 3s ≥ τ dist((ỹ, 0),Σ) + s. Therefore for all s ∈ [ r

2
, r√

2
] one obtains the

inclusion

{z̃ ∈ B̃√r2−s2(ỹ) : τ dist((z̃, 0),Σ) ≥ τ dist((ỹ, 0),Σ) + s}

⊃ {z̃ ∈ B̃s(ỹ) : τ dist((z̃, 0),Σ) ≥ 3s}

= {z̃ ∈ B̃s(ỹ) : dist((z̃, 0),Σ) ≥ ĉ0s}

since τ = 3
ĉ0

. Thus (26) may be further estimated from below by

∣∣B(x, r) \ Λ̂
∣∣ ≥

∫ r√
2

r
2

mesd−1{z̃ ∈ B̃s(ỹ) : dist((z̃, 0),Σ) ≥ ĉ0s} ds

≥ ĉ1

∫ r√
2

r
2

sd−1ds =
ĉ1

d

((1

2

) d
2 −

(1

2

)d)
rd

by Lemma 5.4.

Now we have enough preparation to prove Proposition 5.3.

Proof of Proposition 5.3. Using Lemmas 5.6 and 5.7 it follows from Proposition 4.2

that there exist κ0 ∈ (0, 1) and cDG > 0, depending only on K, µ, M , c1 and c0, such that

for all A ∈ Ar(Λ̂, (d!2Kd+2 (1 + τ)d+2)−1µ, d!2Kd+2 (1 + τ)d+2M) the operator LA satisfies

(κ0, cDG)-De Giorgi estimates on ψ(1
2
E−) for functions vanishing on ∆̂2 and Neumann

boundary conditions on ∅.
Now let A ∈ Ar(Ω, µ,M). Then (̂Aφ)ψ ∈ Ar(Λ̂, (d!2Kd+2 (1 + τ)d+2)−1µ, d!2Kd+2 (1 +

τ)d+2M) by Propositions 4.3(b) and 4.4(c). Hence the operator L
(̂Aφ)ψ

satisfies (κ0, cDG)-

De Giorgi estimates on ψ(1
2
E−) for functions vanishing on ∆̂2 and Neumann boundary

conditions on ∅. Therefore by Proposition 4.4(g) the operator L(Aφ)ψ satisfies (κ0, 2cDG)-

De Giorgi estimates on ψ(1
2
E−) for functions vanishing on ∆2 and Neumann boundary

conditions on Σ. Hence by Proposition 4.3(c) the operator LAφ satisfies (κ0, c
′
DG)-De

Giorgi estimates on 1
2
E− for functions vanishing on ∆1 = φ((∂Ω \ Γ) ∩ U) and Neumann

boundary conditions on Σ = φ(Γ ∩ U), where c′DG = 2(d!)2K4d+4 cDG + 2cDGK
2d.
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6 Hölder continuity of solutions

We aim to prove Theorem 1.1 and an extension for unbounded Ω in this section. First we

need two Poincaré inequalities on the cube E− for truncated balls with centre in x0 ∈ 1
2
E−

and radius R ∈ (0, 1
2
]. Note that B(x0, R) ∩ ∂E− ⊂ P and that at least half of the ball

B(x0, R) is in E−.

Lemma 6.1. Let cN > 0 be as in (12).

(a) If x0 ∈ 1
2
E−, R ∈ (0, 1

2
] and u ∈ W 1,2(E−), then

∫

E−(x0,R)

|u− 〈u〉E−(x0,R)|2 ≤ 2cN R
2

∫

E−(x0,R)

|∇u|2 (27)

(b) If Γ ⊂ P is relatively open, then
∫

E−(x0,R)

|u|2 ≤ 4R2

∫

E−(x0,R)

|∇u|2.

for all x0 ∈ 1
2
E−, R ∈ (0, 1

2
] and u ∈ W 1,2

Γ(x0,R)(E
−(x0, R)).

Proof. ‘(a)’. If πd(x0) ≤ −R then (27) follows from (12). Alternatively, if πd(x0) > −R,

then define ũ : B(x0, R)→ C by

ũ(y) =





u(y) if πd(y) < 0,

(Tru)(y) if πd(y) = 0,

u(y − 2πd(y) ed) if πd(y) > 0.

Then ũ ∈ W 1,2(B(x0, R)) by Proposition 4.4(d). Moreover,
∫

E−(x0,R)

|u− 〈u〉E−(x0,R)|2 ≤
∫

E−(x0,R)

|u− 〈ũ〉B(x0,R)|2

≤
∫

B(x0,R)

|ũ− 〈ũ〉B(x0,R)|2

≤ cN R
2

∫

B(x0,R)

|∇ũ|2 ≤ 2cN R
2

∫

E−(x0,R)

|∇u|2

and Statement (a) follows.

‘(b)’. This follows by an adaption of the proof of Theorem V.3.22 in [EE]).

The Neumann type Poincaré inequality implies a kind of Sobolev embedding between

Morrey and Campanato spaces.

Lemma 6.2. Let cN > 0 be as in (12). Then

‖u‖M,γ+2,x,E−, 1
2
≤
√

2cN ‖∇u‖M,γ,x,E−, 1
2

(28)

and

‖u‖M,γ+δ,x,E−, 1
2
≤ c1 (ε2−δ‖∇u‖M,γ,x,E−, 1

2
+ ε−(γ+δ)‖u‖L2(E−))

for all γ ∈ [0, d) and δ ∈ (0, 2], ε ∈ (0, 1], u ∈ W 1,2(E−) and x ∈ 1
2
E−, where c1 =

2d+2 + 2cN .
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Proof. The first inequality follows from (27). If r ∈ (0, 1
2
ε2] then

r−(γ+δ)

∫

E1(x,r)

|u− 〈u〉E1(x,r)|2 ≤ 2cN r
2−δr−γ

∫

E1(x,r)

|∇u|2 ≤ 2cNε
2(2−δ)‖∇u‖2

M,γ,x,E−, 1
2

for all x ∈ 1
2
E− by the Poincaré inequality (27). Alternatively,

∫

E1(x,r)

|u− 〈u〉E1(x,r)|2 ≤
∫

E1(x,r)

|u|2 ≤ 2γ+δ ε−2(γ+δ)‖u‖2
L2(E−) r

γ+δ

if r ∈ [1
2
ε2, 1

2
], from which the lemma follows.

It is well known that elements in W 1,2
0 (Ω) can be extended by zero to elements in

W 1,2(Rd). We next need a variation of this extension property.

Lemma 6.3. Let Ω ⊂ Rd be open and Γ ⊂ ∂Ω a relatively open subset. Let U ⊂ Rd be

open and define Λ := U ∩Ω. Set Υ := Γ∩U . Then Υ is open in ∂Λ. Let p ∈ [1,∞). Then

there exists a unique isometric map E : W 1,p
Υ (Λ)→ W 1,p

Γ (Ω) such that Eu is the extension

of u to Ω by 0 for all u ∈ C∞Υ (Λ).

Proof. There exists an open V ⊂ Rd such that Γ = V ∩ ∂Ω. Then Υ = Γ ∩ U =

U ∩ V ∩ ∂Ω ⊂ U ∩ V ∩ ∂Λ. But ∂Λ ⊂ ∂Ω ∪ ∂U . Therefore U ∩ V ∩ ∂Λ ⊂ U ∩ V ∩ ∂Ω. So

(U ∩ V ) ∩ ∂Λ = U ∩ V ∩ ∂Ω = Υ and Υ is open in ∂Λ.

Let w ∈ C∞c (Rd) with suppw ∩ (∂Λ \Υ) = ∅. Since

Λ = Λ ∪ ∂Λ = Λ ∪Υ ∪ (∂Λ \Υ) ⊂ U ∪ (∂Λ \Υ)

and (∂Λ \ Υ) ∩ suppw = ∅ it follows that Λ ∩ suppw ⊂ U . Therefore there exists an

η ∈ C∞c (Rd) such that η|Λ∩suppw = 1 and supp η ⊂ U . Consider the function ηw. First,

observe that

U ∩ (∂Ω \ Γ) = (U ∩ ∂Ω) \Υ ⊂ ∂Λ \Υ.

Hence supp(ηw) ∩ (∂Ω \ Γ) = ∅ and ηw ∈ C∞Γ (Ω). Secondly, one has (ηw)|Λ = w|Λ.

Moreover, if x ∈ Ω \ Λ, then x ∈ U c and η(x) = 0. So

(ηw)|Ω(x) =

{
w|Λ(x) if x ∈ Λ

0 if x 6∈ Λ

for all x ∈ Ω. Hence

‖(ηw)|Ω‖W 1,p
Γ (Ω) = ‖(ηw)|Ω‖W 1,p(Ω) = ‖w|Λ‖W 1,p(Λ) = ‖w|Λ‖W 1,p

Υ (Λ).

Therefore there exists a unique isometric map E : W 1,p
Υ (Λ)→ W 1,p

Γ (Ω) such that Eu is the

extension of u to Ω by 0 for all u ∈ C∞Υ (Λ).

The Dirichlet boundary conditions on a particular part of the boundary in the next

lemma allow that the function (after transformation) can be extended by zero to obtain

an element of W 1,2
Γ (Ω).
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Lemma 6.4. Let Ω, U ⊂ Rd be open and Γ a relatively open subset of ∂Ω. Let φ be a

bi-Lipschitz map from an open neighbourhood of U onto an open subset of Rd such that

φ(U) = E, φ(Ω ∩ U) = E− and φ(∂Ω ∩ U) = P . Set ΓE = φ(Γ ∩ U). Let x ∈ 1
2
E−,

R ∈ (0, 1
2
] and ũ ∈ W 1,2

ΓE(x,R)(E
−(x,R)). Define u : Ω→ C by

u(y) =

{
ũ(φ(y)) if y ∈ φ−1(E−(x,R)),

0 if y ∈ Ω \ φ−1(E−(x,R)).

Then u ∈ W 1,2
Γ (Ω).

Proof. Define û : E− → C by

(û)(y) =

{
u(y) if y ∈ E−(x,R),

0 if y ∈ E− \ E−(x,R).

Thanks to Lemma 6.3 one has û ∈ W 1,2
ΓE

(E−). Then it follows from Proposition 4.3(a) that

u|U∩Ω ∈ W 1,2
Γ∩U(Ω ∩ U). Another application of Lemma 6.3 gives the result.

The next proposition is a version of Proposition 3.2 with mixed boundary conditions.

Proposition 6.5. For all cDG, K, µ > 0, κ0 ∈ (0, 1), γ ∈ [0, d) and δ ∈ [0, 2) with

γ + δ < d− 2 + 2κ0 there exists an a1 > 0 such that the following is valid.

Let Ω, U ⊂ Rd be open, Γ ⊂ ∂Ω relatively open, φ a bi-Lipschitz map from an open

neighbourhood of U onto an open subset of Rd such that φ(U) = E, φ(Ω ∩ U) = E−

and φ(∂Ω ∩ U) = P . Moreover, let A ∈ ⋃M∈(0,∞)Ar(Ω, µ,M). Suppose that K is larger

than the Lipschitz constant for φ|Ω∩U and φ−1|E− and the operator LAφ satisfies (κ0, cDG)-

De Giorgi estimates on 1
2
E− for functions vanishing on φ((∂Ω \ Γ) ∩ U) and Neumann

boundary conditions on φ(Γ ∩ U). Then

‖∇(u ◦ φ−1)‖M,γ+δ,x,E−, 1
2

≤ a1

(
ε2−δ‖ξ ◦ φ−1‖M,γ,x,E−, 1

2
+

d∑

i=1

‖ξi ◦ φ−1‖M,γ+δ,x,E−, 1
2

+ ε−(γ+δ)‖∇u‖L2(Ω)

)

for all u ∈ W 1,2
Γ (Ω), x ∈ 1

2
E−, ε ∈ (0, 1] and ξ, ξ1, . . . , ξd ∈ L2(Ω) such that

lA,Γ(u, v) = (ξ, v)L2(Ω) −
d∑

i=1

(ξi, ∂i v)L2(Ω)

for all v ∈ W 1,2
Γ (Ω).

Proof. Set ΓE = φ(Γ ∩ U) and ∆E = φ((∂Ω \ Γ) ∩ U).

Let x ∈ 1
2
E− and 0 < r ≤ R ≤ 1

2
. By Lemma 6.1(b) and the Lax–Milgram theorem

there exists a unique ṽ ∈ W 1,2
ΓE(x,R)(E

−(x,R)) such that

d∑

i,j=1

∫

E−(x,R)

(Aφ)ij (∂iṽ) ∂jϕ =
d∑

i,j=1

∫

E−(x,R)

(Aφ)ij (∂i(u ◦ φ−1)) ∂jϕ (29)

36



for all ϕ ∈ W 1,2
ΓE(x,R)(E

−(x,R)). Define v : Ω→ C by

v(y) =

{
ṽ(φ(y)) if y ∈ φ−1(E−(x,R))),

0 if y ∈ Ω \ φ−1(E−(x,R))).

Then v ∈ W 1,2
Γ (Ω) by Lemma 6.4. Set w = u − v. Then w ∈ W 1,2

Γ (Ω) and w ◦ φ−1 ∈
W̃ 1,2

∆E
(E−) by Lemma 2.2(d) and Proposition 4.3(a). Moreover,

d∑

i,j=1

∫

E−(x,R)

(Aφ)ij (∂i(w ◦ φ−1)) ∂jϕ = 0

for all ϕ ∈ W 1,2
ΓE(x,R)(E

−(x,R)) by (29). The De Giorgi inequalities applied to the function

w ◦ φ−1 imply

∫

E−(x,r)

|∇(u ◦ φ−1)|2

≤ 2

∫

E−(x,r)

|∇(w ◦ φ−1)|2 + 2

∫

E−(x,r)

|∇ṽ|2

≤ 2cDG

( r
R

)d−2+2κ0
∫

E−(x,R)

|∇(w ◦ φ−1)|2 + 2

∫

E−(x,r)

|∇ṽ|2

≤ 4cDG

( r
R

)d−2+2κ0
∫

E−(x,R)

|∇(u ◦ φ−1)|2 + (2 + 4cDG)

∫

E−(x,R)

|∇ṽ|2.

Choose ϕ = ṽ in (29). Then (16) gives

d∑

i,j=1

∫

E−(x,R)

(Aφ)ij (∂iṽ) ∂j ṽ =
d∑

i,j=1

∫

E−(x,R)

(Aφ)ij (∂i(u ◦ φ−1)) ∂j ṽ

= lAφ(u ◦ φ−1, v ◦ φ−1)

= lA|Ω∩U (u|Ω∩U , v|Ω∩U)

= lA,Γ(u, v) = (ξ, v)L2(Ω) −
d∑

i=1

(ξi, ∂iv)L2(Ω).

Hence, by ellipticity on E− (see Proposition 4.3(b)) and the Cauchy–Schwarz inequality,

one estimates

(d!Kd+2)−1 µ

∫

E−1(x,R)

|∇ṽ|2

≤ d!Kd

(∫

E−(x,R)

|ξ ◦ φ−1|2
)1/2(∫

E−(x,R)

|ṽ|2
)1/2

+ d!Kd+1

d∑

i=1

(∫

E−(x,R)

|ξi ◦ φ−1|2
)1/2(∫

E−(x,R)

|∂iṽ|2
)1/2
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≤ 2d!Kd ‖ξ ◦ φ−1‖M,γ,x,E−, 1
2
R(γ+2)/2

(∫

E−(x,R)

|∇ṽ|2
)1/2

+ d!Kd+1

d∑

i=1

‖ξi ◦ φ−1‖M,γ+δ,x,E−, 1
2
R(γ+δ)/2

(∫

E−(x,R)

|∇ṽ|2
)1/2

,

where we used Lemma 6.1(b) in the last step. So
∫

E−(x,R)

|∇ṽ|2

≤ 4(d!Kd+3)4 µ−2
(
R(2−δ)/2‖ξ ◦ φ−1‖M,γ,x,E−, 1

2
+

d∑

i=1

‖ξi ◦ φ−1‖M,γ+δ,x,E−, 1
2

)2

Rγ+δ.

Now the rest of the proof is similar to the end of the proof of Proposition 3.2

Before we apply Proposition 6.5 we state a lemma for which the proof is well known.

Lemma 6.6. Let Ω ⊂ Rd be an open set, µ > 0, A ∈ ⋃M∈(0,∞)Ar(Ω, µ,M), Γ ⊂ ∂Ω

relatively open, u ∈ W 1,2
Γ (Ω), f0 ∈ L2(Ω) and f ∈ L2(Ω)d. Suppose that

(LA,Γ + I)u = f0 − div f.

Then

‖u‖W 1,2(Ω) ≤
1

µ ∧ 1

(
‖f0‖L2(Ω) + ‖f‖L2(Ω)d

)
.

The next lemma gives the missing Hölder continuity for Theorem 1.1 for points near Γ.

Lemma 6.7. For all K ≥ 1, µ > 0, κ0 ∈ (0, 1), cDG > 0 and q ∈ (d,∞) there are

κ ∈ (0, 1) and c > 0 such that the following is valid.

Let Ω, U ⊂ Rd be open, Γ ⊂ ∂Ω relatively open, φ a bi-Lipschitz map from an open

neighbourhood of U onto an open subset of Rd such that φ(U) = E, φ(Ω ∩ U) = E− and

φ(∂Ω∩U) = P . Moreover, let A ∈ ⋃M∈(0,∞)Ar(Ω, µ,M). Suppose that K is larger than the

Lipschitz constant for φ|Ω∩U and φ−1|E− and the operator LAφ satisfies (κ0, cDG)-De Giorgi

estimates on 1
2
E− for functions vanishing on φ((∂Ω \ Γ) ∩ U) and Neumann boundary

conditions on φ(Γ ∩ U). Let u ∈ W 1,2
Γ (Ω), f0 ∈ Lq(Ω) ∩ L2(Ω), f ∈ Lq(Ω)d ∩ L2(Ω)d and

suppose that

(LA,Γ + I)u = f0 − div f.

Then

|u(x)− u(y)| ≤ c |x− y|κ
(
‖f0‖Lq(Ω) + ‖f‖Lq(Ω)d + ‖f0‖L2(Ω) + ‖f‖L2(Ω)d

)

for all x, y ∈ Ω(φ−1(0), 1
8K

).

Proof. We distinguish two cases.

Case 1. Suppose that d ≥ 4.

Note that d− 2d
q
> d− 2 since q > d. Choose

κ = 1
2

min
(
d− 2d

q
− (d− 2), 1

2
κ0

)
.
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Then κ ∈ (0, 1). Choose δ = 2 and γ = d − 4 + 2κ. Then γ ∈ [0, d) since d ≥ 4.

Moreover, γ+ δ = d− 2 + 2κ ≤ d− 2d
q

and ‖f0 ◦φ−1‖M,γ,x,E−, 1
2
≤ ‖f0 ◦φ−1‖M,d− 2d

q
,x,E−, 1

2
≤

√
ωd ‖f0 ◦ φ−1‖Lq(E−) ≤ d!Kd√ωd ‖f0‖Lq(Ω) for all x ∈ 1

2
E− by the Hölder inequality.

Case 2. Suppose that d ∈ {2, 3}.
Since q > d, there exists a κ ∈ (0, κ0) such that d − 2 + 2κ ≤ d − 2d

q
and κ < 1

2
. Choose

γ = 0 and δ = d − 2 + 2κ. Then δ ∈ (0, 2], γ + δ = d − 2 + 2κ and ‖f0‖M,γ,x,E−, 1
2
≤

‖f0‖M,d− 2d
q
,x,E−, 1

2
≤ d!Kd√ωd ‖f0‖Lq(Ω) for all x ∈ 1

2
E−.

In both cases, let a1 > 0 be as in Proposition 6.5. Then

‖∇(u ◦ φ−1)‖M,d−2+2κ,x,E−, 1
2
≤ d!Kd a1

√
ωd

(
‖f0‖Lq(Ω) + ‖f‖Lq(Ω)d + ‖∇u‖L2(Ω)

)

for all x ∈ 1
2
E− by Proposition 6.5. Hence (28) implies

‖u ◦ φ−1‖M,d+2κ,x,E−, 1
2
≤ 2cN d!Kd a1

√
ωd

(
‖f0‖Lq(Ω) + ‖f‖Lq(Ω)d + ‖∇u‖L2(Ω)

)

So by Lemma 3.1(c) one deduces that there exists a suitable c > 0 such that

|(u ◦ φ−1)(x)− (u ◦ φ−1)(y)| ≤ c |x− y|κ
(
‖f0‖Lq(Ω) + ‖f‖Lq(Ω)d + ‖∇u‖L2(Ω)

)

for all x, y ∈ 1
2
E− with |x− y| ≤ 1

4
. The term ‖∇u‖L2(Ω) can be estimated by Lemma 6.6.

Since φ is bi-Lipschitz the lemma follows.

We next present a quantitative version of Theorem 1.1, which does not require that

the domain is bounded. We emphasize that the constant K in Condition (I) is uniform in

x ∈ Γ.

Theorem 6.8. For all K ≥ 1, α > 0, c0 ∈ (0, 1), c1 > 0, q ∈ (d,∞) and µ,M > 0 there

exist c > 0, κ ∈ (0, 1) and η > 0 such that the following is valid.

Let Ω ⊂ Rd be open and Γ a relatively open subset of the boundary ∂Ω. Moreover, let

A ∈ Ar(Ω, µ,M). Assume the following conditions.

(I) For all x ∈ Γ there is an open neighbourhood U and a bi-Lipschitz map φ from an

neighbourhood of U onto an open subset of Rd, such that φ(U) = E, φ(Ω∩U) = E−,

φ(∂Ω∩U) = P and φ(x) = 0. Moreover, K is larger than the Lipschitz constant for

φ|Ω∩U and φ−1|E−.

(II) The set ∂Ω \ Γ is of class (Aα).

(III) If x ∈ ∂Γ, then

mesd−1{z̃ ∈ B̃s(ỹ) : dist(z̃, φ(Γ ∩ U)) > c0 s} ≥ c1 s
d−1

for all s ∈ (0, 1] and ỹ ∈ Rd−1 with (ỹ, 0) ∈ φ(∂Γ ∩ U), where U and φ are as in

Condition (I).

Let u ∈ W 1,2
Γ (Ω), f0 ∈ Lq(Ω) ∩ L2(Ω), f ∈ Lq(Ω)d ∩ L2(Ω)d and suppose that

(LA,Γ + I)u = f0 − div f.
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Then

|u(x)| ≤ c
(
‖f0‖Lq(Ω) + ‖f‖Lq(Ω)d + ‖f0‖L2(Ω) + ‖f‖L2(Ω)d

)

and

|u(x)− u(y)| ≤ c |x− y|κ
(
‖f0‖Lq(Ω) + ‖f‖Lq(Ω)d + ‖f0‖L2(Ω) + ‖f‖L2(Ω)d

)
(30)

for all x, y ∈ Ω with |x− y| ≤ η.

Proof. For simplicity write

K1 = ‖f0‖Lq(Ω) + ‖f‖Lq(Ω)d + ‖f0‖L2(Ω) + ‖f‖L2(Ω)d .

First, it follows from the assumptions, Proposition 5.3 and Lemma 6.7 that there are

suitable c̃1 > 0 and κ1 ∈ (0, 1) such that |u(x) − u(y)| ≤ c̃1K1 |x − y|κ1 uniformly for all

x0 ∈ ∂Γ and x, y ∈ Ω(x0,
1

8K
).

Secondly, we consider all x0 ∈ Γ with d(x0, ∂Γ) ≥ 1
16K

. By Lemma 5.2 and Condition (I)

one can construct a bi-Lipschitz map φ̌ with Lipschitz constant for both φ̌ and φ̌−1 bounded

by 16K3. Using this map φ̌ in Lemmas 5.1 and 6.7 it follows that there are suitable c̃2 > 0

and κ2 ∈ (0, 1) such that |u(x) − u(y)| ≤ c̃2K1 |x − y|κ2 uniformly for all x0 ∈ Γ and

x, y ∈ Ω(x0,
1

128K3 ) with d(x0, ∂Γ) ≥ 1
16K

.

Thirdly apply Theorem 1.2 with ζ = 1
256K3 and Υ = {x ∈ Ω : d(x,Γ) > ζ}. It follows

that there are suitable c̃3 > 0 and κ3 ∈ (0, 1) such that |u(x) − u(y)| ≤ c̃3K1 |x − y|κ3

for all x, y ∈ Υ with |x − y| < 1
512K3 . Here we also used Lemma 6.6 to estimate the

term ‖∇u‖L2(Ω) in (3). Set η = 1
512K3 , c̃ = max(c̃1, c̃2, c̃3) and κ = min(κ1, κ2, κ3). Then

|u(x)− u(y)| ≤ c̃ K1 |x− y|κ for all x, y ∈ Ω with |x− y| ≤ η. This proves (30).

Finally, let c > 0 be as in Theorem 1.2 applied to ζ and Υ. For simplicity write

K2 = ‖u‖W 1,2(Ω) + ‖f0‖Lq0 (Ω) + ‖f‖Lq(Ω)d . Then |u(x)| ≤ cK2 for all x ∈ Υ. Now let

x0 ∈ Ω \ Υ. Then d(x0,Γ) ≤ ζ. Hence there exists an x ∈ Γ such that |x− x0| ≤ 2ζ. Let

U and φ be as in Condition (I) with respect to x. Let y = φ−1(−1
2
ed). Since y ∈ U , one

has on the one hand

K d(y, ∂Ω ∩ (Rd \ U)) ≥ K d(y,Rd \ U) = K d(y, ∂U) ≥ d(φ(y), ∂E) = d(−1
2
ed, ∂E) = 1

2
.

On the other hand, one estimates

K d(y, ∂Ω ∩ U) ≥ d(φ(y), P ) = 1
2
.

Consequently, d(y, ∂Ω) ≥ 1
2K

. Hence d(y,Γ) ≥ d(y, ∂Ω) ≥ 1
2K

> ζ. So y ∈ Υ and

|u(y)| ≤ cK2. Moreover, |x0 − y| ≤ K
2

+ 2ζ. Using a telescope argument, it follows that

|u(x0)| ≤ cK2 +

⌈
K
2

+ 2ζ

η

⌉
c̃ K1 η

κ.

Using again Lemma 6.6 one can replace the term ‖u‖W 1,2(Ω) in K2 by a suitable multiple

of ‖f0‖L2(Ω) + ‖f‖L2(Ω)d . The proof is complete.

Proof of Theorem 1.1. This follows from a compactness argument with obvious modi-

fication to the proof of Theorem 6.8. We leave the details to the reader.
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Theorem 1.1 has the following consequence.

Corollary 6.9. Hölder continuity of the solution carries over to the elliptic problem when

combined with mixed Dirichlet/Robin boundary conditions.

Proof. In what follows, the symbol σ shall denote the boundary measure on Γ. (Since

there are bi-Lipschitz charts around the boundary points in Γ, the boundary measure is

well defined and admits the usual properties, see [EG, Subsection 3.3.4.C].) Let q ∈ (d,∞)

and b ∈ Lq(Γ;σ). In case of mixed Dirichlet/Robin boundary conditions the operator is

the sum of LA,Γ and the operator B : L∞(Γ;σ)→ W−1,q
Γ defined by 〈Bv,w〉 =

∫
Γ
b v w dσ,

where w ∈ W 1,q′
Γ and v ∈ L∞(Γ;σ). It is straight forward that B is continuous from

L∞(Γ;σ) into W−1,q
Γ . Hence, it is relatively compact with respect to LA,Γ if the domain

of the latter continuously embeds into a Hölder space. Hence, the domains of LA,Γ and

LA,Γ +B coincide in this case by [Kat, Subsection IV.1.3].

7 Hölder kernel bounds

In this section we prove Gaussian Hölder kernel bounds for the semigroup generated by

an elliptic second-order differential operator with real principal coefficients and complex

lower-order coefficients. First we give a precise definition of these operators.

Let Ω ⊂ Rd be open and Γ ⊂ ∂Ω be relatively open. Let µ,M > 0, A ∈ A(Ω, µ,M),

a, b ∈ L∞(Ω)d and a0 ∈ L∞(Ω). Consider the form

l(u, v) =

∫

Ω

d∑

i,j=1

aij (∂iu) (∂jv) +

∫

Ω

d∑

i=1

(
ai (∂iu) v + bi u (∂iv)

)
+

∫

Ω

a0 u v

with form domain D(l) = W 1,2
Γ (Ω). Then l is a closed sectorial form. Let L be the

m-sectorial operator associated with l. We denote by Eop
Γ (Ω, µ,M) the set of all such

m-sectorial operators with A ∈ A(Ω, µ,M), a, b ∈ L∞(Ω)d and a0 ∈ L∞(Ω) with bounds

d∑

i=1

‖ai‖∞ ≤M ,

d∑

i=1

‖bi‖∞ ≤M and ‖a0‖∞ ≤M.

We say that A, a, b and a0 are the coefficients of L. Let S be the semigroup generated

by −L. We denote by Eop
r,Γ(Ω, µ,M) the set of all L ∈ Eop

Γ (Ω, µ,M) such that A is real

valued, where A, a, b and a0 are the coefficients of L. We emphasize that a, b and a0 can

be complex.

We also need the Davies perturbation. Let

D = {ψ ∈ C∞c (Rd,R) : ‖∇ψ‖∞ ≤ 1}.

For all ρ ∈ R and ψ ∈ D define the multiplication operator Uρ by Uρu = e−ρψu. Note that

Uρu ∈ W 1,2
Γ (Ω) for all u ∈ W 1,2

Γ (Ω). Let Sρt = Uρ St U−ρ be the Davies perturbation for all

t > 0. Let −L(ρ) the generator of (Sρt )t>0. Then L(ρ) is the operator associated with the

form l(ρ) with form domain D(l(ρ)) = W 1,2
Γ (Ω) and

l(ρ)(u, v) = lA(u, v) +

∫

Ω

d∑

i=1

(
a

(ρ)
i (∂iu) v + b

(ρ)
i u (∂iv)

)
+

∫

Ω

a
(ρ)
0 u v (31)
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with

a
(ρ)
i = ai − ρ

d∑

j=1

aij ∂jψ , b
(ρ)
i = bi + ρ

d∑

j=1

aji ∂jψ

and

a
(ρ)
0 = a0 − ρ2

d∑

i,j=1

aij (∂iψ) ∂jψ + ρ

d∑

i=1

ai ∂iψ − ρ
d∑

i=1

bi ∂iψ.

We start with L2-estimates for the perturbed semigroup.

Lemma 7.1. For all µ,M > 0 there exist c0, ω0 > 0 such that

‖Sρt u‖L2(Ω) ≤ eω0(1+ρ2)t ‖u‖L2(Ω) , ‖∇Sρt u‖L2(Ω) ≤ c0 t
−1/2 eω0(1+ρ2)t ‖u‖L2(Ω) (32)

and

‖L(ρ) Sρt u‖L2(Ω) ≤ c0 t
−1 eω0(1+ρ2)t ‖u‖L2(Ω)

for all open Ω ⊂ Rd, relatively open Γ ⊂ ∂Ω, L ∈ Eop
Γ (Ω, µ,M), u ∈ L2(Ω), t > 0, ρ ∈ R

and ψ ∈ D, where Sρ is the Davies perturbation of the semigroup generated by −L.

Proof. Without loss of generality we may assume that µ ≤ 1. Let u ∈ L2(Ω). It follows

from (31) that

µ ‖∇Sρt u‖2
L2(Ω) ≤ Re lA(Sρt u)

≤ Re l(ρ)(Sρt u) + 2dM (1 + |ρ|) ‖∇Sρt u‖L2(Ω) ‖Sρt u‖L2(Ω)

+ dM(1 + 2|ρ|+ ρ2)‖Sρt u‖2
L2(Ω)

≤ Re l(ρ)(Sρt u) + 1
2
µ‖∇Sρt u‖2

L2(Ω) +
2d2M2(1 + |ρ|)2

µ
‖Sρt u‖2

L2(Ω)

+ dM(1 + |ρ|)2 ‖Sρt u‖2
L2(Ω)

for all t > 0. So

1
2
µ ‖∇Sρt u‖2

L2(Ω) ≤ Re l(ρ)(Sρt u) + ω1 (1 + ρ2) ‖Sρt u‖2
L2(Ω), (33)

where ω1 = 2dM(2dM
µ

+ 1). Hence

d

dt
‖Sρt u‖2

L2(Ω) = −2 Re(L(ρ)Sρt u, S
ρ
t u)L2(Ω) = −2 Re l(ρ)(Sρt u) ≤ 2ω1 (1 + ρ2) ‖Sρt u‖2

L2(Ω)

for all t > 0. This implies by Gronwall’s lemma that

‖Sρt u‖L2(Ω) ≤ eω1(1+ρ2)t ‖u‖L2(Ω)

for all t > 0.

Next we rotate the coefficients of the operator L in the complex plane. Let ϕ0 ∈ (0, π
2
)

be such that µ cosϕ0 −M sinϕ0 = 1
2
µ. Then eiϕ L ∈ Eop

Γ (Ω, 1
2
µ,M) for all ϕ ∈ [−ϕ0, ϕ0].

Consequently, by the above it follows that

‖Sρ
t eiϕ

u‖L2(Ω) ≤ e2ω1(1+ρ2)t ‖u‖L2(Ω)
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for all u ∈ L2(Ω), ϕ ∈ [−ϕ0, ϕ0] and t > 0. Hence the semigroup Sρ is holomorphic with

semiangle of holomorphy at least ϕ0 by [Kat] Theorem IX.1.23. The Cauchy formula then

gives

L(ρ) Sρt = − 1

2π i

∫

C(t)

1

(z − t)2
Sρz dz,

where C(t) is the circle with centre t and radius t sinϕ0. Hence

‖L(ρ) Sρt u‖L2(Ω) ≤
1

t sinϕ0

e4ω1(1+ρ2)t ‖u‖L2(Ω)

for all u ∈ L2(Ω) and t > 0. Finally (33) gives

1
2
µ ‖∇Sρt u‖2

L2(Ω) ≤ Re(L(ρ)Sρt u, S
ρ
t u)L2(Ω) + ω1 (1 + ρ2) ‖Sρt u‖2

L2(Ω)

≤ 1

t sinϕ0

e5ω1(1+ρ2)t ‖u‖2
L2(Ω) + ω1 (1 + ρ2) e2ω1(1+ρ2)t ‖u‖2

L2(Ω)

≤ 2

t sinϕ0

e5ω1(1+ρ2)t ‖u‖2
L2(Ω),

from which the lemma follows.

Next we consider L2 → L∞ and Hölder estimates for the perturbed semigroup near Γ.

Proposition 7.2. For all K ≥ 1, µ,M > 0, κ0 ∈ (0, 1), cDG > 0 and κ ∈ (0, κ0) there

exist c, ω > 0 such that such that the following is valid.

Let Ω, U ⊂ Rd be open, Γ ⊂ ∂Ω relatively open, φ a bi-Lipschitz map from an open

neighbourhood of U onto an open subset of Rd such that φ(U) = E, φ(Ω ∩ U) = E− and

φ(∂Ω ∩ U) = P . Let L ∈ Eop
r,Γ(Ω, µ,M) with coefficients A, a, b and a0. Suppose that K

is larger than the Lipschitz constant for φ|Ω∩U and φ−1|E− and the operator LAφ satisfies

(κ0, cDG)-De Giorgi estimates on 1
2
E− for functions vanishing on φ((∂Ω \ Γ) ∩ U) and

Neumann boundary conditions on φ(Γ ∩ U). Then

‖Sρt u‖L∞(φ−1( 1
2
E−)) ≤ c t−d/4 eω(1+ρ2)t ‖u‖L2(Ω) (34)

and

|(Sρt u)(x)− (Sρt u)(y)| ≤ c t−d/4 t−κ/2 eω(1+ρ2)t ‖u‖L2(Ω) |x− y|κ (35)

for all t > 0, u ∈ L2(Ω), ρ ∈ R, ψ ∈ D and x, y ∈ φ−1(1
2
E−) with |x− y| ≤ 1

4K
, where Sρ

is the Davies perturbation of the semigroup generated by −L.

Proof. For all γ ∈ [0, d− 2 + 2κ) let P (γ) be the hypothesis

There exist c, ω > 0, depending only on K, µ, M , κ and cDG, such

that

‖(Sρt u) ◦ φ−1‖M,γ,x,E−, 1
2
≤ c t−γ/4 eω(1+ρ2)t ‖u‖L2(Ω) (36)

and

‖∇((Sρt u) ◦ φ−1)‖M,γ,x,E−, 1
2
≤ c t−γ/4 t−1/2 eω(1+ρ2)t ‖u‖L2(Ω) (37)

for all t > 0, u ∈ L2(Ω), ρ ∈ R, ψ ∈ D and x ∈ 1
2
E−.
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Clearly P (0) is valid by Lemma 7.1.

Lemma 7.3. Let γ ∈ [0, d − 2 + 2κ) and suppose that P (γ) is valid. Let δ ∈ (0, 2] and

suppose that γ + δ < d− 2 + 2κ. Then P (γ + δ) is valid.

Proof. Let c0, ω0 > 0 be as in Lemma 7.1. Let t > 0, u ∈ L2(Ω), ρ ∈ R, ψ ∈ D and

x ∈ 1
2
E−. Note that

‖(Sρt u) ◦ φ−1‖L2(E−) ≤ d!Kd ‖Sρt u‖L2(Ω) ≤ d!Kd eω0(1+ρ2)t ‖u‖L2(Ω) (38)

by Lemma 7.1.

Choose ε = t1/4e−t ∈ (0, 1]. Let c1 be as in Lemma 6.2. Then it follows from Lemma 6.2,

(37) and (38) that

‖(Sρt u) ◦ φ−1‖M,γ+δ,x,E−, 1
2
≤ c1 (ε2−δ c t−γ/4 t−1/2 eω(1+ρ2)t + ε−(γ+δ)d!Kd eω0(1+ρ2)t)‖u‖L2(Ω)

≤ c′ t−(γ+δ)/4 eω
′(1+ρ2)t‖u‖L2(Ω)

where c′ = c1(c+ d!Kd) and ω′ = ω0 + ω + γ + δ. By Lemma 3.1(a) there exist c2, c3 > 0

such that

‖v‖M,γ+δ,x,E−, 1
2
≤ c2 ‖v‖M,γ+δ,x,E−, 1

2
+ c3 ‖v‖L2(E−)

for all x ∈ 1
2
E− and v ∈ L2(E−). Hence

‖(Sρt u) ◦ φ−1‖M,γ+δ,x,E−, 1
2
≤ c2 c

′ t−(γ+δ)/4 eω
′(1+ρ2)t‖u‖L2(Ω) + c3 (d!)Kd eω0(1+ρ2)t ‖u‖L2(Ω)

≤ c′′ t−(γ+δ)/4 eω
′′(1+ρ2)t‖u‖L2(Ω), (39)

where c′′ = c′ c2 + c3(d!) and ω′′ = ω0 +ω′+ d+ 2. This gives the bound (36) for P (γ + δ).

Next we wish to use Proposition 6.5. Note that l(ρ)(Sρt u, v) = (Sρt/2 L
(ρ) Sρt/2u, v)L2(Ω) for

all v ∈ W 1,2
Γ (Ω). Hence with (31) it follows that lA,Γ(Sρt u, v) = (ξ, v)L2(Ω)−

∑d
i=1(ξi, ∂i v)L2(Ω)

for all v ∈ W 1,2
Γ (Ω), where ξi = b

(ρ)
i Sρt u and

ξ = Sρt/2 L
(ρ) Sρt/2u− a

(ρ)
0 Sρt u−

d∑

i=1

a
(ρ)
i ∂iS

ρ
t u.

We apply Proposition 6.5 with ε = t1/4e−t ∈ (0, 1]. We estimate the three terms in ξ and

then the term with ξi separately. First with Lemma 7.1 we obtain

ε2−δ ‖(Sρt/2 L(ρ) Sρt/2u) ◦ φ−1‖M,γ,x,E−, 1
2

≤ t(2−δ)/4 c (t/2)−γ/4 eω(1+ρ2)t/2 ‖L(ρ) Sρt/2u‖L2(Ω)

≤ c0 (t/2)−1 eω0(1+ρ2)t/2 t(2−δ)/4 c (t/2)−γ/4 eω(1+ρ2)t/2 ‖u‖L2(Ω)

≤ 21+γ/4c0 c t
−(γ+δ)/4 t−1/2 e(ω0+ω)(1+ρ2)t ‖u‖L2(Ω).

Secondly,

ε2−δ ‖(a(ρ)
0 Sρt u) ◦ φ−1‖M,γ,x,E−, 1

2
≤ t(2−δ)/4 4M (1 + ρ2) c t−γ/4 eω(1+ρ2)t ‖u‖L2(Ω)

≤ 4cM t−(γ+δ)/4 t−1/2 e(ω+1)(1+ρ2)t ‖u‖L2(Ω).
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Thirdly,

ε2−δ ‖(
d∑

i=1

a
(ρ)
i ∂iS

ρ
t u) ◦ φ−1‖M,γ,x,E−, 1

2

≤ t(2−δ)/4M (1 + |ρ|)‖(∇Sρt u) ◦ φ−1‖M,γ,x,E−, 1
2

≤ 2t(2−δ)/4M t−1/2 e(1+ρ2)tK ‖∇((Sρt u) ◦ φ−1)‖M,γ,x,E−, 1
2

≤ 2cK M t−(γ+δ)/4 t−1/2 e(ω+1)(1+ρ2)t ‖u‖L2(Ω).

Fourthly,

d∑

i=1

‖(b(ρ)
i Sρt u) ◦ φ−1‖M,γ+δ,x,E−, 1

2
≤M (1 + |ρ|) ‖(Sρt u) ◦ φ−1‖M,γ+δ,x,E−, 1

2

≤ 2M c′′ t−(γ+δ)/4 t−1/2 e(1+ρ2)t eω
′′(1+ρ2)t‖u‖L2(Ω),

where we used (39) in the last step. Finally,

ε−(γ+δ)‖∇Sρt u‖L2(Ω) ≤ t−(γ+δ)/4 e(γ+δ)t c0 t
−1/2eω0(1+ρ2)t ‖u‖L2(Ω)

≤ c0 t
−(γ+δ)/4 t−1/2 e(ω0+d+2)(1+ρ2)t ‖u‖L2(Ω)

by (32). Hence (37) for P (γ + δ) follows from Proposition 6.5 and P (γ + δ) is valid.

End of proof of Proposition 7.2. It follows by induction from Lemma 7.3 that there

are c, ω > 0 such that

‖∇((Sρt u) ◦ φ−1)‖M,d−2+2κ,x,E−, 1
2
≤ c t−(d−2+2κ)/4 t−1/2 eω(1+ρ2)t ‖u‖L2(Ω)

for all t > 0, u ∈ L2(Ω), ρ ∈ R, ψ ∈ D and x ∈ 1
2
E−. Hence by Lemma 6.2 one deduces

that

‖(Sρt u) ◦ φ−1‖M,d+2κ,x,E−, 1
2
≤ c′ t−(d+2κ)/4 eω(1+ρ2)t ‖u‖L2(Ω), (40)

where c′ = c
√

2cN , with cN as in (12).

Let t > 0 and x ∈ 1
2
E−. Choose R = t1/2 e−t. Then R ≤ 1

2
. It follows from

Lemma 3.1(b) that there exists a c′′ > 0, depending only on κ and d, such that

|((Sρt u) ◦ φ−1)(x)|

≤ c′′Rκ ‖(Sρt u) ◦ φ−1‖M,d+2κ,x,E−, 1
2

+ |〈(Sρt u) ◦ φ−1〉E−(x,R)|

≤ c′′ tκ/2 e−κt c′ t−(d+2κ)/4 eω(1+ρ2)t ‖u‖L2(Ω) + ω
−1/2
d R−d/2 ‖(Sρt u) ◦ φ−1‖L2(E−).

Then (34) follows from (38).

Finally, by (40) and Lemma 3.1(c) there exists a c′′′ > 0 such that

|(Sρt u)(φ−1(x))− (Sρt u)(φ−1(y))| ≤ c′′′ t−d/4 t−κ/2 eω(1+ρ2)t ‖u‖L2(Ω) |x− y|κ

for all t > 0, u ∈ L2(Ω), ρ ∈ R, ψ ∈ D and x, y ∈ 1
2
E− with |x − y| < 1

4
. Since φ is

bi-Lipschitz with Lipschitz constant K the inequality (35) follows.
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Next we turn to the part of Ω away from Γ.

Proposition 7.4. For all µ,M, α, ζ > 0 there exist κ ∈ (0, 1) and c, ω > 0 such that the

following is valid.

Let Ω ⊂ Rd be open, let Γ be a relatively open subset of ∂Ω, let Υ ⊂ Ω and suppose that

d(Γ,Υ) ≥ ζ and {z ∈ ∂Ω : d(z,Υ) < ζ} is of class (Aα). Let L ∈ Eop
r,Γ(Ω, µ,M). Then

‖Sρt u‖L∞(Υ) ≤ c t−d/4 eω(1+ρ2)t ‖u‖L2(Ω)

and

|(Sρt u)(x)− (Sρt u)(y)| ≤ c t−d/4 t−κ/2 eω(1+ρ2)t ‖u‖L2(Ω) |x− y|κ

for all t > 0, u ∈ L2(Ω), ρ ∈ R, ψ ∈ D and x, y ∈ Υ with |x − y| ≤ ζ
4
, where Sρ is the

Davies perturbation of the semigroup generated by −L.

Proof. It follows as in the proof of Proposition 7.2, using Proposition 3.2 instead of Propo-

sition 6.5, that there exist suitable c, ω > 0 such that

‖∇Sρt u‖M,d−2+2κ,x,Ω,ζ ≤ c t−d/4 t−1/2 t−κ/2 eω(1+ρ2)t ‖u‖L2(Ω)

for all x ∈ Υ. If cN > 0 is as in (12), then if follows from Lemma 3.4 that

‖S̃ρt u‖M,d−2+2κ,x,Rd,ζ ≤ c
√
cN t

−d/4 t−κ/2 eω(1+ρ2)t ‖u‖L2(Ω)

for all x ∈ Υ, where for every v ∈ L2(Ω) we define by ṽ : Rd → C the extension by zero of

v. We emphasize that the Campanato seminorm is with respect to Rd, thus not with Ω.

Note that the extension S̃ρt u is continuous on Ω(x, ε) if ε > 0 is small enough. Then the

proposition follows as at the end of the proof of Proposition 7.2, but now with Lemma 3.1

applied to the Campanato seminorm on Rd.

We can now prove Gaussian Hölder kernel bounds for second-order operators with

complex lower-order coefficients. Note that the set Ω may be unbounded in the next

theorem.

Theorem 7.5. For all K ≥ 1, α > 0, c0 ∈ (0, 1), c1 > 0 and µ,M > 0 there exist

κ ∈ (0, 1) and b, c, ω > 0 such that the following is valid.

Let Ω ⊂ Rd be an open set and Γ a relatively open subset of the boundary ∂Ω. Assume

the following conditions.

(I) For all x ∈ Γ there is an open neighbourhood U and a bi-Lipschitz map φ from an

neighbourhood of U onto an open subset of Rd, such that φ(U) = E, φ(Ω∩U) = E−,

φ(∂Ω∩U) = P and φ(x) = 0. Moreover, K is larger than the Lipschitz constant for

φ|Ω∩U and φ−1|E−.

(II) The set ∂Ω \ Γ is of class (Aα).

(III) If x ∈ ∂Γ, then

mesd−1{z̃ ∈ B̃s(ỹ) : dist(z̃, φ(Γ ∩ U)) > c0 s} ≥ c1 s
d−1

for all s ∈ (0, 1] and ỹ ∈ Rd−1 with (ỹ, 0) ∈ φ(∂Γ ∩ U), where U and φ are as in

Condition (I).
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Let L ∈ Eop
r,Γ(Ω, µ,M) and let (Kt)t>0 be the kernel of the semigroup generated by −L. Then

|Kt(x, y)| ≤ c t−d/2 e−b
|x−y|2

t eωt

and

|Kt(x, y)−Kt(x
′, y′)| ≤ c t−d/2

( |x− x′|+ |y − y′|
t1/2

)κ
e−b

|x−y|2
t eωt

for all x, x′, y, y′ ∈ Ω and t > 0 with |x− x′|+ |y − y′| ≤ t1/2.

Proof. We decompose Ω similarly as in the proof of Theorem 6.7. We first apply Propo-

sitions 5.3 and 7.2 to points x0 ∈ ∂Γ to get estimates for all x, y ∈ Ω(x0,
1

8K
). Secondly, let

x0 ∈ ∂Γ and suppose that d(x0, ∂Γ) ≥ 1
16K

. We apply Lemma 5.2 and Condition (I) to con-

struct a bi-Lipschitz map φ̌ with Lipschitz constant for both φ̌ and φ̌−1 bounded by 16K3.

Then Lemma 5.1 and Proposition 7.2 give estimates for all x0 ∈ Γ and x, y ∈ Ω(x0,
1

128K3 )

with d(x0, ∂Γ) ≥ 1
16K

. Finally set ζ = 1
256K3 and Υ = {x ∈ Ω : d(x,Γ) > ζ}. Apply

Proposition 7.4 to get estimates for all x, y ∈ Υ with |x− y| ≤ 1
1024K3 . It follows that there

exists a κ ∈ (0, 1) and c, ω > 0 such that

|(Sρt u)(x)| ≤ c t−d/4 eω(1+ρ2)t ‖u‖L2(Ω) (41)

and

|(Sρt u)(x)− (Sρt u)(y)| ≤ c t−d/4 t−κ/2 eω(1+ρ2)t ‖u‖L2(Ω) |x− y|κ (42)

for all u ∈ L2(Ω), t > 0, ρ ∈ R and ψ ∈ D in the following cases:

• x0 ∈ ∂Γ and x, y ∈ Ω(x0,
1

8K
),

• x0 ∈ Γ, d(x0, ∂Γ) ≥ 1
16K

and x, y ∈ Ω(x0,
1

128K3 ),

• x, y ∈ Υ and |x− y| ≤ 1
1024K3 .

Hence for all u ∈ L2(Ω), t > 0, ρ ∈ R and ψ ∈ D it follows that (41) is valid for all x ∈ Ω

and (42) is valid for all x, y ∈ Ω with |x− y| ≤ 1
1024K3 . So

‖Sρt ‖L2(Ω)→L∞(Ω) ≤ c t−d/4 eω(1+ρ2)t (43)

for all t > 0, ρ ∈ R and ψ ∈ D. Using duality and minimising over ψ and ρ gives

|Kt(x, y)| ≤ 2d/2 c2 t−d/2 e−b
|x−y|2

t eωt (44)

for all t > 0 and x, y ∈ Ω, where b = 1
4ω

.

Next, choose ρ = 0 in (42) and (43) and use duality in (43). It follows that

|(Stu)(x)− (Stu)(x′)| ≤ 2(d+κ)/2 c2 t−d/2 t−κ/2 eωt ‖u‖L1(Ω) |x− x′|κ

for all t > 0, u ∈ L1(Ω) and x, x′ ∈ Ω with |x− x′| ≤ r, where r = 1
1024K3 . Then

|Kt(x, y)−Kt(x
′, y)| ≤ 2(d+κ)/2 c2 t−d/2 t−κ/2 eωt |x− x′|κ

for all t > 0 and x, x′, y ∈ Ω with |x− x′| ≤ r. Alternatively, using (44) it follows that

|Kt(x, y)−Kt(x
′, y)| ≤ 2(d+2)/2 c2 t−d/2 eωt ≤ 2(d+2)/2 c2 r−κ t−d/2 t−κ/2 e(ω+1)t |x− x′|κ
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for all t > 0 and x, x′, y ∈ Ω with |x− x′| ≥ r. So

|Kt(x, y)−Kt(x
′, y)| ≤ c1 t

−d/2 t−κ/2 e(ω+1)t |x− x′|κ (45)

for all t > 0 and x, x′, y ∈ Ω, where c1 = 2(d+2)/2 c2 r−κ.

If x, x′, y ∈ Ω, then

|x− y|2 ≤ 2|x− x′|2 + 2|x′ − y|2 ≤ 2t+ 2|x′ − y|2

for all t > 0 with |x− x′| ≤ t1/2. Hence with (44) it follows that

|Kt(x, y)−Kt(x
′, y)| ≤ 2(d+2)/2 c2 t−d/2 e−

b
2
|x−y|2

t e(ω+1)t (46)

for all x, x′, y ∈ Ω and t > 0 with |x− x′| ≤ t1/2.

Let ε ∈ (0, 1). We interpolate between the bounds (45) and (46). Then

|Kt(x, y)−Kt(x
′, y)| ≤ c1−ε

1 (2(d+2)/2 c2)ε t−d/2
( |x− x′|

t1/2

)κ(1−ε)
e−

bε
2
|x−y|2

t e(ω+1)t

for all x, x′, y ∈ Ω and t > 0 with |x − x′| ≤ t1/2. By duality similar bounds are valid for

all x, y, y′ ∈ Ω and t > 0 with |y − y′| ≤ t1/2. Then the theorem follows.

Proof of Theorem 1.3. This is now obvious.

A Appendix, proof of Lemma 3.1

‘(a)’. Let γ ∈ [0, d), x ∈ Ω and u ∈ L2(Ω). Clearly ‖u‖2
M,γ,x,Re

≤ ‖u‖2
M,γ,x,Re

. Let

r ∈ (0, Re/2]. Then

1

rγ

∫

Ω(x,r)

|u|2 ≤ 2

rγ

∫

Ω(x,r)

|u− 〈u〉Ω(x,r)|2 +
2

rγ
|Ω(x, r)| |〈u〉Ω(x,r)|2. (47)

If R ∈ [r, Re] then

|〈u〉Ω(x,r) − 〈u〉Ω(x,R)|2 ≤ 2|u− 〈u〉Ω(x,r)|2 + 2|u− 〈u〉Ω(x,R)|2.

Integrate over Ω(x, r). Then

c̃ rd |〈u〉Ω(x,R) − 〈u〉Ω(x,r)|2 ≤ 2

∫

Ω(x,r)

|u− 〈u〉Ω(x,r)|2 + 2

∫

Ω(x,R)

|u− 〈u〉Ω(x,R)|2

≤ 2(rγ +Rγ) ‖u‖2
M,γ,x,Re

≤ 4Rγ ‖u‖2
M,γ,x,Re . (48)

Hence

|〈u〉Ω(x,r) − 〈u〉Ω(x,R)| ≤
2√
c̃

Rγ/2

rd/2
‖u‖M,γ,x,Re .

For all k ∈ N0 define Rk = 2−k R. Then

|〈u〉Ω(x,Rk) − 〈u〉Ω(x,Rk+1)| ≤
21+d/2

√
c̃

2k(d−γ)/2R−(d−γ)/2 ‖u‖M,γ,x,Re . (49)
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Hence for all N ∈ N0 one obtains

|〈u〉Ω(x,R) − 〈u〉Ω(x,RN+1)| ≤
21+d/2

√
c̃

2(N+1)(d−γ)/2R−(d−γ)/2

2(d−γ)/2 − 1
‖u‖M,γ,x,Re

=
21+d/2

√
c̃

1

2(d−γ)/2 − 1
R
−(d−γ)/2
N+1 ‖u‖M,γ,x,Re .

Choose R ∈ [Re
2
, Re] and N ∈ N0 such that 2−(N+1) R = r. Then

|〈u〉Ω(x,r)|2 ≤ 2|〈u〉Ω(x,R)|2 + 2|〈u〉Ω(x,r) − 〈u〉Ω(x,R)|2

≤ 2|〈u〉Ω(x,R)|2 +
2d+3

c̃

1

(2(d−γ)/2 − 1)2
r−(d−γ) ‖u‖2

M,γ,x,Re .

Therefore with (47) one deduces that

1

rγ

∫

Ω(x,r)

|u|2 ≤ 2‖u‖2
M,γ,x,Re +

2d+4ωd
c̃ (2(d−γ)/2 − 1)2

‖u‖2
M,γ,x,Re +

2d+2

c̃ Rd
e

∫

Ω(x,Re)

|u|2.

This is for all r ∈ (0, Re/2]. Together with an obvious estimate for all r ∈ [Re/2, Re] one

deduces that

‖u‖2
M,γ,x,Re ≤

(
2 +

2d+4ωd
c̃ (2(d−γ)/2 − 1)2

)
‖u‖2

M,γ,x,Re +
2d+2

c̃ Rd
e

∫

Ω(x,Re)

|u|2.

This completes the proof of Statement (a).

‘(b)’. Let γ ∈ (d, d+ 2), x ∈ Ω and u ∈ L2(Ω). Let R ∈ (0, Re] and set Rk = 2−k R for

all k ∈ N0. As in (49) it follows that

|〈u〉Ω(x,Rk) − 〈u〉Ω(x,Rk+1)| ≤
21+d/2

√
c̃

2−k(γ−d)/2R(γ−d)/2 ‖u‖M,γ,x,Re

for all k ∈ N0. Let h, k ∈ N0 and suppose that k < h. Then

|〈u〉Ω(x,Rk) − 〈u〉Ω(x,Rh)| ≤
21+d/2

√
c̃

2−h(γ−d)/2R(γ−d)/2

1− 2−(γ−d)/2
‖u‖M,γ,x,Re

=
21+d/2

√
c̃(1− 2−(γ−d)/2)

R
(γ−d)/2
k ‖u‖M,γ,x,Re . (50)

Hence (〈u〉Ω(x,Rk))k∈N is a Cauchy sequence. Set û(x) = limk→∞〈u〉Ω(x,Rk). Let r ∈ (0, R]

and for all k ∈ N define rk = 2−k r. Let j ∈ N0 be such that Rj+1 ≤ r ≤ Rj. Then

Rk+j+1 ≤ rk ≤ Rk+j for all k ∈ N. As in (48) one deduces that

|〈u〉Ω(x,Rk) − 〈u〉Ω(x,rk)| ≤ |〈u〉Ω(x,Rk) − 〈u〉Ω(x,Rk+j)|+ |〈u〉Ω(x,Rk+j) − 〈u〉Ω(x,rk)|

≤ |〈u〉Ω(x,Rk) − 〈u〉Ω(x,Rk+j)|+
2√
c̃

R
γ/2
k+j

R
d/2
k+j+1

‖u‖M,γ,x,Re

= |〈u〉Ω(x,Rk) − 〈u〉Ω(x,Rk+j)|+
21+d/2

√
c̃

R
(γ−d)/2
k+j ‖u‖M,γ,x,Re .
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So limk→∞ |〈u〉Ω(x,Rk) − 〈u〉Ω(x,rk)| = 0 and û(x) does not depend on R.

Choose k = 0 and take the limit h→∞ in (50). Then

|〈u〉Ω(x,R) − û(x)| ≤ 21+d/2

√
c̃(1− 2−(γ−d)/2)

R(γ−d)/2 ‖u‖M,γ,x,Re (51)

for all R ∈ (0, 1]. Then clearly limR↓0〈u〉Ω(x,R) = û(x).

‘(c)’. Next let x, y ∈ Ω with |x− y| ≤ Re
2

. Set R = |x− y|. Then (51) gives

|û(x)− û(y)| ≤ |û(x)− 〈u〉Ω(x,2R)|+ |〈u〉Ω(x,2R) − 〈u〉Ω(y,2R)|+ |〈u〉Ω(y,2R) − û(y)|

≤ 21+d/2

√
c̃(1− 2−(γ−d)/2)

(2R)(γ−d)/2
(
‖u‖M,γ,x,Re + ‖u‖M,γ,y,Re

)

+ |〈u〉Ω(x,2R) − 〈u〉Ω(y,2R)|.

Consider the last term. Obviously

|〈u〉Ω(x,2R) − 〈u〉Ω(y,2R)|2 ≤ 2|〈u〉Ω(x,2R) − u|2 + 2|u− 〈u〉Ω(y,2R)|2.

Integration over Ω(x,R) and using that Ω(x,R) ⊂ Ω(x, 2R) ∩ Ω(y, 2R) gives

c̃ Rd |〈u〉Ω(x,2R) − 〈u〉Ω(y,2R)|2 ≤ 2

∫

Ω(x,2R)

|u− 〈u〉Ω(x,2R)|2 + 2

∫

Ω(y,2R)

|u− 〈u〉Ω(y,2R)|2

≤ 2(2R)γ
(
‖u‖2

M,γ,x,Re + ‖u‖2
M,γ,y,Re

)
.

So

|〈u〉Ω(x,2R) − 〈u〉Ω(y,2R)|2 ≤
2γ+1

c̃
Rγ−d

(
‖u‖2

M,γ,x,Re + ‖u‖2
M,γ,y,Re

)

and

|û(x)− û(y)| ≤
(

21+d/2

√
c̃(1− 2−(γ−d)/2)

+
2(γ+1)/2

√
c̃

)
R(γ−d)/2 (‖u‖M,γ,x,Re + ‖u‖M,γ,y,Re

)
.

The proof of the lemma is complete.
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