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Abstract

Usually, the light diffraction by biperiodic grating structures is simulated by the time-

harmonic Maxwell system with a constant magnetic permeability. For the optimization of

the geometry parameters of the grating, a functional is defined which depends quadrat-

ically on the efficiencies of the reflected modes. The minimization of this functional by

gradient based optimization schemes requires the computation of the shape derivatives

of the functional with respect to the parameters of the geometry. Using classical ideas of

shape calculus, formulas for these parameter derivatives are derived. In particular, these

derivatives can be computed as material derivatives corresponding to a family of trans-

formations of the underlying domain. However, the energy space H(curl) for the electric

fields is not invariant with respect to the transformation of geometry. Therefore, the formu-

las are derived first for the magnetic field vectors which belong to [H1]3. Afterwards, the

magnetic fields in the shape-derivative formula are replaced by their electric counter parts.

Numerical tests confirm the derived formulas.

1 Introduction

The diffraction of light by periodic surface structures can be simulated by the time-harmonic
Maxwell system. Suppose an incoming plane wave mode with a fixed direction of incidence is
scattered by the grating structure. Then the scattered field is the superposition of a finite num-
ber of propagating reflected and transmitted plane wave modes and of an evanescent light wave
(cf.[18]). The efficiencies of the grating are the portions of energy which are sent to the reflected
or transmitted modes. These efficiencies together with the phase shifts of the propagating plane
wave modes are essential for the functionality of the grating as diffractive optical element. On
the other hand, knowing the efficiencies, a reconstruction of the geometry or, at least, of some
parameters of the geometry by solving an inverse problem should be possible. The correspond-
ing measurement technique is called scatterometry. In other words, both, the optimization of
diffractive optical elements (cf. e.g. [10, 2]) and the scatterometric measurement (cf. e.g. [12]),
can be based on the optimization of objective functionals depending quadratically on the effi-
ciencies of the grating. If a gradient based optimization scheme is applied, then derivatives of
the objective functional with respect to the parameters of the geometry are required.

The general theory of shape calculus is well established (cf. e.g. [25]) and, using boundary inte-
gral equations, shape derivatives for three-dimensional obstacles with smooth boundaries have
been derived (cf. [9]). Formulas for the shape derivatives of two-dimensional diffraction grat-
ings have been derived in e.g. [11, 15]. It has been pointed out that, if the shape derivatives of
the efficiencies are sought, then it is sufficient to compute the material derivatives of the electro-
magnetic field. Note that these material fields are smoother than the classical shape derivatives.
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Formally, these two-dimensional techniques can be applied to biperiodic gratings too. However,
the energy space of the electric field solution to the time-harmonic Maxwell equation is the
space H(curl), i.e., not all first order derivatives have a bounded L2 norm but only a few linear
combinations have this boundedness property. The geometry transformations corresponding to
a change of the parameters describing the geometry, lead to a transformation of these linear
combinations such that a bounded L2 norm cannot be guaranteed after the transformation.
Consequently, the integrands in the formally derived gradient formulas are not integrable.

To overcome this problem, we suppose that the magnetic permeability µ is constant. In this
case, the shape calculus can be applied to the magnetic field solution which is in the smoother
space [H1]3, i.e., over all subdomains filled with the same material all first order derivatives
have a bounded L2 norm (cf. [8]). A shape-derivative formula including the magnetic field can
be derived. Transforming this formula, the magnetic field can be substituted by the electric field
using the Maxwell equations. It is well known that the derivatives can be expressed as integrals
over those interfaces of the geometry which move with the varying parameters. However, to
avoid troubles with the generalized integration of unbounded integrands (cf. [11]), the formulas
of the present paper will contain domain integrals as well. For each gradient of the objective
functional, the original time-harmonic Maxwell system is to be solved, a solution of the adjoint
Maxwell system is to be calculated, and special sesqui-linear forms including these two solutions
must be evaluated.

The time-harmonic Maxwell system for the grating problem, the boundary conditions, and the
incident, reflected, and transmitted plane wave modes will be introduced in Section 2. In Section
3 the variational formulation proposed by [14] (cf. also [16, 19, 13, 1, 3, 21]) is described. The
objective functional and a special example, the contact hole geometry, is defined in Section 4.
The main result is the shape-derivative formula of Theorem 4.1. The proof follows in the Sections
4.5–4.9. Finally, a numerical example for the contact holes is presented in Section 5.

2 The underlying boundary value problem for the time-har-

monic Maxwell’s equations

2.1 Geometry and electric permittivity

The biperiodic grating is a three-dimensional surface structure which is a perturbation of the
plane {(x, y, z)> ∈ R

3 : z = 0}. This perturbation is supposed to be bounded with respect
to the coordinate z and periodic with respect to x and y. More precisely, the Maxwell equations
are considered in R

3 with a constant magnetic permeability µ and a piecewise constant electric
permittivity ε(x, y, z) such that ε(x, y, z) is periodic with respect to x and y and equal to
the constant values ε+ and ε− for z ≥ zmax and z ≤ zmin, respectively. Here zmax > 0
and zmin < 0 are fixed z-coordinates such that the grating surface is contained in the set
{(x, y, z)> ∈ R

3 : zmin < z < zmax}.

Consequently, the variational formulation of the problem for the Maxwell equations can be re-
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stricted to a single periodicity cell, i.e., to the rectangular brick domain

G := [xmin, xmax]× [ymin, ymax]× [zmin, zmax]. (1)

The period is perx := xmax − xmin for the x direction and pery := ymax − ymin for the y
direction. For simplicity, the domains inG with constant values ε are supposed to be polyhedral.
In order to simplify the notation, we even assume periodicity across the lateral boundaries in the
sense of ε(xmin + 0, y, z) = ε(xmax − 0, y, z) and ε(x, ymin + 0, z) = ε(x, ymax − 0, z).

2.2 Partial differential equation

Eliminating the magnetic or the electric field, the time-harmonic Maxwell equations can be re-
duced to two different versions of the curl-curl equations for the electric field and the magnetic
field, respectively. If the electric field is sought, then the electric version should be solved. How-
ever, since µ = µ0 is constant and ε only piecewise constant, the magnetic field solution has
some additional smoothness properties which will be important to derive the shape-derivative
formulas for the electric field equation.

In fact, for constant µ = µ0, the magnetic field H is divergence free. The term ∇[∇ ·H] = 0
can be added to the curl-curl equation. Thus the magnetic field is the solution of a strongly
elliptic partial differential equation over each domain with constant ε and is not only in the space
H(curl), but in [H1]3. In other words, the magnetic field solution of the magnetic curl-curl
equations has square integrable first order derivatives (cf. e.g. [8, 21]). This may be not true for
the electric field solution of the electric curl-curl equation.

The time-harmonic electric field can be represented as E(x, y, z, t) = <e{E(x, y, z)e−iωt}
and the magnetic field as H(x, y, z, t) = <e{H(x, y, z)e−iωt}, where ω > 0 is the angular
frequency. In the following, the complex valued amplitude functions E and H will be referred
to as the electric and magnetic fields, respectively. The curl-curl equations look as follows.
Eliminating the magnetic field H and the electric field E, respectively, from the time-harmonic
Maxwell system

∇×H − (−iω)[εE] = 0, ∇× E + (−iω) [µH] = 0,

yields

∇×∇× uel(P )− k2uel(P ) = 0, P ∈ G, (2)

∇×
[
k−2[∇× uma(P )]

]
− uma(P ) = 0, P ∈ G, (3)

with uel = E, uma = H , and wave number k :=
√
εµω2. Note that (2) and (3) are satisfied at

all points P ∈ G which are located in the interior of the subdomains of G, where the piecewise
constant ε takes a constant value. The two fields uel and uma are connected by

uel =
iµω

k2
[∇× uma], [∇× uel] = iµω uma, (4)

uma = − i

µω
[∇× uel], [∇× uma] = − ik2

µω
uel. (5)
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Note that the wave number k is given alternatively by k = 2πn/λ, where λ is the wave length
of the light in vacuum and n the piecewise constant refractive index describing the optical prop-
erties of the involved materials. The refractive index for the material above and below the grating
will be denoted by n±.

2.3 Incident wave

The incident light is supposed to be a plane wave with angles of incidence θ and φ restricted
to the ranges −π

2
< θ < π

2
and 0 ≤ φ < 2π. Thus the amplitude U inc of the time harmonic

wave function U inc(x, y, z)e−iωt is

U inc
el (x, y, z) :=




einc

f inc

ginc


 eik

+(sin θ cosφ x+sin θ sinφ y−cos θ z) (6)

=




eincc

f inc
c

gincc


 eik

+(sin θ cosφ x+sin θ sinφ y−cos θ [z−zmax]),

eincc := eince−ik+ cos θ zmax , f inc
c := f ince−ik+ cos θ zmax , gincc := gince−ik+ cos θ zmax

for the electric field and

U inc
ma(x, y, z) :=

n+

µc




sin θ cosφ

sin θ sinφ

− cos θ


×




einc

f inc

ginc


 eik

+(sin θ cosφ x+sin θ sinφ y−cos θ z) (7)

=
n+

µc




sin θ cosφ

sin θ sinφ

− cos θ


×




eincc

f inc
c

gincc


 eik

+(sin θ cosφ x+sin θ sinφ y−cos θ [z−zmax])

for the magnetic field. Note that n+/µc = k+/µω implies U inc
ma = −i/ωµ ∇× U inc

el (cf. the
relation (5)).

Polarization and phase are fixed by the constant complex-valued coefficients einc, f inc, and ginc.
For TE polarization, the amplitude vector is chosen as (einc, f inc, ginc)> = (sinφ,− cosφ, 0)>

and, for TM polarization, (einc, f inc, ginc)> = (cos θ cosφ, cos θ sinφ, sin θ)>. In any case,
the amplitude vector (einc, f inc, ginc)> must always be orthogonal to the direction of propaga-
tion (sin θ cosφ, sin θ sinφ,− cos θ)>, i.e., einc sin θ cosφ+f inc sin θ sinφ−ginc cos θ = 0.

Exceptional formulas are needed for θ = 0 since in this case the angle φ is not defined uniquely.
Formally, φ is set to zero and

U inc
el (x, y, z) :=




einc

f inc

ginc


 e−ik+z =




eincc

f inc
c

gincc


 e−ik+[z−zmax], (8)

eincc := eince−ik+zmax , f inc
c := f ince−ik+zmax , gincc := gince−ik+zmax
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as well as

U inc
ma(x, y, z) :=

n+

µc




0
0
−1


×



einc

f inc

ginc


 e−ik+z =

n+

µc




0
0
−1


×



eincc

f inc
c

gincc


 e−ik+[z−zmax].

(9)

For TE polarization, the amplitude vector is given by (einc, f inc, ginc)> = (0,−1, 0)> and, for
TM polarization, by (einc, f inc, ginc)> = (1, 0, 0)>. In general, (einc, f inc, ginc)> is orthogonal
to the direction of propagation (0, 0,−1)>.

2.4 Boundary and transmission conditions

The incident wave is quasi-periodic, i.e., a shift by the period in the x- and y-coordinate of
the argument leads to a multiplication of the vector value by the factor eik

+ sin θ cosφ perx and
eik

+ sin θ sinφ pery , respectively. Thus, according to Floquet’s theorem, also the field solutions
satisfy the quasi-periodic lateral conditions

u(xmax, y, z) = u(xmin + perx, y, z) = u(xmin, y, z)γx, γx := eik
+ sin θ cosφ perx ,

u(x, ymax, z) = u(x, ymin + pery, z) = u(x, ymin, z)γy, γy := eik
+ sin θ sinφ pery .

In particular, for the electric field, we obtain the lateral boundary conditions

(1, 0, 0)> × uel(xmax, y, z) = (1, 0, 0)> × uel(xmin, y, z)γx, (10)

(1, 0, 0)> × [∇× uel(xmax, y, z)] = (1, 0, 0)> × [∇× uel(xmin, y, z)]γx, (11)

(0, 1, 0)> × uel(x, ymax, z) = (0, 1, 0)> × uel(x, ymin, z)γy, (12)

(0, 1, 0)> × [∇× uel(x, ymax, z)] = (0, 1, 0)> × [∇× uel(x, ymin, z)]γy, (13)

connecting the tangential components of u and ∇ × u on the lateral boundaries of G. In the
case of the magnetic field, the continuity of uma and k−2∇× uma = −i/µωuel yield

(1, 0, 0)> × uma(xmax, y, z) = (1, 0, 0)> × uma(xmin, y, z)γx, (14)

(1, 0, 0)> × [k−2∇× uma(xmax, y, z)] = (1, 0, 0)> × [k−2∇× uma(xmin, y, z)]γx,(15)

(0, 1, 0)> × uma(x, ymax, z) = (0, 1, 0)> × uma(x, ymin, z)γy, (16)

(0, 1, 0)> × [k−2∇× uma(x, ymax, z)] = (0, 1, 0)> × [k−2∇× uma(x, ymin, z)]γy. (17)

The normal vector at the boundary surface and at the interfaces will be denoted by ν. In other
words, ν = (0, 0, 1) on Γ+ := {(x, y, z)> ∈ G : z = zmax} and ν = (0, 0,−1) on
Γ− := {(x, y, z)> ∈ G : z = zmin}. For an interface Γ between two subdomains of G
with different values of ε, an orientation is fixed. The normal ν at P ∈ Γ is the unit normal
at the interface pointing into the subdomain on the left of the interface. If u is a vector field
over G, if u(+P ) is the limit at P of u from the subdomain on the right of Γ, and if u(−P ) is
the limit from the domain on the left, then the jump of u across the interface Γ is denoted by
[u(P )]Γ := u(+P )− u(−P ).
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The classical interface conditions ν×[E]Γ = 0 and ν×[H ]Γ = 0 for the tangential jumps of
the fields over interfaces Γ separating different materials turn into

ν × [uel]Γ = 0, ν × [∇× uel]Γ = 0, (18)

ν × [uma]Γ = 0, ν × [k−2∇× uma]Γ = 0. (19)

On the upper and lower boundaries Γ±, we have a similar jump condition. Left of Γ+ and right
of Γ−, the field u is the solution in G. On the right of Γ+ and on the left of Γ−, we have the
extension of u to the upper and lower half plane, respectively. Above Γ+ this extension is the
sum of the incoming wave uinc and an upward radiating field u+. Below Γ− this extension is a
downward radiating field u−. In other word, the jump relation leads to the boundary condition
on Γ+

ν × uel = ν × [uincel + u+el], ν × [∇× uel] = ν ×
[
∇× [uincel + u+el]

]
, (20)

ν × uma = ν × [uincma + u+ma], ν × 1

k2
[∇× uma] = ν × 1

k2

[
∇× [uincma + u+ma]

]
(21)

with an incident wave mode uinc = U inc (cf. (6) and (7)) and a yet unknown upward radiating
wave u+ (cf. the subsequent formula (24)). On the lower boundary Γ−, we get

ν × uel = ν × u−el, ν × [∇× uel] = ν ×∇× u−el, (22)

ν × uma = ν × u−ma, ν × 1

k2
[∇× uma] = ν × 1

k2
[∇× u−ma] (23)

with a yet unknown downward radiating wave u− (cf. the subsequent formula (37)). Note that the
restriction to upward and downward radiating fields u± in (21) and (22) is the radiation condition
for our Maxwell problem.

2.5 Complete boundary value problem

The solution of the Maxwell system in R
3 splits into three parts u, u−, and u+. The function

u is the restriction of the total field utot to the layer {(x, y, z) ∈ R
3 : zmin < z < zmax}.

Clearly, due to the quasi-periodicity u(x+perx, y, z) = u(x, y, z)γx and u(x, y+pery, z) =
u(x, y, z)γy, this function is determined by its restriction toG defined in (1). Since ε is constant
for z ≤ zmin and z ≥ zmax, the restrictions of utot to these half spaces can be represented
by the Rayleigh series expansions (cf. [18]). For z ≥ zmax, we get utot = U inc + u+ with the
incident wave U inc (cf. (6) and (7)) and with an upward radiating reflected field u+ (cf. (24)). For
z ≤ zmin, we have utot = u− with a downward radiating transmitted field u− (cf. (37)). The final
electric boundary value problem is the partial differential equation (2) for u over the subdomains
of G combined with the lateral boundary conditions (10)–(13), the interface conditions (18), and
the conditions (20),(22) coupling u and [∇×u] through the yet unknown upward and downward
radiating u±. The magnetic boundary value problem is the partial differential equation (3) for u
over the subdomains ofG combined with the lateral boundary conditions (14)-(17), the interface
conditions (19), and the coupling conditions (21),(23).
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2.6 Rayleigh series expansions for the radiation condition

The Rayleigh series expansion for the reflected field takes the form

u+ =
∑

n∈Z

∑

m∈Z

∑

l=0,1

B+
n,m,lu

+
n,m,l, (24)

where the Rayleigh coefficients B+
n,m,l are complex numbers, and the upward radiating modes

u+n,m,l = u+el,n,m,l in the electric case and u+n,m,l = u+ma,n,m,l in the magnetic case are given by

u+el,n,m,l(x, y, z) =



en,m,l

fn,m,l

gn,m,l


 ei(anx+bmy+cn,m[z−zmax]), (25)

u+ma,n,m,l(x, y, z) =
1

µω




an
bm
cn,m


×



en,m,l

fn,m,l

gn,m,l


 ei(anx+bmy+cn,m[z−zmax]). (26)

Here

ainc := k+ sin θ cosφ, binc := k+ sin θ sinφ, (27)

an := ainc + n
2π

perx
, bm := binc +m 2π

pery
, cn,m :=

√
(k+)2 − a2n − b2m, (28)

en,m,0 := − bm
hn,m

, fn,m,0 :=
an
hn,m

, gn,m,0 := 0, (29)

hn,m :=
√
|an|2 + |bm|2, (30)

en,m,1 := −cn,man
hn,m,1

, fn,m,1 := −cn,mbm
hn,m,1

, gn,m,1 :=
a2n + b2m
hn,m,1

, (31)

hn,m,1 :=
√
|cn,m|2 + h2n,m hn,m. (32)

The square root in (28) is defined such that cn,m > 0 if (k+)2 ≥ a2n + b2m and =m cn,m > 0 if
(k+)2 < a2n + b2m. Note that

(en,m,1, fn,m,1, gn,m,1)
> =

hn,m
hn,m,1

(an, bm, cn,m)
> × (en,m,0, fn,m,0, gn,m,0)

>, (33)

i.e., the amplitude vectors (en,m,l, fn,m,l, gn,m,l)
>, l = 0, 1 are orthogonal. In the exceptional

case of θ = 0, i.e., for an = bm = 0, these amplitude vectors are defined by the formulae

en,m,0 = 0, fn,m,0 = 1, gn,m,0 = 0, (34)

en,m,1 = −1, fn,m,1 = 0, gn,m,1 = 0. (35)

The wave mode u+n,m,l is a propagating plane wave solution of (2) if cn,m is real. For imaginary

cn,m, the wave u+n,m,l is an evanescent solution. The efficiency of the reflected propagating

mode u+n,m,l is given by

eff+
n,m,l :=

cn,m
c0,0

|B+
n,m,l|2. (36)
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It is not hard to prove that 100 eff+
n,m,l percent of the energy arriving with the incident plane

wave onto the grating is reflected into the direction (an, bm, cn,m)
> of the plane wave mode

u+n,m,l. Often, functional values like eff+
n,m,l are the most interesting entities for the solution of

the boundary value problem in Section 2.5.

The Rayleigh series expansion for the transmitted field takes the form

u− =
∑

n∈Z

∑

m∈Z

∑

l=0,1

B−
n,m,lu

−
n,m,l, (37)

where the Rayleigh coefficients B−
n,m,l are complex numbers, and the downward radiating

modes u−n,m,l = u−el,n,m,l in the electric case and u−n,m,l = u−ma,n,m,l in the magnetic case
are given by

u−el,n,m,l(x, y, z) =



e−n,m,l

f−
n,m,l

g−n,m,l


 ei(anx+bmy−c−n,m[z−zmin])

u−ma,n,m,l(x, y, z) =
1

µω




an
bm

−c−n,m


×




e−n,m,l

f−
n,m,l

g−n,m,l


 ei(anx+bmy−c−n,m[z−zmin]).

Here
c−n,m =

√
(k−)2 − a2n − b2m, (38)

e−n,m,0 =
bm
hn,m

, f−
n,m,0 = − an

hn,m
, g−n,m,0 = 0, (39)

e−n,m,1 =
c−n,man

h−n,m,1

,fn,m,1 =
c−n,mbm
h−n,m,1

, g−n,m,1 = −a
2
n + b2m
h−n,m,1

, (40)

h−n,m,1 =
√
|c−n,m|2 + h2n,m hn,m. (41)

In the exceptional case of θ = 0, i.e., for an = bm = 0, the amplitude vectors are defined by
the formulae

e−n,m,0 = 0, f−
n,m,0 = −1, g−n,m,0 = 0, (42)

e−n,m,1 = 1, f−
n,m,1 = 0, g−n,m,1 = 0. (43)

The wave mode u−n,m,l is a propagating plane wave solution of (2) if c−n,m is real. The efficiency

of such a transmitted propagating mode u−n,m,l is given by

eff−
n,m,l =

[n+]2

[n−]2
c−n,m
[c0,0]+

|B−
n,m,l|2 (44)

with [c0,0]+ the last component of the wave vector (a0, b0, c0,0)
> from the reflected mode.

If the functions u, u± satisfy the complete boundary value problems described in Section 2.5,
then u+ and u− is an analytic extension of u through Γ+ and Γ−, respectively. In other words
the expansions (24) and (37) can be considered to be expansions of u|Γ±, and eff±

n,m,l is a

functional eff±
n,m,l(u) of u.

8



3 Variational equation for the time-harmonic curl-curl equa-

tion

3.1 Notation

Following [14], a variational equation will be set up. The coupling boundary conditions (20)-
(22) and (21)-(23), respectively, will be included by a mortaring technique, and the right-hand
side U inc (cf. (20),(21)) will be included by a penalty approach. To formulate the equation, the
following symbols are needed.

G domain of grating structure given by (1) which is a
rectangular solid containing one period

G+ domain above grating structure given by the formula
G+ := [xmin, xmax]× [ymin, ymax]× [zmax, zmax + 1]

G− domain beneath grating structure given by the formula
G− := [xmin, xmax]× [ymin, ymax]× [zmin − 1, zmin]

Γ+ upper boundary {(x, y, z) ∈ G : z = zmax}
Γ− lower boundary {(x, y, z) ∈ G : z = zmin}
ν normal at boundary ∂G pointing into exterior of G,

ν = (0, 0, 1)> on Γ+, ν = (0, 0,−1)> on Γ−

U inc incoming wave mode from above, cf. (6) and (7)
u electric field on domain G
u+ electric field spanned by wave modes above G, cf. (24)
u− electric field spanned by wave modes below G, cf. (37)
uinc incoming wave mode uinc from above included as unknown

into trial space, taken from one-dimensional trial space span{U inc}
(v, v+, v−, vinc) test functions
η constant factor for mortaring, chosen as a multiple of the

reciprocal meshsize
p factor for penalty inclusion of right-hand side, chosen as a

huge value

3.2 Sesqui-linear form

A solution (u, u+ + uinc, u−) of the Maxwell system is sought with u ∈ H(curl, G), with
u+ ∈ H+, with uinc ∈ span{U inc}, and with u− ∈ H−. The space H(curl, G) (cf. the de-
finition in [7, 16, 4, 5, 6]) is the space of all vector functions u on G such that:

– Function u is square integrable over G.
– For all subdomains G′ of G with constant ε, the curl ∇× [u|G′ ] is square integrable.
– For all interfaces S between subdomains of G with constant values of ε, the tangential

jump [ν × u]S of u over S is zero.
– Function u is quasi-periodic, i.e., u satisfies (10) and (12).

The space H+ is the space of all Rayleigh expansions u+ of (24) endowed with the norm of

9



the space H(curl, G+). Similarly, H− is the space of all Rayleigh expansions u− of (37) with
bounded H(curl, G−) norm.

To get the variational formulation, the partial differential equation (2) and (3), respectively, is
multiplied by a test function v and integrated over the domainG. Applying partial integration, the
mortar technique of Nitsche [24], and a penalty trick to include the incident wave, the variational
equation is established. Note that the last trick introduces an approximation error proportional
to the number p−1. In accordance with [14] (compare [16, 19, 13]), the sesqui-linear form in the
electric field case, i.e., corresponding to the equations (2), (10)-(13), (18), (20), and (22), takes
the form

ael

(
(u, u+ + uinc, u−), (v, v+ + v

inc, v−)
)

(45)

:=

∫

G

∇× u · ∇ × v dG−
∫

G

k2u · v dG

−
∫

Γ+

∇× [u+ + uinc] · [ν × v] dΓ+

−
∫

Γ+

{
ν × u− ν × [u+ + uinc]

}
· ∇ × [v+ + v

inc] dΓ+

+η

∫

Γ+

{
ν × u− ν × [u+ + uinc]

}
·
[
ν×{v − [v+ + v

inc]}
]
dΓ+

−
∫

Γ−

∇× u− · [ν × v] dΓ−

−
∫

Γ−

{
ν × u− ν × u−

}
· ∇ × v

− dΓ−

+η

∫

Γ−

{
ν × u− ν × u−

}
·
[
ν×{v − v

−}
]
dΓ−

+p

∫

Γ+

uinc · vinc dΓ+.

Here the differential operator ∇× over G is to be understood locally, i.e., ∇× u is the function
in [L2(G)]3 the restriction of which to the interior of the subdomains with constant values of
ε is the curl of the restriction of u. The first two integrals over the domain G are the usual
terms of the variational formulation of the curl-curl equation. The terms three to five are the
mortar terms to couple u and u+ + uinc over Γ+. Analogously, the terms six to eight are the
mortar terms to couple u and u− over Γ−. Finally, the last term is the penalty term to enforce
uinc = U inc.

Note that integrals of the form
∫
Γ+ ∇× u+ · ν × v dΓ+ are meaningful. Indeed, the Rayleigh

expansions u+ satisfy (2) such that ∇×u+ is inH(curl, G+) and its tangential trace [∇×u+]t
belongs to the trace space H−1/2(curl,Γ+). The trace ν× v on Γ+ belongs to the dual space
H−1/2(div,Γ+) (cf. [7]). Unfortunately, the integrals with factor η are not meaningful for general
H(curl, G) functions. Integrals like

∫
Γ+ [ν × u] · [ν × v] dΓ+ are meaningful in the mortar

approach for finite element methods (cf. [14]), where u, v are finite element functions and η
tends to zero with the meshsize. Alternatively, the integrals in (45) with factor η can be replaced.
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For instance, the term

η

∫

Γ+

{
ν × u− ν × [u+ + uinc]

}
·
[
ν×{v − [v+ + v

inc]}
]
dΓ+ (46)

can be replaced by the sum

η
∑

n,m,l:
cn,m 6=0 or l=0
n2+m2<N

∫

Γ+

ν×[u−u+−uinc] · ν×u+n,m,l dΓ
+

∫

Γ+

ν×[v−v
+−v

inc] · ν×u+n,m,l dΓ
+

(47)

+η
∑

n,m:
cn,m=0

∫

Γ+

ν×[u−u+−uinc] · u+n,m,0 dΓ
+

∫

Γ+

ν×[v−v
+−v

inc] · u+n,m,0 dΓ
+

with a suitable large integer N . It seems that the summation in (47) can even be restricted to
all n,m with cn,m = 0 (cf. Section 4.10). For the integral over Γ− with coefficient η, a similar
modification is possible. However, to simplify the formulas of the present paper and to stick as
close as possible to the numerical implementation proposed in [14], all sesqui-linear forms are
written using terms like (46). For a rigorous sesqui-linear form considered in the full spaces
H(curl, G), H±, and span{U inc}, the reader has to replace terms like (46) by terms like (47).
Note that all these terms are not important for the shape-derivative formulas.

In the case of the magnetic field, i.e., for the equations (3), (14)-(17), (19), (21), and (23), the
sesqui-linear form takes the form

ama

(
(u, u+ + uinc, u−), (v, v+ + v

inc, v−)
)

(48)

:= µ2ω2

∫

G

k−2 ∇× u · ∇ × v dG− µ2ω2

∫

G

u · v dG

−µ2ω2

∫

Γ+

k−2 ∇× [u+ + uinc] · [ν × v] dΓ+

−µ2ω2

∫

Γ+

k−2
{
ν × u− ν × [u+ + uinc]

}
· ∇ × [v+ + v

inc] dΓ+

+η µ2ω2

∫

Γ+

k−2
{
ν × u− ν × [u+ + uinc]

}
·
[
ν×{v − [v+ + v

inc]}
]
dΓ+

−µ2ω2

∫

Γ−

k−2 ∇× u− · [ν × v] dΓ−

−µ2ω2

∫

Γ−

k−2
{
ν × u− ν × u−

}
· ∇ × v

− dΓ−

+η µ2ω2

∫

Γ−

k−2
{
ν × u− ν × u−

}
·
[
ν×{v − v

−}
]
dΓ−

+p µ2ω2

∫

Γ+

k−2 uinc · vinc dΓ+,

Note that the two sesqui-linear forms coincide in the main part, i.e., in the domain integrals
(cf. the formulas (4) and (5)).
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3.3 Right-hand side and variational equation

The linear functional on the right-hand side of the variational equation, for the electric and mag-
netic field, is given by

fel

(
(v, v+ + v

inc, v−)
)

:= p

∫

Γ+

U inc
el · vinc dΓ+, (49)

fma

(
(v, v+ + v

inc, v−)
)

:= p µ2ω2

∫

Γ+

k−2 U inc
ma · vinc dΓ+. (50)

The variational equations take the form

ael

(
(u, u+ + uinc, u−), (v, v+ + v

inc, v−)
)
= fel

(
(v, v+ + v

inc, v−)
)
, (51)

ama

(
(u, u+ + uinc, u−), (v, v+ + v

inc, v−)
)
= fma

(
(v, v+ + v

inc, v−)
)
. (52)

Recall that the solution u, u±, and uinc is sought such that u ∈ H(curl, G) is quasi-periodic,
uinc ∈ span{U inc}, and u± ∈ H± is a Rayleigh series expansions (cf. (24) and (37)). The
equations (51) and (52), respectively, have to be satisfied for all quasi-periodic test functions
v ∈ H(curl, G), for all functions vinc∈span{U inc}, and for all v± ∈ H±.

Remark 3.1 The penalty approach for the right-hand side works as follows: Suppose the penal-
ty parameter p is huge. Then, choosing v = 0 and v

± = 0 and neglecting terms much smaller
than p, the variational system amounts to uinc = U inc. Setting this into the variational system
with v

inc = 0 and non-zero v and v
±, a variational equation with natural right-hand side results:

a
(
(u, u+, u−), (v, v+, v−)

)
= −a

(
(0, U inc, 0), (v, v+, v−)

)
(53)

valid for all v ∈ H(curl, G) and v
± ∈ H±.

Remark 3.2 The existence and uniqueness of the solution to the problem (2), (10)– (13), (18),
(20), and (22) is still open. The unique solvability of (2), (10)– (13), (18), (20), and (22) in the
case that an absorbing material is involved in the grating has been proved in [21]. If an absorb-
ing material is included into the grating, then there should exist a unique variational solution even
in the case of variable µ. Indeed, the technique of [13] for the case of a perfectly conducting
substrate seems to apply also to the problem (2), (10)– (13), (18), (20), and (22).

Remark 3.3 The existence and uniqueness of the solution to the variational equation (53) is
still open. The spirit of the mortaring technique is described in [24, 14]. Note that the consis-
tency is easy to see. In fact, any quasi-periodic solution u of (2), (18) combined with Rayleigh
expansions u± coupled to u by (20) and (22) is a solution of the variational equation (53)
(cf. [14]). On the other hand, using (91)and (92) to define

E :=
{
η ∈ R : η > 0, η 6= λ+n,m,1, ∀n,m s.t. cn,m 6∈ R,

η 6= λ−n,m,1, ∀n,m s.t. cn,m 6∈ R

}
,
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the parameter η can be chosen from E . Then any solution (u, u+, u−) of the variational system
(53) with u ∈ H(curl, G) and Rayleigh expansions u± ∈ H± solves the boundary value
problem (2), (10)– (13), (18), (20), and (22).

A proof of the last claim in Remark 3.3 will be given in Section 4.10. Note that the just mentioned
open problem for the unique solvability of the variational equation might be overcome by a
coupling with boundary elements (cf. e.g. [11, 21]) or by domain decomposition techniques
(cf. e.g. [19]). The formulas for the shape derivatives will not be affected by this treatment.

3.4 Formula for partial integration

For the derivation of shape-derivative formulas, we need a formula of partial integration over the
upper and lower boundaries Γ±. This is a version of Green’s formula applied to the upward and
downward radiating Rayleigh series expansions (cf. (24) and (37)). To formulate the result we
introduce a modification operator for such series expansions by

[
∑

n,m,l

Bn,m,lu
±
n,m,l

]

mo

:=
∑

n,m,l: cn,m 6∈R

Bn,m,lu
±
n,m,l −

∑

n,m,l: 06=cn,m∈R

Bn,m,lu
±
n,m,l. (54)

Lemma 3.1 For any ε > 0 and for any two absolutely convergent Rayleigh series expansions
u± and v±, defined on {(x, y, z) ∈ R

3 : z ≥ zmax−ε} and {(x, y, z) ∈ R
3 : z ≤ zmin+ε},

respectively, there holds
∫

Γ±

[∇× u±] · [ν × v
±] dΓ± =

∫

Γ±

[ν × u±] · [∇× v
±
mo

] dΓ±. (55)

Proof. Without loss of generality we consider the case of functions over the upper half plane
defined by z ≥ zmax − ε. The orthogonality of the exponential functions yields

∫

Γ+

[∇× u+n,m,l] · [ν × u+
n′,m′,l′ ] dΓ

+

= δn,n′δm,m′

∫

Γ+

[∇× u+n,m,l] · [ν × u+
n,m,l′ ] dΓ

+.

For n = n′ and m = m′, we conclude

[∇×u+n,m,l] · [ν×u+
n,m,l′ ] = i






an
bm
cn,m


×



en,m,l

gn,m,l

fn,m,l




 ·





0
0
1


×



en,m,l′

gn,m,l′

fn,m,l′






= i



0
0
1


 ·







en,m,l′

fn,m,l′

gn,m,l′


×






an
bm
cn,m


×



en,m,l

fn,m,l

gn,m,l










= i



0
0
1


 ·







en,m,l′

fn,m,l′

gn,m,l′


 ·



en,m,l

fn,m,l

gn,m,l







an
bm
cn,m



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−



en,m,l′

fn,m,l′

gn,m,l′


 ·




an
bm
cn,m






en,m,l

fn,m,l

gn,m,l








= i



0
0
1


 ·



δl,l′




an
bm
cn,m




−gn,m,l′ [cn,m − cn,m]



en,m,l

fn,m,l

gn,m,l








= i{δl,l′cn,m − gn,m,lgn,m,l′ [cn,m − cn,m]}.

Hence, using that cn,m is real or purely imaginary, we get

∫

Γ+

[∇× u+n,m,l] · [ν × u+
n′,m′,l′ ] dΓ

+ = (56)

δn,n′δm,m′i perxpery ∗ [δl,l′cn,m − gn,m,lgn,m,l′(cn,m − cn,m)]

= ±
∫

Γ+

[ν × u+n,m,l] · [∇× u+
n′,m′,l′ ] dΓ

+

with the minus sign for the n,m with real cn,m and the plus otherwise. �

4 Shape-derivative formulas

4.1 Objective functional

Suppose u denotes the solution of the boundary value problem (2), (10)-(13), (18), (20), (22)
or of the weak formulation (51). For an optimization and in many other applications, not u itself
but a functional F(u) is of interest. Here, the functional F depending on u = uel is defined as
follows: A set of efficiencies {eff+n,m,l : (n,m, l) ∈ I} corresponding to propagating reflected
wave modes (i.e., cn,m > 0 in (25)) is fixed, and, for each (n,m, l) ∈ I , a positive weight
wn,m,l and a prescribed efficiency number (in percent) 0 ≤ dn,m,l ≤ 100 is chosen. Then
(cf. (36))

F(u) :=
∑

(n,m,l)∈I

wn,m,l

[
100 eff+

n,m,l(u)− dn,m,l

]2
(57)

=
∑

(n,m,l)∈I

wn,m,l

[
100 cn,m
c0,0

|B+
n,m,l(u)|2 − dn,m,l

]2
.

4.2 Domain transformation and derivatives

The change of geometry parameters in the grating structure can often be described by a trans-
formation (automorphism) of the domain G. Suppose χ : G → R

3, defined as the mapping
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(x, y, z)> 7→ (χx(x, y, z), χy(x, y, z), χz(x, y, z))
>, is a vector field such that:

(C1) χ is continuous and piecewise analytic
(C2) χ vanishes on the boundary ∂G of G

Then, depending on the parameter h, the transformation Φh : G→ G is defined by



x
y
z


 7→ Φh(x, y, z) =



x′

y′

z′


 :=



x+ hχx(x, y, z)
y + hχy(x, y, z)
z + hχz(x, y, z)


 . (58)

Clearly, this is an isomorphism of G for small h. Moreover, using the inverse transformation

(x′, y′, z′)> 7→ Φ−1
h (x′, y′, z′) = (x, y, z)>,

each vector function u : G → R
3 can be transformed to a vector function Ψhu : G → R

3

defined by

Ψhu(x
′, y′, z′) := u(Φ−1

h (x′, y′, z′)) := u(x, y, z).

Now, for each h, there is a grating geometry over G fixed by the permittivity εh := Ψhε, i.e., by
the wave number kh := Ψhk. Suppose uh denotes the unique solution of the boundary value
problem (2), (10)-(13), (18), (20), (22) with εh := Ψhε and kh := Ψhk or that of the weak
formulation (51) with k replaced by kh. Furthermore, suppose u 7→ F(u) is the functional over
the space of solutions given in (57). Then the derivative of F(uh) with respect to h is sought,
i.e., a formula for

∂h[F(uh)]|h=0 := lim
h−→0

F(uh)−F(u0)

h
. (59)

For an appropriate choice of χ (cf. Section 4.3), this will be the derivative of F(u) with respect
to a parameter of the geometry.

Suppose there exists a unique solution u = u0 of the boundary value problem (2), (10)-(13),
(18), (20), (22). Using (4), this corresponds to the unique magnetic field solution of (3), (14)-
(17), (19), (21), (23), which is the unique solution of the variational equation of [21]. Similarly to
Theorem 3.1 of [11], we conclude that, if h is sufficiently small, there exist unique magnetic-field
solutions of the variational equations with k replaced by kh := Ψhk. Hence, using (4), there
exist uniquely defined electric field solutions to (2), (10)-(13), (18), (20), (22) for h sufficiently
small, and the derivative in (59) is well defined.

4.3 Examples of transformations for the parameter derivati ves of a con-
tact hole geometry

4.3.1 Geometry of the contact hole

For the quality check in the lithographic chip production, simple periodic test structures are
manufactured and measured. One of these structures, the grating structure for a biperiodic
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Figure 1: Geometry. View from above.
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Figure 2: Geometry. left: View from left, right: Front view.

contact hole, is given in the Figures 1–3. From a layer {(x, y, z) ∈ R
3 : 0 < z < g}, in each

periodicity cell the central part in shape of a frustum of a pyramid is removed. This hole has
the eight vertices I, J,K, L,E, F,G,H . Together with the other vertices in Figures 1–3, the
points are defined by

A := (0, 0, 0), E := (a, b, g),
I := (e, f, 0), A′ := (0, 0, n),
A” := (0, 0, o), B := (perx, 0, 0),
F := (perx − a, b, g), J := (perx − e, f, 0),
B′ := (perx, 0, n), B” := (perx, 0, o),
C := (perx, pery, 0), G := (perx − a, pery − b, g),
K := (perx − e, pery − f, 0), C ′ := (perx, pery, n),
C” := (perx, pery, o), D := (0, pery, 0),
H := (a, pery − b, g), L := (e, pery − f, 0),
D′ := (0, pery, n), D” := (0, pery, o).

The involved parameters a, b, e, f , g, n, o, perx, and pery are chosen such that

0 < a < perx − a < perx, 0 < e < perx − e < perx, 0 < b < pery − b < pery,

0 < f < pery − f < pery, o < 0 < g < n.

In the present paper, the parameters n, o, perx, and pery are supposed to be fixed. The shape
derivatives (59) are sought with respect to the parameters a, b, e, f , and g. Therefore, the
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Figure 3: Geometry. Materials from lateral view.

corresponding components χw, w = x, y, z of the transformation vector function χ are de-
fined in Section 4.3.2. The transformation (58) is equivalent to an increase in the corresponding
parameter.

4.3.2 Piecewise linear functions

Before we define the functions, let us explain the basic idea in the case of the derivative with
respect to a. An increase in a means a shift of the edges EH and FG into the directions−→
EF and

−→
FE, respectively. The vertices not located on these edges remain fixed. To generate

the transformation of geometry due to increased a, we need a continuous and piecewise linear
vector field χ in (58) which vanishes at all vertices not located at the edges EH and FG. Over
EH and FG the vector field should be of unit length and point into the direction

−→
EF and

−→
FE,

respectively.

More precisely, since no change of the hight z and of the lateral y coordinate is required, the
only non-zero component of χ will be χx. The transformation should be uniform for all points
with the same x and z coordinate, i.e., χx(x, y, z) = χx(x, z) should not depend on y. To
leave the points beneath z < 0 unchanged, the values χx(x, z) should vanish for z < 0. Since
the transformation is symmetric with respect to the plane {(x, y, z) ∈ R

3 : x = perx/2}, the
function can be chosen such that χx(x, z) = −χx(perx − x, z). In other words, it suffices to
define χx(x, z) for z ≥ 0 and x ≤ perx/2. To move the vertices in the correct way, the values
of χx must be zero for z = 0, z = n and x = 0, x = perx/2. It must be one at the edge
through EH , i.e., χx(a, g) = 1. Choosing χx(x, g) linearly for 0 < x < a will keep the upper
boundary of the domain surrounding the hole in the plain throughE,F,G,H . Finally, choosing
χx(x, z) linearly for (x, z) on the straight line segment connecting (e, 0) and (a, g), will keep
the quadrangle ILHE on the lateral boundary of the domain surrounding the hole. Altogether,
χx can be fixed as any continuous and piecewise linear function satisfying the just mentioned
restrictions.

To simplify the formulas, define the parameters

phx := perx/2, phy := pery/2, ng := n− g.

For the parameters a and e, it is sufficient to give the functions χw(x, y, z) = χw(x, z) for
w = x and for the arguments x ≤ phx since χy = χz ≡ 0 and χx(x, z) = −χx(perx − x, z).
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Thus, for parameter a and x ≤ phx, the components of function χ = (χw)w can be defined by

χw(x, y, z) :=





x
a

if 0≤z≤g, 0≤x≤az/g, and w=x

z
g

if 0≤z≤g, az/g≤x≤[e(g−z)+az]/g, and w=x

x+(e−phx)z/g−e
a−phx

if 0≤z≤g, [e(g−z)+az]/g≤x≤[e(g−z)+phxz]/g, and w=x

x+a(n−z)/ng−a

a
if g≤z≤n, a(z−g)/ng≤x≤a, and w=x

x+(a−phx)(n−z)/ng−a

a−phx
if g≤z≤n, a≤x≤[a(z−g)+phx(n−z)]/ng , and w=x

0 else.

Analogously, for parameter e and x ≤ phx, the vector function χ is given by

χw(x, y, z) :=





x−az/g
e

if 0≤z≤g, az/g≤x≤[e(g−z)+az]/g, and w=x

(g−z)
g

if 0≤z≤g, [e(g−z)+az]/g≤x≤[e(g−z)+phxz]/g, and w=x

phx−x
phx−e

if 0≤z≤g, [e(g−z)+phxz]/g≤x≤phx, and w=x

x−e(z−o)/o−e
e

if o≤z≤0, ez/o≤x≤e, and w=x

x+(e−phx)(z−o)/|o|−e
e−phx

if o≤z≤0, e≤x≤[phx(z−o)−ez]/|o|, and w=x

0 else.

Similarly, for the parameters b and f , it is enough to define the three component functions
χw(x, y, z) = χw(y, z) for w = y and for y ≤ phy since χx = χz ≡ 0 and χy(y, z) =
−χy(pery − y, z). For parameter b and y ≤ phy , the vector function χ is given by

χw(x, y, z) :=





y
b

if 0≤z≤g, 0≤y≤bz/g, and w=y

z
g

if 0≤z≤g, bz/g≤y≤[f(g−z)+bz]/g, and w=y

y+(f−phy )z/g−f

b−phy
if 0≤z≤g, [f(g−z)+bz]/g≤y≤[f(g−z)+phyz]/g, and w=y

y+b(n−z)/ng−b

b
if g≤z≤n, b(z−g)/ng≤y≤b, and w=y

y+(b−phy )(n−z)/ng−b

b−phy
if g≤z≤n, b≤y≤[b(z−g)+phy (n−z)]/ng , and w=y

0 else.

For parameter f and y ≤ phy , function χ is defined by

χw(x, y, z) :=





y−bz/g
f

if 0≤z≤g, bz/g≤y≤[f(g−z)+bz]/g, and w=y

(g−z)
g

if 0≤z≤g, [f(g−z)+bz]/g≤y≤[f(g−z)+phyz]/g, and w=y

phy−y

phy−f
if 0≤z≤g, [f(g−z)+phyz]/g≤y≤phy , and w=y

y−f(z−o)/o−f
f

if o≤z≤0, fz/o≤y≤f, and w=y

y+(f−phy )(z−o)/|o|−f

f−phy
if o≤z≤0, f≤y≤[phy (z−o)−fz]/|o|, and w=y

0 else.
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Finally, for parameter g, the function χ depends on z only.

χw(x, y, z) :=





z
g

if 0≤z≤g and w=z

n−z
n−g

if g≤z≤n and w=z

0 else.

4.4 The formula for the shape derivative

To formulate the result, some notation is needed. Suppose (uel,0, u
+
el,0, u

−
el,0) is the solution of

the Maxwell system, i.e., of (51). Define the new sesqui-linear form a1 with electric fields as
arguments by

a1(uel, vel) := −
∫

G

k2 uel · vel ∇ · χ dG (60)

+

∫

G

k2 uel ·
(
∇χx · vel,∇χy · vel,∇χz · vel

)>

dG

+

∫

G

k2
(
∇χx · uel,∇χy · uel,∇χz · uel

)>

· vel dG

−
∫

G

uel ·
[
[∇×vel]x∇×∇χx + [∇×vel]y∇×∇χy + [∇×vel]z∇×∇χz

]
dG

−
∫

G

[
[∇×uel]x∇×∇χx + [∇×uel]y∇×∇χy + [∇×uel]z∇×∇χz

]
· vel dG

+

∫

G

[
[∇×uel]x∇χx + [∇×uel]y∇χy + [∇×uel]z∇χz

]
· [∇×vel] dG

+

∫

G

[∇×uel] ·
[
[∇×vel]x∇χx + [∇×vel]y∇χy + [∇×vel]z∇χz

]
dG

−
∫

G

[∇×uel] · [∇×vel] ∇ · χ dG.

Here, the differential operators ∇×, ∇·, and ∇ are meant to be local derivatives, i.e., these
operators are applied to the restrictions of the functions to the interior of the subdomains of G,
where ε is constant and χ analytic.

Finally, by (uel,ad, u
+
el,ad, u

−
el,ad) we denote the adjoint solution, namely the solution of (cf. (45))

ael

(
(uel, u

+
el, u

−
el), (uel,ad, u

+
el,ad, u

−
el,ad)

)
=

∫

Γ+

[ν × uel] · ψt dΓ
+ (61)

for all quasi-periodic functions uel ∈ H(curl, G) and u±el ∈ H±. The right-hand side of (61)
includes the function ψt defined by

ψt :=
400[k+]2

c0,0 perxpery

∑

(n,m,l)∈I

cn,mwn,m,lB
+
n,m,l(uel,0)

δl,1 [a2n + b2m] + c2n,m

[
100 cn,m
c0,0

|B+
n,m,l(uel,0)|2−dn,m,l

]

∗[cos θn,m]2−4l[ν × u+el,n,m,l] . (62)
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Recall that k+ is the wave number above the grating structure, perx and pery are the periods
of the geometry (cf. Section 2.1), cn,m, an, and bm are given in (28), and the wn,m,l together
with the dn,m,l define the objective functional (57). The Rayleigh coefficient B+

n,m,l(uel,0) is that

of the expansion (24) with u+ = u+el,0, which is nothing else than a scaled Fourier coefficient
of the quasi-periodic function uel,0 (cf. (20), (25), and (24)). The expression cos θn,m is defined
as cn,m/

√
a2n + b2m + |cn,m|2. For propagating modes un,m,l, we have cn,m > 0, and θn,m

is the angle of the propagation direction defined such that sin θn,m =
√
a2n + b2m/k

+ and
cos θn,m = cn,m/k

+. In particular, θ0,0 = θ.

In view of the similarity of the variational form (45) to those in [16, 19, 21, 11], we conjecture that
the variational equation (51) and, equivalently, (61) satisfies the Fredholm alternative with index
zero. Hence, if the solution of the Maxwell system (2), (10)-(13), (18), (20), and (22) is unique,
then (61) is uniquely solvable, and there exists a unique adjoint solution (uel,ad, u

+
el,ad, u

−
el,ad).

Theorem 4.1 Suppose the boundary value problem (2), (10)– (13), (18), (20), and (22) for
the Maxwell system is uniquely solvable, i.e., the unique electric field solution uel,0 corresponds
to the unique magnetic field solution of the variational equation in [21]. Suppose the objective
functional F is defined by (57) and that uh is the electric field solution of the Maxwell sys-
tem with wave number function kh := Ψhk, where the transform Ψh is defined as in (58)
with a vector function χ satisfying the conditions (C1)-(C2) in Section 4.2. Finally, suppose
(uel,ad, u

+
el,ad, u

−
el,ad) is the unique solution of the adjoint equation (61). Then the shape deriva-

tive ∂h[F(uh)]|h=0 of (59) is given as

∂h[F(uh)]|h=0 = −<e a1(uel,0, uel,ad). (63)

The Sections 4.5-4.9 are devoted to the proof of this result. For this proof, the technique of
shape derivatives from [11] is adapted (compare [25]).

4.5 Transform of derivatives

Clearly, the Jacobian matrix of the transformation Φh is

J =
(
∂u[Φh]v

)
u,v∈{x,y,z}

=




1 + h∂xχx h∂xχy h∂xχz

h∂yχx 1 + h∂yχy h∂yχz

h∂zχx h∂zχy 1 + h∂zχz


 .

The determinant of this Jacobian matrix and its reciprocal is given by

det J = (1 + h∂xχx)(1 + h∂yχy)(1 + h∂zχz) + (h∂xχy)(h∂yχz)(h∂zχx)

+(h∂xχz)(h∂yχx)(h∂zχy)− (h∂zχx)(1 + h∂yχy)(h∂xχz)

−(h∂yχx)(h∂xχy)(1 + h∂zχz)− (1 + h∂xχx)(h∂zχy)(h∂yχz)

= 1 + h {∂xχx + ∂yχy + ∂zχz}
+h2{∂xχx∂yχy + ∂xχx∂zχz + ∂yχy∂zχz

−∂zχx∂xχz − ∂yχx∂xχy − ∂zχy∂yχz}
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+h3{∂xχx∂yχy∂zχz + ∂xχy∂yχz∂zχx + ∂xχz∂yχx∂zχy

−∂zχx∂yχy∂xχz − ∂yχx∂xχy∂zχz − ∂xχx∂zχy∂yχz}
= 1 + h ∇ · χ+O(h2), (64)

1

det J
= 1− h ∇ · χ+O(h2). (65)

For the adjoint Jacobian matrix, the formula

J∗ =




1 + h∂xχx h∂yχx h∂zχx

h∂xχy 1 + h∂yχy h∂zχy

h∂xχz h∂yχz 1 + h∂zχz




holds.

Hence, a substitution of variable in integration (at least for small values of h) includes the sub-
stitution

dx′dy′dz′ = |det J(x, y, z)| dxdydz = det J(x, y, z) dxdydz, dG′ = det J dG.

The first order derivatives transform according to

∂x = ∂x′ [1 + h∂xχx] + ∂y′ [h∂xχy], +∂z′ [h∂xχz],

∂y = ∂′x[h∂yχx] + ∂′y[1 + h∂yχy] + ∂′z[h∂yχz],

∂z = ∂′x[h∂zχx] + ∂′y[h∂zχy] + ∂′z[1 + h∂zχz],

(∂x, ∂y, ∂z)
> = J (∂x′ , ∂y′ , ∂z′)

>,

(∂x′ , ∂y′ , ∂z′)
> = J−1(∂x, ∂y, ∂z)

>,

J−1 =
1

det J
×




(1 + h∂yχy)(1 + h∂zχz) h∂zχyh∂xχz h∂xχyh∂yχz

−h∂zχyh∂yχz −h∂xχy(1 + h∂zχz) −h∂xχz(1 + h∂yχy)

h∂zχxh∂yχz (1 + h∂xχx)(1 + h∂zχz) h∂yχxh∂xχz

−h∂yχx(1 + h∂zχz) −h∂xχzh∂zχx −h∂yχz(1 + h∂xχx)

h∂yχxh∂zχy h∂zχxh∂xχy (1 + h∂xχx)(1 + h∂yχy)
−h∂zχx(1 + h∂yχy) −h∂zχy(1 + h∂xχx) −h∂yχxh∂xχy




.

Consequently, there holds

∂x′ =
1 + h{∂yχy + ∂zχz}

det J
∂x −

h∂xχy

det J
∂y −

h∂xχz

det J
∂z +O(h2)

=
1

det J
∂x +

h

det J
{[∂yχy + ∂zχz]∂x − ∂xχy∂y − ∂xχz∂z}+O(h2), (66)

∂y′ = −h∂yχx

det J
∂x +

1 + h{∂xχx + ∂zχz}
det J

∂y −
h∂yχz

det J
∂z +O(h2)

=
1

det J
∂y +

h

det J
{ − ∂yχx∂x + [∂xχx + ∂zχz]∂y − ∂yχz∂z}+O(h2), (67)

∂z′ = −h∂zχx

det J
∂x −

h∂zχy

det J
∂y +

1 + h{∂xχx + ∂yχy}
det J

∂z +O(h2)

=
1

det J
∂z +

h

det J
{ − ∂zχx∂x − ∂zχy∂y + [∂xχx + ∂yχy]∂z}+O(h2). (68)
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This implies, for the rotation,

∇′ × v = ∇′ × (vx, vy, vz)
> = (∂y′vz − ∂z′vy, ∂z′vx − ∂x′vz, ∂x′vy − ∂y′vx)

>

=
1

det J
∇× v

+
h

det J

(
− ∂yχx∂xvz + [∂xχx + ∂zχz]∂yvz − ∂yχz∂zvz + ∂zχx∂xvy

+∂zχy∂yvy − [∂xχx + ∂yχy]∂zvy,

−∂zχx∂xvx − ∂zχy∂yvx + [∂xχx + ∂yχy]∂zvx

−[∂yχy + ∂zχz]∂xvz + ∂xχy∂yvz + ∂xχz∂zvz,

[∂yχy + ∂zχz]∂xvy − ∂xχy∂yvy − ∂xχz∂zvy

+∂yχx∂xvx − [∂xχx + ∂zχz]∂yvx + ∂yχz∂zvx

)>

+O(h2)

=
1

det J
∇× v

+
h

det J

{
∂xχx(∂yvz − ∂zvy, ∂zvx,−∂yvx)> + ∂xχy(0, ∂yvz,−∂yvy)>

+∂xχz(0, ∂zvz,−∂zvy)> + ∂yχx(− ∂xvz, 0, ∂xvx)
>

+∂yχy(− ∂zvy, ∂zvx − ∂xvz, ∂xvy)
> + ∂yχz(− ∂zvz, 0, ∂zvx)

>

+∂zχx(∂xvy,−∂xvx, 0)> + ∂zχy(∂yvy,−∂yvx, 0)>

+∂zχz(∂yvz,−∂xvz, ∂xvy − ∂yvx)
>
}
+O(h2)

=
1

det J
∇× v

+
h

det J

{
∂xχx([∇× v]x, ∂zvx,−∂yvx)> + ∂xχy(0, ∂yvz,−∂yvy)>

+∂xχz(0, ∂zvz,−∂zvy)> + ∂yχx(−∂xvz, 0, ∂xvx)>
+∂yχy(−∂zvy, [∇× v]y, ∂xvy)

> + ∂yχz(−∂zvz, 0, ∂zvx)>
+∂zχx(∂xvy,−∂xvx, 0)> + ∂zχy(∂yvy,−∂yvx, 0)>

+∂zχz(∂yvz,−∂xvz, [∇× v]z)
>
}
+O(h2)

=
1

det J
∇× v

+
h

det J

{
∂xχx∇× v + ∂xχx(0, ∂xvz,−∂xvy)> + ∂xχy(0, ∂yvz,−∂yvy)>

+∂xχz(0, ∂zvz,−∂zvy)> + ∂yχx(−∂xvz, 0, ∂xvx)>
+∂yχy∇× v + ∂yχy(−∂yvz, 0, ∂yvx)> + ∂yχz(−∂zvz, 0, ∂zvx)>
+∂zχx(∂xvy,−∂xvx, 0)> + ∂zχy(∂yvy,−∂yvx, 0)>

+∂zχz∇× v + ∂zχz(∂zvy,−∂zvx, 0)>
}
+O(h2)

=
1

det J
∇× v

+
h

det J

{
∇·χx∇× v +

(
− ∂yχx∂xvz + ∂zχx∂xvy − ∂yχy∂yvz + ∂zχy∂yvy
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−∂yχz∂zvz + ∂zχz∂zvy,

−∂zχx∂xvx + ∂xχx∂xvz − ∂zχy∂yvx + ∂xχy∂yvz

−∂zχz∂zvx + ∂xχz∂zvz,

−∂xχx∂xvy + ∂yχx∂xvx − ∂xχy∂yvy + ∂yχy∂yvx

−∂xχz∂zvy + ∂yχz∂zvx

)>}
+O(h2).

At the end, the rotation is given by

∇′×v =
∇×v

det J
+

h

det J

{
∇ · χ ∇× v −∇χx×∂xv −∇χy×∂yv −∇χz×∂zv

}

= ∇× v − h
{
∇χx×∂xv +∇χy×∂yv +∇χz×∂zv

}
+ O(h2). (69)

Note that, in general, the space H(curl, G) is not invariant under the transform Ψh. To treat a
general χ, magnetic fields from the invariant space [H1]3 are considered, shape derivatives for
these magnetic fields are computed, and the formula is converted to electric fields using (4).

4.6 Asymptotic expansion of variational form

In this subsection all functions u and v are magnetic fields. For each h, a perturbed variational
equation (52) is defined replacing k by kh := Ψhk, i.e., by

kh(x
′, y′, z′) = kh

(
Φh(x, y, z)

)
:= k

(
Φ−1

h Φh(x, y, z)
)

= k(x, y, z).

The corresponding sesqui-linear form is denoted by ah, and the variational equation equivalent
to (53) is considered with ah. This ah takes the form

ah

(
(u, u+, u−), (v, v+, v−)

)
=

µ2ω2

∫

G

k−2
h ∇× u · ∇ × v dG− µ2ω2

∫

G

u · v dG + aR

(
(u, u+, u−), (v, v+, v−)

)
.

The remainder form aR consists of boundary integrals over Γ± and is independent of h. Simi-
larly, the right-hand sides

fh

(
(v, v+, v−)

)
:= −ah

(
(0, U inc, 0), (v, v+, v−)

)
= −a

(
(0, U inc, 0), (v, v+, v−)

)

are independent of h. Now (69) and (64) lead, for h → 0, to the asymptotic expansion of the
variational form

ah

(
(Ψhu, u

+, u−), (Ψhv, v
+, v−)

)
(70)

= µ2ω2

∫

G

k−2(Φ−1
h (x′, y′, z′)) ∇×u(Φ−1

h (x′, y′, z′)) ·

∇×v(Φ−1
h (x′, y′, z′)) dG′ (71)
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−µ2ω2

∫

G

u(Φ−1
h (x′, y′, z′)) · v(Φ−1

h (x′, y′, z′)) dG′

+aR

(
(u, u+, u−), (v, v+, v−)

)

= µ2ω2

∫

G

k−2

{
∇×u− h

[
∇χx×∂xu+∇χy×∂yu+∇χz×∂zu

]
+O(h2)

}

·
{
∇×v − h

[
∇χx×∂xv +∇χy×∂yv +∇χz×∂zv

]
+O(h2)

}
det J dG

−µ2ω2

∫

G

u · v det J dG+ aR

(
(u, u+, u−), (v, v+, v−)

)

= a
(
(u, u+, u−), (v, v+, v−)

)
+ h a1(u, v) +O(h2)

with a1 defined as

a1(u, v) := µ2ω2

∫

G

k−2 [∇× u] · [∇× v] ∇ · χ dG

−µ2ω2

∫

G

k−2 [∇× u] ·
[
∇χx × ∂xv +∇χy × ∂yv +∇χz × ∂zv

]
dG

−µ2ω2

∫

G

k−2
[
∇χx × ∂xu+∇χy × ∂yu+∇χz × ∂zu

]
· [∇× v] dG

−µ2ω2

∫

G

u · v ∇ · χ dG.

Note that the magnetic field solutions of the Maxwell equations u and v are in [H1]3 such that
the last definition is meaningful. The values of the form a1 applied to solutions of the Maxwell
equations coincide with those in (60). This fact will be shown in the remainder of this section.

In view of the identities ∂su = ∇us−es×[∇×u], s = x, y, z as well as ∇χs×es×[∇×u] =
∇χs · [∇× u] es −∇χs · es [∇× u] with es := (δx,s, δy,s, δz,s)

>, the form a1 is equal to

a1(u, v) = −µ2ω2

∫

G

k−2 [∇×u] · [∇×v] ∇ · χ dG

−µ2ω2

∫

G

k−2 [∇×u] ·
[
∇χx×∇vx +∇χy×∇vy +∇χz×∇vz

]
dG

+µ2ω2

∫

G

k−2 [∇×u] ·
(
∇χx · [∇×v],∇χy · [∇×v],∇χz · [∇×v]

)>

dG

−µ2ω2

∫

G

k−2
[
∇χx×∇ux +∇χy×∇uy +∇χz×∇uz

]
· [∇×v] dG

+µ2ω2

∫

G

k−2
(
∇χx · [∇×u],∇χy · [∇×u],∇χz · [∇×u]

)>

· [∇×v] dG

−µ2ω2

∫

G

u · v ∇ · χ dG.

The identities

∇ · {[∇× u]× [vs∇χs]} = [∇×∇× u] · [vs∇χs]
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−[∇× u] · {∇vs ×∇χs + vs∇×∇χs},
[∇× u] · [∇χs ×∇vs] = ∇ · {[∇× u]× [vs∇χs]}

−[∇×∇× u] · [vs∇χs] + [∇× u] · [vs∇×∇χs],

[∇χs ×∇us] · [∇× v] = −∇ · {[us∇χs]× [∇× v]}
−[us∇χs] · [∇×∇× v] + [us∇×∇χs] · [∇× v]

lead to

a1(u, v) := −µ2ω2

∫

G

k−2 [∇× u] · [∇× v] ∇ · χ dG

−µ2ω2

∫

G

k−2 [∇× u] ·
[
vx∇× [∇χx] + vy∇× [∇χy] + vz∇× [∇χz]

]
dG

+µ2ω2

∫

G

k−2 ∇× [∇× u] ·
[
vx∇χx + vy∇χy + vz∇χz

]
dG

−µ2ω2

∫

G

k−2 ∇ ·
{
[∇× u]×

[
vx∇χx + vy∇χy + vz∇χz

] }
dG

+µ2ω2

∫

G

k−2 [∇× u] ·
(
∇χx · [∇× v],∇χy · [∇× v],∇χz · [∇× v]

)>

dG

−µ2ω2

∫

G

k−2
[
ux∇× [∇χx] + uy∇× [∇χy] + uz∇× [∇χz]

]
· [∇× v] dG

+µ2ω2

∫

G

k−2
[
ux∇χx + uy∇χy + uz∇χz

]
· ∇ × [∇× v] dG

+µ2ω2

∫

G

k−2 ∇ ·
{[
ux∇χx + uy∇χy + uz∇χz

]
× [∇× v]

}
dG

+µ2ω2

∫

G

k−2
(
∇χx · [∇× u],∇χy · [∇× u],∇χz · [∇× u]

)>

· [∇× v] dG

−µ2ω2

∫

G

u · v ∇ · χ dG.

Now suppose ΓI is the collection of Γ± and all interfaces with jumps in k−2 and ∇χs, s =
x, y, z and that ν is the normal to ΓI . Recall the definition of the jump [ . . . ]ΓI in Section 2.4.
The jump over Γ± is defined simply by setting the undefined functions above Γ+ and below Γ−

to zero. If the u and v are solutions of the curl-curl equation (3), then the divergence theorem∫
Ω
∇ · w =

∫
∂Ω
w · ν implies

a1(u, v) = −µ2ω2

∫

G

k−2 [∇×u] · [∇×v] ∇ · χ dG (72)

−µ2ω2

∫

G

k−2 [∇×u] ·
[
vx∇×[∇χx] + vy∇×[∇χy] + vz∇×[∇χz]

]
dG

+µ2ω2

∫

G

u ·
[
vx∇χx + vy∇χy + vz∇χz

]
dG

−µ2ω2

∫

ΓI

[ k−2
[
ν×[∇×u]

]
·
[
vx∇χx + vy∇χy + vz∇χz

]
]ΓI dΓI

25



+µ2ω2

∫

G

k−2 [∇×u] ·
(
∇χx · [∇×v],∇χy · [∇×v],∇χz · [∇×v]

)>

dG

−µ2ω2

∫

G

k−2
[
ux∇×[∇χx] + uy∇×[∇χy] + uz∇×[∇χz]

]
· [∇×v] dG

+µ2ω2

∫

G

[
ux∇χx + uy∇χy + uz∇χz

]
· v dG

−µ2ω2

∫

ΓI

[ k−2
[
ux∇χx + uy∇χy + uz∇χz

]
·
[
ν×[∇×v]

]
]ΓI dΓI

+µ2ω2

∫

G

k−2
(
∇χx · [∇×u],∇χy · [∇×u],∇χz · [∇×u]

)>

· [∇×v] dG

−µ2ω2

∫

G

u · v ∇ · χ dG.

The integrals over ΓI take the form
∫

ΓI

[ k−2
[
ν×[∇×u]

]
·
[
vx∇χx + vy∇χy + vz∇χz

]
]ΓI dΓI

=
∑

w∈{x,y,z}

∫

ΓI

[ vw k
−2

[
ν × [∇× u]

]
· [∇χw]t ]ΓI dΓI .

Here, for a vector function [. . .], the expression [. . .]t denotes the tangential part of [. . .].

Now, by Γi we denote the union of the boundaries Γ± and all the interfaces between the sub-
domains of G, where the permittivity ε is constant. On the surface ΓI \ Γi, the wave number k
and the Maxwell solutions ∇× u and v are continuous. Since χw is continuous and piecewise
analytic (cf. condition (C1) at the beginning of Section 4.2), the tangential derivative [∇χw]t is
continuous too. The interface normal ν in the jump expression changes sign. Consequently, the
jump [ vw k

−2 [ν × [∇× u]] · [∇χw]t ]ΓI over ΓI \ Γi is zero and we can replace the surface
integrals over ΓI in (72) by integrals over Γi. Over Γi, the tangential parts of the Maxwell so-
lutions k−2[∇× u]t and [v]t are continuous. Again [∇χw]t is continuous. Thus splitting v into
the continuous tangential part [v]t and the normal part [v · ν] ν, we can drop the zero jump of
the continuous parts and obtain

∫

Γi

[ k−2
[
ν×[∇×u]

]
·
[
vx∇χx + vy∇χy + vz∇χz

]
]Γi dΓi

=

∫

Γi

[
(
k−2

[
ν×[∇×u]

]
·∇χx , k

−2
[
ν×[∇×u]

]
·∇χy , k

−2
[
ν×[∇×u]

]
·∇χz

)>

·v ]Γi dΓi

=

∫

Γi

[
(
k−2

[
ν×[∇×u]

]
·∇χx , k

−2
[
ν×[∇×u]

]
·∇χy , k

−2
[
ν×[∇×u]

]
·∇χz

)>

·[v · ν] ν ]Γi dΓi

=
∑

w∈{x,y,z}

∫

Γi

[ [v · ν]νw k−2
[
ν × [∇× u]

]
· [∇χw]t ]Γi dΓi

=

∫

Γi

[ k−2
[
ν × [∇× u]

]
· [∇(ν · χ)] [ν · v] ]Γi dΓi. (73)
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For the magnetic field solution v, the substitution (5) and the splitting vel = [vel]t + [vel · ν]ν
yield

ν · v =
−i

µω

{
ν ·

[
∇× [vel]t

]
+ ν ·

[
∇× {[vel · ν]ν}

]}

=
−i

µω

{
[ν ×∇] · [vel]t + ν ·

[
∇[vel · ν]× ν + [vel · ν] ∇× ν

]}

=
−i

µω
[ν ×∇] · [vel]t,

since ∇× ν = 0. Now [ν ×∇]· is a tangential derivative, where only the sign depends on the
side of the interface. The tangential derivative of the function [vel]t is continuous and the jump
of ν · v over the interface vanishes. Consequently, the interface integral (73) is zero.

Substituting the solution of the magnetic equation in (72) by that of the electric equation (cf. (5)),
i.e., substituting u = uma = −i/µω [∇ × uel] and [∇ × u] = −ik2/µω uel as well as
v = vma = −i/µω [∇× vel] and [∇× v] = −ik2/µω vel, the formula (60) follows.

4.7 Asymptotic expansion of solution

Suppose uh, u+h , and u−h are the magnetic field solutions of the system

ah

(
(uh, u

+
h , u

−
h ), (vh, v

+, v−)
)
= fh

(
(vh, v

+, v−)
)
:=−a

(
(0, U inc, 0), (vh, v

+, v−)
)
.

Since ∇·uh = 0 for a constant µ, the term
∫
G
∇·uh∇ · vh dG can be added to the variational

equation leading to a strongly elliptic sesqui-linear form. In other words uh ∈ [H1]3 over the
subdomains with constant ε. However, [H1]3 is invariant under the action of Ψh. The classical
theory of asymptotics yields (compare the two-dimensional case treated in [11])

Ψ−1
h uh = u0 + hu1 +O(h2),

u+h = u+0 + hu+1 +O(h2), (74)

u−h = u−0 + hu−1 +O(h2).

Of course, the derivation requires the unique solvability of the boundary value problem (3),
(14)-(17), (19), (21), and (23).

The field derivatives u1, u+1 , and u−1 can be characterized as the solution of a variational equa-
tion (cf. the subsequent variational equation (75)). Indeed, substituting (74) into the variational
form over the transformed domain, the equation changes to

ah

(
(Ψh[u0+hu1+O(h2)], [u+0 +hu

+
1 +O(h2)], [u−+hu−1 +O(h2)]), (Ψhv, v

+, v−)
)

= fh

(
(Ψhv, v

+, v−)
)

= f
(
(v, v+, v−)

)
.

From (70), there follows

ah

(
(Ψh[u0+hu1+O(h2)], [u+0 +hu

+
1 +O(h2)], [u−0 +hu

−
1 +O(h2)]), (Ψhv, v

+, v−)
)
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= a
(
([u0+hu1+O(h2)], [u+0 +hu

+
1 +O(h2)], [u−0 +hu

−
1 +O(h2)]), (v, v+, v−)

)

+ha1

(
[u0+hu1+O(h2)], v

)
+O(h2)

= a
(
(u0, u

+
0 , u

−
0 ), (v, v

+, v−)
)
+ ha

(
(u1, u

+
1 , u

−
1 ), (v, v

+, v−)
)

+ha1(u0, v) +O(h2)

= f
(
v, v+, v−

)
+ ha

(
(u1, u

+
1 , u

−
1 ), (v, v

+, v−)
)
+ ha1(u0, v) +O(h2).

Here, a1 is the form (72) depending on the magnetic field solutions. In view of the last two
formulas, the derivatives u1, u+1 , and u−1 of (74) are the solution of the equation

a
(
(u1, u

+
1 , u

−
1 ), (v, v

+, v−)
)
= −a1(u0, v). (75)

Note that this characterization of the material derivative u1 cannot be converted directly into an
equation for the electric fields. In fact, the test functionals v are not the solutions of Maxwell’s
equation and do not necessarily satisfy (4) and (5). For the final formula, the general test function
v will be replaced by the adjoint solution of the Maxwell’s equations, and the conversion will be
done in Section 4.9.

4.8 Derivative of objective functional

In order to define the adjoint solution, a formula for the derivative of the objective functional (57)
is needed. The first step to get such a formula is to derive an expression for the derivative of the
Rayleigh coefficient B+

n,m,l of the magnetic field uh with respect to h.

Again the magnetic field functions are considered. Suppose u+n′,m′,l′ is propagating into the
upper half space (cn′,m′ > 0). Then

1

µω
ν ×






an
bm
cn,m


×



en,m,l

fn,m,l

gn,m,l




 · 1

µω
ν ×






an
bm
cn,m


×



en,m,l′

fn,m,l′

gn,m,l′






=
1

µ2ω2


ν ·



en,m,l

fn,m,l

gn,m,l







an
bm
cn,m


− ν ·




an
bm
cn,m






en,m,l

fn,m,l

gn,m,l




 ·


ν ·



en,m,l′

fn,m,l′

gn,m,l′







an
bm
cn,m


− ν ·




an
bm
cn,m






en,m,l′

fn,m,l′

gn,m,l′






=
1

µ2ω2


gn,m,l




an
bm
cn,m


− cn,m



en,m,l

fn,m,l

gn,m,l




 ·


gn,m,l′




an
bm
cn,m


− cn,m



en,m,l′

fn,m,l′

gn,m,l′





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=
1

µ2ω2

[
gn,m,l gn,m,l′ k

2 + |cn,m|2δl,l′
]

=
δl,l′

µ2ω2

[
δl′,1 [a

2
n + b2m] + c2n,m

]
.

Consequently,

∫

Γ+

[ν × u+n,m,l] · [ν × u+
n′,m′,l′ ] d∂G

+ = δn,n′δm,m′δl,l′ κn′,m′,l′ ,

κn′,m′,l′ :=
1

µ2ω2

[
δl′,1 [a

2
n′ + b2m′ ] + c2n′,m′

]
perxpery.

For a mode u+n,m,l in (57) with (n,m, l) ∈ I , the relation cn,m > 0 is assumed. Hence u+n,m,l

is propagating into the upper half space. The boundary value u = u+ + uinc on Γ+ satisfies

∫

Γ+

[ν × u] · [ν × u+
n,m,l] dΓ

+ =
{
B+

n,m.l + δn,0δm,0 κ
inc
l

}
κn,m,l,

κincl :=
1

µ2ω2

perxpery
κ0,0,l

[
δl,1g

inc
c g0,0,1

[
a20 + b20 − c20,0

]

−c20,0
[
eincc e0,0,l + f inc

c f 0,0,l + gincc g0,0,l
]

−gincc c0,0
[
a0e0,0,l + b0f 0,0,l − c0,0g0,0,l

]

+c0,0g0,0,l
[
eincc a0 + f inc

c b0 + gincc c0,0
] ]
,

B+
n,m.l =

1

κn,m,l

∫

Γ+

[ν × u] · [ν × u+
n,m,l] dΓ

+ − δn,0δm,0 κ
inc
l .

In other words, B+
n,m.l(u) is an affine function of the magnetic solution u. Hence, the derivative

of B+
n,m.l(uh) with respect to h is

∂h[B
+
n,m.l(uh)]|h=0 =

1

κn,m,l

∫

Γ+

[ν × u1] · [ν × u+
n,m,l] dΓ

+,

where the function u1 (cf. the asymptotic expansion (74)) is the derivative of the field solution
uh with respect to parameter h.

For the derivative of the objective functional (57) depending on u = uma, the last formula
implies

∂h[F(uh)]|h=0 :=
∑

n,m,l

wn,m,l2

[
100 cn,m
c0,0

|B+
n,m,l(u0)|2 − dn,m,l

]
100 cn,m
c0,0

∗ 2<e
[
B+

n,m,l(u0)
1

κn,m,l

∫

Γ+

[ν × u1] · [ν × u+
n,m,l] dΓ

+

]

= <e
∫

Γ+

[ν × u1] ·
{
4
∑

n,m,l

wn,m,l

[
100 cn,m
c0,0

|B+
n,m,l(u0)|2 − dn,m,l

]

∗100 cn,m
c0,0

B+
n,m,l(u0)

1

κn,m,l

[ν × u+
n,m,l]

}
dΓ+.
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Hence, there holds ∂h[F(uh)]|h=0 = <e F̃(u1) with

F̃(u) := µ2ω2

∫

Γ+

k−2 [ν × u] · ϕt dΓ
+,

ϕt :=
4k2

µ2ω2

∑

n,m,l

wn,m,l

κn,m,l

[
100 cn,m
c0,0

|B+
n,m,l(u0)|2 − dn,m,l

]
(76)

∗100 cn,m
c0,0

B+
n,m,l(u0)[ν × u+ma,n,m,l].

Furthermore, if uma,ad, u±ma,ad, uincma,ad is the adjoint solution defined by the variational equation

ama

(
(u, u+, u−), (uma,ad, u

+
ma,ad, u

−
ma,ad)

)
= F̃(u) (77)

with test functions u, u+, and u−, then (75) implies

∂h[F(uh)]|h=0 = <e ama

(
(u1, u

+
1 , u

−
1 ), (uma,ad, u

+
ma,ad, u

−
ma,ad)

)

= −<e a1(u0, uma,ad),

with a1 defined in (72).

4.9 Adjoint electric-field solution

Recall from Section 4.6 that the form (60) is just the form (72) after substituting the magnetic
u = uma and v = vma by the electric uel and vel using (5). Hence, to finish the proof of
Theorem 4.1, it suffices to show that the adjoint solutions uma,ad of (77) and uel,ad of (61) are
connected by (5).

Now choose the test functions u± = 0 and u with a support disjoint to the boundaries Γ±

and the interfaces between the subdomains defined by different values of ε. Then, the Green’s
formula over the subdomain G′ with zero boundary values

µ2ω2

∫

G′

k−2 [∇× u] · [∇× uma,ad] = µ2ω2

∫

G′

u ·
[
∇× [k−2 ∇× uma,ad]

]
,

and the variational equation (77) yield that µ2ω2
∫
G′ u·{∇×[k−2∇×uma,ad]−uma,ad}dG′ =

0, i.e., that uma,ad satisfies (3) over each domainG′ with constant ε. The transmission condition
ν×[uma,ad]Γ = 0 (cf. the first condition in (19)) holds since the variational solution uma,ad

is in H(curl, G). Choosing the test function u non-zero also over a single fixed interface S,
substituting (3), and using the Green’s formula

µ2ω2

∫

S

k−2 [ν × u] · [∇× uma,ad] = µ2ω2

∫

G′

k−2 [∇× u] · [∇× uma,ad] (78)

−µ2ω2

∫

G′

u ·
[
∇× [k−2 ∇× uma,ad]

]
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over the two subdomains G′ ⊆ G adjacent to S, the variational equation (77) implies that
−µ2ω2

∫
S

[u · {ν × [k−2∇× uma,ad]}]SdS = 0, i.e., that ν×[k−2∇× uma,ad]S = 0 which
is the second transmission condition in (19). In other words, the transmission condition (19) is
satisfied.

Substituting (78), (3), and (19) into (77), the variational equation turns into

µ2ω2

∫

Γ+

k−2 [ν × u] · ϕt dΓ
+ (79)

= µ2ω2

∫

Γ+

k−2 ν × u · ∇ × uma,ad dΓ
+

+ µ2ω2

∫

Γ−

k−2 ν × u · ∇ × uma,ad dΓ
−

−µ2ω2

∫

Γ+

k−2 ∇× u+ · [ν × uma,ad] dΓ
+

−µ2ω2

∫

Γ+

k−2
{
ν × u− ν × u+

}
· ∇ × u+

ma,ad dΓ
+

+η µ2ω2

∫

Γ+

k−2
{
ν × u− ν × u+

}
·
{
ν×

[
uma,ad − u+ma,ad

]}
dΓ+

−µ2ω2

∫

Γ−

k−2 ∇× u− · [ν × uma,ad] dΓ
−

−µ2ω2

∫

Γ−

k−2
{
ν × u− ν × u−

}
· ∇ × u−ma,ad dΓ

−

+η µ2ω2

∫

Γ−

k−2
{
ν × u− ν × u−

}
·
{
ν×

[
uma,ad − u−ma,ad

]}
dΓ− .

To derive all the boundary conditions for the solution uma,ad hidden in the variational equation,
a technical definition is needed. At first, we define the tangential part of a vector field v by
[v]t := −ν × [ν × v]. If cn,m = 0, then ν × u+el,n,m,1 = 0 and ν × [∇ × u+el,n,m,0] = 0.

Similarly, ν × u+ma,n,m,0 = 0 and ν × [∇ × u+ma,n,m,1] = 0. For a general expansion of a
quasi-periodic tangential vector function Ft over Γ±

Ft =
∑

n,m,l: cn,m 6=0 or l=1

CFt,ma
n,m,l [ν × u±ma,n,m,l] +

∑

n,m: cn,m=0

CFt,ma
n,m,0 [u±ma,n,m,1]t

=
∑

n,m,l: cn,m 6=0 or l=0

CFt,el
n,m,l[ν × u±el,n,m,l] +

∑

n,m: cn,m=0

CFt,el
n,m,1 [u

±
el,n,m,0]t, (80)

the projections Pma
Γ± and P el

Γ± are introduced by

Pma
Γ± Ft :=

∑

n,m,l: cn,m 6=0 or l=1

CFt,ma
n,m,l [ν × u±ma,n,m,l],

P el
Γ±Ft :=

∑

n,m,l: cn,m 6=0 or l=0

CFt,el
n,m,l[ν × u±el,n,m,l].

Clearly, there holds Pma
Γ± [ν × u±ma] = [ν × u±ma] and P el

Γ± [ν × u±el] = [ν × u±el]. Introducing
the operators Πma

Γ±F := −ν × Pma
Γ± (ν × F ) and Πel

Γ±F := −ν × P el
Γ±(ν × F ), we get
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Pma
Γ± (ν × F ) = ν ×Πma

Γ±F and P el
Γ±(ν × F ) = ν ×Πel

Γ±F . Note that the restrictions of Πma
Γ±

and Πel
Γ± to tangential fields are projections.

Now look at the third term on the right-hand side of (79). We would like to apply a partial
integration similar to (55). Clearly, ν × uma,ad|Γ+ is a general quasi-periodic tangential vector
field and can be split into ν × Πma

Γ+ (uma,ad|Γ+) and (I − Pma
Γ+ )(ν × uma,ad|Γ+). Since ν ×

Πma
Γ+ (uma,ad|Γ+) is in the span of the functions ν × u+ma,n,m,l, formula (55) implies
∫

Γ+

∇× u+ · [ν × uma,ad] dΓ
+ =

∫

Γ+

ν × u+ ·
[
∇× [Πma

Γ+ (uma,ad|Γ+)]mo

]
dΓ+

+

∫

Γ+

∇× u+ · (I − Pma
Γ+ )(ν × uma,ad|Γ+) dΓ+

However, ν× [∇×u+ma,n,m,1] = 0 implies ∇×Πma
Γ+Ft = ∇×Ft, and the projector in the first

term on the right-hand side can be dropped. Furthermore, the image of (I − Pma
Γ+ ) is spanned

by the u+ma,n,m,1 with cn,m = 0. In view of ν× [∇×u+ma,n,m,1] = 0 and due to the orthogonality
of the ν×u+n,m,l to u+n′,m′,l′ for (n,m) different from (n′,m′), we can replace u+ in the second
term on the right-hand side by Qma

Γ+u+. We get
∫

Γ+

∇× u+ · [ν × uma,ad] dΓ
+ =

∫

Γ+

ν × u+ ·
[
∇+ × [uma,ad|Γ+ ]mo

]
dΓ+ +

∫

Γ+

∇×Qma
Γ+u+ · (I − Pma

Γ+ )(ν × uma,ad|Γ+) dΓ+

Note that [uma,ad|Γ+ ]mo stands for the following. Firstly, the tangential trace [uma,ad|Γ+ ]t is
represented as a quasi-periodic Fourier series expansion with respect to the basis functions
[u+n,m,l]t for all n,m ∈ Z such that cn,m 6= 0 or l = 0 together with the basis functions

ν × u+n,m,1 for all n,m ∈ Z such that cn,m = 0. Secondly, the modification operator (54)
is applied to this representation. All the terms with functions corresponding to cn,m = 0 are
deleted. By ∇+ × [uma,ad|Γ+ ]mo we denote the curl operator applied to the modified function,
i.e., to the wave expansion in the upper half plane. A similar formula with an analogous notation
holds over Γ−.

Now substituting the last equation and the analogous formula for Γ− into (79), the variational
equation turns into

µ2ω2

∫

Γ+

k−2 [ν × u] · ϕt dΓ
+ (81)

= µ2ω2

∫

Γ+

k−2 ν × u · ∇ × uma,ad dΓ
+

−µ2ω2

∫

Γ+

k−2 ν × u+ ·
[
∇+ × [uma,ad|Γ+ ]mo

]
dΓ+

−µ2ω2

∫

Γ+

k−2 ∇×Qma
Γ+u+ · (I − Pma

Γ+ )(ν × uma,ad|Γ+) dΓ+

−µ2ω2

∫

Γ+

k−2
{
ν × u− ν × u+

}
· ∇ × u+

ma,ad dΓ
+

+η µ2ω2

∫

Γ+

k−2
{
ν × u− ν × u+

}
·
{
ν×

[
uma,ad − u+ma,ad

]}
dΓ+
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+ µ2ω2

∫

Γ−

k−2 ν × u · ∇ × uma,ad dΓ
−

−µ2ω2

∫

Γ−

k−2 ν × u− ·
[
∇− × [uma,ad|Γ− ]mo

]
dΓ−

−µ2ω2

∫

Γ−

k−2 ∇×Qma
Γ−u− · (I − Pma

Γ− )(ν × uma,ad|Γ−) dΓ−

−µ2ω2

∫

Γ−

k−2
{
ν × u− ν × u−

}
· ∇ × u−ma,ad dΓ

−

+η µ2ω2

∫

Γ−

k−2
{
ν × u− ν × u−

}
·
{
ν×

[
uma,ad − u−ma,ad

]}
dΓ− .

Now consider the variational equation (81) and choose the magnetic test functions according to
the following six cases:

– choose an arbitrary u with [ν × u]|Γ− = 0 as well as u± = 0
– choose an arbitrary u+ with Q+

Γ+u+ = 0 and u− = 0 as well as u = 0
– choose u+ = Q+

Γ+u+ and u = 0 as well as u− = 0
– choose an arbitrary u with [ν × u]|Γ+ = 0 as well as u± = 0
– choose an arbitrary u− with Q−

Γ−u− = 0 and u+ = 0 as well as u = 0
– choose u− = Q−

Γ−u− and u = 0 as well as u+ = 0

The following six relations can be derived.

ϕt = [∇× uma,ad]t − [∇× u+ma,ad]t + η
[
ν×{uma,ad − u+ma,ad}

]
t

onΓ+,

0 = −
[
∇+ × [uma,ad|Γ+ ]

mo

]
t
+ Pma

Γ+ [∇× u+ma,ad]t

−ηPma
Γ+

[
ν×{uma,ad − u+ma,ad}

]
t

onΓ+,

0 = (I − Pma
Γ+ )

[
[ν × uma,ad]|Γ+

]
onΓ+,

(82)
0 = [∇× uma,ad]t − [∇× u−ma,ad]t + η

[
ν×{uma,ad − u−ma,ad}

]
t

onΓ−,

0 = −
[
∇− × [uma,ad|Γ− ]

mo

]
t
+ Pma

Γ− [∇× u−ma,ad]t

−ηPma
Γ−

[
ν×{uma,ad − u−ma,ad}

]
t

onΓ−,

0 = (I − Pma
Γ− )

[
[ν × uma,ad]|Γ−

]
onΓ−.

In other words, applying Pma
Γ± to the first and fourth equation, adding the resulting first to the

second, and adding the resulting fourth to the fifth, we get the boundary conditions

ϕt =
[
(∇× uma,ad)|Γ+

]
t
−

∑

n,m: cn,m=0

∫
Γ+ [∇× uma,ad] · [u+

ma,n,m,1]t dΓ
+

∫
Γ+ ‖[u+ma,n,m,1]t‖2 dΓ+

[u+ma,n,m,1]t

−
[
∇+ × [uma,ad|Γ+ ]

mo

]
t

onΓ+,

0 =
[
(∇× uma,ad)|Γ−

]
t
−

∑

n,m: cn,m=0

∫
Γ− [∇× uma,ad] · [u−

ma,n,m,1]t dΓ
−

∫
Γ− ‖[u−ma,n,m,1]t‖2 dΓ−

[u+n,m,1]t
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−
[
∇− × [uma,ad|Γ− ]

mo

]
t

onΓ−, (83)

0 =

∫

Γ−

[ν × uma,ad|Γ+ ] · u+
ma,n,m,1 dΓ

+ ∀(n,m) s.t. cn,m = 0,

0 =

∫

Γ−

[ν × uma,ad|Γ− ] · u−
ma,n,m,1 dΓ

− ∀(n,m) s.t. cn,m = 0.

Now, switching to the electric field uel,ad = iµω
k2

∇ × uma,ad (cf. (4)) and taking into account
that u±ma,n,m,1 is proportional to u±el,n,m,0, the adjoint solution uel,ad is the solution of (2), (18)
together with the boundary conditions

iµω

k2
ϕt =


uel,ad|Γ+ −

∑

n,m: cn,m=0

∫
Γ+ [uel,ad]t · [u+

el,n,m,0]t dΓ
+

∫
Γ+ ‖[u+el,n,m,0]t‖2 dΓ+

[u+el,n,m,0]t




t

−k−2
[
∇+ × [(∇× uel,ad)|Γ+ ]

mo

]
t

onΓ+,

0 =


uel,ad|Γ− −

∑

n,m: cn,m=0

∫
Γ− [uel,ad]t · [u−

el,n,m,0]t dΓ
−

∫
Γ− ‖[u−el,n,m,0]t‖2 dΓ−

[u+el,n,m,0]t




t

−k−2
[
∇− × [(∇× uel,ad)|Γ− ]

mo

]
t

onΓ−, (84)

0 =

∫

Γ+

[
ν × [∇× uel,ad]|Γ+

]
· u+

el,n,m,0 dΓ
+ ∀(n,m) s.t. cn,m = 0,

0 =

∫

Γ−

[
ν × [∇× uel,ad]|Γ− ] · u−

el,n,m,0 dΓ
− ∀(n,m) s.t. cn,m = 0.

Obviously, there is a Dirichlet-to-Neumann operator ut 7→ [∇+ × ut]t := [(∇ × u)|Γ+ ]t,
mapping the tangential traces ut, orthogonal to the functions [ν × u+el,n,m,0] with cn,m = 0,
to the tangential traces of the curl function [(∇ × u)|Γ+ ]t of the solution u to (2) over the
half space above Γ+ and to the boundary condition [u|Γ+ ]t = ut. Taking into account that
ν × [∇ × u+el,n,m,l] = 0 if and only if l = 0 and cn,m = 0, we get [∇+ × u+el,n,m,0]t = 0
for cn,m = 0 and the one-to-one correspondence of the Dirichlet-to-Neumann mapping for all
tangential traces ut orthogonal to the functions [u+el,n,m,0]t and [ν × u+el,n,m,0] with cn,m = 0.
Consequently, the first of the boundary conditions (84) is equivalent to (cf. (54))

0 =

∫

Γ+

[
uel,ad|Γ+

]
t
· [ν×u+

el,n,m,0] dΓ
+ ∀(n,m) s.t. cn,m = 0,

iµω

k2

[
∇+×ϕt

]
t
=


∇+×

[
uel,ad|Γ+ −

∑

n,m: cn,m=0

∫
Γ+ [uel,ad]t·[u

+

el,n,m,0
]t dΓ+

∫
Γ+ ‖[u+

el,n,m,0
]t‖2 dΓ+

u+el,n,m,0

]

t



t

−k−2
[
∇+×∇+×[(∇×uel,ad)|Γ+ ]

mo

]
t

=
[
∇+×[uel,ad|Γ+ ]t

]
t
−
[
(∇×uel,ad)|Γ+

]
mo

onΓ+ .

In other words, applying the modification operator (54) to the left and right-hand sides of the last

condition and using the notationC
[(∇×uel,ad)|Γ+ ]t
n,m,l for the Fourier coefficients of the tangential field
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Ft = [(∇×uel,ad)|Γ+ ]t (cf. the Fourier series expansion in (80)), the last boundary condition is
equivalent to

0 =

∫

Γ+

[
uel,ad|Γ+

]
t
· [ν×u+

el,n,m,0] dΓ
+ ∀(n,m) s.t. cn,m = 0,

iµω

k2
[∇+×ϕt]t = −

[ iµω
k2

[∇+×ϕt]t

]
mo

(85)

=
[
(∇×uel,ad)|Γ+

]
t
−

∑

n,m: cn,m=0

{
C

[(∇×uel,ad)|Γ+ ]t
n,m,0 [ν×u+el,n,m,0] + C

[(∇×uel,ad)|Γ+ ]t
n,m,1 [u+el,n,m,0]t

}

−
[
∇+×[uel,ad|Γ+ ]mo

]
t

onΓ+.

We observe that the third relation of (84) is nothing else than C
[(∇×uel,ad)|Γ+ ]t
n,m,0 = 0. Thus, if we

drop the first term in the sum on the right hand-side of the second equation in (85), then this
last equation in (85) includes the third relation of (84). This way, all the four boundary conditions
(84) are equivalent to

iµω

k2
[∇+ × ϕt]t =

[
(∇×uel,ad)|Γ+

]
t
−

∑

n,m: cn,m=0

C
[(∇×uel,ad)|Γ+ ]t
n,m,1 [u+el,n,m,0]t

−
[
∇+×[uel,ad|Γ+ ]mo

]
t

onΓ+,

0 =
[
(∇×uel,ad)|Γ−

]
t
−

∑

n,m,l: cn,m=0

C
[(∇×uel,ad)|Γ− ]t
n,m,1 [u−el,n,m,0]t

−
[
∇−×[uel,ad|Γ− ]mo

]
t

onΓ−, (86)

0 =

∫

Γ+

[
ν × uel,ad|Γ+

]
· u+

el,n,m,0 dΓ
+ ∀(n,m) s.t. cn,m = 0,

0 =

∫

Γ−

[
ν × uel,ad|Γ−

]
· u−

el,n,m,0 dΓ
− ∀(n,m) s.t. cn,m = 0.

Now, similarly to the derivation of (83), it is easy to see that the adjoint solution uel,ad of (61)
satisfies the equation (2) with the boundary conditions (86) provided that the function ψt of (62)
is equal to iµω k−2 [∇+ × ϕt]t.

Suppose the angle θn,m is defined as before Theorem 4.1. Then, from the definitions (25)–(32),
it is easy to conclude that

ν × u+el,n,m,l =





(−1)l[cos θn,m]
2l−1[u+el,n,m,1−l]t if cn,m 6= 0 or l = 1

−



an/hn,m
bm/hn,m

0


 ei(anx+bmy+cn.m[z−zmax]) else ,

(87)

∇× u+el,n,m,l = (−1)li
[k+]2l

√
a2n + b2m + |cn,m|2

2l−1
u+el,n,m,1−l. (88)
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For cn,m > 0, the relation
√
a2n + b2m + |cn,m|2 = k+ holds, and (87) and (88) imply

[
∇+ × [ν × u+el,n,m,l]

]
t

= (−1)l[cos θn,m]
2l−1∇+ × [u+el,n,m,1−l]t

= (−1)l[cos θn,m]
2l−1[∇× u+el,n,m,1−l]t

= −ik+ [cos θn,m]
2l−1 [u+el,n,m,l]t,

[
∇+ × [ν × u+ma,n,m,l]

]
t

=
−i

µω

[
∇+ × [ν ×∇× u+el,n,m,l]

]
t

=
(−1)lk+

µω

[
∇+ × [ν × u+el,n,m,1−l]

]
t

=
(−1)1+li[k+]2

µω
[cos θn,m]

1−2l [u+el,n,m,1−l]t

= − i[k+]2

µω
[cos θn,m]

2−4l [ν × u+el,n,m,l].

Substituting the last relation into ∇+×ϕt with ϕt given by (76), the required formula ψt =
iµω k−2 [∇+×ϕt]t follows for ψt from (62).

Note that if, as supposed in Theorem 4.1, there exists an adjoint solution (uel,ad, u
+
el,ad, u

−
el,ad)

of (61), then an adjoint magnetic field uma,ad can be defined by (5). Using (87) and (88), it is
not hard to find u±ma,ad such that (82) is satisfied. Hence, there exists an adjoint magnetic field

solution (uma,ad, u
+
ma,ad, u

−
ma,ad) satisfying (77). Moreover, the solution uma,ad is not only in

H(curl, G) but also in [H1]3 over each subdomain of G with constant ε. Indeed, the solution
uma,ad fulfills (83) and, in view of (3), also ∇ · uma,ad ≡ 0. Consequently, the boundary con-
ditions (12) of [21] are satisfied with a slight modification of the right-hand side. Similarly to the
H1 regularity of the original solution of the Maxwell problem shown in [21], the H1 regularity of
uma,ad follows.

4.10 Proof of last assertion in Remark 3.3

We proceed analogously to the the treatment in the beginning of Section 4.9. Suppose u and
u± are the solutions of (53). Choosing the test functions in (53) such that v± = 0 and that the
support of v is located in the interior of a material domain with constant ε, we conclude that
u satisfies (2). Fixing an interface between the subdomains of constant ε and choosing a test
functional v which is smooth on S but vanishes over all other interfaces, then the variational
equation yields the interface condition (18).

Choosing v = 0, v−, and v
+ either as an u+el,n,m,0 with cn,m = 0 or as the linear combination

of all other u+el,n,m,l, there follows

0 = η

∫
ν × [u− u+ − uinc] · [ν × u+el,n,m,0], ∀n,m s.t. cn,m = 0, (89)

0 =
[
∇+ ×

[
[(u− u+ − uinc)|Γ+ ]t

]
mo

]

t
− η P el

Γ+ν × [u− u+ − uinc]t . (90)
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Expanding the tangential component [u]t into the Fourier series

[u]t =
∑

n,m,l: cn,m 6=0 or l=0

Cn,m,l [u
+
el,n,m,l]t +

∑

n,m: cn,m=0

Cn,m,1 [ν × u+el,n,m,0],

using the expansion (24) of u+ and U inc = D0u
+
0,0,0 +D1u

+
0,0,1, and taking into account (87),

(88), and (54), the equations (89) and (90) turn into

0 =
[
Cn,m,0 − B+

n,m,0 − δ(n,m,0),(0,0,0)D0

]
η, ∀n,m : cn,m = 0,

0 =
[
Cn,m,l −B+

n,m,l −
1∑

l=0

δ(n,m,l),(0,0,l)Dl

]
ηn,m,l, ∀n,m, l : cn,m > 0,

ηn,m,l := λ+n,m,l − η, λ+n,m,l := −ik+[cos θn,m]
1−2l,

0 =
[
Cn,m,l −B+

n,m,l −
1∑

l=0

δ(n,m,l),(0,0,l)Dl

]
ηn,m,l, ∀n,m, l : cn,m 6∈ R,

ηn,m,l := λ+n,m,l − η, λ+n,m,l :=
(−1)l+1[k+]4l−1

[=m cn,m]2l−1
√

2[=m cn,m]2+[k+]2
2l−1

, (91)

0 = Cn,m,1η, ∀n,m : cn,m = 0.

If the numbers ηn,m,l are nonzero, then the last equalities imply [u−u+−uinc]t = 0, i.e., the left
equation of (20). Clearly, we have ηn,m,0 6= 0. On the other hand, =m cn,m ∼

√
1 + n2 +m2

for |n| + |m| −→ ∞. In other words, the only cluster point of the λ+n,m,1 is zero. Choosing
η sufficiently large or at least different from λ+n,m,1 for all n,m ∈ Z, we get ηn,m,l 6= 0 and
[u − u+ − uinc]t = 0. Note that if (46) is replaced by (47), then we get ηn,m,l as above if
n2 +m2 < N and ηn,m,l = λ+n,m,l for all n,m with n2 +m2 ≥ N . In this case, we have to

choose η > 0 different to the numbers λ+n,m,1 for all n,m with n2 +m2 < N .

Choosing the test functions in (53) such that v± = 0, using (2) and the Green formula

∫

∂G

[∇× u] · [ν × v] =

∫

G

[∇× u] · [∇× v] +

∫

G

[
∇× [∇× u]

]
· v,

we arrive at

0 =
[
∇× [u− u+ − uinc] + η ν × [u− u+ − uinc]

]
t
,

i.e., the tangential trace of ∇× [u − u+ − uinc] is zero and we get the right equation of (20).
Similarly, we can derive (22). In particular, the λ+n,m,l for cn.m 6∈ R are to be replaced by

λ−n,m,l :=
(−1)l+1[k−]4l−1

[=m c−n,m]2l−1
√

2[=m c−n,m]2+[k−]2
2l−1

, (92)

Altogether u, u± are solutions of the boundary value problem (2), (10)-(13), (18), (20), and
(22).
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5 Numerical example

5.1 Numerical gradients
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Figure 4: Functional F for 2.5 ≤ a ≤ 3.5, 3.5 ≤ b ≤ 4.5, e = 4, f = 5, and g = 3.
Corresponding 2D gradient vectors.

We consider the structure of a biperiodic array of contact holes (cf. Section 4.3.1). The
parameters are chosen in accordance to

a ∈ [1.5, 3.5], b ∈ [2.5, 4.5], e ∈ [2.5, 4.5],
f ∈ [3.5, 5.5], g ∈ [2.5, 3.5], n = 5,
pery = 12, perx = 10 , o = −2.

We assume an incoming plane wave under TE polarization with wave lengthλ = 25 and
with angles of incidenceθ = 35◦ andφ = 30◦ (cf. Section 2.3). The refractive index of
the cover material and of the material in the hole is set to 1, that for the substrate to 1.5,
and that for the material surrounding the hole to 2. For the electro-magnetic field reflected
by the structure, we consider the quadratic functional

F(u) :=
[
100 eff+

0,0,0(u)− 22.0
]2

with the efficiencyeff+
0,0,0 defined by (36). We have computed the fields numerically us-

ing (51) (cf. (45)) and the quadratic edge elements of NGSOLVE (cf. [14, 22, 23]). The
Rayleigh series expansions in the trial functions (cf. (24),(37)) have been reduced to terms
with |n| ≤ 4 and|m| ≤ 4. The stepsize of the FEM grid has been chosen such that the
number of unknowns is about80 000. Of course, the grid is chosen such that the deriva-
tives of the vector functionχ (cf. (58) and (60)) are continuous over the tetrahedra of the
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Figure 5: Functional F for a = 3, b = 4, 3.5 ≤ e ≤ 4.5, 4.5 ≤ f ≤ 5.5, and g = 3.
Corresponding 2D gradient vectors.

grid. The systems of linear equations have been solved by PARDISO (cf. [20]). Note that
a single LU factorization is needed to solve for the approximate solution as well as for the
adjoint solution.

First, we look at the derivative with respect to parametera for a = 3, b = 4, e = 4,
f = 5, andg = 3. The value of (63) computed with the approximate solution and the
approximate adjoint solution is∂a[F(u)]a=3 ≈ 4.267. Using a simple central difference
formula of stepsize0.25 we have obtained([F(u)]a=3.25 − [F(u)]a=2.75)/0.5 ≈ 4.399 for
the same value. This suggests that the error is less than3%. For a difference formula with
a smaller stepsize, we have got

[F(u)]a=3 − [F(u)]a=2.975

0.025
≈ 0.222 00,

[F(u)]a=3 −
{
[F(u)]a=2.975 − 0.025 ∂a[F(u)]a=3

}

0.025
≈ 0.008 66.

Computing the same values with an FEM grid of halved meshsize,we have obtained
∂a[F(u)]a=3 ≈ 4.373 and

[F(u)]a=3 − [F(u)]a=2.975

0.025
≈ 0.220 19,

[F(u)]a=3 −
{
[F(u)]a=2.975 − 0.025 ∂a[F(u)]a=3

}

0.025
≈ 0.001 51.

Finally, we present the functionalF and its gradients in the Figures 4–6. The gradient
vectors computed approximately by formula (63) fit nicely tothe isolines ofF .
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Figure 6: Functional F for 2.5 ≤ a ≤ 3.5, b = 4, e = 4, f = 5, and 2.5 ≤ g ≤ 3.5.
Corresponding 2D gradient vectors.

5.2 Gradients in the reconstruction method

Now we reconstruct a contact hole geometry with three unknown parameters from ef-
ficiency data. This example should be closer to the application in EUV scatterometry
(cf. e.g. [12] and the papers cited there). Therefore, we choose the wave lengthλ =
13.7 nm and illuminate the contact hole under TE polarization directly from above, i.e.,
θ = 0 andφ = 0. We fix the parameters (cf. Section 4.3.1)

a ∈ [3.15 nm, 3.85 nm], b ∈ [4.55 nm, 5.25 nm], e = 5.6 nm,
f = 7nm, g ∈ [3.85 nm, 4.55 nm], n = 7nm,

pery = 16.8 nm, perx = 14 nm , o = −2 nm.
(93)

The material above the grating and in the hole is described bythe refractive index of vac-
uum. The material around the hole is SiO2 and that of the layer beneath the hole is Ta.
Additionally, we assume a multi-layer structure beneath the contact-hole grating. Under
two capping layers of SiO2 and Si with a thickness of 1.234 nm and 12.869 nm, respec-
tively, we assume 49 identical groups of four layers. Each group consists of a Mo/Si,
a Mo, a Mo/Si, and a Si layer with a thickness of 0.147 nm, 2.141nm, 1.972 nm, and
2.838 nm, respectively. Note that Mo/Si is a mixture of Mo andSi with an interpolated
refractive index to model a non-strict transition from Si toMo.

The contact hole to be reconstructed is that witha = 3.5nm,b = 4.9nm, andg = 4.2nm.
For this we simulate measurement data by an FEM solution witha stepsize of0.37nm
and with quadratic edge elements. So we get approximate valuesdn,m,l for the efficiencies
eff+

n,m,l (cf. (36)) with (n,m, l) equal to (-1,0,0), (0,-1,1), (0,0,0), (0,1,1), and (1,0,0). In
order to reconstructa, b, andg, we determine the minimum of the least-square deviation
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F in (57) withw−1,0,0 = w1,0,0 = 1000, w0,−1,1 = w0,1,1 = 2000, andw0,0,0 = 4. Note
that the weights have been chosen such that the terms in (57) have almost the same range
of values over (93). The values ofF and their numerical gradients for fixedg = 4.2nm
and the FEM meshsizes2.95nm and1.47nm are shown in Figures 7 and 8.
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Figure 7: Objective functional F for 3.15 nm ≤ a ≤ 3.85 nm, 4.55 nm ≤ b ≤ 5.25 nm,
e = 5.6 nm, f = 7 nm, as well as g = 4.2 nm. Meshsize 2.95 nm. Corresponding
2D gradient vectors.

For the optimization ofF we have applied the Gauss-Newton method (cf. e.g. [17]).
Though we actually have used a variant of SQP type to satisfy the prescribed interval
bounds in (93), the components of the iterative solutions remained between the upper
and lower bounds such that the optimization steps were pure Gauss-Newton steps. Each
step requires the computation of the Jacobian matrix for themapping of the geometry
parameters to the efficiencies. The entries of the Jacobian can be computed with formulas
similarly to Theorem 4.1. In our numerical experiment the initial solution wasa = 3.8nm,
b = 4.6nm, andg = 3.9nm, and the results are shown in Table 1. Note that a good
initial solution is realistic in scatterometry since the manufacturing process results in small
perturbations of the ideal parameters only. With a small number of iterations, the exact
solution has been reconstructed perfectly.
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Figure 8: Objective functional F for 3.15 nm ≤ a ≤ 3.85 nm, 4.55 nm ≤ b ≤ 5.25 nm,
e = 5.6 nm, f = 7 nm, as well as g = 4.2 nm. Meshsize 1.47 nm. Corresponding
2D gradient vectors.

meshsize nmb.of its. a b g

initial vals. 3.90000 nm 4.60000 nm 3.90000 nm

2.95 8 3.52643 nm 4.89211 nm 4.20601 nm
1.47 5 3.49339 nm 4.90394 nm 4.20270 nm
0.73 5 3.49984 nm 4.90018 nm 4.20011 nm

exact 3.50000 nm 4.90000 nm 4.20000 nm

Table 1: Number of iterations and reconstruction of parameters for contact
hole.
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